

 [image: Cover image]

Welcome to Weblate’s documentation!

Contents:

	About Weblate
	Project goals

	Project name

	Project website

	Authors

	Translators guide
	Weblate basics

	Registration and user profile

	Translating using Weblate

	Downloading and uploading translations

	Checks and fixups

	Application developer guide
	Starting with internationalization

	Managing translations

	Reviewing source strings

	Promoting the translation

	Translation progress reporting

	Administrators guide
	Quick setup guide

	Installation instructions

	Weblate deployments

	Upgrading Weblate

	Authentication

	Access control

	Translation projects

	Language definitions

	Continuous translation

	Translation process

	Checks and fixups

	Machine translation

	Configuration

	Sample configuration

	Management commands

	Whiteboard messages

	Advertisement

	Component Lists

	Optional Weblate modules

	Translation workflows
	Translation access

	Translation states

	Direct translation

	Peer review

	Dedicated reviewers

	Enabling reviews

	Frequently Asked Questions
	Configuration

	Usage

	Troubleshooting

	Features

	Supported formats
	Automatic detection

	GNU Gettext

	XLIFF

	Java properties

	Joomla translations

	Qt Linguist .ts

	Android string resources

	Apple OS X strings

	PHP strings

	JSON files

	WebExtension JSON

	.Net Resource files

	CSV files

	YAML files

	DTD files

	Others

	Adding new translations

	Version control integration
	Accessing repositories

	Git

	GitHub

	Mercurial

	Subversion

	Weblate’s Web API
	REST API

	Notification hooks

	Exports

	RSS feeds

	Weblate Client
	Installation

	Synopsis

	Description

	Files

	Examples

	Weblate’s Python API
	Instalation

	wlc

	wlc.config

	wlc.main

	Changes
	weblate 2.18

	weblate 2.17.1

	weblate 2.17

	weblate 2.16

	weblate 2.15

	weblate 2.14.1

	weblate 2.14

	weblate 2.13.1

	weblate 2.13

	weblate 2.12

	weblate 2.11

	weblate 2.10.1

	weblate 2.10

	weblate 2.9

	weblate 2.8

	weblate 2.7

	weblate 2.6

	weblate 2.5

	weblate 2.4

	weblate 2.3

	weblate 2.2

	weblate 2.1

	weblate 2.0

	weblate 1.9

	weblate 1.8

	weblate 1.7

	weblate 1.6

	weblate 1.5

	weblate 1.4

	weblate 1.3

	weblate 1.2

	weblate 1.1

	weblate 1.0

	weblate 0.9

	weblate 0.8

	weblate 0.7

	weblate 0.6

	weblate 0.5

	weblate 0.4

	weblate 0.3

	weblate 0.2

	weblate 0.1

	Contributing
	Code and development

	Coding standard

	Developer’s Certificate of Origin

	Testsuite

	Reporting issues

	Security issues

	Starting with our codebase

	Earning money by coding

	Translating

	Funding Weblate development

	Internals
	Modules

	License

Indices and tables

	Index

	Search Page

About Weblate

Project goals

Web based translation tool with tight git integration supporting a wide range
of file formats, making it easy for translators to contribute.

The translations should be kept within the same repository as the source code and
the translation process should closely follow development.

There is no plan regarding heavy conflict resolution as these should be primarily
handled by git.

Project name

The project is named as mixture of the words web and translate.

Project website

You can find the project website at <https://weblate.org/>, there is also
a demonstration server at <https://demo.weblate.org/>. This documentation
can be browsed on <https://docs.weblate.org/>.

Authors

This tool was written by Michal Čihař <michal@cihar.com>.

Translators guide

	Weblate basics
	Projects structure

	Registration and user profile
	Registration

	Dashboard

	User profile
	Translated languages

	Secondary languages

	Default dashboard view

	Subscriptions

	Authentication

	Avatar

	Translating using Weblate
	Translation links

	Suggestions

	Translating
	Plurals

	Keyboard shortcuts

	Visual keyboard

	Translation context

	Translation history

	Glossary
	Managing glossaries

	Machine translation

	Automatic translation

	Downloading and uploading translations
	Downloading translations

	Uploading translations
	Import methods

	Checks and fixups
	Automatic fixups

	Quality checks
	Translation checks
	Unchanged translation

	Starting or trailing newline

	Starting spaces

	Trailing space

	Trailing stop

	Trailing colon

	Trailing question

	Trailing exclamation

	Trailing ellipsis

	Trailing semicolon

	Maximum Length

	Format strings

	Missing plurals

	Same plurals

	Inconsistent

	Has been translated

	Mismatched \n

	Mismatched BBcode

	Zero-width space

	Invalid XML markup

	XML tags mismatch

	Source checks
	Optional plural

	Ellipsis

	Multiple failing checks

Weblate basics

Projects structure

Each project can contain various components. The reason for this structure is
that all components in a project are expected to have a lot in common.
Whenever translation is made in single component, it is automatically
propagated to others within same project (this is especially useful when
translating more than one version of the same project, but can be disabled, see
Component configuration).

Registration and user profile

Registration

While everybody can browse projects, view translations or suggest them, only
registered users are allowed to actually save changes and are credited for
every translation made.

You can register by following a few simple steps:

	Fill out the registration form with your credentials

	Activate registration by following in email you receive

	Possibly adjust your profile to choose which languages you know

Dashboard

When you log in to Weblate, you will see an overview of projects and components
as well as their translation progress.

New in version 2.5.

By default, this will show the components of projects you are watching,
cross-referenced with your preferred languages. You can switch to different
views using the navigation tabs.

[image: ../_images/dashboard-dropdown.png]
The tabs will show several options:

	All projects will show translation status of all projects on the
Weblate instance.

	Your languages will show translation status of all projects,
filtered by your primary languages.

	Watched will show translation status of only those
projects you are watching, filtered by your primary languages.

In addition, the drop-down can also show any number of component lists, sets
of project components preconfigured by the Weblate administrator, see
Component Lists.

You can configure your preferred view in the Preferences section of
your user profile settings.

User profile

User profile contains your preferences, name and email. Name and email
are being used in VCS commits, so keep this information accurate.

Note

All language selections offers only languages which are currently being
translated. If you want to translate to other language, please request it
first on the project you want to translate.

Translated languages

Choose here which languages you prefer to translate. These will be offered to
you on main page for watched projects to have easier access to these translations.

[image: ../_images/your-translations.png]

Secondary languages

You can define secondary languages, which will be shown you while translating
together with source language. Example can be seen on following image, where
Slovak language is shown as secondary:

[image: ../_images/secondary-language.png]

Default dashboard view

On the Preferences tab, you can pick which of the available
dashboard views will be displayed by default. If you pick Component
list, you have to select which component list will be displayed from the
Default component list drop-down.

Subscriptions

You can subscribe to various notifications on Subscriptions tab.
You will receive notifications for selected events on chosen projects for
languages you have indicated for translation (see above).

If you are an owner of some project, you will always receive some important
notifications, like merge failures or new language requests.

Note

You will not receive notifications for actions you’ve done.

[image: ../_images/profile-subscriptions.png]

Authentication

On the Authentication tab you can connect various services which
you can use to login into Weblate. List of services depends on Weblate
configuration, but can include popular sites such as Google, Facebook, GitHub
or Bitbucket.

[image: ../_images/authentication.png]

Avatar

Weblate can be configured to show avatar for each user (depending on
ENABLE_AVATARS). These images are obtained using libravatar protocol
(see https://www.libravatar.org/) or using https://gravatar.com/.

Translating using Weblate

Thank you for interest in translating using Weblate. Weblate can be used to
translate many projects and every project can have different settings which
influence whether you can translate or add suggestions only.

Overall there are the following possibilities for translating:

	Projects accepts direct translations

	Projects accepts only suggestions and those are accepted once they get a defined number of votes

There are also some options for translation project visibility:

	It can be publicly visible and anybody can contribute

	It can be visible only to certain group of translators

Plase see Translation workflows for more information about translation workflow.

Translation links

Once you navigate to a translation, you will be shown set of links which lead
to translation. These are results of various checks, like untranslated or
strings needing review. Should no other checks fire, there will be still link
to all translations. Alternatively you can use the search field to find a translation
you need to fix.

[image: ../_images/strings-to-check.png]

Suggestions

As an anonymous user, you have no other choice than making a suggestion.
However, if you are logged in you can still decide to make only a suggestion
instead of saving translation, for example in case you are unsure about the
translation and you want somebody else to review it.

Note

Permissions might vary depending on your setup, what is described is
default Weblate behaviour.

Translating

On translate page, you are shown the source string and an edit area for translating.
Should the translation be plural, multiple source strings and edit areas are
shown, each described with label for plural form.

Any special whitespace chars are underlined in red and indicated with grey
symbols. Also more than one space is underlined in red to allow translator to
keep formatting.

There are various bits of extra information which can be shown on this page. Most of
them are coming from the project source code (like context, comments or where
the message is being used). When you configure secondary languages in your
preferences, translation to these languages will be shown (see
Secondary languages).

Below the translation, suggestions from other users can be shown, which you
can accept or delete.

Plurals

What are plurals? Generally spoken plurals are words which take into account
numeric meanings. But as you may imagine each language has its own definition
of plurals. English, for example, supports one plural. We have a singular
definition, for example “car”, which means implicitly one car, and we have the
plural definition, “cars” which could mean more than one car but also zero
cars. Other languages like Czech or Arabic have more plurals and also the
rules for plurals are different.

Weblate does have support for translating these and offers you one field to
translate every plural separately. The number of fields and how it is used in
the translated application depends on plural equation which is different for
every language. Weblate shows the basic information, but you can find more
detailed description in the Language Plural Rules [http://unicode.org/repos/cldr-tmp/trunk/diff/supplemental/language_plural_rules.html] from the Unicode
Consortium.

[image: ../_images/plurals.png]

Keyboard shortcuts

Changed in version 2.18: The keyboard shortcuts have been changed in 2.18 to less likely collide
with browser or system ones.

While translating you can use the following keyboard shortcuts:

	Ctrl+Home or ⌘+Home

	Navigates to first translation in current search.

	Ctrl+End or ⌘+End

	Navigates to last translation in current search.

	Ctrl+PageUp or ⌘+PageUp

	Navigates to previous translation in current search.

	Ctrl+PageDown or ⌘+PageDown

	Navigates to next translation in current search.

	Ctrl+Enter or ⌘+Enter or Ctrl+Enter or Command+Enter

	Saves current translation.

	Ctrl+Shift+Enter or Command+Shift+Enter

	Unmarks translation as fuzzy and submits it.

	Ctrl+E or ⌘+E

	Focus translation editor.

	Ctrl+U or ⌘+U

	Focus comment editor.

	Ctrl+M or ⌘+M

	Shows machine translation tab.

	Ctrl+<NUMBER> or ⌘+<NUMBER>

	Copies placeable of given number from source string.

	Ctrl+M <NUMBER> or ⌘+M <NUMBER>

	Copy machine translation of given number to current translation.

	Ctrl+I <NUMBER> or ⌘+I <NUMBER>

	Ignore failing check of given number.

	Ctrl+J or ⌘+J

	Shows nearby strings tab.

	Ctrl+S or ⌘+S

	Shows search tab.

	Ctrl+O or ⌘+O

	Copies source string

	Ctrl+T or ⌘+T

	Toggles edit needed flag.

Visual keyboard

There is small visual keyboard shown when translating. This can be useful for
typing chars which are usually not present on the keyboard.

The symbols shown can be split into three categories:

	User configured chars defined in the User profile

	Per language chars provided by Weblate (eg. quotes or RTL specific chars)

	Chars configured using SPECIAL_CHARS

[image: ../_images/visual-keyboard.png]

Translation context

Translation context part allows you to see related information about current
string.

	String attributes

	Things like message ID, context (msgctxt) or location in source code.

	Screenshots

	Screenshots can be uploaded to Weblate to better show translators
where the string is used, see Visual context for strings.

	Nearby messages

	Displays messages which are located nearby in translation file. These
usually are also used in similar context and you might want to check them
to keep translation consistent.

	Similar messages

	Messages which are similar to currently one, which again can help you to
stay consistent within translation.

	All locations

	In case message appears in multiple places (eg. multiple components),
this tab shows all of them and for inconsistent translations (see
Inconsistent) you can choose which one to use.

	Glossary

	Displays words from project glossary which are used in current message.

	Recent edits

	List of people who have changed this message recently using Weblate.

	Project

	Project information like instructions for translators or information about
VCS repository.

If the translation format supports it, you can also follow links to source code
which contains translated strings.

Translation history

Every change is by default (unless disabled in component settings) saved in
the database and can be reverted. Of course you can still also revert anything
in the underlaying version control system.

Glossary

Each project can have an assigned glossary for any language. This could be used
for storing terminology for a given project, so that translations are consistent.
You can display terms from the currently translated string in the bottom tabs.

Managing glossaries

On project page, on Glossaries tab, you can find a link
Manage all glossaries, where you can start new glossaries or edit
existing ones. Once a glossary is existing, it will also show up on this tab.

[image: ../_images/project-glossaries.png]
On the next page, you can choose which glossary to manage (all languages used in
current project are shown). Following this language link will lead you to page,
which can be used to edit, import or export the glossary:

[image: ../_images/glossary-edit.png]

Machine translation

Based on configuration and your language, Weblate provides buttons for the following
machine translation tools.

All machine translations are available on single tab on translation page.

See also

Machine translation

Automatic translation

Weblate can be used for merging or copying translations from one component to
another. This tool is called Automatic translation and is
accessible in the Tools menu:

[image: ../_images/automatic-translation.png]
You can choose which components you want to use as source and how to handle
conflicts.

This feature can be useful in several situations like consolidating translation
between different components (eg. website and application) or when
bootstrapping translation for new component using existing translations
(translation memory).

Downloading and uploading translations

Weblate supports both export and import of translation files. This allows you
to work offline and then merge changes back. Your changes will be merged within
existing translation (even if it has been changed meanwhile).

Note

This available options might be limited by Access control.

Downloading translations

You can download a translatable file using the Download source file
action in the Files menu. This will give you the file as it is stored
in upstream version control system.

You can also download files in several other formats, including a compiled file
to use within an application (for example .mo files for GNU Gettext) using
the Files.

Uploading translations

You can upload translated files using the Upload translation action
in the Files menu.

Weblate accepts any file format it understands on upload, but it is still
recommeded to use the same file format as is used for translation, otherwise some
features might not be translated properly.

See also

Supported formats

The uploaded file is merged to current the translation, overwriting existing
entries by default (this can be changed in the upload dialog).

Import methods

You can choose how imported strings will be merged out of following options:

	Add as translation

	Imported translations are added as translation. This is most usual and
default behavior.

	Add as a suggestion

	Imported translations are added as suggestions, do this when you want to
review imported strings.

	Add as translation needing review

	Imported translations are added as translations needing review. This can be useful
for review as well.

Additionally, when adding as a translation, you can choose whether to overwrite
already translated strings or not or how to handle strings needing review in imported
file.

[image: ../_images/export-import.png]

Checks and fixups

Automatic fixups

In addition to Quality checks, Weblate can also automatically fix some common
errors in translated strings. This can be quite a powerful feature to prevent
common mistakes in translations, however use it with caution as it can cause
silent corruption as well.

See also

AUTOFIX_LIST

Quality checks

Weblate does a wide range of quality checks on messages. The following section
describes them in more detail. The checks also take account special rules for
different languages, so if you think the result is wrong, please report a bug.

See also

CHECK_LIST, Customizing checks

Translation checks

These are executed on every translation change and help translators to keep
good quality of translations.

Unchanged translation

The source and translated strings are the same at least in one of the plural forms.
This check ignores some strings which are quite usually the same in all languages
and strips various markup, which can occur in the string, to reduce the number of
false positives.

This check can help finding strings which were mistakenly not translated.

Starting or trailing newline

Source and translation do not both start (or end) with a newline.

Newlines usually appear in source string for a good reason, so omitting or
adding it can lead to formatting problems when the translated text is used in
the application.

Starting spaces

Source and translation do not both start with the same number of spaces.

A space in the beginning is usually used for indentation in the interface and thus
is important to keep.

Trailing space

Source and translation do not both end with a space.

Trailing space is usually used to give space between neighbouring elements, so
removing it might break application layout.

Trailing stop

Source and translation do not both end with a full stop. Full stop is also
checked in various language variants (Chinese, Japanese, Devanagari or Urdu).

When the original string is a sentence, the translated one should be a sentence
as well to be consistent within the translated content.

Trailing colon

Source and translation do not both end with a colon or the colon is not
correctly spaced. This includes spacing rules for languages like French or
Breton. Colon is also checked in various language variants (Chinese or
Japanese).

Colon is part of a label and should be kept to provide consistent translation.
Weblate also checks for various typographic conventions for colon, for example
in some languages it should be preceded with space.

Trailing question

Source and translation do not both end with a question mark or it is not
correctly spaced. This includes spacing rules for languages like French or
Breton. Question mark is also checked in various language variants (Armenian,
Arabic, Chinese, Korean, Japanese, Ethiopic, Vai or Coptic).

Question mark indicates question and these semantics should be kept in
translated string as well. Weblate also checks for various typographic
conventions for question mark, for example in some languages it should be
preceded with space.

Trailing exclamation

Source and translation do not both end with an exclamation mark or it is not
correctly spaced. This includes spacing rules for languages like French or
Breton. Exclamation mark is also checked in various language variants
(Chinese, Japanese, Korean, Armenian, Limbu, Myanmar or Nko).

Exclamation mark indicates some important statement and these semantics should
be kept in translated string as well. Weblate also checks for various
typographic conventions for exclamation mark, for example in some languages it
should be preceded with space.

Trailing ellipsis

Source and translation do not both end with an ellipsis. This only checks for
real ellipsis (…) not for three dots (...).

An ellipsis is usually rendered nicer than three dots, so it’s good to keep it
when the original string was using that as well.

See also

Ellipsis on wikipedia [https://en.wikipedia.org/wiki/Ellipsis]

Trailing semicolon

Source and translation do not both end with a semicolon. This can be useful to
keep formatting of entries such as desktop files.

Maximum Length

Translation is too long to accept. This only checks for the length of translation
characters.

Source and translation usually do not have same amount of characters, but if the
translation is too long, it can be affect a rendered shape. For example, in some UI
widget, it should be kept in a specific length of characters in order to show the
complete translation within limited space.

Unlike the other checks, the flag should be set as a key:value pair like
max-length:100.

Format strings

Format string does not match source. Weblate supports following formats:

	Python format

	Python brace format

	PHP format

	C format

	Perl format

	Javascript format

	AngularJS interpolation string

Omitting format string from translation usually cause severe problems, so you
should really keep the format string matching the original one.

See also

Python string formatting [https://docs.python.org/2.7/library/stdtypes.html#string-formatting],
Python brace format [https://docs.python.org/3.5/library/string.html#formatstrings],
PHP format strings [https://php.net/manual/en/function.sprintf.php],
C printf format [https://en.wikipedia.org/wiki/Printf_format_string],
Perl sprintf [https://perldoc.perl.org/functions/sprintf.html],
AngularJS: API: $interpolate [https://docs.angularjs.org/api/ng/service/$interpolate]

Missing plurals

Some plural forms are not translated. Check plural form definition to see for
which counts each plural form is being used.

Not filling in some plural forms will lead to showing no text in the
application in the event the plural would be displayed.

Same plurals

Some plural forms are translated the same. In most languages the plural forms have
to be different, that’s why this feature is actually used.

Inconsistent

More different translations of one string in a project. This can also lead to
inconsistencies in displayed checks. You can find other translations of this
string on All locations tab.

Weblate checks translations of the same string across all translation within a
project to help you keep consistent translations.

Has been translated

This string has been translated in the past. This can happen when the
translations have been reverted in VCS or otherwise lost.

Mismatched \n

Number of \n in translation does not match source.

Usually escaped newlines are important for formatting program output, so this
should match to source.

Mismatched BBcode

BBcode in translation does not match source.

This code is used as a simple markup to highlight important parts of a
message, so it is usually a good idea to keep them.

Note

The method for detecting BBcode is currently quite simple so this check
might produce false positives.

Zero-width space

Translation contains extra zero-width space (<U+200B>) character.

This character is usually inserted by mistake, though it might have a legitimate
use. Some programs might have problems when this character is used.

See also

Zero width space on wikipedia [https://en.wikipedia.org/wiki/Zero-width_space]

Invalid XML markup

New in version 2.8.

The XML markup is invalid.

XML tags mismatch

XML tags in translation do not match source.

This usually means resulting output will look different. In most cases this is
not desired result from translation, but occasionally it is desired.

Source checks

Source checks can help developers to improve quality of source strings.

Optional plural

The string is optionally used as plural, but not using plural forms. In case
your translation system supports this, you should use plural aware variant of
it.

For example with Gettext in Python it could be:

from gettext import ngettext

print ngettext('Selected %d file', 'Selected %d files', files) % files

Ellipsis

The string uses three dots (...) instead of an ellipsis character (…).

Using the Unicode character is in most cases the better approach and looks better when
rendered.

See also

Ellipsis on wikipedia [https://en.wikipedia.org/wiki/Ellipsis]

Multiple failing checks

More translations of this string have some failed quality checks. This is
usually an indication that something could be done about improving the source
string.

This check can quite often be caused by a missing full stop at the end of
a sentence or similar minor issues which translators tend to fix in
translations, while it would be better to fix it in a source string.

Application developer guide

Using Weblate for translating your projects can bring you quite a lot of
benefits. It’s only up to you how much of that you will use.

	Starting with internationalization
	Translating software using GNU Gettext
	Sample program

	Extracting translatable strings

	Starting new translation

	Updating strings

	Importing to Weblate

	Translating documentation using Sphinx

	Managing translations
	Adding new translations

	Reviewing source strings
	Activity reports

	Source strings checks

	Failing checks on translation

	String comments

	Promoting the translation

	Translation progress reporting
	Translator credits

	Contributor stats

Starting with internationalization

You have a project and want to to translate it into several languages? This
guide will help you to do so. We will showcase several typical situations, but
most of the examples are generic and can be applied to other scenarios as
well.

Before translating any software, you should realize that languages around the
world are really different and you should not make any assumption based on
your experience. For most of languages it will look weird if you try to
concatenate a sentence out of translated segments. You also should properly
handle plural forms because many languages have complex rules for that and the
internationalization framework you end up using should support this.

Last but not least, sometimes it might be necessary to add some context to the
translated string. Imagine a translator would get string Sun to translate.
Without context most people would translate that as our closest star, but it
might be actually used as an abbreviation for Sunday..

Translating software using GNU Gettext

GNU Gettext [http://www.gnu.org/software/gettext/] is one of the most widely used tool for internationalization of
free software. It provides a simple yet flexible way to localize the software.
It has great support for plurals, it can add further context to the translated
string and there are quite a lot of tools built around it. Of course it has
great support in Weblate (see GNU Gettext file format description).

Note

If you are about to use it in proprietary software, please consult
licensing first, it might not be suitable for you.

GNU Gettext can be used from variety of languages (C, Python, PHP, Ruby,
Javascript and much more) and usually the UI frameworks already come with some
support for it. The standard usage is though the gettext() function call,
which is often aliased to _() to make the code simpler and easier to read.

Additionally it provides pgettext() call to provide additional context to
translators and ngettext() which can handle plural types as defined for
target language.

As a widely spread tool, it has many wrappers which make its usage really
simple, instead of manual invoking of Gettext described below, you might want
to try one of them, for example intltool [https://freedesktop.org/wiki/Software/intltool/].

Sample program

The simple program in C using Gettext might look like following:

#include <libintl.h>
#include <locale.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 int count = 1;
 setlocale(LC_ALL, "");
 bindtextdomain("hello", "/usr/share/locale");
 textdomain("hello");
 printf(
 ngettext(
 "Orangutan has %d banana.\n",
 "Orangutan has %d bananas.\n",
 count
),
 count
);
 printf("%s\n", gettext("Thank you for using Weblate."));
 exit(0);
}

Extracting translatable strings

Once you have code using the gettext calls, you can use xgettext to
extract messages from it:

$ xgettext main.c -o po/hello.pot

This creates a template file, which you can use for starting new translations
(using msginit) or updating existing ones after code change (you
would use msgmerge for that). The resulting file is simply
a structured text file:

SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER
This file is distributed under the same license as the PACKAGE package.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2015-10-23 11:02+0200\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"Language: \n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=CHARSET\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=INTEGER; plural=EXPRESSION;\n"

#: main.c:14
#, c-format
msgid "Orangutan has %d banana.\n"
msgid_plural "Orangutan has %d bananas.\n"
msgstr[0] ""
msgstr[1] ""

#: main.c:20
msgid "Thank you for using Weblate."
msgstr ""

Each msgid line defines a string to translate, the special empty string
in the beginning is the file header containing metadata about the translation.

Starting new translation

With the template in place, we can start our first translation:

$ msginit -i po/hello.pot -l cs --no-translator -o po/cs.po
Created cs.po.

The just created cs.po already has some information filled in. Most
importantly it got the proper plural forms definition for chosen language and you
can see number of plurals have changed according to that:

Czech translations for PACKAGE package.
Copyright (C) 2015 THE PACKAGE'S COPYRIGHT HOLDER
This file is distributed under the same license as the PACKAGE package.
Automatically generated, 2015.
#
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2015-10-23 11:02+0200\n"
"PO-Revision-Date: 2015-10-23 11:02+0200\n"
"Last-Translator: Automatically generated\n"
"Language-Team: none\n"
"Language: cs\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=ASCII\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=3; plural=(n==1) ? 0 : (n>=2 && n<=4) ? 1 : 2;\n"

#: main.c:14
#, c-format
msgid "Orangutan has %d banana.\n"
msgid_plural "Orangutan has %d bananas.\n"
msgstr[0] ""
msgstr[1] ""
msgstr[2] ""

#: main.c:20
msgid "Thank you for using Weblate."
msgstr ""

Updating strings

Once you add more strings or change some strings in your program, you execute again
xgettext which regenerates the template file:

$ xgettext main.c -o po/hello.pot

Then you can update individual translation files to match newly created templates
(this includes reordering the strings to match new template):

$ msgmerge --previous --update po/cs.po po/hello.pot

Importing to Weblate

To import such translation into Weblate, all you need to define are the following
fields when creating component (see Component configuration for detailed description
of the fields):

	Field

	Value

	Source code repository

	URL of the VCS repository with your project

	File mask

	po/*.po

	Base file for new translations

	po/hello.pot

	File format

	Choose Gettext PO file

	New language

	Choose Automatically add language file

And that’s it, you’re now ready to start translating your software!

See also

You can find a Gettext example with many languages in the Weblate Hello project on
GitHub: <https://github.com/WeblateOrg/hello>.

Translating documentation using Sphinx

Sphinx [http://www.sphinx-doc.org/] is a tool for creating beautiful documentation. It uses simple
reStructuredText syntax and can generate output in many formats. If you’re
looking for an example, this documentation is also build using it. The very
useful companion for using Sphinx is the Read the Docs [https://readthedocs.org/] service, which will
build and publish your documentation for free.

I will not focus on writing documentation itself, if you need guidance with
that, just follow instructions on the Sphinx [http://www.sphinx-doc.org/] website. Once you have
documentation ready, translating it is quite easy as Sphinx comes with support
for this and it is quite nicely covered in their
Internationalization Quick Guide [http://www.sphinx-doc.org/en/stable/intl.html#quick-guide]. It’s matter of few configuration
directives and invoking of the sphinx-intl tool.

If you are using Read the Docs service, you can start building translated
documentation on the Read the Docs. Their Localization of Documentation [https://docs.readthedocs.io/en/latest/localization.html]
covers pretty much everything you need - creating another project, set its
language and link it from master project as a translation.

Now all you need is translating the documentation content. As Sphinx splits
the translation files per source file, you might end up with dozen of files,
which might be challenging to import using the Weblate’s web interface. For
that reason, there is the import_project management command.

Depending on exact setup, importing of the translation might look like:

$./manage.py import_project --name-template 'Documentation: %s' \
 --file-format po \
 project https://github.com/project/docs.git master \
 'docs/locale/*/LC_MESSAGES/**.po'

If you have more complex document structure, importing different folders is not
direcly supported, you currently have to list them separately:

$./manage.py import_project --name-template 'Directory 1: %s' \
 --file-format po \
 project https://github.com/project/docs.git master \
 'docs/locale/*/LC_MESSAGES/dir1/**.po'
$./manage.py import_project --name-template 'Directory 2: %s' \
 --file-format po \
 project https://github.com/project/docs.git master \
 'docs/locale/*/LC_MESSAGES/dir2/**.po'

See also

The Odorik [https://github.com/nijel/odorik/] python module documentation is built using Sphinx, Read the
Docs and translated using Weblate.

Managing translations

Adding new translations

Weblate can add new language files to your project automatically for most of
the Supported formats. This feature needs to be enabled in the Component configuration.
In case this is not enabled (or available for your file format) the files have
to be added manually to the VCS.

Weblate will automatically detect new languages which are added to the VCS
repository and makes them available for translation. This makes adding new
translations incredibly easy:

	Add the translation file to VCS.

	Let Weblate update the repository (usually set up automatically, see
Updating repositories).

Reviewing source strings

Activity reports

You can check activity reports for translations, project or individual users.

[image: ../_images/activity.png]

Source strings checks

Weblate includes quite a lot of Quality checks. Some of them also focus on
quality of source strings. These can give you some hints for making strings
easier to translate. You can check failing source checks on Source
tab of every component.

Failing checks on translation

On the other side, failing translation checks might also indicate problem in
the source strings. Translators often tend to fix some mistakes in the translation
instead of reporting it - a typical example is a missing full stop at the end of
sentence, but there are more similar cases.

Reviewing all failing checks on your translation can bring you valuable
feedback for improving source strings as well.

You can find the Source strings review in the Tools
menu of a translation component. You will get a similar view when opening
translation, with slightly different checks being displayed:

[image: ../_images/source-review.png]
One of the most interesting checks here is the Multiple failing checks -
it fires whenever there is failure on multiple translations of given string.
Usually this is something to look for as this is string where translators have
problems doing the translation properly. It might be just wrong punctation at
the end of sentence or something more problematic.

The detailed listing then shows you overview per language:

[image: ../_images/source-review-detail.png]

String comments

Weblate allows translators to comment on both translation and source strings.
Each Component configuration can be configured to receive such comments on email
address and sending this to developers mailing list is usually best approach.
This way you can monitor when translators find problems and fix them quickly.

Promoting the translation

Weblate provides you widgets to share on your website or other sources to
promote the translation project. It also has a nice welcome page for new contributors
to give them basic information about the translation. Additionally you can
share information about translation using Facebook or Twitter. All these
possibilities can be found on the Share tab. Example of status badges
for Weblate itself are shown below.

Shields.IO badge often used to quickly see status of a project:

[image: Translation status]
 [https://hosted.weblate.org/engage/weblate/?utm_source=widget]Small badge often used to quickly see status of a project:

[image: Translation status]
 [https://hosted.weblate.org/engage/weblate/?utm_source=widget]Big badge with status details useful for inclusion on a web page:

[image: Translation status]
 [https://hosted.weblate.org/engage/weblate/?utm_source=widget]Small badge with status useful for inclusion on a web page:

[image: Translation status]
 [https://hosted.weblate.org/engage/weblate/?utm_source=widget]All these badges come with links to simple page which explains users how to
translate using Weblate:

[image: ../_images/engage.png]

Translation progress reporting

It is often useful to be able to see how translation progresses over given
period. For this purpose Weblate includes reporting features, where you can
obtain summaries of contributions to given component over time. You can find
the reporting tool in the Insights menu for a translation component:

[image: ../_images/reporting.png]
Several reporting tools are available on this page and all can produce output
in HTML, reStructuredText or JSON. The first two formats are suitable for
embedding into existing documentation, while JSON is useful for further
processing of the data.

Translator credits

Generates a document usable for crediting translators - sorted by language
and listing all contributors to given language:

* Czech

 * Michal Čihař <michal@cihar.com>
 * Weblate Admin <admin@example.com>

* Dutch

 * Weblate Admin <admin@example.com>

And it will get rendered as:

	Czech

	Michal Čihař <michal@cihar.com>

	Weblate Admin <admin@example.com>

	Dutch

	Weblate Admin <admin@example.com>

Contributor stats

Generates number of words and units translated by translators:

== == ========== ==========
Name Email Words Count
== == ========== ==========
Michal Čihař michal@cihar.com 2332 421
Weblate Admin admin@example.com 25 8
== == ========== ==========

And it will get rendered as:

	Name

	Email

	Words

	Count

	Michal Čihař

	michal@cihar.com

	2332

	421

	Weblate Admin

	admin@example.com

	25

	8

Administrators guide

	Quick setup guide
	Installing from sources

	Installing using Docker

	Installing on OpenShift 2

	Adding translation

	Installation instructions
	Hardware requirements

	Software requirements
	Python dependencies

	Other system requirements

	Compile time dependencies

	Installing Weblate
	Installing in virtualenv

	Installing Weblate from Git

	Installing Weblate by pip

	Requirements on Debian or Ubuntu

	Requirements on openSUSE

	Requirements on OSX

	Requirements using pip installer

	Filesystem permissions

	Database setup for Weblate
	PostgreSQL
	Creating database in PostgreSQL

	Configuring Weblate to use PostgreSQL

	MySQL or MariaDB
	Unicode issues in MySQL

	Transaction locking

	Creating database in MySQL

	Configuring Weblate to use MySQL

	Other configurations
	Configuring outgoing mail

	Installation

	Filling up the database

	Production setup
	Disable debug mode

	Properly configure admins

	Set correct site name

	Enable indexing offloading

	Use powerful database engine

	Enable caching

	Avatar caching

	Configure email addresses

	Allowed hosts setup

	Federated avatar support

	pyuca library

	Django secret key

	Static files

	Home directory

	Template loading

	Running maintenance tasks

	Running server
	Serving static files

	Content security policy

	Sample configuration for Apache

	Sample configuration for Apache and gunicorn

	Sample configuration for nginx and uwsgi

	Running Weblate under path

	Monitoring Weblate

	Collecting error reports
	Rollbar

	Migrating Weblate to another server
	Migrating database

	Migrating VCS repositories

	Migrating fulltext index

	Other notes

	Weblate deployments
	Running Weblate in the Docker
	Deployment

	Docker container with https support

	Upgrading Docker container

	Maintenance tasks

	Docker environment variables
	Generic settings

	Machine translation settings

	Authentication settings

	Processing hooks

	PostgreSQL database setup

	Caching server setup

	Email server setup

	Hub setup

	Select your machine - local or cloud providers

	Running Weblate on OpenShift 2
	Prerequisites

	Installation

	Default Configuration
	Retrieve Admin Password

	Indexing Offloading

	Pending Changes

	Customize Weblate Configuration

	Updating

	Bitnami Weblate stack

	Weblate in YunoHost

	Upgrading Weblate
	Generic upgrade instructions

	Version specific instructions
	Upgrade from 0.5 to 0.6

	Upgrade from 0.6 to 0.7

	Upgrade from 0.7 to 0.8

	Upgrade from 0.8 to 0.9

	Upgrade from 0.9 to 1.0

	Upgrade from 1.0 (1.1) to 1.2

	Upgrade from 1.2 to 1.3

	Upgrade from 1.4 to 1.5

	Upgrade from 1.6 to 1.7

	Upgrade from 1.7 to 1.8

	Upgrade from 1.8 to 1.9

	Upgrade from 1.9 to 2.0

	Upgrade from 2.0 to 2.1

	Upgrade from 2.1 to 2.2

	Upgrade from 2.2 to 2.3

	Upgrade from 2.3 to 2.4

	Upgrade from 2.4 to 2.5

	Upgrade from 2.5 to 2.6

	Upgrade from 2.6 to 2.7

	Upgrade from 2.7 to 2.8

	Upgrade from 2.8 to 2.9

	Upgrade from 2.9 to 2.10

	Upgrade from 2.10 to 2.11

	Upgrade from 2.11 to 2.12

	Upgrade from 2.12 to 2.13

	Upgrade from 2.13 to 2.14

	Upgrade from 2.14 to 2.15

	Upgrade from 2.15 to 2.16

	Upgrade from 2.16 to 2.17

	Upgrade from 2.17 to 2.18

	Upgrading to Django 1.7

	Upgrading from Python 2.x to 3.x

	Migrating from Pootle

	Authentication
	User registration

	Rate limiting
	IP address for rate limiting

	Authentication backends

	Social authentication
	OpenID authentication

	GitHub authentication

	Bitbucket authentication

	Google OAuth2

	Facebook OAuth2

	Gitlab OAuth2

	Password authentication

	LDAP authentication

	CAS authentication

	Access control
	Extra privileges

	Per project access control

	Automatic group assignments

	Group-based access control

	Managing users and groups
	Managing per project access control

	Predefined groups

	Translation projects
	Translation organization

	Administration

	Adding new components
	Adding project

	Bilingual components

	Monolingual components

	Project configuration
	Adjusting interaction

	Component configuration
	Commit message formatting

	Importing speed
	Clone Git repository in advance

	Optimize configuration

	Disable not needed checks

	Automatic creation of components

	Fulltext search

	Language definitions
	Parsing language codes

	Changing language defintions

	Continuous translation
	Updating repositories
	Avoiding merge conflicts

	Automatically receiving changes from GitHub

	Automatically receiving changes from Bitbucket

	Automatically receiving changes from GitLab

	Pushing changes
	Pushing changes from Hosted Weblate

	Merge or rebase

	Interacting with others

	Lazy commits

	Processing repository with scripts
	Post update repository processing

	Pre commit processing of translations

	Example - generating mo files in repository

	Translation process
	Suggestion voting

	Translation locking

	Additional information on source strings
	Strings prioritization

	Quaity check flags

	Visual context for strings

	Checks and fixups
	Custom automatic fixups

	Customizing checks
	Fine tuning existing checks

	Writing own checks
	Checking translation text does not contain “foo”

	Checking Czech translation text plurals differ

	Using custom modules and classes

	Machine translation
	Amagama

	Apertium

	Glosbe

	Google Translate

	Microsoft Translator

	Microsoft Cognitive Services Translator

	MyMemory

	tmserver

	Yandex Translate

	Weblate

	Custom machine translation

	Configuration
	AKISMET_API_KEY

	ANONYMOUS_USER_NAME

	AUTH_LOCK_ATTEMPTS

	AUTH_MAX_ATTEMPTS

	AUTH_CHECK_WINDOW

	AUTH_LOCKOUT_TIME

	AUTH_TOKEN_VALID

	AUTH_PASSWORD_DAYS

	AUTO_LOCK

	AUTO_LOCK_TIME

	AUTOFIX_LIST

	BACKGROUND_HOOKS

	BASE_DIR

	CHECK_LIST

	COMMIT_PENDING_HOURS

	DATA_DIR

	DEFAULT_COMMITER_EMAIL

	DEFAULT_COMMITER_NAME

	DEFAULT_TRANSLATION_PROPAGATION

	ENABLE_AVATARS

	ENABLE_HOOKS

	ENABLE_HTTPS

	ENABLE_SHARING

	GIT_ROOT

	GITHUB_USERNAME

	GOOGLE_ANALYTICS_ID

	HIDE_REPO_CREDENTIALS

	IP_BEHIND_REVERSE_PROXY

	IP_PROXY_HEADER

	IP_PROXY_OFFSET

	LAZY_COMMITS

	LOCK_TIME

	LOGIN_REQUIRED_URLS

	LOGIN_REQUIRED_URLS_EXCEPTIONS

	MACHINE_TRANSLATION_SERVICES

	MT_APERTIUM_APY

	MT_APERTIUM_KEY

	MT_GOOGLE_KEY

	MT_MICROSOFT_ID

	MT_MICROSOFT_SECRET

	MT_MICROSOFT_COGNITIVE_KEY

	MT_MYMEMORY_EMAIL

	MT_MYMEMORY_KEY

	MT_MYMEMORY_USER

	MT_TMSERVER

	MT_YANDEX_KEY

	NEARBY_MESSAGES

	OFFLOAD_INDEXING

	PIWIK_SITE_ID

	PIWIK_URL

	POST_ADD_SCRIPTS

	POST_UPDATE_SCRIPTS

	PRE_COMMIT_SCRIPTS

	POST_COMMIT_SCRIPTS

	POST_PUSH_SCRIPTS

	REGISTRATION_CAPTCHA

	REGISTRATION_EMAIL_MATCH

	REGISTRATION_OPEN

	SELF_ADVERTISEMENT

	SIMPLIFY_LANGUAGES

	SITE_TITLE

	SPECIAL_CHARS

	STATUS_URL

	TTF_PATH

	URL_PREFIX

	WHOOSH_INDEX

	Sample configuration

	Management commands
	Invoking management commands

	add_suggestions

	auto_translate

	changesite

	checkgit

	commitgit

	commit_pending

	cleanuptrans

	createadmin

	dumpuserdata

	import_json

	import_project

	importuserdata

	importusers

	list_ignored_checks

	list_languages

	list_translators

	list_versions

	loadpo

	lock_translation

	pushgit

	rebuild_index

	update_index

	unlock_translation

	setupgroups

	setuplang

	updatechecks

	updategit

	Whiteboard messages

	Advertisement

	Component Lists
	Automatic component lists

	Optional Weblate modules
	Git exporter
	Installation

	Usage

	Billing
	Installation

	Usage

	Legal
	Installation

	Usage

	Avatars

	Spam protection

Quick setup guide

Note

This is just a quick guide for installing and starting to use Weblate for
testing purposes. Please check Installation instructions for more real world setup
instructions.

Installing from sources

	Install all required dependencies, see Software requirements.

	Grab Weblate sources (either using Git or download a tarball) and unpack
them, see Installing Weblate.

	Copy weblate/settings_example.py to weblate/settings.py and
adjust it to match your setup. You will at least need to configure the database
connection (possibly adding user and creating the database). Check
Configuration for Weblate specific configuration options.

	Create the database which will be used by Weblate, see Database setup for Weblate.

	Build Django tables, static files and initial data (see
Filling up the database and Serving static files):

./manage.py migrate
./manage.py collectstatic
./scripts/generate-locales # If you are using Git checkout

	Configure webserver to serve Weblate, see Running server.

Installing using Docker

	Clone weblate-docker repo:

git clone https://github.com/WeblateOrg/docker.git weblate-docker
cd weblate-docker

	Start Weblate containers:

docker-compose up

See also

See Running Weblate in the Docker for more detailed instructions and customization options.

Installing on OpenShift 2

	You can install Weblate on OpenShift PaaS directly from its Git repository using the OpenShift Client Tools:

rhc -aweblate app create -t python-2.7 --from-code https://github.com/WeblateOrg/weblate.git --no-git

	After installation everything should be preconfigured and you can immediately start to add a translation
project as described below.

See also

For more information, including on how to retrieve the generated admin password, see Running Weblate on OpenShift 2.

Adding translation

	Open admin interface (http://localhost/admin/) and create project you
want to translate. See Project configuration for more details.

All you need to specify here is project name and its website.

	Create component which is the real object for translating - it points to
VCS repository and selects which files to translate. See Component configuration
for more details.

The important fields here being component name, VCS repository address and
mask for finding translatable files. Weblate supports a wide range of formats
including Gettext PO files, Android resource strings, OS X string properties,
Java properties or Qt Linguist files, see Supported formats for more details.

	Once the above is completed (it can be lengthy process depending on size of
your VCS repository and number of messages to translate), you can start
translating.

Installation instructions

Hardware requirements

Weblate should run on any contemporary hardware without problems, the following is
the minimal configuration required to run Weblate on single host (Weblate, database
and web server):

	1 GB of RAM memory

	2 CPU cores

	1 GB of storage space

The more memory you have, the better - it will be used for caching on all
levels (filesystem, database and Weblate).

Note

The actual requirements for your installation heavily vary based on the size of
translations managed by Weblate.

Software requirements

Python dependencies

Weblate is written in Python [https://www.python.org/] and supports Python
2.7, 3.4 or newer. The following dependencies can be installed using pip or your
distribution packages:

	Django (>= 1.11)

	https://www.djangoproject.com/

	siphashc (>= 0.8)

	https://github.com/WeblateOrg/siphashc

	Translate-toolkit (>= 2.0.0)

	http://toolkit.translatehouse.org/

	Six (>= 1.7.0)

	https://pypi.python.org/pypi/six

	Mercurial (>= 2.8) (optional for Mercurial repositories support)

	https://www.mercurial-scm.org/

	social-auth-core (>= 1.3.0)

	https://python-social-auth.readthedocs.io/

	social-auth-app-django (>= 1.2.0)

	https://python-social-auth.readthedocs.io/

	django-appconf (>= 1.0)

	https://github.com/django-compressor/django-appconf

	Whoosh (>= 2.7.0)

	https://bitbucket.org/mchaput/whoosh/wiki/Home

	PIL or Pillow library

	https://python-pillow.org/

	lxml (>= 3.1.0)

	http://lxml.de/

	PyYaML (>= 3.0) (optional for YAML support)

	http://pyyaml.org/wiki/PyYAML

	defusedxml (>= 0.4)

	https://bitbucket.org/tiran/defusedxml

	dateutil

	https://labix.org/python-dateutil

	django_compressor (>= 2.1.1)

	https://github.com/django-compressor/django-compressor

	django-crispy-forms (>= 1.6.1)

	https://django-crispy-forms.readthedocs.io/

	Django REST Framework (>=3.7)

	http://www.django-rest-framework.org/

	libravatar (optional for federated avatar support)

	You need to additionally install pydns (on Python 2) or py3dns (on Python 3)
to make libravatar work.

https://pypi.python.org/pypi/pyLibravatar

	pyuca (>= 1.1) (optional for proper sorting of strings)

	https://github.com/jtauber/pyuca

	babel (optional for Android resources support)

	http://babel.pocoo.org/

	Database backend

	Any database supported in Django will work, see Database setup for Weblate and
backends documentation for more details.

	pytz (optional, but recommended by Django)

	https://pypi.python.org/pypi/pytz/

	python-bidi (optional for proper rendering of badges in RTL languages)

	https://github.com/MeirKriheli/python-bidi

	tesserocr (>= 2.0.0) (optional for screenshots OCR)

	https://github.com/sirfz/tesserocr

	akismet (>= 1.0) (optional for suggestion spam protection)

	https://github.com/ubernostrum/akismet

Other system requirements

The following dependencies have to be installed on the system:

	Git (>= 1.6)

	https://git-scm.com/

	hub (optional for sending pull requests to GitHub)

	https://hub.github.com/

	git-review (optional for Gerrit support)

	https://pypi.python.org/pypi/git-review

	git-svn (>= 2.10.0) (optional for Subversion support)

	https://git-scm.com/docs/git-svn

	tesseract and it’s data (optional for screenshots OCR)

	https://github.com/tesseract-ocr/tesseract

Compile time dependencies

To compile some of the Python dependencies you might need to install their
dependencies. This depends on how you install them, so please consult
individual packages for documentation. You won’t need those if using prebuilt
Wheels while installing using pip or when you use distribution packages.

Installing Weblate

Choose an installation method that best fits your environment.

First choices include complete setup without relying on your system libraries:

	Installing in virtualenv

	Running Weblate in the Docker

	Running Weblate on OpenShift 2

You can also install Weblate directly on your system either fully using
distribution packages (currently available for openSUSE only) or mixed setup.

Choose installation method:

	Installing Weblate by pip

	Installing Weblate from Git (if you want to run bleeding edge version)

	Alternatively you can use released archives. You can download them from our
website <https://weblate.org/>.

And install dependencies according your platform:

	Requirements on Debian or Ubuntu

	Requirements on openSUSE

	Requirements on OSX

	Requirements using pip installer

Installing in virtualenv

This is recommended method if you don’t want to dig into details. This will
create separate Python environment for Weblate, possibly duplicating some
system Python libraries.

	Install development files for libraries we will use during building
Python modules:

Debian/Ubuntu:
apt install libxml2-dev libxslt-dev libfreetype6-dev libjpeg-dev libz-dev libyaml-dev python-dev

openSUSE/SLES:
zypper install libxslt-devel libxml2-devel freetype-devel libjpeg-devel zlib-devel libyaml-devel python-devel

Fedora/RHEL/CentOS:
dnf install libxslt-devel libxml2-devel freetype-devel libjpeg-devel zlib-devel libyaml-devel python-devel

	Install pip and virtualenv. Usually they are shipped by your distribution or
with Python:

Debian/Ubuntu:
apt-get install python-pip python-virtualenv

openSUSE/SLES:
zypper install python-pip python-virtualenv

Fedora/RHEL/CentOS:
dnf install python-pip python-virtualenv

	Create and activate virtualenv for Weblate (the path in /tmp is really
just an example, you rather want something permanent):

virtualenv /tmp/weblate
. /tmp/weblate/bin/activate

	Install Weblate including all dependencies, you can also use pip to install
optional dependecies:

pip install Weblate
Optional deps
pip install pytz python-bidi PyYaML Babel pyuca pylibravatar pydns

	Create your settings (in our example it would be in
/tmp/weblate/lib/python2.7/site-packages/weblate/settings.py
based on the settings_example.py in same directory).

	You can now run Weblate commands using weblate command, see
Management commands.

	To run webserver, use the wsgi wrapper installed with Weblate (in our case
it is /tmp/weblate/lib/python2.7/site-packages/weblate/wsgi.py).
Don’t forget to set Python search path to your virtualenv as well (for
example using virtualenv = /tmp/weblate in uwsgi).

Installing Weblate from Git

You can also run the latest version from Git. It is maintained stable and
production ready. You can usually find it running on
Hosted Weblate [https://weblate.org/hosting/].

To get latest sources using Git use:

git clone https://github.com/WeblateOrg/weblate.git

Note

If you are running a version from Git, you should also regenerate locale
files every time you are upgrading. You can do this by invoking script
./scripts/generate-locales.

Installing Weblate by pip

If you decide to install Weblate using pip installer, you will notice some
differences. Most importantly the command line interface is installed to the
system path as weblate instead of ./manage.py as used in
this documentation. Also when invoking this command, you will have to specify
settings, either by environment variable DJANGO_SETTINGS or on the command
line, for example:

weblate --settings=yourproject.settings migrate

See also

Invoking management commands

Requirements on Debian or Ubuntu

On recent Debian or Ubuntu, most of requirements are already packaged, to
install them you can use apt-get:

apt-get install python-pip python-django translate-toolkit \
 python-whoosh python-pil python-libravatar \
 python-babel git mercurial \
 python-django-compressor python-django-crispy-forms \
 python-djangorestframework python-dateutil

Optional packages for database backend:

For PostgreSQL
apt-get install python-psycopg2
For MySQL on Ubuntu (if using Ubuntu package for Django)
apt-get install python-pymysql
For MySQL on Debian (or Ubuntu if using upstream Django packages)
apt-get install python-mysqldb

On older versions, some required dependencies are missing or outdated, so you
need to install several Python modules manually using pip:

Dependencies for python-social-auth
apt-get install python-requests-oauthlib python-six python-openid

Social auth
pip install social-auth-core
pip install social-auth-app-django

In case your distribution has python-django older than 1.9
pip install Django

In case python-django-crispy-forms package is missing
pip install django-crispy-forms

In case python-whoosh package is misssing or older than 2.7
pip install Whoosh

In case your python-django-compressor package is missing,
try installing it by older name or using pip:
apt-get install python-compressor
pip install django_compressor

Optional for OCR support
apt-get install tesseract-ocr libtesseract-dev libleptonica-dev cython
pip install tesserocr

For proper sorting of a Unicode strings, it is recommended to install pyuca:

pip install pyuca

Depending on how you intend to run Weblate and what you already have installed,
you might need additional components:

Web server option 1: nginx and uwsgi
apt-get install nginx uwsgi uwsgi-plugin-python

Web server option 2: Apache with mod_wsgi
apt-get install apache2 libapache2-mod-wsgi

Caching backend: memcached
apt-get install memcached

Database option 1: postgresql
apt-get install postgresql

Database option 2: mariadb
apt-get install mariadb-server

Database option 3: mysql
apt-get install mysql-server

SMTP server
apt-get install exim4

GitHub PR support: hub
See https://hub.github.com/

Requirements on openSUSE

Most of requirements are available either directly in openSUSE or in
devel:languages:python repository:

zypper install python-Django translate-toolkit \
 python-Whoosh python-Pillow \
 python-social-auth-core python-social-auth-app-django \
 python-babel Git mercurial python-pyuca \
 python-dateutil

Optional for database backend
zypper install python-psycopg2 # For PostgreSQL
zypper install python-MySQL-python # For MySQL

Depending on how you intend to run Weblate and what you already have installed,
you might need additional components:

Web server option 1: nginx and uwsgi
zypper install nginx uwsgi uwsgi-plugin-python

Web server option 2: Apache with mod_wsgi
zypper install apache2 apache2-mod_wsgi

Caching backend: memcached
zypper install memcached

Database option 1: postgresql
zypper install postgresql

Database option 2: mariadb
zypper install mariadb

Database option 3: mysql
zypper install mysql

SMTP server
zypper install postfix

GitHub PR support: hub
See https://hub.github.com/

Requirements on OSX

If your python was not installed using brew, make sure you have this in
your .bash_profile file or executed somehow:

export PYTHONPATH="/usr/local/lib/python2.7/site-packages:$PYTHONPATH"

This configuration makes the installed libraries available to Python.

Requirements using pip installer

Most requirements can be also installed using pip installer:

pip install -r requirements.txt

For building some of the extensions devel files for several libraries are required,
see Installing in virtualenv for instructions how to install these.

All optional dependencies (see above) can be installed using:

pip install -r requirements-optional.txt

Filesystem permissions

The Weblate process needs to be able to read and write to the directory where it
keeps data - DATA_DIR.

The default configuration places them in the same tree as Weblate sources, however
you might prefer to move these to better location such as
/var/lib/weblate.

Weblate tries to create these directories automatically, but it will fail
when it does not have permissions to do so.

You should also take care when running Management commands, as they should be run
under the same user as Weblate itself is running, otherwise permissions on some
files might be wrong.

See also

Serving static files

Database setup for Weblate

It is recommended to run Weblate on some database server. Using SQLite backend
is really suitable only for testing purposes.

See also

Use powerful database engine,
Databases [https://docs.djangoproject.com/en/stable/ref/databases/]

PostgreSQL

PostgreSQL is usually the best choice for Django based sites. It’s the reference
database used for implementing Django database layer.

See also

PostgreSQL notes [https://docs.djangoproject.com/en/stable/ref/databases/#postgresql-notes]

Creating database in PostgreSQL

It is usually good idea to run Weblate in a separate database and separate user account:

If PostgreSQL was not installed before, set the master password
sudo -u postgres psql postgres -c "\password postgres"

Create database user called "weblate"
sudo -u postgres createuser -D -P weblate

Create database "weblate" owned by "weblate"
sudo -u postgres createdb -O weblate weblate

Configuring Weblate to use PostgreSQL

The settings.py snippet for PostgreSQL:

DATABASES = {
 'default': {
 # Database engine
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 # Database name
 'NAME': 'weblate',
 # Database user
 'USER': 'weblate',
 # Database password
 'PASSWORD': 'password',
 # Set to empty string for localhost
 'HOST': 'database.example.com',
 # Set to empty string for default
 'PORT': '',
 }
}

MySQL or MariaDB

MySQL or MariaDB are quite good choices to run Weblate. However when using MySQL
you might hit some problems caused by it.

See also

MySQL notes [https://docs.djangoproject.com/en/stable/ref/databases/#mysql-notes]

Unicode issues in MySQL

MySQL by default uses something called utf8, what can not store all Unicode
characters, only those who fit into three bytes in utf-8 encoding. In case
you’re using emojis or some other higher Unicode symbols you might hit errors
when saving such data. Depending on MySQL and Python bindings version, the
error might look like:

	OperationalError: (1366, "Incorrect string value: '\\xF0\\xA8\\xAB\\xA1' for column 'target' at row 1")

	UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-3: ordinal not in range(128)

To solve this, you need to change your database to use utf8mb4 (what is again
subset of Unicode, but this time which can be stored in four bytes in utf-8
encoding, thus covering all chars currently defined in Unicode).

This can be achieved at database creation time by creating it with this
character set (see Creating database in MySQL) and specifying the character set in
connection settings (see Configuring Weblate to use MySQL).

In case you have existing database, you can change it to utf8mb4 by, but
this won’t change collation of existing fields:

ALTER DATABASE weblate CHARACTER SET utf8mb4;

See also

Using Innodb_large_prefix to Avoid ERROR 1071 [http://mechanics.flite.com/blog/2014/07/29/using-innodb-large-prefix-to-avoid-error-1071/]

Transaction locking

MySQL by default uses has different transaction locking scheme than other
databases and in case you see errors like Deadlock found when trying to get
lock; try restarting transaction it might be good idea to enable
STRICT_TRANS_TABLES mode in MySQL. This can be done in the server
configuration file (usually /etc/mysql/my.cnf on Linux):

[mysqld]
sql-mode=STRICT_TRANS_TABLES

See also

Setting sql_mode [https://docs.djangoproject.com/en/stable/ref/databases/#mysql-sql-mode]

Creating database in MySQL

Create weblate user to access the weblate database:

Grant all privileges to weblate user
GRANT ALL PRIVILEGES ON weblate.* TO 'weblate'@'localhost' IDENTIFIED BY 'password';

Create database on MySQL >= 5.7.7
CREATE DATABASE weblate CHARACTER SET utf8mb4;

Use utf8 for older versions
CREATE DATABASE weblate CHARACTER SET utf8;

Configuring Weblate to use MySQL

The settings.py snippet for MySQL:

DATABASES = {
 'default': {
 # Database engine
 'ENGINE': 'django.db.backends.mysql',
 # Database name
 'NAME': 'weblate',
 # Database user
 'USER': 'weblate',
 # Database password
 'PASSWORD': 'password',
 # Set to empty string for localhost
 'HOST': 'database.example.com',
 # Set to empty string for default
 'PORT': '',
 # Additional database options
 'OPTIONS': {
 # In case of older MySQL server which has default MariaDB
 # 'init_command': 'SET storage_engine=INNODB',
 # If your server supports it, see Unicode issues above
 'charset': 'utf8mb4',
 }

 }
}

Other configurations

Configuring outgoing mail

Weblate sends out emails on various occasions - for account activation and on
various notifications configured by users. For this it needs access to the SMTP
server, which will handle this.

The mail server setup is configured using settings
EMAIL_HOST [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_HOST], EMAIL_HOST_PASSWORD [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_HOST_PASSWORD],
EMAIL_HOST_USER [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_HOST_USER] and EMAIL_PORT [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_PORT]. Their
names are quite self-explanatory, but you can find out more information in the
Django documentation.

Note

You can verify whether outgoing mail is working correctly by using
sendtestemail [https://docs.djangoproject.com/en/stable/ref/django-admin/#django-admin-sendtestemail] management command.

Installation

See also

Sample configuration

Copy weblate/settings_example.py to weblate/settings.py and
adjust it to match your setup. You will probably want to adjust the following
options:

ADMINS

List of site administrators to receive notifications when something goes
wrong, for example notifications on failed merge or Django errors.

See also

ADMINS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-ADMINS]

ALLOWED_HOSTS

If you are running Django 1.5 or newer, you need to set this to list of
hosts your site is supposed to serve. For example:

ALLOWED_HOSTS = ['demo.weblate.org']

See also

ALLOWED_HOSTS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-ALLOWED_HOSTS]

SESSION_ENGINE

Configure how your sessions will be stored. In case you keep default
database backed engine you should schedule
./manage.py clearsessions to remove stale session data from the
database.

See also

Configuring the session engine [https://docs.djangoproject.com/en/stable/topics/http/sessions/#configuring-sessions],
SESSION_ENGINE [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SESSION_ENGINE]

DATABASES

Connectivity to database server, please check Django’s documentation for more
details.

See also

Database setup for Weblate,
DATABASES [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DATABASES],
Databases [https://docs.djangoproject.com/en/stable/ref/databases/]

DEBUG

Disable this for production server. With debug mode enabled, Django will
show backtraces in case of error to users, when you disable it, errors will
go by email to ADMINS (see above).

Debug mode also slows down Weblate as Django stores much more information
internally in this case.

See also

DEBUG [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DEBUG],

DEFAULT_FROM_EMAIL

Email sender address for outgoing email, for example registration emails.

See also

DEFAULT_FROM_EMAIL [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DEFAULT_FROM_EMAIL],

SECRET_KEY

Key used by Django to sign some information in cookies, see
Django secret key for more information.

SERVER_EMAIL

Email used as sender address for sending emails to administrator, for
example notifications on failed merge.

See also

SERVER_EMAIL [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SERVER_EMAIL]

Filling up the database

After your configuration is ready, you can run
./manage.py migrate to create the database structure. Now you should be
able to create translation projects using the admin interface.

In case you want to run installation non interactively, you can use
./manage.py migrate --noinput and then create admin user using
createadmin command.

You should also login to admin interface (on /admin/ URL) and adjust the
default site name to match your domain by clicking on Sites and there
changing the example.com record to match your real domain name.

Once you are done, you should also check Performance report in the
admin interface which will give you hints for non optimal configuration on your
site.

See also

Configuration, Access control, Why do links contain example.com as the domain?, Set correct site name

Production setup

For production setup you should do following adjustments:

Disable debug mode

Disable Django’s debug mode (DEBUG) by:

DEBUG = False

With debug mode Django stores all executed queries and shows users backtraces
of errors which is not desired in production setup.

See also

Installation

Properly configure admins

Set correct admin addresses to ADMINS setting for defining who will receive
mail in case something goes wrong on the server, for example:

ADMINS = (
 ('Your Name', 'your_email@example.com'),
)

See also

Installation

Set correct site name

Adjust site name in admin interface, otherwise links in RSS or registration
emails will not work.

Please open the admin interface and edit default site name and domain under the
Sites › Sites (or you can do that directly at
/admin/sites/site/1/ URL under your Weblate installation). You have to change
the Domain name to match your setup.

Note

This setting should contain only the domain name. For configuring protocol
(enabling HTTPS) use ENABLE_HTTPS and for changing URL use
URL_PREFIX.

Alternatively, you can set the site name from command line using
changesite. For example, when using built in server:

./manage.py changesite --set-name 127.0.0.1:8000

For production site, you want something like:

./manage.py changesite --set-name weblate.example.com

See also

Why do links contain example.com as the domain?, changesite,
The “sites” framework [https://docs.djangoproject.com/en/stable/ref/contrib/sites/]

Enable indexing offloading

Enable OFFLOAD_INDEXING to prevent locking issues and improve
performance. Don’t forget to schedule indexing as a background job to keep the
index up to date.

See also

Fulltext search, OFFLOAD_INDEXING, Running maintenance tasks

Use powerful database engine

Use a powerful database engine (SQLite is usually not good enough for production
environment), see Database setup for Weblate for more information.

See also

Database setup for Weblate,
Installation,
Databases [https://docs.djangoproject.com/en/stable/ref/databases/]

Enable caching

If possible, use memcache from Django by adjusting CACHES configuration
variable, for example:

CACHES = {
 'default': {
 'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',
 'LOCATION': '127.0.0.1:11211',
 }
}

See also

Avatar caching,
Django’s cache framework [https://docs.djangoproject.com/en/stable/topics/cache/]

Avatar caching

In addition to caching of Django, Weblate performs caching of avatars. It is
recommended to use separate, file backed cache for this purpose:

CACHES = {
 'default': {
 # Default caching backend setup, see above
 'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',
 'LOCATION': '127.0.0.1:11211',
 },
 'avatar': {
 'BACKEND': 'django.core.cache.backends.filebased.FileBasedCache',
 'LOCATION': os.path.join(DATA_DIR, 'avatar-cache'),
 'TIMEOUT': 604800,
 'OPTIONS': {
 'MAX_ENTRIES': 1000,
 },
 }

See also

ENABLE_AVATARS,
Avatars,
Enable caching,
Django’s cache framework [https://docs.djangoproject.com/en/stable/topics/cache/]

Configure email addresses

Weblate needs to send out emails on several occasions and these emails should
have correct sender address, please configure SERVER_EMAIL and
DEFAULT_FROM_EMAIL to match your environment, for example:

SERVER_EMAIL = 'admin@example.org'
DEFAULT_FROM_EMAIL = 'weblate@example.org'

See also

Installation,
DEFAULT_FROM_EMAIL [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DEFAULT_FROM_EMAIL],
SERVER_EMAIL [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SERVER_EMAIL]

Allowed hosts setup

Django 1.5 and newer require ALLOWED_HOSTS to hold a list of domain names
your site is allowed to serve, having it empty will block any request.

See also

ALLOWED_HOSTS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-ALLOWED_HOSTS]

Federated avatar support

By default, Weblate relies on <https://www.libravatar.org/> for avatars. When
you install pyLibavatar [https://pypi.python.org/pypi/pyLibravatar], you will get proper support for federated avatars.

pyuca library

pyuca [https://github.com/jtauber/pyuca] library is optionally used by Weblate to sort Unicode strings. This
way language names are properly sorted even in non-ASCII languages like
Japanese, Chinese or Arabic or for languages with accented letters.

Django secret key

The SECRET_KEY setting is used by Django to sign cookies and you should
really generate your own value rather than using the one coming from example setup.

You can generate new key using examples/generate-secret-key shipped
with Weblate.

See also

SECRET_KEY [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECRET_KEY]

Static files

If you see purely designed admin interface, the CSS files required for it are
not loaded. This is usually if you are running in non-debug mode and have not
configured your web server to serve them. Recommended setup is described in the
Serving static files chapter.

See also

Running server, Serving static files

Home directory

Changed in version 2.1: This is no longer required, Weblate now stores all its data in
DATA_DIR.

The home directory for the user which is running Weblate should be existing and
writable by this user. This is especially needed if you want to use SSH to
access private repositories, but Git might need to access this directory as
well (depends on the Git version you use).

You can change the directory used by Weblate in settings.py, for
example to set it to configuration directory under Weblate tree:

os.environ['HOME'] = os.path.join(BASE_DIR, 'configuration')

Note

On Linux and other UNIX like systems, the path to user’s home directory is
defined in /etc/passwd. Many distributions default to non writable
directory for users used for serving web content (such as apache,
www-data or wwwrun, so you either have to run Weblate under
a different user or change this setting.

See also

Accessing repositories

Template loading

It is recommended to use cached template loader for Django. It caches parsed
templates and avoids the need to do the parsing with every single request. You can
configure it using the following snippet (the loaders setting is important here):

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': [
 os.path.join(BASE_DIR, 'templates'),
],
 'OPTIONS': {
 'context_processors': [
 'django.contrib.auth.context_processors.auth',
 'django.template.context_processors.debug',
 'django.template.context_processors.i18n',
 'django.template.context_processors.request',
 'django.template.context_processors.csrf',
 'django.contrib.messages.context_processors.messages',
 'weblate.trans.context_processors.weblate_context',
],
 'loaders': [
 ('django.template.loaders.cached.Loader', [
 'django.template.loaders.filesystem.Loader',
 'django.template.loaders.app_directories.Loader',
]),
],
 },
 },
]

See also

django.template.loaders.cached.Loader [https://docs.djangoproject.com/en/stable/ref/templates/api/#django.template.loaders.cached.Loader]

Running maintenance tasks

For optimal performance, it is good idea to run some maintenance tasks in the
background.

On a Unix-likesystem, this can be scheduled using cron:

Fulltext index updates
*/5 * * * * cd /usr/share/weblate/; ./manage.py update_index

Cleanup stale objects
@daily cd /usr/share/weblate/; ./manage.py cleanuptrans

Commit pending changes after 96 hours
@hourly cd /usr/share/weblate/; ./manage.py commit_pending --all --age=96 --verbosity=0

See also

Enable indexing offloading, update_index, cleanuptrans, commit_pending

Running server

Running Weblate is not different from running any other Django based
application. Django is usually executed as uwsgi or fcgi (see examples for
different webservers below).

For testing purposes, you can use the Django built-in web server:

./manage.py runserver

Serving static files

Changed in version 2.4: Prior to version 2.4 Weblate didn’t properly use Django static files
framework and the setup was more complex.

Django needs to collect its static files to a single directory. To do so,
execute ./manage.py collectstatic --noinput. This will copy the static
files into directory specified by STATIC_ROOT setting (this defaults to
static directory inside DATA_DIR).

It is recommended to serve static files directly by your web server, you should
use that for following paths:

	/static/

	Serves static files for Weblate and admin interface
(from defined by STATIC_ROOT).

	/media/

	Used for user media uploads (eg. screenshots).

	/favicon.ico

	Should be rewritten to rewrite rule to serve /static/favicon.ico

	/robots.txt

	Should be rewritten to rewrite rule to serve /static/robots.txt

See also

Deploying Django [https://docs.djangoproject.com/en/stable/howto/deployment/],
Deploying static files [https://docs.djangoproject.com/en/stable/howto/static-files/deployment/]

Content security policy

Default Weblate configuration enables weblate.middleware.SecurityMiddleware
middleware which sets security related HTTP headers like Content-Security-Policy
or X-XSS-Protection. These are set to work with Weblate and it’s
configuration, but this might clash with your customization. If that is your
case, it is recommended to disable this middleware and set these headers
manually.

Sample configuration for Apache

Following configuration runs Weblate as WSGI, you need to have enabled
mod_wsgi (available as examples/apache.conf):

#
VirtualHost for weblate
#
This example assumes Weblate is installed in /usr/share/weblate
#
If using virtualenv, you need to add it to search path as well:
WSGIPythonPath /usr/share/weblate:/path/to/your/venv/lib/python2.7/site-packages
#
<VirtualHost *:80>
 ServerAdmin admin@weblate.example.org
 ServerName weblate.example.org

 # DATA_DIR/static/robots.txt
 Alias /robots.txt /var/lib/weblate/static/robots.txt
 # DATA_DIR/static/favicon.ico
 Alias /favicon.ico /var/lib/weblate/static/favicon.ico

 # DATA_DIR/static/
 Alias /static/ /var/lib/weblate/static/
 <Directory /var/lib/weblate/static/>
 Require all granted
 </Directory>

 # DATA_DIR/media/
 Alias /media/ /var/lib/weblate/media/
 <Directory /var/lib/weblate/media/>
 Require all granted
 </Directory>

 WSGIDaemonProcess weblate.example.org python-path=/usr/share/weblate
 WSGIProcessGroup weblate.example.org
 WSGIApplicationGroup %{GLOBAL}

 WSGIScriptAlias / /usr/share/weblate/weblate/wsgi.py process-group=weblate.example.org
 WSGIPassAuthorization On

 <Directory /usr/share/weblate/weblate>
 <Files wsgi.py>
 Require all granted
 </Files>
 </Directory>

</VirtualHost>

This configuration is for Apache 2.4 and later. For earlier versions of Apache,
replace Require all granted with Allow from all.

See also

How to use Django with Apache and mod_wsgi [https://docs.djangoproject.com/en/stable/howto/deployment/wsgi/modwsgi/]

Sample configuration for Apache and gunicorn

Following configuration runs Weblate in gunicorn and Apache 2.4
(available as examples/apache.gunicorn.conf):

#
VirtualHost for weblate using gunicorn on localhost:8000
#
This example assumes Weblate is installed in /usr/share/weblate
#
#

<VirtualHost *:443>
 ServerAdmin admin@weblate.example.org
 ServerName weblate.example.org

 # DATA_DIR/static/robots.txt
 Alias /robots.txt /var/lib/weblate/static/robots.txt
 # DATA_DIR/static/favicon.ico
 Alias /favicon.ico /var/lib/weblate/static/favicon.ico

 # DATA_DIR/static/
 Alias /static/ /var/lib/weblate/static/
 <Directory /var/lib/weblate/static/>
 Require all granted
 </Directory>

 # DATA_DIR/media/
 Alias /media/ /var/lib/weblate/media/
 <Directory /var/lib/weblate/media/>
 Require all granted
 </Directory>

 SSLEngine on
 SSLCertificateFile /etc/apache2/ssl/https_cert.cert
 SSLCertificateKeyFile /etc/apache2/ssl/https_key.pem
 SSLProxyEngine On

 ProxyPass /robots.txt !
 ProxyPass /favicon.ico !
 ProxyPass /static/ !
 ProxyPass /media/ !

 ProxyPass / http://localhost:8000/
 ProxyPassReverse / http://localhost:8000/
 ProxyPreserveHost On
</VirtualHost>

See also

How to use Django with Gunicorn [https://docs.djangoproject.com/en/stable/howto/deployment/wsgi/gunicorn/]

Sample configuration for nginx and uwsgi

The following configuration runs Weblate as uwsgi under nginx webserver.

Configuration for nginx (also available as examples/weblate.nginx.conf):

server {
 listen 80;
 server_name weblate;
 root /usr/share/weblate;

 location /favicon.ico {
 # DATA_DIR/static/favicon.ico
 alias /var/lib/weblate/static/favicon.ico;
 expires 30d;
 }

 location /robots.txt {
 # DATA_DIR/static/robots.txt
 alias /var/lib/weblate/static/robots.txt;
 expires 30d;
 }

 location /static {
 # DATA_DIR/static/
 alias /var/lib/weblate/static/;
 expires 30d;
 }

 location /media {
 # DATA_DIR/media/
 alias /var/lib/weblate/media/;
 expires 30d;
 }

 location / {
 include uwsgi_params;
 # Needed for long running operations in admin interface
 uwsgi_read_timeout 3600;
 # Adjust based to uwsgi configuration:
 uwsgi_pass unix:///run/uwsgi/app/weblate/socket;
 # uwsgi_pass 127.0.0.1:8080;
 }
}

Configuration for uwsgi (also available as examples/weblate.uwsgi.ini):

[uwsgi]
plugins = python
master = true
protocol = uwsgi
socket = 127.0.0.1:8080
wsgi-file = /path/to/weblate/weblate/wsgi.py
python-path = /path/to/weblate
In case you're using virtualenv uncomment this:
virtualenv = /path/to/weblate/virtualenv
Needed for OAuth/OpenID
buffer-size = 8192
Increase number of workers for heavily loaded sites
#workers = 6
Needed for background processing
enable-threads = true
Child processes do not need file descriptors
close-on-exec = true
Avoid default 0000 umask
umask = 0022

See also

How to use Django with uWSGI [https://docs.djangoproject.com/en/stable/howto/deployment/wsgi/uwsgi/]

Running Weblate under path

Changed in version 1.3: This is supported since Weblate 1.3.

Sample Apache configuration to serve Weblate under /weblate. Again using
mod_wsgi (also available as examples/apache-path.conf):

Example Apache configuration for running Weblate under /weblate path

WSGIPythonPath /usr/share/weblate
If using virtualenv, you need to add it to search path as well:
WSGIPythonPath /usr/share/weblate:/path/to/your/venv/lib/python2.7/site-packages
<VirtualHost *:80>
 ServerAdmin admin@image.weblate.org
 ServerName image.weblate.org

 # DATA_DIR/static/robots.txt
 Alias /weblate/robots.txt /var/lib/weblate/static/robots.txt
 # DATA_DIR/static/favicon.ico
 Alias /weblate/favicon.ico /var/lib/weblate/static/favicon.ico

 # DATA_DIR/static/
 Alias /weblate/static/ /var/lib/weblate/static/
 <Directory /var/lib/weblate/static/>
 Require all granted
 </Directory>

 # DATA_DIR/media/
 Alias /weblate/media/ /var/lib/weblate/media/
 <Directory /var/lib/weblate/media/>
 Require all granted
 </Directory>

 WSGIScriptAlias /weblate /usr/share/weblate/weblate/wsgi.py
 WSGIPassAuthorization On

 <Directory /usr/share/weblate/weblate>
 <Files wsgi.py>
 Require all granted
 </Files>
 </Directory>

</VirtualHost>

Additionally, you will have to adjust weblate/settings.py:

URL_PREFIX = '/weblate'

Monitoring Weblate

Weblate provides /healthz/ URL to be used in simple health checks, for example
using Kubernetes.

Collecting error reports

It is good idea to collect errors from any Django application in structured way
and Weblate is not an exception from this. You might find several services providing
this, for example:

	Sentry [https://sentry.io]

	Rollbar [https://rollbar.com/]

Rollbar

Weblate has built in support for Rollbar [https://rollbar.com/]. To use
it it’s enough to follow instructions for Rollbar notifier for Python [https://rollbar.com/docs/notifier/pyrollbar/].

In short, you need to adjust settings.py:

Add rollbar as last middleware:
MIDDLEWARE = [
 # ... other middleware classes ...
 'rollbar.contrib.django.middleware.RollbarNotifierMiddleware',
]

Configure client access
ROLLBAR = {
 'access_token': 'POST_SERVER_ITEM_ACCESS_TOKEN',
 'client_token': 'POST_CLIENT_ITEM_ACCESS_TOKEN',
 'environment': 'development' if DEBUG else 'production',
 'branch': 'master',
 'root': '/absolute/path/to/code/root',
}

Everything else is integrated automatically, you will now collect both server
and client side errors.

Migrating Weblate to another server

Migrating Weblate to another server should be pretty easy, however it stores
data in few locations which you should migrate carefully. The best approach is
to stop migrated Weblate for the migration.

Migrating database

Depending on your database backend, you might have several options to migrate
the database. The most straightforward one is to dump the database on one
server and import it on the new one. Alternatively you can use replication in
case your database supports it.

The best approach is to use database native tools as they are usually the most
effective (eg. mysqldump or pg_dump). If you want to
migrate between different databases, the only option might be to use Django
management to dump and import the database:

Export current data
./manage.py dumpdata > /tmp/weblate.dump
Import dump
./manage.py loaddata /tmp/weblate.dump

Migrating VCS repositories

The VCS repositories stored under DATA_DIR need to be migrated as
well. You can simply copy them or use rsync to do the migration
more effectively.

Migrating fulltext index

For the fulltext index (stored in DATA_DIR) it is better not to
migrate it, but rather to generate a fresh one using rebuild_index.

Other notes

Don’t forget to move other services which Weblate might have been using like
memcached, cron jobs or custom authentication backends.

Weblate deployments

Weblate comes with support for deployment using several technologies. This
section is overview of them.

Running Weblate in the Docker

With dockerized weblate deployment you can get your personal weblate instance
up an running in seconds. All of Weblate’s dependencies are already included.
PostgreSQL is configured as the default database.

Deployment

The following examples assume you have a working Docker environment, with
docker-compose installed. Please check Docker documentation for instructions on
this.

	Clone weblate-docker repo:

git clone https://github.com/WeblateOrg/docker.git weblate-docker
cd weblate-docker

	Create a docker-compose.override.yml file with your settings.
See Docker environment variables full list of environment vars

version: '2'
services:
 weblate:
 environment:
 - WEBLATE_EMAIL_HOST=smtp.example.com
 - WEBLATE_EMAIL_HOST_USER=user
 - WEBLATE_EMAIL_HOST_PASSWORD=pass
 - WEBLATE_ALLOWED_HOSTS=weblate.example.com
 - WEBLATE_ADMIN_PASSWORD=password for admin user

Note

If WEBLATE_ADMIN_PASSWORD is not set, admin user is created with
random password printed out on first startup.

	Build Weblate containers:

docker-compose build

	Start Weblate containers:

docker-compose up

Enjoy your Weblate deployment, it’s accessible on port 80 of the weblate container.

Changed in version 2.15-2: The setup has changed recently, prior there was separate web server
container, since 2.15-2 the web server is embedded in weblate container.

See also

Invoking management commands

Docker container with https support

Please see Deployment for generic deployment instructions. To add
HTTPS reverse proxy additional Docker container is required, we will use
https-portal [https://hub.docker.com/r/steveltn/https-portal/]. This is
used in the docker-compose-https.yml file. Then you just need to create
a docker-compose-https.override.yml file with your settings:

version: '2'
services:
 weblate:
 environment:
 - WEBLATE_EMAIL_HOST=smtp.example.com
 - WEBLATE_EMAIL_HOST_USER=user
 - WEBLATE_EMAIL_HOST_PASSWORD=pass
 - WEBLATE_ALLOWED_HOSTS=weblate.example.com
 - WEBLATE_ADMIN_PASSWORD=password for admin user
 https-portal:
 environment:
 DOMAINS: 'weblate.example.com -> http://weblate'

Whenever invoking docker-compose you need to pass both files to it
then:

docker-compose -f docker-compose-https.yml -f docker-compose-https.override.yml build
docker-compose -f docker-compose-https.yml -f docker-compose-https.override.yml up

Upgrading Docker container

Usually it is good idea to update the weblate container only and keep the PostgreSQL
container at version you have as upgrading PostgreSQL is quite painful and in most
cases it does not bring many benefits.

You can do this by sticking with existing docker-compose and just pulling
latest images and restarting:

docker-compose down
docker-compose pull
docker-compose build --pull
docker-compose up

The Weblate database should be automatically migrated on first start and there
should be no need for additional manual actions.

Maintenance tasks

There are some cron jobs to run. You should set WEBLATE_OFFLOAD_INDEXING to 1 when these are setup

*/5 * * * * cd /usr/share/weblate/; docker-compose run --rm weblate update_index
@daily cd /usr/share/weblate/; docker-compose run --rm weblate cleanuptrans
@hourly cd /usr/share/weblate-docker/; docker-compose run --rm weblate commit_pending --all --age=96

Docker environment variables

Many of Weblate Configuration can be set in Docker container using environment variables:

Generic settings

	
WEBLATE_DEBUG

	Configures Django debug mode using DEBUG.

Example:

environment:
 - WEBLATE_DEBUG=1

See also

Disable debug mode.

	
WEBLATE_LOGLEVEL

	Configures verbosity of logging.

	
WEBLATE_SITE_TITLE

	Configures site title shown on headings of all pages.

	
WEBLATE_ADMIN_NAME

	

	
WEBLATE_ADMIN_EMAIL

	Configures site admins name and email.

Example:

environment:
 - WEBLATE_ADMIN_NAME=Weblate Admin
 - WEBLATE_ADMIN_EMAIL=noreply@example.com

See also

Properly configure admins

	
WEBLATE_ADMIN_PASSWORD

	Sets password for admin user. If not set, admin user is created with random
password printed out on first startup.

Changed in version 2.9: Since version 2.9, the admin user is adjusted on every container
startup to match WEBLATE_ADMIN_PASSWORD, WEBLATE_ADMIN_NAME
and WEBLATE_ADMIN_EMAIL.

	
WEBLATE_SERVER_EMAIL

	

	
WEBLATE_DEFAULT_FROM_EMAIL

	Configures address for outgoing mails.

See also

Configure email addresses

	
WEBLATE_ALLOWED_HOSTS

	Configures allowed HTTP hostnames using ALLOWED_HOSTS and sets
site name to first one.

Example:

environment:
 - WEBLATE_ALLOWED_HOSTS=weblate.example.com,example.com

See also

Allowed hosts setup,
Set correct site name

	
WEBLATE_SECRET_KEY

	Configures secret used for Django for cookies signing.

Deprecated since version 2.9: The secret is now generated automatically on first startup, there is no
need to set it manually.

See also

Django secret key

	
WEBLATE_REGISTRATION_OPEN

	Configures whether registrations are open by toggling REGISTRATION_OPEN.

Example:

environment:
 - WEBLATE_REGISTRATION_OPEN=0

	
WEBLATE_TIME_ZONE

	Configures time zone used.

	
WEBLATE_OFFLOAD_INDEXING

	Configures offloaded indexing.

Example:

environment:
 - WEBLATE_OFFLOAD_INDEXING=1

See also

Enable indexing offloading

	
WEBLATE_ENABLE_HTTPS

	Makes Weblate assume it is operated behind HTTPS reverse proxy, it makes
Weblate use https in email and API links or set secure flags on cookies.

Note

This does not make the Weblate container accept https connections, you
need to use a standalone HTTPS reverse proxy, see Docker container with https support for
example.

Example:

environment:
 - WEBLATE_ENABLE_HTTPS=1

See also

Set correct site name

	
WEBLATE_IP_PROXY_HEADER

	Enables Weblate fetching IP address from given HTTP header. Use this when using
reverse proxy in front of Weblate container.

Enables IP_BEHIND_REVERSE_PROXY and sets IP_PROXY_HEADER.

Example:

environment:
 - WEBLATE_IP_PROXY_HEADER=HTTP_X_FORWARDED_FOR

	
WEBLATE_REQUIRE_LOGIN

	Configures login required for whole Weblate using LOGIN_REQUIRED_URLS.

Example:

environment:
 - WEBLATE_REQUIRE_LOGIN=1

	
WEBLATE_GOOGLE_ANALYTICS_ID

	Configures ID for Google Analytics by changing GOOGLE_ANALYTICS_ID.

	
WEBLATE_GITHUB_USERNAME

	Configures github username for GitHub pull requests by changing
GITHUB_USERNAME.

See also

Pushing changes to GitHub as pull request,
Setting up hub

	
WEBLATE_SIMPLIFY_LANGUAGES

	Configures language simplification policy, see SIMPLIFY_LANGUAGES.

	
WEBLATE_AKISMET_API_KEY

	Configures Akismet API key, see AKISMET_API_KEY.

Machine translation settings

	
WEBLATE_MT_GOOGLE_KEY

	Enables Google machine translation and sets MT_GOOGLE_KEY

	
WEBLATE_MT_MICROSOFT_COGNITIVE_KEY

	Enables Microsoft machine translation and sets MT_MICROSOFT_COGNITIVE_KEY

Authentication settings

	
WEBLATE_AUTH_LDAP_SERVER_URI

	

	
WEBLATE_AUTH_LDAP_USER_DN_TEMPLATE

	

	
WEBLATE_AUTH_LDAP_USER_ATTR_MAP

	LDAP authentication configuration.

Example:

environment:
 - WEBLATE_AUTH_LDAP_SERVER_URI=ldap://ldap.example.org
 - WEBLATE_AUTH_LDAP_USER_DN_TEMPLATE=uid=%(user)s,ou=People,dc=example,dc=net
 # map weblate 'first_name' to ldap 'name' and weblate 'email' attribute to 'mail' ldap attribute.
 # another example that can be used with OpenLDAP: 'first_name:cn,email:mail'
 - WEBLATE_AUTH_LDAP_USER_ATTR_MAP=first_name:name,email:mail

See also

LDAP authentication

	
WEBLATE_SOCIAL_AUTH_GITHUB_KEY

	

	
WEBLATE_SOCIAL_AUTH_GITHUB_SECRET

	Enables GitHub authentication.

	
WEBLATE_SOCIAL_AUTH_BITBUCKET_KEY

	

	
WEBLATE_SOCIAL_AUTH_BITBUCKET_SECRET

	Enables Bitbucket authentication.

	
WEBLATE_SOCIAL_AUTH_FACEBOOK_KEY

	

	
WEBLATE_SOCIAL_AUTH_FACEBOOK_SECRET

	Enables Facebook OAuth2.

	
WEBLATE_SOCIAL_AUTH_GOOGLE_OAUTH2_KEY

	

	
WEBLATE_SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET

	Enables Google OAuth2.

	
WEBLATE_SOCIAL_AUTH_GITLAB_KEY

	

	
WEBLATE_SOCIAL_AUTH_GITLAB_SECRET

	

	
WEBLATE_SOCIAL_AUTH_GITLAB_API_URL

	Enables Gitlab OAuth2.

Processing hooks

All these processing hooks should get a comma-separated list of available
scripts, for example:

WEBLATE_POST_UPDATE_SCRIPTS=/usr/local/share/weblate/examples/hook-cleanup-android

See also

Processing repository with scripts

	
WEBLATE_POST_UPDATE_SCRIPTS

	Sets POST_UPDATE_SCRIPTS.

	
WEBLATE_PRE_COMMIT_SCRIPTS

	Sets PRE_COMMIT_SCRIPTS.

	
WEBLATE_POST_COMMIT_SCRIPTS

	Sets POST_COMMIT_SCRIPTS.

	
WEBLATE_POST_PUSH_SCRIPTS

	Sets POST_PUSH_SCRIPTS.

	
WEBLATE_POST_ADD_SCRIPTS

	Sets POST_ADD_SCRIPTS.

PostgreSQL database setup

The database is created by docker-compose.yml, so this settings affects
both Weblate and PostgreSQL containers.

See also

Database setup for Weblate

	
POSTGRES_PASSWORD

	PostgreSQL password.

	
POSTGRES_USER

	PostgreSQL username.

	
POSTGRES_DATABASE

	PostgreSQL database name.

	
POSTGRES_HOST

	PostgreSQL server hostname or IP address. Defaults to database.

	
POSTGRES_PORT

	PostgreSQL server port. Default to empty (use default value).

Caching server setup

Using memcached is strongly recommended by Weblate and you have to provide
memcached instance when running Weblate in Docker.

See also

Enable caching

	
MEMCACHED_HOST

	The memcached server hostname or IP adress. Defaults to cache.

	
MEMCACHED_PORT

	The memcached server port. Defaults to 11211.

Email server setup

To make outgoing email work, you need to provide mail server.

See also

Configuring outgoing mail

	
WEBLATE_EMAIL_HOST

	Mail server, the server has to listen on port 587 and understand TLS.

See also

EMAIL_HOST [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_HOST]

	
WEBLATE_EMAIL_PORT

	Mail server port, use if your cloud provider or ISP blocks outgoing
connections on port 587.

See also

EMAIL_PORT [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_PORT]

	
WEBLATE_EMAIL_HOST_USER

	Email authentication user, do NOT use quotes here.

See also

EMAIL_HOST_USER [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_HOST_USER]

	
WEBLATE_EMAIL_HOST_PASSWORD

	Email authentication password, do NOT use quotes here.

See also

EMAIL_HOST_PASSWORD [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_HOST_PASSWORD]

	
WEBLATE_EMAIL_USE_SSL

	Whether to use an implicit TLS (secure) connection when talking to the SMTP
server. In most email documentation this type of TLS connection is referred
to as SSL. It is generally used on port 465. If you are experiencing
problems, see the explicit TLS setting WEBLATE_EMAIL_USE_TLS.

See also

EMAIL_USE_SSL [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_USE_SSL]

	
WEBLATE_EMAIL_USE_TLS

	Whether to use a TLS (secure) connection when talking to the SMTP server.
This is used for explicit TLS connections, generally on port 587. If you
are experiencing hanging connections, see the implicit TLS setting
WEBLATE_EMAIL_USE_SSL.

See also

EMAIL_USE_TLS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_USE_TLS]

Hub setup

In order to use the Github pull requests feature, you must initialize hub configuration by entering the weblate container and executing an arbitrary hub command. For example:

docker-compose exec weblate bash
cd
HOME=/app/data/home hub clone octocat/Spoon-Knife

The username passed for credentials must be the same as GITHUB_USERNAME.

See also

Pushing changes to GitHub as pull request,
Setting up hub

Select your machine - local or cloud providers

With docker-machine you can create your Weblate deployment either on your local
machine or on any large number of cloud-based deployments on e.g. Amazon AWS,
Digitalocean and many more providers.

Running Weblate on OpenShift 2

This repository contains a configuration for the OpenShift platform as a
service product, which facilitates easy installation of Weblate on OpenShift
Online (https://www.openshift.com/), OpenShift Enterprise
(https://enterprise.openshift.com/) and OpenShift Origin
(https://www.openshift.org/).

Prerequisites

	OpenShift Account

You need an account for OpenShift Online (https://www.openshift.com/) or
another OpenShift installation you have access to.

You can register a free account on OpenShift Online, which allows you to
host up to 3 applications free of charge.

	OpenShift Client Tools

In order to follow the examples given in this documentation you need to have
the OpenShift Client Tools (RHC) installed:
https://developers.openshift.com/en/managing-client-tools.html

While there are other possibilities to create and configure OpenShift
applications, this documentation is based on the OpenShift Client Tools
(RHC) because they provide a consistent interface for all described
operations.

Installation

You can install Weblate on OpenShift directly from Weblate’s Github repository
with the following command:

Install Git HEAD
rhc -aweblate app create -t python-2.7 --from-code https://github.com/WeblateOrg/weblate.git --no-git

Install Weblate 2.10
rhc -aweblate app create -t python-2.7 --from-code https://github.com/WeblateOrg/weblate.git#weblate-2.10 --no-git

The -a option defines the name of your weblate installation, weblate in
this instance. You are free to specify a different name.

The above example installs latest development version, you can optionally
specify tag identifier right of the # sign to identify the version of
Weblate to install. For a list of available versions see here:
https://github.com/WeblateOrg/weblate/tags.

The --no-git option skips the creation of a
local git repository.

You can also specify which database you want to use:

For MySQL
rhc -aweblate app create -t python-2.7 -t mysql-5.5 --from-code https://github.com/WeblateOrg/weblate.git --no-git

For PostgreSQL
rhc -aweblate app create -t python-2.7 -t postgresql-9.2 --from-code https://github.com/WeblateOrg/weblate.git --no-git

Default Configuration

After installation on OpenShift Weblate is ready to use and preconfigured as follows:

	SQLite embedded database (DATABASES)

	Random admin password

	Random Django secret key (SECRET_KEY)

	Indexing offloading if the cron cartridge is installed (OFFLOAD_INDEXING)

	Committing of pending changes if the cron cartridge is installed (commit_pending)

	Weblate machine translations for suggestions bases on previous translations (MACHINE_TRANSLATION_SERVICES)

	Weblate directories (STATIC_ROOT, DATA_DIR, TTF_PATH, Avatar cache) set according to OpenShift requirements/conventions

	Django site name and ALLOWED_HOSTS set to DNS name of your OpenShift application

	Email sender addresses set to no-reply@<OPENSHIFT_CLOUD_DOMAIN>, where <OPENSHIFT_CLOUD_DOMAIN> is the domain OpenShift runs under. In case of OpenShift Online it’s rhcloud.com.

See also

Customize Weblate Configuration

Retrieve Admin Password

You can retrieve the generated admin password with the following command:

rhc -aweblate ssh credentials

Indexing Offloading

To enable the preconfigured indexing offloading you need to add the cron cartridge to your application and restart it:

rhc -aweblate add-cartridge cron
rhc -aweblate app stop
rhc -aweblate app start

The fulltext search index will then be updated every 5 minutes.
Restarting with rhc restart instead will not enable indexing offloading in Weblate.
You can verify that indexing offloading is indeed enabled by visiting the URL /admin/performance/ of your application.

Pending Changes

Weblate’s OpenShift configuration contains a cron job which periodically commits pending changes older than a certain age (24h by default).
To enable the cron job you need to add the cron cartridge and restart Weblate as described in the previous section. You can change the age
parameter by setting the environment variable WEBLATE_PENDING_AGE to the desired number of hours, e.g.:

rhc -aweblate env set WEBLATE_PENDING_AGE=48

Customize Weblate Configuration

You can customize the configuration of your Weblate installation on OpenShift
through environment variables. Override any of Weblate’s setting documented
under Configuration using rhc env set by prepending the settings name with
WEBLATE_. The variable content is put verbatim to the configuration file,
so it is parsed as Python string, after replacing environment variables in it
(eg. $PATH). To put literal $ you need to escape it as $$.

For example override the ADMINS setting like this:

rhc -aweblate env set WEBLATE_ADMINS='(("John Doe", "jdoe@example.org"),)'

To change site title, do not forget to include additional quotes:

rhc -aweblate env set WEBLATE_SITE_TITLE='"Custom Title"'

New settings will only take effect after restarting Weblate:

rhc -aweblate app stop
rhc -aweblate app start

Restarting using rhc -aweblate app restart does not work. For security reasons only constant expressions are allowed as values.
With the exception of environment variables which can be referenced using ${ENV_VAR}. For example:

rhc -aweblate env set WEBLATE_PRE_COMMIT_SCRIPTS='("${OPENSHIFT_DATA_DIR}/examples/hook-generate-mo",)'

You can check the effective settings Weblate is using by running:

rhc -aweblate ssh settings

This will also print syntax errors in your expressions.
To reset a setting to its preconfigured value just delete the corresponding environment variable:

rhc -aweblate env unset WEBLATE_ADMINS

See also

Configuration

Updating

It is recommended that you try updates on a clone of your Weblate installation before running the actual update.
To create such a clone run:

rhc -aweblate2 app create --from-app weblate

Visit the newly given URL with a browser and wait for the install/update page to disappear.

You can update your Weblate installation on OpenShift directly from Weblate’s github repository by executing:

rhc -aweblate2 ssh update https://github.com/WeblateOrg/weblate.git

The identifier right of the # sign identifies the version of Weblate to install.
For a list of available versions see here: https://github.com/WeblateOrg/weblate/tags.
Please note that the update process will not work if you modified the git repository of you weblate installation.
You can force an update by specifying the --force option to the update script. However any changes you made to the
git repository of your installation will be discarded:

rhc -aweblate2 ssh update --force https://github.com/WeblateOrg/weblate.git

The --force option is also needed when downgrading to an older version.
Please note that only version 2.0 and newer can be installed on OpenShift,
as older versions don’t include the necessary configuration files.

The update script takes care of the following update steps as described under Generic upgrade instructions.

	Install any new requirements

	manage.py migrate

	manage.py setupgroups –move

	manage.py setuplang

	manage.py rebuild_index –all

	manage.py collectstatic –noinput

Bitnami Weblate stack

Bitnami provides Weblate stack for many platforms at
<https://bitnami.com/stack/weblate>. The setup will be adjusted during
installation, see <https://bitnami.com/stack/weblate/README.txt> for more
documentation.

Weblate in YunoHost

The self-hosting project YunoHost [https://yunohost.org/] provides a package
for Weblate. Once you have your YunoHost installation, you may install Weblate
as any other application. It will provide you a fully working stack with backup
and restoration, but you may still have to edit your settings file for specific
usages.

You may use your administration interface or this button (it will bring you to your server):

[image: Install Weblate with YunoHost]
 [https://install-app.yunohost.org/?app=weblate]It also is possible to use the command line interface:

yunohost app install https://github.com/YunoHost-Apps/weblate_ynh

Upgrading Weblate

Generic upgrade instructions

Before upgrading, please check the current Software requirements as they might have
changed. Once all requirements are installed or updated, please adjust your
settings.py to match changes in the configuration (consult
settings_example.py for correct values).

Always check Version specific instructions before upgrade. In case you
are skipping some versions, please follow instructions for all versions you are
skipping in the upgrade. Sometimes it’s better to upgrade to some intermediate
version to ensure a smooth migration. Upgrading across multiple releases should
work, but is not as well tested as single version upgrades.

Note

It is recommended to perform a full database backup prior to upgrade so that you
can roll back the database in case upgrade fails.

	Upgrade database structure:

./manage.py migrate --noinput

	Collect updated static files (mostly javacript and CSS):

./manage.py collectstatic --noinput

	Update language definitions (this is not necessary, but heavily recommended):

./manage.py setuplang

	Optionally upgrade default set of privileges definitions (you might want to
add new permissions manually if you have heavily tweaked access control):

./manage.py setupgroups

	If you are running version from Git, you should also regenerate locale files
every time you are upgrading. You can do this by invoking:

./manage.py compilemessages

Changed in version 1.2: Since version 1.2 the migration is done using South module, to upgrade to 1.2,
please see Version specific instructions.

Changed in version 1.9: Since version 1.9, Weblate also supports Django 1.7 migrations, please check
Upgrading to Django 1.7 for more information.

Changed in version 2.3: Since version 2.3, Weblate supports only Django native migrations, South is
no longer supported, please check Upgrading to Django 1.7 for more information.

Changed in version 2.11: Since version 2.11, there is reduced support for migrating from
older non-released versions. In case you hit problem in this, please
upgrade first to the closest release version and then continue in
upgrading to latest one.

Changed in version 2.12: Since version 2.12, upgrade is not supported for versions prior to 2.2. In
case you are upgrading from such old version, please upgrade to 2.2 first
and then continue in upgrading to current release.

Version specific instructions

Upgrade from 0.5 to 0.6

On upgrade to version 0.6, you should run ./manage.py syncdb and
./manage.py setupgroups --move to setup access control as described
in the installation section.

Upgrade from 0.6 to 0.7

On upgrade to version 0.7, you should run ./manage.py syncdb to
setup new tables and ./manage.py rebuild_index to build the index for
fulltext search.

Upgrade from 0.7 to 0.8

On upgrade to version 0.8, you should run ./manage.py syncdb to set up
new tables, ./manage.py setupgroups to update privileges setup and
./manage.py rebuild_index to rebuild index for fulltext search.

Upgrade from 0.8 to 0.9

On upgrade to version 0.9, file structure has changed. You need to move
repos and whoosh-index to weblate folder. Also running
./manage.py syncdb, ./manage.py setupgroups and
./manage.py setuplang is recommended to get latest updates of
privileges and language definitions.

Upgrade from 0.9 to 1.0

On upgrade to version 1.0, one field has been added to database, you need to
invoke the following SQL command to adjust it:

ALTER TABLE `trans_subproject` ADD `template` VARCHAR(200);

Upgrade from 1.0 (1.1) to 1.2

On upgrade to version 1.2, the migration procedure has changed. It now uses
South for migrating database. To switch to this new migration schema, you need
to run following commands:

./manage.py syncdb
./manage.py migrate trans 0001 --fake
./manage.py migrate accounts 0001 --fake
./manage.py migrate lang 0001 --fake

Also please note that there are several new requirements and version 0.8 of
django-registration is now being required, see Software requirements for more
details.

Once you have done this, you can use Generic upgrade instructions.

Upgrade from 1.2 to 1.3

Since 1.3, settings.py is not shipped with Weblate, but only example
settings as settings_example.py; it is recommended to use it as new base
for your setup.

Upgrade from 1.4 to 1.5

Several internal modules and paths have been renamed and changed, please adjust
your settings.py to match (consult settings_example.py for
correct values).

	Many modules lost their weblate. prefix.

	Checks were moved to submodules.

	Locales were moved to top level directory.

The migration of database structure to 1.5 might take quite long; it is
recommended to put your site offline while the migration is going on.

Note

If you have update in same directory, stale *.pyc files might be
left around and cause various import errors. To recover from this, delete
all of them in Weblate’s directory, for example by
find . -name '*.pyc' -delete.

Upgrade from 1.6 to 1.7

The migration of database structure to 1.7 might take quite long, it is
recommended to put your site offline while the migration is going on.

If you are translating monolingual files, it is recommended to rerun quality
checks as they might have been wrongly linked to units in previous versions.

Upgrade from 1.7 to 1.8

The migration of database structure to 1.8 might take quite long, it is
recommended to put your site offline while the migration is going on.

Authentication setup has been changed and some internal modules have changed
name, please adjust your settings.py to match (consult
settings_example.py for correct values).

Also please note that there are several new requirements, see
Software requirements for more details.

Upgrade from 1.8 to 1.9

Several internal modules and paths have been renamed and changed, please adjust
your settings.py to match (consult settings_example.py for
correct values).

See also

If you are upgrading to Django 1.7 at the same time, please consult
Upgrading to Django 1.7.

Upgrade from 1.9 to 2.0

Several internal modules and paths have been renamed and changed, please adjust
your settings.py to match (consult settings_example.py for
correct values).

This upgrade also requires you to upgrade python-social-auth from 0.1.x to
0.2.x series, which will most likely need to fake one of their migrations
(see Upgrading PSA with South [https://python-social-auth.readthedocs.io/en/latest/configuration/django.html] for more information):

./manage.py migrate --fake default

See also

If you are upgrading to Django 1.7 at the same time, please consult
Upgrading to Django 1.7.

Upgrade from 2.0 to 2.1

The filesystem paths configuration has changed, the GIT_ROOT and
WHOOSH_INDEX are gone and now all data resides in
DATA_DIR. The existing data should be automatically migrated by the
supplied migration, but in case of non standard setup, you might need to move
these manually.

See also

If you are upgrading to Django 1.7 at the same time, please consult
Upgrading to Django 1.7.

Upgrade from 2.1 to 2.2

Weblate now supports fulltext search on additional fields. In order to make it
work on existing data you need to update fulltext index by:

./manage.py rebuild_index --clean --all

If you have some monolingual translations, Weblate now allows editing of template
(source) strings as well. To see them, you need to reload translations, which
will either happen automatically on te next repository update or you can force it
manually:

./manage.py loadpo --all

See also

If you are upgrading to Django 1.7 at the same time, please consult
Upgrading to Django 1.7.

Upgrade from 2.2 to 2.3

If you have not yet performed upgrade to Django 1.7 and newer, first upgrade to
2.2 following the instructions above. Weblate 2.3 no longer supports migration from
Django 1.6.

If you were using Weblate 2.2 with Django 1.6, you will now need to fake some
migrations:

./manage.py migrate --fake accounts 0004_auto_20150108_1424
./manage.py migrate --fake lang 0001_initial
./manage.py migrate --fake trans 0018_auto_20150213_1447

Previous Weblate releases contained a bug which made some monolingual
translations behave inconsistently for fuzzy and untranslated strings, if you
have such, it is recommended to run:

./manage.py fixup_flags --all

See also

Generic upgrade instructions

Upgrade from 2.3 to 2.4

Handling of static content has been rewritten, please adjust configuration of
your webserver accordingly (see Serving static files for more details). Most
importantly:

	/media/ path is no longer used

	/static/ path now holds both admin and Weblate static files

There is now also additional dependency - django_compressor, please install
it prior to upgrading.

See also

Generic upgrade instructions

Upgrade from 2.4 to 2.5

The fulltext index has been changed, so unless you rebuild it, the fulltext
search will not work. To rebuild it, execute:

./manage.py rebuild_index --clean --all

See also

Generic upgrade instructions

Upgrade from 2.5 to 2.6

Follow generic upgrade instructions, there is no special change.

Notable configuration or dependencies changes:

	new dependecy on Django REST Framework, see Software requirements

	example configuration now configures Django REST Framework, please adjust
your settings accordingly

	the USE_TZ settings is now enabled by default

Note

Weblate now relies much more on having the correct site name in the database, please
see Set correct site name for instructions how to set it up.

See also

Generic upgrade instructions

Upgrade from 2.6 to 2.7

Follow generic upgrade instructions, there is no special change.

Notable configuration or dependencies changes:

	new optional dependency on python-bidi, see Software requirements

	Google Web Translation was removed, remove it from your configuration

See also

Generic upgrade instructions

Upgrade from 2.7 to 2.8

Follow generic upgrade instructions, there is no special change.

Notable configuration or dependencies changes:

	new dependency on defusedxml, see Software requirements

	there is new quality check: Invalid XML markup

See also

Generic upgrade instructions

Upgrade from 2.8 to 2.9

Please follow generic upgrade instructions, the only notable
change is addition of media storage to DATA_DIR.

See also

Generic upgrade instructions

Upgrade from 2.9 to 2.10

Follow generic upgrade instructions, there is no special change.

Notable configuration or dependencies changes:

	The INSTALLED_APPS now should include weblate.utils.

	There is new check in default set (SamePluralsCheck).

	There is change in SOCIAL_AUTH_PIPELINE default settings.

	You might want to enable optional Git exporter.

	There is new RemoveControlChars in default AUTOFIX_LIST.

	If you are using Microsoft Translator, please replace
Microsoft Translator with Microsoft Cognitive Services Translator;
Microsoft has changed authentication scheme.

See also

Generic upgrade instructions

Upgrade from 2.10 to 2.11

In case you have been using python-social-auth 0.2.21 with Weblate 2.10 you can
follow generic upgrade instructions, otherwise please read warning below.

Notable configuration or dependencies changes:

	There is new recommended value for SOCIAL_AUTH_SLUGIFY_FUNCTION.

	There is change in MIDDLEWARE_CLASSES setting.

	The python-social-auth module has been deprecated upstream, Weblate
now uses social-auth-core and social-auth-app-django instead. You also
have to adjust settings.py as several modules have been moved from
social to either social_core or social_django. Please consult
settings_example.py for correct values.

Warning

If you were using python-social-auth 0.2.19 or older with Weblate 2.10, you
should first upgrade Weblate 2.10 to python-social-auth 0.2.21 and then
perform upgrade to Weblate 2.11. Otherwise you end up with non applicable
database migrations.

See Migrating from python-social-auth to split social [https://github.com/omab/python-social-auth/blob/master/MIGRATING_TO_SOCIAL.md#migrations]
for more information.

If you are upgrading from older version, you should first upgrade to
Weblate 2.10 and python-social-auth 0.2.21 and then continue in upgrading.

See also

Generic upgrade instructions

Upgrade from 2.11 to 2.12

Follow generic upgrade instructions, there is no special change.

Notable configuration or dependencies changes:

	The database migration will take quite long on this update as all
translation units stored in database have to be updated. Expect about 1 hour
of migration for 500000 translation units (depends on hardware and database).

	There is new dependency on django-appconf and siphashc3.

	The setting for UNAUTHENTICATED_USER for REST_FRAMEWORK has been
changed to properly handle anonymous user permissions in REST API.

	The INSTALLED_APPS now should include weblate.screenshots.

	There is new optional dependency on tesserocr, see Software requirements.

See also

Generic upgrade instructions

Upgrade from 2.12 to 2.13

Follow generic upgrade instructions, there is no special change.

Notable configuration or dependencies changes:

	There is new quality check: Has been translated.

	The INSTALLED_APPS now should include weblate.permissions.

	The per project ALCs are now implemented using Group ACL, you might need to
adjust your setup if you were using Group ACLs before, see Group-based access control
for more information about the setup.

	There are several new permissions which should be assigned to default groups,
you should run ./manage.py setupgroups to update them. Alternatively, you
might want to add the following permissions where applicable (see Extra privileges
for their default setup):
* Can access VCS repository
* Can access project

Note

If you have update in same directory, stale *.pyc files might be
left around and cause various import errors. To recover from this, delete
all of them in Weblate’s directory, for example by
find . -name '*.pyc' -delete.

See also

Generic upgrade instructions

Upgrade from 2.13 to 2.14

Follow generic upgrade instructions, there is no special change.

Notable configuration or dependencies changes:

	There is new middleware weblate.middleware.SecurityMiddleware in the
default configuration, see Content security policy for more details.

	Weblate now uses Django password validation, it’s controlled by
AUTH_PASSWORD_VALIDATORS setting.

	Weblate now customizes disconnect pipeline for Python Social Auth,
the SOCIAL_AUTH_DISCONNECT_PIPELINE setting is now needed.

	There is change in SOCIAL_AUTH_PIPELINE default settings.

	All pending email verifications will be invalid due to validation change.

	The authentication attempts are now rate limited, see Rate limiting for
more details.

See also

Generic upgrade instructions

Upgrade from 2.14 to 2.15

Follow generic upgrade instructions, there is no special change.

Notable configuration or dependencies changes:

	The AUTHENTICATION_BACKENDS setting should be changed to include
social_core.backends.email.EmailAuth as shipped by Python Social Auth.
Weblate no longer uses own email auth backend.

See also

Generic upgrade instructions

Upgrade from 2.15 to 2.16

Follow generic upgrade instructions, there is no special change.

Notable configuration or dependencies changes:

	There is change in SOCIAL_AUTH_PIPELINE default settings.

	The weblate.wladmin should now be first in the INSTALLED_APPS settings.

See also

Generic upgrade instructions

Upgrade from 2.16 to 2.17

Follow generic upgrade instructions, there is no special change.

Notable configuration or dependencies changes:

	There is new validator included in default AUTH_PASSWORD_VALIDATORS setting.

	The siphashc3 dependency has been replaced by siphashc.

	The default value for BASE_DIR setting has been changed to match Django
default value. You might have to adjust some paths in the configuration as
several default values are based on this (eg. DATA_DIR or
TTF_PATH).

	There is change in SOCIAL_AUTH_PIPELINE default settings.

See also

Generic upgrade instructions

Upgrade from 2.17 to 2.18

Follow generic upgrade instructions, there is no special change.

Notable configuration or dependencies changes:

	Django 1.11 is now required.

	The MIDDLEWARE_CLASSES is now MIDDLEWARE [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-MIDDLEWARE] with several changes.

	The SPECIAL_CHARS now lists actual chars now.

	There is change in default value for TEMPLATES [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-TEMPLATES] setting.

	There are several new permissions which should be assigned to default groups,
you should run ./manage.py setupgroups to update them. Alternatively, you
might want to add the following permissions where applicable (see Extra privileges
for their default setup):
* Can review translation

	Weblate now needs database to be configured with ATOMIC_REQUESTS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DATABASE-ATOMIC_REQUESTS] enabled.

See also

Generic upgrade instructions

Upgrading to Django 1.7

Changed in version 2.3: This migration is supported only in Weblate 2.2, in case you are
upgrading from some older version, you will have to do intermediate update
to 2.2.

Django 1.7 has a new feature to handle database schema upgrade called
“migrations” which is incompatible with South (used before by Weblate).

Before migrating to Django 1.7, you first need to apply all migrations from
South. If you already have upgraded Django to 1.7, you can do this using
virtualenv and examples/migrate-south script:

examples/migrate-south --settings weblate.settings

Once you have done that, you can run Django migrations and work as usual. For
the initial setup, you might need to fake some of the migrations though:

./manage.py migrate --fake-initial

Upgrading from Python 2.x to 3.x

The upgrade from Python 2.x to 3.x, should work without major problems. Take
care about some changed module names when installing dependencies (eg. pydns
vs. py3dns).

The Whoosh index has to be rebuilt as it’s encoding depends on Python version,
you can do that using following command:

./manage.py rebuild_index --clean --all

Migrating from Pootle

As Weblate was originally written as replacement from Pootle, it is supported
to migrate user accounts from Pootle. All you need to do is to copy
auth_user table from Pootle, user profiles will be automatically created
for users as they log in and they will be asked to update their settings.
Alternatively you can use importusers to import dumped user
credentials.

Authentication

User registration

The default setup for Weblate is to use python-social-auth for handling new
users. This allows them to register using a form on the website and after
confirming their email they can contribute or authenticate by using some
third party service.

You can also completely disable new users registration using
REGISTRATION_OPEN.

Rate limiting

New in version 2.14.

The password based authentication is subject to rate limiting. At most
AUTH_MAX_ATTEMPTS attempts are allowed within
AUTH_CHECK_WINDOW seconds. The user is then blocked
for AUTH_LOCKOUT_TIME.

If there are more than AUTH_LOCK_ATTEMPTS failed authentication
attempts on one account, this account password authentication is disabled and
it’s not possible to login until user asks for password reset.

IP address for rate limiting

The rate limiting is based on client IP address. This is obtained from HTTP
headers and you will have to change configuration in the event Weblate is running
behind reverse proxy to work it properly.

See also

IP_BEHIND_REVERSE_PROXY,
IP_PROXY_HEADER,
IP_PROXY_OFFSET

Authentication backends

By default Weblate uses the Django built-in authentication and includes various
social authentication options. Thanks to using Django authentication, you can
also import user database from other Django based projects (see
Migrating from Pootle).

Django can be additionally configured to authenticate against other means as
well.

Social authentication

Thanks to python-social-auth [https://python-social-auth.readthedocs.io/], Weblate
support authentication using many third party services such as Facebook,
GitHub, Google or Bitbucket.

Please check their documentation for generic configuration instructions
in Django Framework [https://python-social-auth.readthedocs.io/en/latest/configuration/django.html].

Note

By default, Weblate relies on third-party authentication services to
provide a validated email address, in case some of the services you want to use
do not support this, please enforce email validation on Weblate side
by configuring FORCE_EMAIL_VALIDATION for them. For example:

SOCIAL_AUTH_OPENSUSE_FORCE_EMAIL_VALIDATION = True

See also

Pipeline [https://python-social-auth.readthedocs.io/en/latest/pipeline.html]

Enabling individual backends is quite easy, it’s just a matter of adding an entry to
the AUTHENTICATION_BACKENDS setting and possibly adding keys needed for given
authentication. Please note that some backends do not provide user email by
default, you have to request it explicitly, otherwise Weblate will not be able
to properly credit users contributions.

OpenID authentication

For OpenID based services it’s usually just a matter of enabling them. The following
section enables OpenID authentication for OpenSUSE, Fedora and Ubuntu:

Authentication configuration
AUTHENTICATION_BACKENDS = (
 'social_core.backends.email.EmailAuth',
 'social_core.backends.suse.OpenSUSEOpenId',
 'social_core.backends.ubuntu.UbuntuOpenId',
 'social_core.backends.fedora.FedoraOpenId',
 'weblate.accounts.auth.WeblateUserBackend',
)

GitHub authentication

You need to register an application on GitHub and then tell Weblate all the secrets:

Authentication configuration
AUTHENTICATION_BACKENDS = (
 'social_core.backends.github.GithubOAuth2',
 'social_core.backends.email.EmailAuth',
 'weblate.accounts.auth.WeblateUserBackend',
)

Social auth backends setup
SOCIAL_AUTH_GITHUB_KEY = 'GitHub Client ID'
SOCIAL_AUTH_GITHUB_SECRET = 'GitHub Client Secret'
SOCIAL_AUTH_GITHUB_SCOPE = ['user:email']

See also

Python Social Auth backend [https://python-social-auth.readthedocs.io/en/latest/backends/index.html]

Bitbucket authentication

You need to register an application on Bitbucket and then tell Weblate all the secrets:

Authentication configuration
AUTHENTICATION_BACKENDS = (
 'social_core.backends.bitbucket.BitbucketOAuth',
 'social_core.backends.email.EmailAuth',
 'weblate.accounts.auth.WeblateUserBackend',
)

Social auth backends setup
SOCIAL_AUTH_BITBUCKET_KEY = 'Bitbucket Client ID'
SOCIAL_AUTH_BITBUCKET_SECRET = 'Bitbucket Client Secret'
SOCIAL_AUTH_BITBUCKET_VERIFIED_EMAILS_ONLY = True

See also

Python Social Auth backend [https://python-social-auth.readthedocs.io/en/latest/backends/index.html]

Google OAuth2

For using Google OAuth2, you need to register an application on
<https://console.developers.google.com/> and enable Google+ API.

The redirect URL is https://WEBLATE SERVER/accounts/complete/google-oauth2/

Authentication configuration
AUTHENTICATION_BACKENDS = (
 'social_core.backends.google.GoogleOAuth2',
 'social_core.backends.email.EmailAuth',
 'weblate.accounts.auth.WeblateUserBackend',
)

Social auth backends setup
SOCIAL_AUTH_GOOGLE_OAUTH2_KEY = 'Client ID'
SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET = 'Client secret'

Facebook OAuth2

As usual with OAuth2 services, you need to register your application with
Facebook. Once this is done, you can configure Weblate to use it:

Authentication configuration
AUTHENTICATION_BACKENDS = (
 'social_core.backends.facebook.FacebookOAuth2',
 'social_core.backends.email.EmailAuth',
 'weblate.accounts.auth.WeblateUserBackend',
)

Social auth backends setup
SOCIAL_AUTH_FACEBOOK_KEY = 'key'
SOCIAL_AUTH_FACEBOOK_SECRET = 'secret'
SOCIAL_AUTH_FACEBOOK_SCOPE = ['email', 'public_profile']

Gitlab OAuth2

For using Gitlab OAuth2, you need to register application on
<https://gitlab.com/profile/applications>.

The redirect URL is https://WEBLATE SERVER/accounts/complete/gitlab/ and
ensure to mark the read_user scope.

Authentication configuration
AUTHENTICATION_BACKENDS = (
 'social_core.backends.gitlab.GitLabOAuth2',
 'social_core.backends.email.EmailAuth',
 'weblate.accounts.auth.WeblateUserBackend',
)

Social auth backends setup
SOCIAL_AUTH_GITLAB_KEY = 'Application ID'
SOCIAL_AUTH_GITLAB_SECRET = 'Secret'
SOCIAL_AUTH_GITLAB_SCOPE = ['api']

Password authentication

The default settings.py comes with reasonable set of
AUTH_PASSWORD_VALIDATORS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-AUTH_PASSWORD_VALIDATORS]:

	Password can’t be too similar to your other personal information.

	Password must contain at least 6 characters.

	Password can’t be a commonly used password.

	Password can’t be entirely numeric.

	Password can’t consist of single character or whitespace only.

	Password can’t match password you have used in the past.

You can customize this setting to match your password policy.

Additionally you can also install
django-zxcvbn-password [https://pypi.python.org/pypi/django-zxcvbn-password/]
which gives quite realistic estimates of password difficulty and allows to reject
passwords below certain threshold.

LDAP authentication

LDAP authentication can be best achieved using django-auth-ldap package. You
can install it by usual means:

Using PyPI
pip install django-auth-ldap

Using apt-get
apt-get install python-django-auth-ldap

Once you have the package installed, you can hook it to Django authentication:

Add LDAP backed, keep Django one if you want to be able to login
even without LDAP for admin account
AUTHENTICATION_BACKENDS = (
 'django_auth_ldap.backend.LDAPBackend',
 'weblate.accounts.auth.WeblateUserBackend',
)

LDAP server address
AUTH_LDAP_SERVER_URI = 'ldaps://ldap.example.net'

DN to use for authentication
AUTH_LDAP_USER_DN_TEMPLATE = 'cn=%(user)s,o=Example'
Depending on your LDAP server, you might use different DN
like:
AUTH_LDAP_USER_DN_TEMPLATE = 'ou=users,dc=example,dc=com'

List of attributes to import from LDAP on login
Weblate stores full user name in the first_name attribute
AUTH_LDAP_USER_ATTR_MAP = {
 'first_name': 'name',
 'email': 'mail',
}

Note

You should remove 'social_core.backends.email.EmailAuth' from the
AUTHENTICATION_BACKENDS setting, otherwise users will be able to set
their password in Weblate and authenticate using that. Keeping
'weblate.accounts.auth.WeblateUserBackend' is still needed in order to
make permissions and anonymous user work correctly. It will also allow you
to login using local admin account if you have created it (eg. by using
createadmin).

See also

Django Authentication Using LDAP [https://pythonhosted.org/django-auth-ldap/]

CAS authentication

CAS authentication can be achieved using a package such as django-cas-ng.

Step one is disclosing the email field of the user via CAS. This has to be
configured on the CAS server itself and requires you run at least CAS v2 since
CAS v1 doesn’t support attributes at all.

Step two is updating Weblate to use your CAS server and attributes.

To install django-cas-ng:

pip install django-cas-ng

Once you have the package installed you can hook it up to the Django
authentication system by modifying the settings.py file:

Add CAS backed, keep Django one if you want to be able to login
even without LDAP for admin account
AUTHENTICATION_BACKENDS = (
 'django_cas_ng.backends.CASBackend',
 'weblate.accounts.auth.WeblateUserBackend',
)

CAS server address
CAS_SERVER_URL = 'https://cas.example.net/cas/'

Add django_cas_ng somewhere in the list of INSTALLED_APPS
INSTALLED_APPS = (
 ...,
 'django_cas_ng'
)

Finally, a signal can be used to map the email field to the user object. For
this to work you have to import the signal from the django-cas-ng package and
connect your code with this signal. Doing this inside your settings file can
cause problems, therefore it’s suggested to put it:

	in your app config’s django.apps.AppConfig.ready() [https://docs.djangoproject.com/en/stable/ref/applications/#django.apps.AppConfig.ready] method (Django 1.7 and higher)

	at the end of your models.py file (Django 1.6 and lower)

	in the project’s urls.py file (when no models exist)

from django_cas_ng.signals import cas_user_authenticated
from django.dispatch import receiver
@receiver(cas_user_authenticated)
def update_user_email_address(sender, user=None, attributes=None, **kwargs):
 # If your CAS server does not always include the email attribute
 # you can wrap the next two lines of code in a try/catch block.
 user.email = attributes['email']
 user.save()

See also

Django CAS NG [https://github.com/mingchen/django-cas-ng]

Access control

Weblate uses a privileges system based on Django, but is extended in several ways
to allow managing access at more fine grained level. See Per project access control and
Group-based access control for more detailed information on those extensions.

The default setup (after you run setupgroups) consists of three
groups Guests, Users and Managers which have privileges as described
above. All new users are automatically added to Users group (thanks to
Automatic group assignments). The Guests groups is used for users who are not logged in.

To customize this setup, it is recommended to remove privileges from Users
group and create additional groups with finer privileges (eg. Translators
group, which will be allowed to save translations and manage suggestions) and
add selected users to this group. You can do all this from Django admin
interface.

To completely lock down your Weblate installation you can use
LOGIN_REQUIRED_URLS for forcing users to login and
REGISTRATION_OPEN for disallowing new registrations.

Warning

Never remove Weblate predefined groups (Guests, Users and Managers).
If you do not want to use these features, just remove all privileges from
them.

Extra privileges

Weblate defines the following extra privileges:

	Can upload translation [Users, Managers]

	Uploading of translation files.

	Can overwrite with translation upload [Users, Managers]

	Overwriting existing translations by uploading translation file.

	Can define author of translation upload [Managers]

	Allows to define custom authorship when uploading translation file.

	Can force committing of translation [Managers]

	Can force VCS commit in the web interface.

	Can see VCS repository URL [Users, Managers, Guests]

	Can see VCS repository URL inside Weblate

	Can update translation from VCS [Managers]

	Can force VCS pull in the web interface.

	Can push translations to remote VCS [Managers]

	Can force VCS push in the web interface.

	Can do automatic translation using other project strings [Managers]

	Can do automatic translation based on strings from other components

	Can lock whole translation project [Managers]

	Can lock translation for updates, useful while doing some major changes
in the project.

	Can reset translations to match remote VCS [Managers]

	Can reset VCS repository to match remote VCS.

	Can access VCS repository [Users, Managers, Guests]

	Can access the underlying VCS repository (see Git exporter).

	Can save translation [Users, Managers]

	Can save translation (might be disabled with Suggestion voting).

	Can save template [Users, Managers]

	Can edit source strings (usually English)

	Can accept suggestion [Users, Managers]

	Can accept suggestion (might be disabled with Suggestion voting).

	Can delete suggestion [Users, Managers]

	Can delete suggestion (might be disabled with Suggestion voting).

	Can delete comment [Managers]

	Can delete comment.

	Can vote for suggestion [Users, Managers]

	Can vote for suggestion (see Suggestion voting).

	Can override suggestion state [Managers]

	Can save translation, accept or delete suggestion when automatic accepting
by voting for suggestions is enabled (see Suggestion voting).

	Can import dictionary [Users, Managers]

	Can import dictionary from translation file.

	Can add dictionary [Users, Managers]

	Can add dictionary entries.

	Can change dictionary [Users, Managers]

	Can change dictionary entries.

	Can delete dictionary [Users, Managers]

	Can delete dictionary entries.

	Can lock translation for translating [Users, Managers]

	Can lock translation while translating (see Translation locking).

	Can add suggestion [Users, Managers, Guests]

	Can add new suggestions.

	Can use machine translation [Users, Managers]

	Can use machine translations (see Machine translation).

	Can manage ACL rules for a project [Managers]

	Can add users to ACL controlled projects (see Per project access control)

	Can access project [Users, Managers, Guests]

	Can access project (see Per project access control)

	Can edit priority [Managers]

	Can adjust source string priority

	Can edit check flags [Managers]

	Can adjust source string check flags

	Can download changes [Managers]

	Can download changes in a CSV format.

	Can display reports [Managers]

	Can display detailed translation reports.

	Can add translation [Users, Managers]

	Can start translations in new language.

	Can mass add translation [Managers]

	Can start translations in several languages at once.

	Can delete translation [Managers]

	Can remove translation.

	Can change sub project [Managers]

	Can edit component settings.

	Can change project [Managers]

	Can edit project settings.

	Can upload screenshot [Managers]

	Can upload source string screenshot context.

	Can review translation [Managers,Reviewers]

	Can approved translation in review.

	Can add unit [Managers]

	Can add new unit to monolingual translations.

Per project access control

New in version 1.4: This feature is available since Weblate 1.4.

Changed in version 2.13: Since Weblate 2.13 the per-project access control uses Group-based access control
under the hood. You might need some adjustments to your setup if you were
using both features.

Changed in version 2.17: Since Weblate 2.17 the ACL can be enabled in several levels compared to previous
signle Enable ACL switch.

Note

By enabling ACL, all users are prohibited from accessing anything within a given
project unless you add the permissions for them to do that.

Additionally, you can limit user’s access to individual projects. This feature is
enabled by Access control at Project configuration. This automatically
creates Group-based access control for this project and all groups starting with @ are
automatically added to the project (see Predefined groups).

There are following choices for Access control:

	Public

	Publicly visible and translatable

	Protected

	Publicly visible but translatable only for selected users

	Private

	Visible and translatable only for selected users

[image: ../_images/project-access.png]
To allow access to this project, you have to add the privilege to do so either
directly to the given user or group of users in Django admin interface, or by using
user management on the project page as described in Managing per project access control.

See also

Managing users in the admin [https://docs.djangoproject.com/en/stable/topics/auth/default/#auth-admin]

Note

Even with ACL enabled some summary information will be available about your project:

	Site wide statistics includes counts for all projects

	Site wide languages summary includes counts for all projects

Automatic group assignments

New in version 2.5.

You can configure Weblate to automatically add users to groups based on their
email. This automatic assignment happens only at the time of account creation.

This can be configured in the Django admin interface (in the
Accounts section).

Group-based access control

New in version 2.5: This feature is available since Weblate 2.5.

You can designate groups that have exclusive access to a particular language,
project or component, or a combination thereof. This feature is also used to
implement Per project access control by automatically created groups for each project. For
example, you can use this feature to designate a language-specific translator
team with full privileges for their own language.

This works by “locking” a given permission for the group(s) in question to the
object, the effect of which is twofold.

Firstly, groups that are locked for some object are the only groups that have
given privileges on that object. If a user is not a member of the locked group,
they cannot edit the object, even if their privileges or group membership
allows them to edit other (unlocked) objects.

Secondly, privileges of the locked group don’t apply on objects other than
those to which the group is locked. If a user is a member of the locked group
which grants them edit privileges, they can only edit the object locked to the
group, unless something else grants them a general edit privilege.

This can be configured in the Django admin interface. The recommended workflow
is as follows:

	Create a new group ACL in the Group ACL section. Pick a project,
subproject, language, or a combination, which will be locked to this group
ACL.

	Define permissions you want to limit by this group ACL.

	Use the + (plus sign) button to the right of Groups field
to create a new group. In the pop-up window, fill out the group name and
assign permissions.

	Save the newly created group ACL.

	In the Users section of the admin interface, assign users to the
newly created group.

For example, you could create a group called czech_translators, assign it
full privileges, and lock it to the Czech language. From that point on, all users
in this groups would get full privileges for the Czech language in all projects
and components, but not for any other languages. Also, users who are not
members of the czech_translators group would get no privileges on Czech
language in any project.

In order to delete a group ACL, make sure that you first delete the group (or
remove its privileges), and only then delete the group ACL. Otherwise, there
will be a window of time in which the group is “unlocked” and its permissions
apply to all objects. In our example, members of czech_translators group
would have full privileges for everything that is not locked to other groups.

It is possible to lock multiple groups within a single group ACL. One group can
also be locked to multiple objects through multiple group ACLs. As long as
a group is recorded in at least one group ACL, it’s considered to be “locked”,
and its privileges do not apply outside the locks.

Group ACLs apply in order of specificity. “Component” is considered most
specific, “Language” is least specific. Combinations follow the most specific
part of the combination: a group ACL that is locked to a particular component
is more specific than a group ACL locked to this component’s project and
a particular language. That means that members of the component-specific groups
will have privileges on the component, and members of the
project- and language-specific groups will not. The latter will, of course, have
privileges on their language in all other components of the project.

For project-level actions (such as pushing upstream, setting priority, etc.),
you must create a group ACL locked to only the project. Combinations, such
as project plus language, only apply to actions on individual translations.

Managing users and groups

All users and groups can be managed using Django admin interface, which is
available under /admin/ URL.

Managing per project access control

Note

This feature only works for ACL controlled projects, see Per project access control.

Users with Can manage ACL rules for a project privilege (see
Access control) can also manage users in projects with access control
enabled on the project page. You can add or remove users to the project or make
them owners.

The user management is available in Tools menu of a project:

[image: ../_images/manage-users.png]

See also

Per project access control

Predefined groups

Weblate comes with predefined set of groups where you can assign users.

	
Administration

	Has all permissions on the project.

	
Glossary

	Can manage glossary (add or remove entries or upload glossary).

	
Languages

	Can manage translated languages - add or remove translations.

	
Screenshots

	Can manage screenshots - add or remove them and associate them to source
strings.

	
Template

	Can edit translation template in Monolingual components.

	
Translate

	Can translate project, including upload of offline translatoins.

	
VCS

	Can manage VCS and access exported repository.

	
Review

	Can approve translations during review.

Translation projects

Translation organization

Weblate organizes translatable content into tree like structure. The toplevel
object is Project configuration, which should hold all translations which belong
together (for example translation of an application in several versions
and/or documentation). On the next level, there is Component configuration, which is
actually the component to translate. Here you define the VCS repository to use and
mask of files to translate. Below Component configuration there are individual
translations, which are handled automatically by Weblate as the translation
files (matching mask defined in Component configuration) appear in VCS repository.

Note

You can share cloned VCS repositories using Weblate internal URLs. Using shared repositories feature is highly recommended when you have many components that use the same VCS. It will improve performance and use less disk space.

Administration

Administration of Weblate is done through standard Django admin interface,
which is available under /admin/ URL. Once logged in as user with
proper privileges, you can access it using the wrench icon in top navigation:

[image: ../_images/admin-wrench.png]
Here you can manage objects stored in the database, such as users, translations
and other settings:

[image: ../_images/admin.png]
In the Reports section you can check the status of your site, tweak
it for Production setup or manage SSH keys to access Accessing repositories.

With all sections below you can manage database objects. The most interesting one is
probably Weblate translations, where you can manage translatable
projects, see Project configuration and Component configuration.

Another section, Weblate languages holds language definitions, see
Language definitions for more details.

Adding new components

All translation components need to be available as VCS repositories and are
organized as project/component structure.

Weblate supports wide range of translation formats (both bilingual and
monolingua) supported by translate toolkit, see Supported formats for more
information.

Adding project

First you have to add project, which will serve as container for all
components. Usually you create one project for one piece of software or book
(see Project configuration for information on individual parameters):

[image: ../_images/add-project.png]

See also

Project configuration

Bilingual components

Once you have added a project, you can add translation components to it
(see Component configuration for information on individual parameters):

[image: ../_images/add-component.png]

See also

Component configuration

Monolingual components

For easier translating of monolingual formats, you should provide a template
file, which contains mapping of message IDs to source language (usually
English) (see Component configuration for information on individual parameters):

[image: ../_images/add-component-mono.png]

See also

Component configuration

Project configuration

To add a new component to translate, you need to create a translation project first.
The project is a sort of shelf, in which real translations are folded. All
components in the same project share suggestions and the dictionary; also the
translations are automatically propagated through all components in a single
project (unless disabled in component configuration).

The project has only a few attributes giving translators information about
the project:

	Project website

	URL where translators can find more information about the project.

	Mailing list

	Mailing list where translators can discuss or comment on translations.

	Translation instructions

	URL where you have more detailed instructions for translators.

	Set Translation-Team header

	Whether Weblate should manage Translation-Team header (this is
GNU Gettext only feature right now).

	Enable ACL

	Enable per project access control, see Per project access control for more details.

	Enable hooks

	Whether unauthenticated Notification hooks will be enabled for this repository.

	Source language

	Language used for source strings in all components. Change this if you are
translating from something else than English.

Note

Most of the fields can be edited by project owners or managers in the
Weblate interface.

Adjusting interaction

There are also additional features which you can control, like automatic
pushing of changes (see also Pushing changes) or
maintaining of Translation-Team header.

Component configuration

Component is real component for translating. You enter VCS repository location
and file mask for which files to translate and Weblate automatically fetches from the VCS
and finds all matching translatable files.

Note

It is recommended to have translation components of reasonable size - split
the translation by anything what makes sense in your case (individual
applications or addons, book chapters or websites).

Weblate easily handles translations with 10000 of units, but it is harder
to split work and coordinate among translators with such a large translation.
Also when one translator is working on a component, this translation is locked
for others, see Translation locking.

Should the language definition for translation be missing, an empty definition is
created and named as “cs_CZ (generated)”. You should adjust the definition and
report this back to Weblate authors so that the missing language can be included in
next release.

The component contains all important parameters for working with VCS and
getting translations out of it:

	Version control system

	VCS to use, see Version control integration for details.

	Source code repository

	VCS repository used to pull changes, see Accessing repositories for more details.

This can be either a real VCS URL or weblate://project/component
indicating that the repository should be shared with another component.
See Weblate internal URLs for more details.

	Repository push URL

	Repository URL used for pushing, this is completely optional and push
support will be disabled when this is empty. See Accessing repositories for more
details on how to specify repository URL.

	Repository browser

	URL of repository browser to display source files (location where messages
are used). When empty no such links will be generated.

You can use following format strings:

	%(branchs)s - current branch

	%(line)s - line in file

	%(file)s - filename

	%(../file)s - filename in parent directory

	%(../../file)s - filename in grandparent directory

For example on GitHub, you would use something like
https://github.com/WeblateOrg/hello/blob/%(branch)s/%(file)s#L%(line)s.

	Exported repository URL

	URL where changes made by Weblate are exported. This is important when
Continuous translation is not used or when there is need to manually
merge changes. You can use Git exporter to automate this for Git
repositories.

	Repository branch

	Which branch to checkout from the VCS and where to look for translations.

	File mask

	Mask of files to translate including path. It should include one *
replacing language code (see Language definitions for information how this is
processed). In case your repository contains more than one translation
files (eg. more Gettext domains), you need to create separate component for
each.

For example po/*.po or locale/*/LC_MESSAGES/django.po.

	Monolingual base language file

	Base file containing strings definition for Monolingual components.

	Edit base file

	Whether to allow editing of base file for Monolingual components.

	Base file for new translations

	Base file used to generate new translations, eg. .pot file with Gettext.

	File format

	Translation file format, see also Supported formats.

	Source string bug report address

	Email address used for reporting upstream bugs. This address will also receive
notification about any source string comments made in Weblate.

	Locked

	You can lock the translation to prevent updates by users.

	Allow translation propagation

	You can disable propagation of translations to this component from other
components within same project. This really depends on what you are
translating, sometimes it’s desirable to have same string used.

It’s usually a good idea to disable this for monolingual translations unless
you are using the same IDs across the whole project.

	Post-update script

	One of the scripts defined in POST_UPDATE_SCRIPTS which is executed
after receiving update. This can be used to update the translation files.

	Pre-commit script

	One of the scripts defined in PRE_COMMIT_SCRIPTS which is executed
before commit. This can be used to generate some metadata about translation
or to generate binary form of a translation.

	Post-commit script

	One of the scripts defined in POST_COMMIT_SCRIPTS which is executed
after commit. This can be used to notify external parties about the change.

	Post-push script

	One of the scripts defined in POST_PUSH_SCRIPTS which is executed
after push to remote repository. This can be used to generate notify external
parties about the change in repository (i.e. create pull request).

	Post-add script

	One of the scripts defined in POST_ADD_SCRIPTS which is executed
when new translation has been added. This can be used to adjust additional
files in the repository when adding new translation.

	Additional commit files

	Additional files to include in the commit (separated by newline), usually
this one is generated by the pre commit or post add scripts described
above.

Supply the %(language)s in the path like this:
path/to/addditinal/%(language)s_file.example

	Save translation history

	Whether to store a history of translation changes in database.

	Enable suggestions

	Whether translation suggestions are accepted for this component.

	Suggestion voting

	Enable voting for suggestions, see Suggestion voting.

	Autoaccept suggestions

	Automatically accept voted suggestions, see Suggestion voting.

	Quality checks flags

	Additional flags to pass to quality checks, see Customizing checks.

	Translation license

	License of this translation.

	License URL

	URL where users can find full text of a license.

	New language

	How to handle requests for creating new languages. Please note that the
availability of choices depends on the file format, see Supported formats.

	Merge style

	You can configure how the updates from the upstream repository are handled.
This might not be supported for some VCS. See Merge or rebase for
more details.

	Commit message

	Message used when committing translation, see Commit message formatting.

	Committer name

	Name of the committer used on Weblate commits, the author will be always the
real translator. On some VCS this might be not supported. Default value
can be changed by DEFAULT_COMMITER_NAME.

	Committer email

	Email of committer used on Weblate commits, the author will be always the
real translator. On some VCS this might be not supported. Default value
can be changed by DEFAULT_COMMITER_EMAIL.

	Push on commit

	Whether any committed changes should be automatically pushed to upstream
repository.

	Age of changes to commit

	Configures how old changes (in hours) will be committed by
commit_pending management command (usually executed by cron).
Default value can be changed by COMMIT_PENDING_HOURS.

	Language filter

	Regular expression which is used to filter translation when scanning for
file mask. This can be used to limit list of languages managed by Weblate
(eg. ^(cs|de|es)$ will include only those there languages. Please note
that you need to list language codes as they appear in the filename.

Note

Most of the fields can be edited by project owners or managers in the
Weblate interface.

Commit message formatting

The commit message on each commit Weblate does, it can use following format
strings in the message:

	%(language)s

	Language code

	%(language_name)s

	Language name

	%(component)s

	Component name

	%(project)s

	Project name

	%(url)s

	Translation URL

	%(total)s

	Total strings count

	%(fuzzy)s

	Count of strings needing review

	%(fuzzy_percent)s

	Percent of strings needing review

	%(translated)s

	Translated strings count

	%(translated_percent)s

	Translated strings percent

See also

Does Weblate support other VCS than Git and Mercurial?, Processing repository with scripts

Importing speed

Fetching VCS repository and importing translations to Weblate can be a lengthy
process depending on size of your translations. Here are some tips to improve
this situation:

Clone Git repository in advance

You can put in place a Git repository which will be used by Weblate. The
repositories are stored in vcs directory in path defined by
DATA_DIR in settings.py in <project>/<component>
directories.

This can be especially useful if you already have local clone of this
repository and you can use --reference option while cloning:

git clone \
 --reference /path/to/checkout \
 https://github.com/WeblateOrg/weblate.git \
 weblate/repos/project/component

Optimize configuration

The default configuration is useful for testing and debugging Weblate, while
for production setup, you should do some adjustments. Many of them have quite
a big impact on performance. Please check Production setup for more details,
especially:

	Enable indexing offloading

	Enable caching

	Use powerful database engine

	Disable debug mode

Disable not needed checks

Some quality checks can be quite expensive and if you don’t need them, they
can save you some time during import. See CHECK_LIST for more
information how to configure this.

Automatic creation of components

In case you have project with dozen of translation files, you might want to
import all at once. This can be achieved using import_project or
import_json.

First, you need to create a project which will contain all components and then
it’s just a matter of running import_project or
import_json.

See also

Management commands

Fulltext search

Fulltext search is based on Whoosh. You can either allow Weblate to directly
update the index on every change to content or offload this to separate process by
OFFLOAD_INDEXING.

The first approach (immediate updates) allows for a more up to date index, but
suffers locking issues in some setups (eg. Apache’s mod_wsgi) and produces a more
fragmented index.

Offloaded indexing is always the better choice for production setup - it only marks
which items need to be reindexed and you need to schedule a background process
(update_index) to update index. This leads to a faster response of the
site and less fragmented index with the cost that it might be slightly outdated.

See also

update_index, OFFLOAD_INDEXING, Fulltext search is too slow, I get “Lock Error” quite often while translating, Rebuilding index has failed with “No space left on device”

Language definitions

In order to properly present different translations, Weblate needs to know some
information about used languages. Currently it comes with definitions for
about 200 languages and the definition includes language name, text direction,
plural definitions and language code.

Parsing language codes

While parsing translations, Weblate attempts to map language code (usually the ISO
639-1 one) to existing language object. If it can not find exact match, it
tries to find best fit in existing languages (eg. it ignores default country
code for given language - choosing cs instead of cs_CZ). Should this
fail as well, it will create new language definition using the defaults (left
to right text direction, one plural) and naming the language
:guilabel:xx_XX (generated). You might want to change this in the admin
interface (see Changing language defintions) and report it to our issue tracker
(see Contributing).

Changing language defintions

You can change language definitions in the admin interface (see
Administration). The Weblate languages section
allows you to change or add language definitions. While editing, make sure that
all fields are correct (especially plurals and text direction), otherwise the
translators won’t be able to properly edit those translations.

Continuous translation

Weblate provides you with a great infrastructure for translation to closely follow
your development. This way translators can work on translations the entire time and
are not forced to translate a huge amount of new texts before release.

The complete process can be described in following steps:

	Developers make some changes and push them to the VCS repository.

	Optionally the translation files are updated (this depends on the file format, see Why does Weblate still show old translation strings when I’ve updated the template?).

	Weblate pulls changes from the VCS repository, see Updating repositories.

	Once Weblate detects changes in translations, translators will be notified based on their subscription settings.

	Translators make translations using Weblate web interface.

	Once translators are done, Weblate commits the changes to the local repository (see Lazy commits) and pushes them back if it has permissions to do that (see Pushing changes).

 digraph translations {
 "Developers" [shape=box, fillcolor=lightgreen, style=filled];
 "Translators" [shape=box, fillcolor=lightgreen, style=filled];

 "Developers" -> "VCS repository" [label=" 1. Push "];

 "VCS repository" -> "VCS repository" [label=" 2. Updating translations ", style=dotted];

 "VCS repository" -> "Weblate" [label=" 3. Pull "];

 "Weblate" -> "Translators" [label=" 4. Notification "];

 "Translators" -> "Weblate" [label=" 5. Translate "];

 "Weblate" -> "VCS repository" [label=" 6. Push "];
}

Updating repositories

You should set up some way how backend repositories are updated from their
source. You can either use hooks (see Notification hooks) or just regularly run
updategit (with selection of project or –all for updating all).

Whenever Weblate updates the repository, the Post-update script
hooks are executed.

With Gettext po files, you might be often bitten by conflict in PO file
headers. To avoid it, you can use shipped merge driver
(examples/git-merge-gettext-po). To use it just put following
configuration to your .gitconfig:

[merge "merge-gettext-po"]
 name = merge driver for gettext po files
 driver = /path/to/weblate/examples/git-merge-gettext-po %O %A %B

And enable its use by defining proper attributes in given repository (eg. in
.git/info/attributes):

*.po merge=merge-gettext-po

Note

This merge driver assumes the changes in POT files always are done in the branch
we’re trying to merge.

Changed in version 2.9: This merge driver is automatically installed in case Weblate finds it (this
currently works only for Git checkout as distutils package does not include
examples).

Avoiding merge conflicts

To avoid merge conflicts you should control when to update translation files in
upstream repository to avoid Weblate having changes on same file.

You can achieve this using Weblate’s Web API to force Weblate push all pending changes
and lock translation while you are doing changes on your side.

The script for doing updates can look like:

Lock Weblate translation
wlc lock
Push changes from Weblate to upstream repository
wlc push
Pull changes from upstream repository to your local copy
git pull
Update translation files, this example is for Django
./manage.py makemessages --keep-pot -a
git commit -m 'Locale updates' -- locale
Push changes to upstream repository
git push
Tell Weblate to pull changes (not needed if Weblate follows your repo
automatically)
wlc pull
Unlock translations
wlc unlock

If you have multiple components sharing same repository, you need to lock them
all separatey:

wlc lock foo/bar
wlc lock foo/baz
wlc lock foo/baj

Note

The example uses Weblate Client, which will need configuration (API keys) to be
able to control Weblate remotely. You can also achieve this using any HTTP
client instead of wlc, eg. curl, see Weblate’s Web API.

Automatically receiving changes from GitHub

Weblate comes with native support for GitHub. To receive notifications on every
push to GitHub repository, you just need to enable Weblate Service in the
repository settings (Integrations & services) as shown on the image below:

[image: ../_images/github-settings.png]
To set the base URL of your Weblate installation (for example
https://hosted.weblate.org) and Weblate will be notified about every push
to GitHub repository:

[image: ../_images/github-settings-edit.png]
You can also use generic Webhook, in that case the
Payload URL would have to be full path to the handler, for example
https://hosted.weblate.org/hooks/github/.

See also

POST /hooks/github/, Pushing changes from Hosted Weblate

Automatically receiving changes from Bitbucket

Weblate has support for Bitbucket webhooks, all you need to do is add a webhook
which triggers on repository push with destination to /hooks/bitbucket/ URL
on your Weblate installation (for example
https://hosted.weblate.org/hooks/bitbucket/).

[image: ../_images/bitbucket-settings.png]

See also

POST /hooks/bitbucket/, Pushing changes from Hosted Weblate

Automatically receiving changes from GitLab

Weblate has support for GitLab hooks, all you need to do is add project web hook
with destination to /hooks/gitlab/ URL on your Weblate installation
(for example https://hosted.weblate.org/hooks/gitlab/).

See also

POST /hooks/gitlab/, Pushing changes from Hosted Weblate

Pushing changes

Each project can have a push URL configured and in that case Weblate offers
a button in the web interface to push changes to the remote repository.
Weblate can be also configured to automatically push changes on every commit.

If you are using SSH to push, you will need to have a key without a passphrase
(or use ssh-agent for Django) and the remote server needs to be verified by you
via the admin interface first, otherwise pushing will fail.

The push options differ based on the Version control integration used, please check that chapter for
more details.

Note

You can also enable the automatic pushing of changes on commit, this can be done in
Component configuration.

See also

See Accessing repositories for setting up SSH keys and Lazy commits for
information about when Weblate decides to commit changes.

Pushing changes from Hosted Weblate

For Hosted Weblate there is a dedicated push user registered on GitHub, Bitbucket
and GitLab (with username weblate and named
Weblate push user). You need to add this user as a collabolator and
give him permissions to push to your repository. Let us know when you’ve done
so and we will enable pushing changes from Hosted Weblate for you.

Merge or rebase

By default, Weblate merges the upstream repository into its own. This is the safest way
in case you also access the underlying repository by other means. In case you don’t
need this, you can enable rebasing of changes on upstream, which will produce
history with fewer merge commits.

Note

Rebasing can cause you troubles in case of complicated merges, so carefully
consider whether or not you want to enable them.

Interacting with others

Weblate makes it easy to interact with others using its API.

See also

Weblate’s Web API

Lazy commits

The default behaviour (configured by LAZY_COMMITS) of Weblate is to group
commits from the same author into one commit if possible. This greatly reduces the number of
commits, however you might need to explicitly tell it to do the commits in case
you want to get the VCS repository in sync, eg. for merge (this is by default
allowed for Managers group, see Access control).

The changes are in this mode committed once any of following conditions is
fulfilled:

	somebody else works on the translation

	a merge from upstream occurs

	import of translation happens

	translation for a language is completed

	explicit commit is requested

You can also additionally set a cron job to commit pending changes after some
delay, see commit_pending and Running maintenance tasks.

Processing repository with scripts

You can customize how Weblate interacts with the repository through a set of
scripts. These include Post-update script, Pre-commit
script, Post-commit script, Post-add script and
Post-push script and are briefly described in Component configuration.

Their naming quite clearly tells when a particular script is executed. The commit
related scripts always get one parameter with full path to the translation file
which has been changed.

The script is executed with the current directory set to the root of the VCS repository
for given component.

Additionally, the following environment variables are available:

	
WL_VCS

	Version control system used.

	
WL_REPO

	Upstream repository URL.

	
WL_PATH

	Absolute path to VCS repository.

	
WL_BRANCH

	
New in version 2.11.

Repository branch configured in the current component.

	
WL_FILEMASK

	File mask for current component.

	
WL_TEMPLATE

	File name of template for monolingual translations (can be empty).

	
WL_NEW_BASE

	
New in version 2.14.

File name of the file which is used for creating new translations (can be
empty).

	
WL_FILE_FORMAT

	File format used in current component.

	
WL_LANGUAGE

	Language of currently processed translation (not available for component
level hooks).

	
WL_PREVIOUS_HEAD

	Previous HEAD on update (available only for POST_UPDATE_SCRIPTS).

See also

POST_UPDATE_SCRIPTS,
PRE_COMMIT_SCRIPTS,
POST_COMMIT_SCRIPTS,
POST_PUSH_SCRIPTS,
Component configuration

Post update repository processing

Post update repository processing can be used to update translation files on
the source change. To achieve this, please remember that Weblate only sees
files which are committed to the VCS, so you need to commit changes as a part
of the script.

For example with gulp you can do it using following code:

#! /bin/sh
gulp --gulpfile gulp-i18n-extract.js
git commit -m 'Update source strings' src/languages/en.lang.json

Pre commit processing of translations

In many cases you might want to automatically do some changes to the translation
before it is committed to the repository. The pre commit script is exactly the
place to achieve this.

Before using any scripts, you need to list them in the
PRE_COMMIT_SCRIPTS configuration variable. Then you can enable them
at Component configuration configuration as Pre commit script.

It is passed a single parameter consisting of file name of current translation.

The script can also generate additional file to be included in the commit. This
can be configured as Extra commit file at Component configuration
configuration. You can use following format strings in the filename:

	%(language)s

	Language code

Example - generating mo files in repository

Allow usage of the hook in the configuration

PRE_COMMIT_SCRIPTS = (
 '/usr/share/weblate/examples/hook-generate-mo',
)

To enable it, choose now hook-generate-mo as Pre commit
script. You will also want to add path to the generated files to be included in
VCS commit, for example po/%(language)s.mo as Extra commit file.

You can find more example scripts in examples the folder within Weblate sources,
their name start with hook-.

Translation process

Suggestion voting

New in version 1.6: This feature is available since Weblate 1.6.

In default Weblate setup, everybody can add suggestions and logged in users can
accept them. You might, however, want to have more eyes on the translation and
require more people to accept them. This can be achieved by suggestion voting.
You can enable this on Component configuration configuration by
Suggestion voting and Autoaccept suggestions. The first
one enables voting feature, while the latter allows you to configure threshold
at which a suggestion will automatically get accepted (this includes a vote from
the user making the suggestion).

Note

Once you enable automatic accepting, normal users lose the privilege to
directly save translations or accept suggestions. This can be overriden
by Can override suggestion state privilege
(see Access control).

You can combine these with Access control into one of following setups:

	Users can suggest and vote for suggestions, limited group controls what is
accepted - enable voting but not automatic accepting and remove privilege
from users to save translations.

	Users can suggest and vote for suggestions, which get automatically accepted
once the defined number of users agree on this - enable voting and set desired
number of votes for automatic accepting.

	Optional voting for suggestions - you can also only enable voting and in
this case it can be optionally used by users when they are not sure about
translation (they can suggest more of them).

Translation locking

To improve collaboration, it is good to prevent duplicate effort on
translation. To achieve this, translation can be locked for a single translator.
This can be either done manually on translation page or is done automatically
when somebody starts to work on translation. The automatic locking needs to be
enabled using AUTO_LOCK.

The automatic lock is valid for AUTO_LOCK_TIME seconds and is
automatically extended on every translation made and while user has opened
translation page.

A user can also explicitly lock a translation for LOCK_TIME seconds.

Additional information on source strings

Weblate allows you to enhance the translation process with information
available in the translation files. This includes strings prioritization, check
flags or providing visual context. All these features can be set on the
Reviewing source strings:

[image: ../_images/source-review-edit.png]
You can also access this directly from the translating interface when clicking on the
edit icon next to Screenshot context, Flags
or String priority:

[image: ../_images/source-information.png]

Strings prioritization

New in version 2.0.

You can change string priority, strings with higher priority are offered first
for translation. This can be useful for prioritizing translation of strings
which are seen first by users or are otherwise important.

Quaity check flags

New in version 2.4.

Default set of quality check flags is determined from the translation
Component configuration and the translation file. However, you might want to customize
this per source string and you have the option here.

See also

Quality checks

Visual context for strings

New in version 2.9.

You can upload a screenshot showing usage of given source string within your
application. This can help translators to understand where it is used and how
it should be translated.

The uploaded screenshot is shown in the translation context sidebar:

[image: ../_images/screenshot-context.png]
In addition to Reviewing source strings, screenshots have a separate management
interface. You can find it under Tools menu. This allows you
to upload screenshots, assign them to source strings manually or using OCR.

Once screenshot is uploaded, you will be presented following interface to
manage it and assign to source strings:

[image: ../_images/screenshot-ocr.png]

Checks and fixups

Custom automatic fixups

You can also implement your own automatic fixup in addition to the standard ones and
include them in AUTOFIX_LIST.

The automatic fixes are powerful, but can also cause damage; be careful when
writing one.

For example, the following automatic fixup would replace every occurrence of string
foo in translation with bar:

-*- coding: utf-8 -*-
#
Copyright © 2012 - 2017 Michal Čihař <michal@cihar.com>
#
This file is part of Weblate <https://weblate.org/>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
#

from weblate.trans.autofixes.base import AutoFix
from django.utils.translation import ugettext_lazy as _

class ReplaceFooWithBar(AutoFix):
 """Replace foo with bar."""

 name = _('Foobar')

 def fix_single_target(self, target, source, unit):
 if 'foo' in target:
 return target.replace('foo', 'bar'), True
 return target, False

To install custom checks, you need to provide a fully-qualified path to the Python class
in the AUTOFIX_LIST, see Using custom modules and classes.

Customizing checks

Fine tuning existing checks

You can fine tune checks for each source string (in source strings review, see
Additional information on source strings) or in the Component configuration (Quality checks
flags); here is a list of flags currently accepted:

	skip-review-flag

	Ignore whether unit is marked for review when importing from VCS. This
can be useful for XLIFF.

	add-source-review

	Whether to mark all new strings in source language for review. This can
be useful if you want to proofread the source language. This flag has no
meaning for bilingual translations.

	add-review

	Whether to mark all new strings for review. This can be useful if you want
to proofread the translations done by developers.

	rst-text

	Treat text as RST document, effects Unchanged translation.

	max-length:N

	Limit maximal length for string to N chars, see Maximum Length

	xml-text

	Treat text as XML document, affects Invalid XML markup and XML tags mismatch.

	python-format, c-format, php-format, python-brace-format, javascript-format

	Treats all strings like format strings, affects Format strings,
Format strings, Format strings,
Format strings, Format strings, Unchanged translation.

	ignore-end-space

	Skip the “Trailing space” quality check.

	ignore-inconsistent

	Skip the “Inconsistent” quality check.

	ignore-translated

	Skip the “Has been translated” quality check.

	ignore-begin-newline

	Skip the “Starting newline” quality check.

	ignore-zero-width-space

	Skip the “Zero-width space” quality check.

	ignore-escaped-newline

	Skip the “Mismatched n” quality check.

	ignore-same

	Skip the “Unchanged translation” quality check.

	ignore-end-question

	Skip the “Trailing question” quality check.

	ignore-end-ellipsis

	Skip the “Trailing ellipsis” quality check.

	ignore-ellipsis

	Skip the “Ellipsis” quality check.

	ignore-python-brace-format

	Skip the “Python brace format” quality check.

	ignore-end-newline

	Skip the “Trailing newline” quality check.

	ignore-c-format

	Skip the “C format” quality check.

	ignore-javascript-format

	Skip the “Javascript format” quality check.

	ignore-optional-plural

	Skip the “Optional plural” quality check.

	ignore-end-exclamation

	Skip the “Trailing exclamation” quality check.

	ignore-end-colon

	Skip the “Trailing colon” quality check.

	ignore-xml-invalid

	Skip the “Invalid XML markup” quality check.

	ignore-xml-tags

	Skip the “XML tags mismatch” quality check.

	ignore-python-format

	Skip the “Python format” quality check.

	ignore-plurals

	Skip the “Missing plurals” quality check.

	ignore-begin-space

	Skip the “Starting spaces” quality check.

	ignore-bbcode

	Skip the “Mismatched BBcode” quality check.

	ignore-multiple-failures

	Skip the “Multiple failing checks” quality check.

	ignore-php-format

	Skip the “PHP format” quality check.

	ignore-end-stop

	Skip the “Trailing stop” quality check.

	ignore-angularjs-format

	Skip the “AngularJS interpolation string” quality check.

Note

Generally the rule is named ignore-* for any check, using its
identifier, so you can use this even for your custom checks.

These flags are understood both in Component configuration settings, per source string
settings and in translation file itself (eg. in GNU Gettext).

Writing own checks

Weblate comes with wide range of quality checks (see Quality checks), though
they might not 100% cover all you want to check. The list of performed checks
can be adjusted using CHECK_LIST and you can also add custom checks.
All you need to do is to subclass weblate.trans.checks.Check, set few
attributes and implement either check or check_single methods (first
one if you want to deal with plurals in your code, the latter one does this for
you). You will find below some examples.

To install custom checks, you need to provide a fully-qualified path to the Python class
in the CHECK_LIST, see Using custom modules and classes.

Checking translation text does not contain “foo”

This is a pretty simple check which just checks whether translation does not
contain string “foo”.

-*- coding: utf-8 -*-
#
Copyright © 2012 - 2017 Michal Čihař <michal@cihar.com>
#
This file is part of Weblate <https://weblate.org/>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
#
"""Simple quality check example."""

from weblate.trans.checks.base import TargetCheck
from django.utils.translation import ugettext_lazy as _

class FooCheck(TargetCheck):

 # Used as identifier for check, should be unique
 # Has to be shorter than 50 chars
 check_id = 'foo'

 # Short name used to display failing check
 name = _('Foo check')

 # Description for failing check
 description = _('Your translation is foo')

 # Real check code
 def check_single(self, source, target, unit):
 return 'foo' in target

Checking Czech translation text plurals differ

Check using language information to verify that two plural forms in Czech
language are not same.

-*- coding: utf-8 -*-
#
Copyright © 2012 - 2017 Michal Čihař <michal@cihar.com>
#
This file is part of Weblate <https://weblate.org/>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
#
"""Quality check example for Czech plurals."""

from weblate.trans.checks.base import TargetCheck
from django.utils.translation import ugettext_lazy as _

class PluralCzechCheck(TargetCheck):

 # Used as identifier for check, should be unique
 # Has to be shorter than 50 chars
 check_id = 'foo'

 # Short name used to display failing check
 name = _('Foo check')

 # Description for failing check
 description = _('Your translation is foo')

 # Real check code
 def check_target_unit(self, sources, targets, unit):
 if self.is_language(unit, ('cs',)):
 return targets[1] == targets[2]
 return False

 def check_single(self, source, target, unit):
 """We don't check target strings here."""
 return False

Using custom modules and classes

You have implemented code for Custom automatic fixups or Customizing checks and
now it’s time to install it into Weblate. That can be achieved by adding its
fully-qualified path to Python class to appropriate settings.

This means that the module with class needs to be placed somewhere where the Python
interpreter can import it - either in system path (usually something like
/usr/lib/python2.7/site-packages/) or in Weblate directory, which is
also added to the interpreter search path.

Assuming you’ve created mahongo.py containing your custom quality check,
you can place it among Weblate checks in weblate/trans/checks/ folder
and then add it as following:

CHECK_LIST = (
 'weblate.trans.checks.mahongo.MahongoCheck',
)

As you can see, it’s a comma-separated path to your module and class name.

Alternatively, you can create a proper Python package out of your customization:

	Place your Python module with check into folder which will match your
package name. We’re using weblate_custom_checks in following examples.

	Add empty __init__.py file to the same directory. This ensures Python
can import this whole package.

	Write setup.py in parent directory to describe your package:

from setuptools import setup

setup(
 name = "weblate_custom_checks",
 version = "0.0.1",
 author = "Michal Cihar",
 author_email = "michal@cihar.com",
 description = "Sample Custom check for Weblate.",
 license = "BSD",
 keywords = "weblate check example",
 packages=['weblate_custom_checks'],
)

	Now you can install it using python setup.py install

	Once installed into system Python path, you can use it from there:

CHECK_LIST = (
 'weblate_custom_checks.mahongo.MahongoCheck',
)

Overall your module structure should look like:

weblate_custom_checks
├── setup.py
└── weblate_custom_checks
 ├── __init__.py
 └── mahongo.py

Machine translation

Weblate has built in support for several machine translation services and it’s
up to the administrator to enable them. The services have different terms of use, so
please check whether you are allowed to use them before enabling them in Weblate.
The individual services are enabled using MACHINE_TRANSLATION_SERVICES.

The source language can be configured at Project configuration.

Amagama

Special installation of tmserver run by Virtaal authors.

To enable this service, add weblate.trans.machine.tmserver.AmagamaTranslation to
MACHINE_TRANSLATION_SERVICES.

See also

Amagama Translation Memory server [http://docs.translatehouse.org/projects/virtaal/en/latest/amagama.html]
Amagama Translation Memory [http://amagama.translatehouse.org/]

Apertium

A free/open-source machine translation platform providing translation to
a limited set of languages.

The recommended way to use Apertium is to run your own Apertium APy server.

Alternatively you can use https://www.apertium.org/apy if you don’t expect
to make too many requests.

To enable this service, add weblate.trans.machine.apertium.ApertiumAPYTranslation to
MACHINE_TRANSLATION_SERVICES.

See also

MT_APERTIUM_KEY, Apertium website [https://www.apertium.org/],
Apertium APy documentation [http://wiki.apertium.org/wiki/Apertium-apy]

Glosbe

Free dictionary and translation memory for almost every living language.

API is free to use, but subject to the used data source license. There is a limit
of calls that may be done from one IP in fixed period of time, to prevent
abuse.

To enable this service, add weblate.trans.machine.glosbe.GlosbeTranslation to
MACHINE_TRANSLATION_SERVICES.

See also

Glosbe website [https://glosbe.com/]

Google Translate

Machine translation service provided by Google.

This service uses Translation API and you need to obtain an API key and enable
billing on Google API console.

To enable this service, add weblate.trans.machine.google.GoogleTranslation to
MACHINE_TRANSLATION_SERVICES.

See also

MT_GOOGLE_KEY,
Google translate documentation [https://cloud.google.com/translate/docs]

Microsoft Translator

Deprecated since version 2.10.

Note

This service is deprecated by Microsoft and has been replaced by
Microsoft Cognitive Services Translator.

Machine translation service provided by Microsoft, it’s known as Bing Translator as well.

You need to register at Azure market and use Client ID and secret from there.

To enable this service, add weblate.trans.machine.microsoft.MicrosoftTranslation to
MACHINE_TRANSLATION_SERVICES.

See also

MT_MICROSOFT_ID, MT_MICROSOFT_SECRET,
Bing Translator [https://www.bing.com/translator/],
Azure datamarket [https://datamarket.azure.com/developer/applications/]

Microsoft Cognitive Services Translator

New in version 2.10.

Note

This is replacement service for Microsoft Translator.

Machine transation service provided by Microsoft in Azure portal as a one of
Cognitive Services.

You need to register at Azure portal and use the key you obtain there.

To enable this service, add weblate.trans.machine.microsoft.MicrosoftCognitiveTranslation to
MACHINE_TRANSLATION_SERVICES.

See also

MT_MICROSOFT_COGNITIVE_KEY,
Cognitive Services - Text Translation API [http://docs.microsofttranslator.com/text-translate.html],
Microsoft Azure Portal [https://portal.azure.com/]

MyMemory

Huge translation memory with machine translation.

Free, anonymous usage is currently limited to 100 requests/day, or to 1000
requests/day when you provide contact email in MT_MYMEMORY_EMAIL.
You can also ask them for more.

To enable this service, add weblate.trans.machine.mymemory.MyMemoryTranslation to
MACHINE_TRANSLATION_SERVICES.

See also

MT_MYMEMORY_EMAIL,
MT_MYMEMORY_USER,
MT_MYMEMORY_KEY,
MyMemory website [https://mymemory.translated.net/]

tmserver

You can run your own translation memory server which is bundled with
Translate-toolkit and let Weblate talk to it. You can also use it with
amaGama server, which is an enhanced version of tmserver.

First you will want to import some data to the translation memory:

To enable this service, add weblate.trans.machine.tmserver.TMServerTranslation to
MACHINE_TRANSLATION_SERVICES.

build_tmdb -d /var/lib/tm/db -s en -t cs locale/cs/LC_MESSAGES/django.po
build_tmdb -d /var/lib/tm/db -s en -t de locale/de/LC_MESSAGES/django.po
build_tmdb -d /var/lib/tm/db -s en -t fr locale/fr/LC_MESSAGES/django.po

Now you can start tmserver to listen to your requests:

tmserver -d /var/lib/tm/db

And configure Weblate to talk to it:

MT_TMSERVER = 'http://localhost:8888/tmserver/'

See also

MT_TMSERVER,
tmserver [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/tmserver.html]
Amagama Translation Memory server [http://docs.translatehouse.org/projects/virtaal/en/latest/amagama.html]
Amagama Translation Memory [http://amagama.translatehouse.org/]

Yandex Translate

Machine translation service provided by Yandex.

This service uses Translation API and you need to obtain API key from Yandex.

To enable this service, add weblate.trans.machine.yandex.YandexTranslation to
MACHINE_TRANSLATION_SERVICES.

See also

MT_YANDEX_KEY,
Yandex Translate API [https://tech.yandex.com/translate/]

Weblate

Weblate can be source of machine translation as well. There are two services to
provide you results - one does exact search for string, the other one finds all
similar strings.

The first one is useful for full string translations, the second one for finding
individual phrases or words to keep the translation consistent.

To enable these services, add
weblate.trans.machine.weblatetm.WeblateSimilarTranslation (for similar string
matching) and/or weblate.trans.machine.weblatetm.WeblateTranslation (for exact
string matching) to MACHINE_TRANSLATION_SERVICES.

Note

For similarity matching, it is recommended to have Whoosh 2.5.2 or later;
earlier versions can cause infinite looks under some conditions.

Custom machine translation

You can also implement your own machine translation services using a few lines of
Python code. This example implements translation to a fixed list of
languages using dictionary Python module:

-*- coding: utf-8 -*-
#
Copyright © 2012 - 2017 Michal Čihař <michal@cihar.com>
#
This file is part of Weblate <https://weblate.org/>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
#
"""Machine translation example."""

from weblate.trans.machine.base import MachineTranslation
import dictionary

class SampleTranslation(MachineTranslation):
 """Sample machine translation interface."""
 name = 'Sample'

 def download_languages(self):
 """Return list of languages your machine translation supports."""
 return set(('cs',))

 def download_translations(self, source, language, text, unit, user):
 """Return tuple with translations."""
 return [(t, 100, self.name, text) for t in dictionary.translate(text)]

You can list own class in MACHINE_TRANSLATION_SERVICES and Weblate
will start using that.

Configuration

All settings are stored in settings.py (as usual for Django).

Note

After changing any of these settings, you need to restart Weblate. In case
it is run as mod_wsgi, you need to restart Apache to reload the
configuration.

See also

Please also check Django’s documentation [https://docs.djangoproject.com/en/stable/ref/settings/] for
parameters which configure Django itself.

AKISMET_API_KEY

Weblate can use Akismet to check incoming anonymous suggestions for spam.
Visit akismet.com [https://akismet.com/] to purchase an API key
and associate it with a site.

ANONYMOUS_USER_NAME

User name of user for definining privileges of not logged in user.

See also

Access control

AUTH_LOCK_ATTEMPTS

New in version 2.14.

Maximum number of failed authentication attempts before rate limiting is applied.

This is currently applied in the following locations:

	On login, the acccount password is reset. User will not be able to log in
after that using password until he asks for password reset.

	On password reset, the reset mails are no longer sent. This avoids spamming
user with too many password reset attempts.

Defaults to 10.

See also

Rate limiting,

AUTH_MAX_ATTEMPTS

New in version 2.14.

Maximum number of authentication attempts before rate limiting applies.

Defaults to 5.

See also

Rate limiting,
AUTH_CHECK_WINDOW,
AUTH_LOCKOUT_TIME

AUTH_CHECK_WINDOW

New in version 2.14.

Length of authentication window for rate limiting in seconds.

Defaults to 300 (5 minutes).

See also

Rate limiting,
AUTH_MAX_ATTEMPTS,
AUTH_LOCKOUT_TIME

AUTH_LOCKOUT_TIME

New in version 2.14.

Length of authentication lockout window after rate limit is applied.

Defaults to 600 (10 minutes).

See also

Rate limiting,
AUTH_MAX_ATTEMPTS,
AUTH_CHECK_WINDOW

AUTH_TOKEN_VALID

New in version 2.14.

Validity of token in activation and password reset mails in seconds.

Defaults to 3600 (1 hour).

AUTH_PASSWORD_DAYS

New in version 2.15.

Define (in days) how long in past Weblate should reject reusing same password.

Note

Password changes done prior to Weblate 2.15 will not be accounted for this
policy, it is valid only

Defaults to 180 days.

AUTO_LOCK

Deprecated since version 2.18.

Enables automatic locking of translation when somebody is working on it.

See also

Translation locking

AUTO_LOCK_TIME

Deprecated since version 2.18.

Time in seconds for how long the automatic lock for translation will be active.
Defaults to 60 seconds.

See also

Translation locking

AUTOFIX_LIST

List of automatic fixups to apply when saving the message.

You need to provide a fully-qualified path to the Python class implementing the
autofixer interface.

Available fixes:

	weblate.trans.autofixes.whitespace.SameBookendingWhitespace

	Fixes up whitespace in beginning and end of the string to match source.

	weblate.trans.autofixes.chars.ReplaceTrailingDotsWithEllipsis

	Replaces trailing dots with ellipsis if source string has it.

	weblate.trans.autofixes.chars.RemoveZeroSpace

	Removes zero width space char if source does not contain it.

	weblate.trans.autofixes.chars.RemoveControlCharS

	Removes control characters if source does not contain it.

For example you can enable only few of them:

AUTOFIX_LIST = (
 'weblate.trans.autofixes.whitespace.SameBookendingWhitespace',
 'weblate.trans.autofixes.chars.ReplaceTrailingDotsWithEllipsis',
)

See also

Automatic fixups, Custom automatic fixups

BACKGROUND_HOOKS

Whether to run hooks in background. This is generally recommended unless you
are debugging.

BASE_DIR

Base directory where Weblate sources are located. This is used to derive
several other paths by defalt:

	DATA_DIR

	TTF_PATH

Default value: Toplevel directory of Weblate sources.

CHECK_LIST

List of quality checks to perform on translation.

You need to provide afully-qualified path to the Python class implementing the check
interface.

Some of the checks are not useful for all projects, so you are welcome to
adjust the list list of checks to be performed on your installation.

For example you can enable only few of them:

CHECK_LIST = (
 'weblate.trans.checks.same.SameCheck',
 'weblate.trans.checks.chars.BeginNewlineCheck',
 'weblate.trans.checks.chars.EndNewlineCheck',
 'weblate.trans.checks.chars.BeginSpaceCheck',
 'weblate.trans.checks.chars.EndSpaceCheck',
 'weblate.trans.checks.chars.EndStopCheck',
 'weblate.trans.checks.chars.EndColonCheck',
 'weblate.trans.checks.chars.EndQuestionCheck',
 'weblate.trans.checks.chars.EndExclamationCheck',
 'weblate.trans.checks.chars.EndEllipsisCheck',
 'weblate.trans.checks.chars.EndSemicolonCheck',
 'weblate.trans.checks.chars.MaxLengthCheck',
 'weblate.trans.checks.format.PythonFormatCheck',
 'weblate.trans.checks.format.PythonBraceFormatCheck',
 'weblate.trans.checks.format.PHPFormatCheck',
 'weblate.trans.checks.format.CFormatCheck',
 'weblate.trans.checks.format.PerlFormatCheck',
 'weblate.trans.checks.format.JavascriptFormatCheck',
 'weblate.trans.checks.consistency.SamePluralsCheck',
 'weblate.trans.checks.consistency.PluralsCheck',
 'weblate.trans.checks.consistency.ConsistencyCheck',
 'weblate.trans.checks.consistency.TranslatedCheck',
 'weblate.trans.checks.chars.NewlineCountingCheck',
 'weblate.trans.checks.markup.BBCodeCheck',
 'weblate.trans.checks.chars.ZeroWidthSpaceCheck',
 'weblate.trans.checks.markup.XMLTagsCheck',
 'weblate.trans.checks.source.OptionalPluralCheck',
 'weblate.trans.checks.source.EllipsisCheck',
 'weblate.trans.checks.source.MultipleFailingCheck',
)

Note

Once you change this setting the existing checks will still be stored in
the database, only newly changed translations will be affected by the
change. To apply the change to the stored translations, you need to run
updatechecks.

See also

Quality checks, Customizing checks

COMMIT_PENDING_HOURS

New in version 2.10.

Default interval for commiting pending changes using commit_pending.

See also

Running maintenance tasks,
commit_pending

DATA_DIR

New in version 2.1: In previous versions the directories were configured separately as
GIT_ROOT and WHOOSH_INDEX.

Directory where Weblate stores all data. This consists of VCS repositories,
fulltext index and various configuration files for external tools.

The following subdirectories usually exist:

	home

	Home directory used for invoking scripts.

	ssh

	SSH keys and configuration.

	static

	Default location for Django static files, specified by STATIC_ROOT.

	media

	Default location for Django media files, specified by MEDIA_ROOT.

	vcs

	Version control repositories.

	whoosh

	Fulltext search index using Whoosh engine.

Defaults to $BASE_DIR/data.

See also

BASE_DIR

DEFAULT_COMMITER_EMAIL

New in version 2.4.

Default committer email when creating translation component (see
Component configuration), defaults to noreply@weblate.org.

See also

DEFAULT_COMMITER_NAME, Component configuration

DEFAULT_COMMITER_NAME

New in version 2.4.

Default committer name when creating translation component (see
Component configuration), defaults to Weblate.

See also

DEFAULT_COMMITER_EMAIL, Component configuration

DEFAULT_TRANSLATION_PROPAGATION

New in version 2.5.

Default setting for translation propagation (see Component configuration),
defaults to True.

See also

Component configuration

ENABLE_AVATARS

Whether to enable libravatar/gravatar based avatars for users. By default this
is enabled.

The avatars are fetched and cached on the server, so there is no risk in
leaking private information or slowing down the user experiences with enabling
this.

See also

Avatar caching,
Avatars

ENABLE_HOOKS

Whether to enable anonymous remote hooks.

See also

Notification hooks

ENABLE_HTTPS

Whether to send links to Weblate as https or http. This setting
affects sent mails and generated absolute URLs.

See also

Set correct site name

ENABLE_SHARING

Whether to show links to share translation progress on social networks.

GIT_ROOT

Deprecated since version 2.1: This setting is no longer used, use DATA_DIR instead.

Path where Weblate will store the cloned VCS repositories. Defaults to
repos subdirectory.

GITHUB_USERNAME

GitHub username that will be used to send pull requests for translation
updates.

See also

Pushing changes to GitHub as pull request,
Setting up hub

GOOGLE_ANALYTICS_ID

Google Analytics ID to enable monitoring of Weblate using Google Analytics.

HIDE_REPO_CREDENTIALS

Hide repository credentials in the web interface. In case you have repository
URL with user and password, Weblate will hide it when showing it to the users.

For example instead of https://user:password@git.example.com/repo.git it
will show just https://git.example.com/repo.git.

IP_BEHIND_REVERSE_PROXY

New in version 2.14.

Indicates whether Weblate is running behind a reverse proxy.

If set to True, Weblate gets IP address from header defined by
IP_BEHIND_REVERSE_PROXY. Ensure that you are actually using reverse
proxy and that it sets this header, otherwise users will be able to fake the IP
address.

Defaults to False.

See also

Rate limiting,
IP address for rate limiting

IP_PROXY_HEADER

New in version 2.14.

Indicates from which header Weblate should obtain the IP address when
IP_BEHIND_REVERSE_PROXY is enabled.

Defaults to HTTP_X_FORWARDED_FOR.

See also

Rate limiting,
IP address for rate limiting

IP_PROXY_OFFSET

New in version 2.14.

Indicates which part of IP_BEHIND_REVERSE_PROXY is used as client IP
address.

Depending on your setup, this header might consist of several IP addresses,
(for example X-Forwarded-For: a, b, client-ip) and you can configure here
which address from the header is client IP address.

Defaults to 0.

See also

Rate limiting,
IP address for rate limiting

LAZY_COMMITS

Delay creating VCS commits until necessary. This heavily reduces
number of commits generated by Weblate at expense of temporarily not being
able to merge some changes as they are not yet committed.

See also

Lazy commits

LOCK_TIME

Deprecated since version 2.18.

Time in seconds for how long the translation will be locked for single
translator when locked manually.

See also

Translation locking

LOGIN_REQUIRED_URLS

List of URLs which require login (besides standard rules built into Weblate).
This allows you to password protect whole installation using:

LOGIN_REQUIRED_URLS = (
 r'/(.*)$',
)

LOGIN_REQUIRED_URLS_EXCEPTIONS

List of exceptions for LOGIN_REQUIRED_URLS. If you don’t
specify this list, the default value will be used, which allows users to access
the login page.

Some of exceptions you might want to include:

LOGIN_REQUIRED_URLS_EXCEPTIONS = (
 r'/accounts/(.*)$', # Required for login
 r'/static/(.*)$', # Required for development mode
 r'/widgets/(.*)$', # Allowing public access to widgets
 r'/data/(.*)$', # Allowing public access to data exports
 r'/hooks/(.*)$', # Allowing public access to notification hooks
 r'/api/(.*)$', # Allowing access to API
)

MACHINE_TRANSLATION_SERVICES

List of enabled machine translation services to use.

Note

Many of services need additional configuration like API keys, please check
their documentation for more details.

MACHINE_TRANSLATION_SERVICES = (
 'weblate.trans.machine.apertium.ApertiumAPYTranslation',
 'weblate.trans.machine.glosbe.GlosbeTranslation',
 'weblate.trans.machine.google.GoogleTranslation',
 'weblate.trans.machine.microsoft.MicrosoftTranslation',
 'weblate.trans.machine.mymemory.MyMemoryTranslation',
 'weblate.trans.machine.tmserver.TMServerTranslation',
 'weblate.trans.machine.weblatetm.WeblateSimilarTranslation',
 'weblate.trans.machine.weblatetm.WeblateTranslation',
)

See also

Machine translation, Machine translation

MT_APERTIUM_APY

URL of the Apertium APy server, see http://wiki.apertium.org/wiki/Apertium-apy

See also

Apertium, Machine translation, Machine translation

MT_APERTIUM_KEY

API key for Apertium Web Service, currently not used.

Not needed at all when running your own Apertium APy server.

See also

Apertium, Machine translation, Machine translation

MT_GOOGLE_KEY

API key for Google Translate API, you can register at https://cloud.google.com/translate/docs

See also

Google Translate, Machine translation, Machine translation

MT_MICROSOFT_ID

Client ID for Microsoft Translator service.

See also

Microsoft Translator, Machine translation, Machine translation,
Azure datamarket [https://datamarket.azure.com/developer/applications/]

MT_MICROSOFT_SECRET

Client secret for Microsoft Translator service.

See also

Microsoft Translator, Machine translation, Machine translation,
Azure datamarket [https://datamarket.azure.com/developer/applications/]

MT_MICROSOFT_COGNITIVE_KEY

Client key for Microsoft Cognitive Services Translator API.

See also

Microsoft Cognitive Services Translator, Machine translation, Machine translation,
Cognitive Services - Text Translation API [http://docs.microsofttranslator.com/text-translate.html],
Microsfot Azure Portal [https://portal.azure.com/]

MT_MYMEMORY_EMAIL

MyMemory identification email, you can get 1000 requests per day with this.

See also

MyMemory, Machine translation, Machine translation,
MyMemory: API technical specifications [https://mymemory.translated.net/doc/spec.php]

MT_MYMEMORY_KEY

MyMemory access key for private translation memory, use together with MT_MYMEMORY_USER.

See also

MyMemory, Machine translation, Machine translation,
MyMemory: API key generator [https://mymemory.translated.net/doc/keygen.php]

MT_MYMEMORY_USER

MyMemory user id for private translation memory, use together with MT_MYMEMORY_KEY.

See also

MyMemory, Machine translation, Machine translation,
MyMemory: API key generator [https://mymemory.translated.net/doc/keygen.php]

MT_TMSERVER

URL where tmserver is running.

See also

tmserver, Machine translation, Machine translation,
tmserver [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/tmserver.html]

MT_YANDEX_KEY

API key for Yandex Translate API, you can register at https://tech.yandex.com/translate/

See also

Yandex Translate, Machine translation, Machine translation

NEARBY_MESSAGES

How many messages around current one to show during translating.

OFFLOAD_INDEXING

Offload updating of fulltext index to separate process. This heavily
improves responsiveness of online operation on expense of slightly
outdated index, which might still point to older content.

While enabling this, don’t forget scheduling runs of
update_index in cron or similar tool.

This is the recommended setup for production use.

See also

Fulltext search

PIWIK_SITE_ID

ID of a site in Piwik you want to track.

See also

PIWIK_URL

PIWIK_URL

URL of a Piwik installation you want to use to track Weblate users. For more
information about Piwik see <https://piwik.org/>.

See also

PIWIK_SITE_ID

POST_ADD_SCRIPTS

New in version 2.4.

List of scripts which are allowed as post add scripts. The script needs to be
later enabled in the Component configuration.

Weblate comes with few example hook scripts which you might find useful:

	examples/hook-update-linguas

	Updates LINGUAS file or ALL_LINGUAS in confiugure script.

See also

Processing repository with scripts

POST_UPDATE_SCRIPTS

New in version 2.3.

List of scripts which are allowed as post update scripts. The script needs to be
later enabled in the Component configuration.

Weblate comes with few example hook scripts which you might find useful:

	examples/hook-update-resx

	Updates resx file to match template by adding new translations and removing
obsolete ones.

	examples/hook-cleanup-android

	Removes obsolete units from Android resource strings.

See also

Processing repository with scripts

PRE_COMMIT_SCRIPTS

List of scripts which are allowed as pre commit scripts. The script needs to be
later enabled in the Component configuration.

For example you can allow script which does some cleanup:

PRE_COMMIT_SCRIPTS = (
 '/usr/local/bin/cleanup-translation',
)

Weblate comes with few example hook scripts which you might find useful:

	examples/hook-generate-mo

	Generates MO file from a PO file

	examples/hook-unwrap-po

	Unwraps lines in a PO file.

	examples/hook-sort-properties

	Sort and cleanups Java properties file.

	examples/hook-replace-single-quotes

	Replaces single quotes in a file.

See also

Processing repository with scripts

POST_COMMIT_SCRIPTS

New in version 2.4.

List of scripts which are allowed as post commit scripts. The script needs to be
later enabled in the Component configuration.

See also

Processing repository with scripts

POST_PUSH_SCRIPTS

New in version 2.4.

List of scripts which are allowed as post push scripts. The script needs to be
later enabled in the Component configuration.

See also

Processing repository with scripts

REGISTRATION_CAPTCHA

A boolean (either True or False) indicating whether registration of new
accounts is protected by captcha. This setting is optional, and a default of
True will be assumed if it is not supplied.

If enabled the captcha is added to all pages where users enter email address:

	New account registration.

	Password recovery.

	Adding email to an account.

	Contact form for users who are not logged in.

REGISTRATION_EMAIL_MATCH

New in version 2.17.

Allows you to filter email addresses which can register.

Defaults to .* which allows any address to register.

You can use it to restrict registration to a single email domain:

REGISTRATION_EMAIL_MATCH = r'^.*@weblate\.org$'

REGISTRATION_OPEN

A boolean (either True or False) indicating whether registration of new
accounts is currently permitted. This setting is optional, and a default of
True will be assumed if it is not supplied.

SELF_ADVERTISEMENT

Enables self advertisement of Weblate in case there are no configured ads.

See also

Advertisement

SIMPLIFY_LANGUAGES

Use simple language codes for default language/country combinations. For
example fr_FR translation will use fr language code. This is usually
desired behavior as it simplifies listing of the languages for these default
combinations.

Disable this if you are having different translations for both variants.

SITE_TITLE

Site title to be used in website and emails as well.

SPECIAL_CHARS

Additional chars to show in the visual keyboard, see Visual keyboard.

The default value is:

SPECIAL_CHARS = ('\t', '\n', '…')

STATUS_URL

URL where your Weblate instance reports it’s status.

TTF_PATH

Path to Droid fonts used for widgets and charts.

Defaults to $BASE_DIR/weblate/ttf.

See also

BASE_DIR

URL_PREFIX

This settings allows you to run Weblate under some path (otherwise it relies on
being executed from webserver root). To use this setting, you also need to
configure your server to strip this prefix. For example with WSGI, this can be
achieved by setting WSGIScriptAlias.

Note

This setting does not work with Django’s builtin server, you would have to
adjust urls.py to contain this prefix.

WHOOSH_INDEX

Deprecated since version 2.1: This setting is no longer used, use DATA_DIR instead.

Directory where Whoosh fulltext indices will be stored. Defaults to whoosh-index subdirectory.

Sample configuration

The following example is shipped as weblate/settings_example.py with Weblate:

-*- coding: utf-8 -*-
#
Copyright © 2012 - 2017 Michal Čihař <michal@cihar.com>
#
This file is part of Weblate <https://weblate.org/>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
#

from __future__ import unicode_literals
import platform
import os
from logging.handlers import SysLogHandler

#
Django settings for Weblate project.
#

DEBUG = True

ADMINS = (
 # ('Your Name', 'your_email@example.com'),
)

MANAGERS = ADMINS

DATABASES = {
 'default': {
 # Use 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'.
 'ENGINE': 'django.db.backends.sqlite3',
 # Database name or path to database file if using sqlite3.
 'NAME': 'weblate.db',
 # Database user, not used with sqlite3.
 'USER': 'weblate',
 # Database password, not used with sqlite3.
 'PASSWORD': 'weblate',
 # Set to empty string for localhost. Not used with sqlite3.
 'HOST': '127.0.0.1',
 # Set to empty string for default. Not used with sqlite3.
 'PORT': '',
 # Customizations for databases
 'OPTIONS': {
 # Uncomment for MySQL older than 5.7:
 # 'init_command': "SET sql_mode='STRICT_TRANS_TABLES'"
 },
 # Wrap each view in a transaction on this database
 'ATOMIC_REQUESTS': True,
 }
}

BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

Data directory
DATA_DIR = os.path.join(BASE_DIR, 'data')

Local time zone for this installation. Choices can be found here:
http://en.wikipedia.org/wiki/List_of_tz_zones_by_name
although not all choices may be available on all operating systems.
In a Windows environment this must be set to your system time zone.
TIME_ZONE = 'UTC'

Language code for this installation. All choices can be found here:
http://www.i18nguy.com/unicode/language-identifiers.html
LANGUAGE_CODE = 'en-us'

LANGUAGES = (
 ('az', 'Azərbaycan'),
 ('be', 'Беларуская'),
 ('be@latin', 'Biełaruskaja'),
 ('bg', 'Български'),
 ('br', 'Brezhoneg'),
 ('ca', 'Català'),
 ('cs', 'Čeština'),
 ('da', 'Dansk'),
 ('de', 'Deutsch'),
 ('en', 'English'),
 ('en-gb', 'English (United Kingdom)'),
 ('el', 'Ελληνικά'),
 ('es', 'Español'),
 ('fi', 'Suomi'),
 ('fr', 'Français'),
 ('fy', 'Frysk'),
 ('gl', 'Galego'),
 ('he', 'עברית'),
 ('hu', 'Magyar'),
 ('id', 'Indonesia'),
 ('it', 'Italiano'),
 ('ja', '日本語'),
 ('ko', '한국어'),
 ('ksh', 'Kölsch'),
 ('nb', 'Norsk bokmål'),
 ('nl', 'Nederlands'),
 ('pl', 'Polski'),
 ('pt', 'Português'),
 ('pt-br', 'Português brasileiro'),
 ('ru', 'Русский'),
 ('sk', 'Slovenčina'),
 ('sl', 'Slovenščina'),
 ('sr', 'Српски'),
 ('sv', 'Svenska'),
 ('tr', 'Türkçe'),
 ('uk', 'Українська'),
 ('zh-hans', '简体字'),
 ('zh-hant', '正體字'),
)

SITE_ID = 1

If you set this to False, Django will make some optimizations so as not
to load the internationalization machinery.
USE_I18N = True

If you set this to False, Django will not format dates, numbers and
calendars according to the current locale.
USE_L10N = True

If you set this to False, Django will not use timezone-aware datetimes.
USE_TZ = True

URL prefix to use, please see documentation for more details
URL_PREFIX = ''

Absolute filesystem path to the directory that will hold user-uploaded files.
Example: "/home/media/media.lawrence.com/media/"
MEDIA_ROOT = os.path.join(DATA_DIR, 'media')

URL that handles the media served from MEDIA_ROOT. Make sure to use a
trailing slash.
Examples: "http://media.lawrence.com/media/", "http://example.com/media/"
MEDIA_URL = '{0}/media/'.format(URL_PREFIX)

Absolute path to the directory static files should be collected to.
Don't put anything in this directory yourself; store your static files
in apps' "static/" subdirectories and in STATICFILES_DIRS.
Example: "/home/media/media.lawrence.com/static/"
STATIC_ROOT = os.path.join(DATA_DIR, 'static')

URL prefix for static files.
Example: "http://media.lawrence.com/static/"
STATIC_URL = '{0}/static/'.format(URL_PREFIX)

Additional locations of static files
STATICFILES_DIRS = (
 # Put strings here, like "/home/html/static" or "C:/www/django/static".
 # Always use forward slashes, even on Windows.
 # Don't forget to use absolute paths, not relative paths.
)

List of finder classes that know how to find static files in
various locations.
STATICFILES_FINDERS = (
 'django.contrib.staticfiles.finders.FileSystemFinder',
 'django.contrib.staticfiles.finders.AppDirectoriesFinder',
 'compressor.finders.CompressorFinder',
)

Make this unique, and don't share it with anybody.
You can generate it using examples/generate-secret-key
SECRET_KEY = 'jm8fqjlg+5!#xu%e-oh#7!$aa7!6avf7ud*_v=chdrb9qdco6(' # noqa

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': [
 os.path.join(BASE_DIR, 'templates'),
],
 'OPTIONS': {
 'context_processors': [
 'django.contrib.auth.context_processors.auth',
 'django.template.context_processors.debug',
 'django.template.context_processors.i18n',
 'django.template.context_processors.request',
 'django.template.context_processors.csrf',
 'django.contrib.messages.context_processors.messages',
 'weblate.trans.context_processors.weblate_context',
],
 'loaders': [
 ('django.template.loaders.cached.Loader', [
 'django.template.loaders.filesystem.Loader',
 'django.template.loaders.app_directories.Loader',
]),
],
 },
 },
]

GitHub username for sending pull requests.
Please see the documentation for more details.
GITHUB_USERNAME = None

Authentication configuration
AUTHENTICATION_BACKENDS = (
 'social_core.backends.email.EmailAuth',
 # 'social_core.backends.google.GoogleOAuth2',
 # 'social_core.backends.github.GithubOAuth2',
 # 'social_core.backends.bitbucket.BitbucketOAuth',
 # 'social_core.backends.suse.OpenSUSEOpenId',
 # 'social_core.backends.ubuntu.UbuntuOpenId',
 # 'social_core.backends.fedora.FedoraOpenId',
 # 'social_core.backends.facebook.FacebookOAuth2',
 'weblate.accounts.auth.WeblateUserBackend',
)

Social auth backends setup
SOCIAL_AUTH_GITHUB_KEY = ''
SOCIAL_AUTH_GITHUB_SECRET = ''
SOCIAL_AUTH_GITHUB_SCOPE = ['user:email']

SOCIAL_AUTH_BITBUCKET_KEY = ''
SOCIAL_AUTH_BITBUCKET_SECRET = ''
SOCIAL_AUTH_BITBUCKET_VERIFIED_EMAILS_ONLY = True

SOCIAL_AUTH_FACEBOOK_KEY = ''
SOCIAL_AUTH_FACEBOOK_SECRET = ''
SOCIAL_AUTH_FACEBOOK_SCOPE = ['email', 'public_profile']

SOCIAL_AUTH_GOOGLE_OAUTH2_KEY = ''
SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET = ''

Social auth settings
SOCIAL_AUTH_PIPELINE = (
 'social_core.pipeline.social_auth.social_details',
 'social_core.pipeline.social_auth.social_uid',
 'social_core.pipeline.social_auth.auth_allowed',
 'social_core.pipeline.social_auth.social_user',
 'weblate.accounts.pipeline.store_params',
 'weblate.accounts.pipeline.verify_open',
 'social_core.pipeline.user.get_username',
 'weblate.accounts.pipeline.require_email',
 'social_core.pipeline.mail.mail_validation',
 'weblate.accounts.pipeline.revoke_mail_code',
 'weblate.accounts.pipeline.ensure_valid',
 'weblate.accounts.pipeline.remove_account',
 'social_core.pipeline.social_auth.associate_by_email',
 'weblate.accounts.pipeline.reauthenticate',
 'weblate.accounts.pipeline.verify_username',
 'social_core.pipeline.user.create_user',
 'social_core.pipeline.social_auth.associate_user',
 'social_core.pipeline.social_auth.load_extra_data',
 'weblate.accounts.pipeline.cleanup_next',
 'weblate.accounts.pipeline.user_full_name',
 'weblate.accounts.pipeline.store_email',
 'weblate.accounts.pipeline.notify_connect',
 'weblate.accounts.pipeline.password_reset',
)
SOCIAL_AUTH_DISCONNECT_PIPELINE = (
 'social_core.pipeline.disconnect.allowed_to_disconnect',
 'social_core.pipeline.disconnect.get_entries',
 'social_core.pipeline.disconnect.revoke_tokens',
 'weblate.accounts.pipeline.cycle_session',
 'weblate.accounts.pipeline.adjust_primary_mail',
 'weblate.accounts.pipeline.notify_disconnect',
 'social_core.pipeline.disconnect.disconnect',
 'weblate.accounts.pipeline.cleanup_next',
)

Custom authentication strategy
SOCIAL_AUTH_STRATEGY = 'weblate.accounts.strategy.WeblateStrategy'

Raise exceptions so that we can handle them later
SOCIAL_AUTH_RAISE_EXCEPTIONS = True

SOCIAL_AUTH_EMAIL_VALIDATION_FUNCTION = \
 'weblate.accounts.pipeline.send_validation'
SOCIAL_AUTH_EMAIL_VALIDATION_URL = \
 '{0}/accounts/email-sent/'.format(URL_PREFIX)
SOCIAL_AUTH_LOGIN_ERROR_URL = \
 '{0}/accounts/login/'.format(URL_PREFIX)
SOCIAL_AUTH_EMAIL_FORM_URL = \
 '{0}/accounts/email/'.format(URL_PREFIX)
SOCIAL_AUTH_NEW_ASSOCIATION_REDIRECT_URL = \
 '{0}/accounts/profile/#auth'.format(URL_PREFIX)
SOCIAL_AUTH_PROTECTED_USER_FIELDS = ('email',)
SOCIAL_AUTH_SLUGIFY_USERNAMES = True
SOCIAL_AUTH_SLUGIFY_FUNCTION = 'weblate.accounts.pipeline.slugify_username'

Password validation configuration
AUTH_PASSWORD_VALIDATORS = [
 {
 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',
 },
 {
 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
 'OPTIONS': {
 'min_length': 6,
 }
 },
 {
 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
 },
 {
 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
 },
 {
 'NAME': 'weblate.accounts.password_validation.CharsPasswordValidator',
 },
 {
 'NAME': 'weblate.accounts.password_validation.PastPasswordsValidator',
 },
 # Optional password strength validation by django-zxcvbn-password
 # {
 # 'NAME': 'zxcvbn_password.ZXCVBNValidator',
 # 'OPTIONS': {
 # 'min_score': 3,
 # 'user_attributes': ('username', 'email', 'first_name')
 # }
 # },
]

Middleware
MIDDLEWARE = [
 'django.middleware.security.SecurityMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.common.CommonMiddleware',
 'django.middleware.locale.LocaleMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'weblate.accounts.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
 'social_django.middleware.SocialAuthExceptionMiddleware',
 'weblate.accounts.middleware.RequireLoginMiddleware',
 'weblate.middleware.SecurityMiddleware',
]

ROOT_URLCONF = 'weblate.urls'

Django and Weblate apps
INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'django.contrib.admin.apps.SimpleAdminConfig',
 'django.contrib.admindocs',
 'django.contrib.sitemaps',
 'social_django',
 'crispy_forms',
 'compressor',
 'rest_framework',
 'rest_framework.authtoken',
 'weblate.trans',
 'weblate.lang',
 'weblate.permissions',
 'weblate.screenshots',
 'weblate.accounts',
 'weblate.utils',
 'weblate.wladmin',
 'weblate',

 # Optional: Git exporter
 # 'weblate.gitexport',
)

Path to locales
LOCALE_PATHS = (os.path.join(BASE_DIR, 'weblate', 'locale'),)

Custom exception reporter to include some details
DEFAULT_EXCEPTION_REPORTER_FILTER = \
 'weblate.trans.debug.WeblateExceptionReporterFilter'

Default logging of Weblate messages
- to syslog in production (if available)
- otherwise to console
- you can also choose 'logfile' to log into separate file
after configuring it below

Detect if we can connect to syslog
HAVE_SYSLOG = False
if platform.system() != 'Windows':
 try:
 handler = SysLogHandler(
 address='/dev/log', facility=SysLogHandler.LOG_LOCAL2
)
 handler.close()
 HAVE_SYSLOG = True
 except IOError:
 HAVE_SYSLOG = False

if DEBUG or not HAVE_SYSLOG:
 DEFAULT_LOG = 'console'
else:
 DEFAULT_LOG = 'syslog'

A sample logging configuration. The only tangible logging
performed by this configuration is to send an email to
the site admins on every HTTP 500 error when DEBUG=False.
See http://docs.djangoproject.com/en/stable/topics/logging for
more details on how to customize your logging configuration.
LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'filters': {
 'require_debug_false': {
 '()': 'django.utils.log.RequireDebugFalse'
 }
 },
 'formatters': {
 'syslog': {
 'format': 'weblate[%(process)d]: %(levelname)s %(message)s'
 },
 'simple': {
 'format': '%(levelname)s %(message)s'
 },
 'logfile': {
 'format': '%(asctime)s %(levelname)s %(message)s'
 },
 },
 'handlers': {
 'mail_admins': {
 'level': 'ERROR',
 'filters': ['require_debug_false'],
 'class': 'django.utils.log.AdminEmailHandler',
 'include_html': True,
 },
 'console': {
 'level': 'DEBUG',
 'class': 'logging.StreamHandler',
 'formatter': 'simple'
 },
 'syslog': {
 'level': 'DEBUG',
 'class': 'logging.handlers.SysLogHandler',
 'formatter': 'syslog',
 'address': '/dev/log',
 'facility': SysLogHandler.LOG_LOCAL2,
 },
 # Logging to a file
 # 'logfile': {
 # 'level':'DEBUG',
 # 'class':'logging.handlers.RotatingFileHandler',
 # 'filename': "/var/log/weblate/weblate.log",
 # 'maxBytes': 100000,
 # 'backupCount': 3,
 # 'formatter': 'logfile',
 # },
 },
 'loggers': {
 'django.request': {
 'handlers': ['mail_admins', DEFAULT_LOG],
 'level': 'ERROR',
 'propagate': True,
 },
 # Logging database queries
 # 'django.db.backends': {
 # 'handlers': [DEFAULT_LOG],
 # 'level': 'DEBUG',
 # },
 'weblate': {
 'handlers': [DEFAULT_LOG],
 'level': 'DEBUG',
 },
 # Logging VCS operations
 # 'weblate-vcs': {
 # 'handlers': [DEFAULT_LOG],
 # 'level': 'DEBUG',
 # },
 # Python Social Auth logging
 # 'social': {
 # 'handlers': [DEFAULT_LOG],
 # 'level': 'DEBUG',
 # },
 }
}

Logging of management commands to console
if (os.environ.get('DJANGO_IS_MANAGEMENT_COMMAND', False) and
 'console' not in LOGGING['loggers']['weblate']['handlers']):
 LOGGING['loggers']['weblate']['handlers'].append('console')

Remove syslog setup if it's not present
if not HAVE_SYSLOG:
 del LOGGING['handlers']['syslog']

List of machine translations
MACHINE_TRANSLATION_SERVICES = (
'weblate.trans.machine.apertium.ApertiumAPYTranslation',
'weblate.trans.machine.glosbe.GlosbeTranslation',
'weblate.trans.machine.google.GoogleTranslation',
'weblate.trans.machine.microsoft.MicrosoftCognitiveTranslation',
'weblate.trans.machine.mymemory.MyMemoryTranslation',
'weblate.trans.machine.tmserver.AmagamaTranslation',
'weblate.trans.machine.tmserver.TMServerTranslation',
'weblate.trans.machine.yandex.YandexTranslation',
'weblate.trans.machine.weblatetm.WeblateSimilarTranslation',
'weblate.trans.machine.weblatetm.WeblateTranslation',
)

Machine translation API keys

URL of the Apertium APy server
MT_APERTIUM_APY = None

Microsoft Translator service, register at
https://datamarket.azure.com/developer/applications/
MT_MICROSOFT_ID = None
MT_MICROSOFT_SECRET = None

Microsoft Cognitive Services Translator API, register at
https://portal.azure.com/
MT_MICROSOFT_COGNITIVE_KEY = None

MyMemory identification email, see
https://mymemory.translated.net/doc/spec.php
MT_MYMEMORY_EMAIL = None

Optional MyMemory credentials to access private translation memory
MT_MYMEMORY_USER = None
MT_MYMEMORY_KEY = None

Google API key for Google Translate API
MT_GOOGLE_KEY = None

API key for Yandex Translate API
MT_YANDEX_KEY = None

tmserver URL
MT_TMSERVER = None

Title of site to use
SITE_TITLE = 'Weblate'

Whether site uses https
ENABLE_HTTPS = False

Use HTTPS when creating redirect URLs for social authentication, see
documentation for more details:
http://python-social-auth-docs.readthedocs.io/en/latest/configuration/settings.html#processing-redirects-and-urlopen
SOCIAL_AUTH_REDIRECT_IS_HTTPS = ENABLE_HTTPS

Make CSRF cookie HttpOnly, see documentation for more details:
https://docs.djangoproject.com/en/1.11/ref/settings/#csrf-cookie-httponly
CSRF_COOKIE_HTTPONLY = True
CSRF_COOKIE_SECURE = ENABLE_HTTPS
Store CSRF token in session (since Django 1.11)
CSRF_USE_SESSIONS = True
SESSION_COOKIE_SECURE = ENABLE_HTTPS
Session cookie age (in seconds)
SESSION_COOKIE_AGE = 1209600

URL of login
LOGIN_URL = '{0}/accounts/login/'.format(URL_PREFIX)

URL of logout
LOGOUT_URL = '{0}/accounts/logout/'.format(URL_PREFIX)

Default location for login
LOGIN_REDIRECT_URL = '{0}/'.format(URL_PREFIX)

Anonymous user name
ANONYMOUS_USER_NAME = 'anonymous'

Reverse proxy settings
IP_BEHIND_REVERSE_PROXY = False
IP_PROXY_HEADER = 'HTTP_X_FORWARDED_FOR'
IP_PROXY_OFFSET = 0

Sending HTML in mails
EMAIL_SEND_HTML = True

Subject of emails includes site title
EMAIL_SUBJECT_PREFIX = '[{0}] '.format(SITE_TITLE)

Enable remote hooks
ENABLE_HOOKS = True

Whether to run hooks in background
BACKGROUND_HOOKS = True

Number of nearby messages to show in each direction
NEARBY_MESSAGES = 5

Enable lazy commits
LAZY_COMMITS = True

Offload indexing
OFFLOAD_INDEXING = False

Use simple language codes for default language/country combinations
SIMPLIFY_LANGUAGES = True

Render forms using bootstrap
CRISPY_TEMPLATE_PACK = 'bootstrap3'

List of quality checks
CHECK_LIST = (
'weblate.trans.checks.same.SameCheck',
'weblate.trans.checks.chars.BeginNewlineCheck',
'weblate.trans.checks.chars.EndNewlineCheck',
'weblate.trans.checks.chars.BeginSpaceCheck',
'weblate.trans.checks.chars.EndSpaceCheck',
'weblate.trans.checks.chars.EndStopCheck',
'weblate.trans.checks.chars.EndColonCheck',
'weblate.trans.checks.chars.EndQuestionCheck',
'weblate.trans.checks.chars.EndExclamationCheck',
'weblate.trans.checks.chars.EndEllipsisCheck',
'weblate.trans.checks.chars.EndSemicolonCheck',
'weblate.trans.checks.chars.MaxLengthCheck',
'weblate.trans.checks.format.PythonFormatCheck',
'weblate.trans.checks.format.PythonBraceFormatCheck',
'weblate.trans.checks.format.PHPFormatCheck',
'weblate.trans.checks.format.CFormatCheck',
'weblate.trans.checks.format.PerlFormatCheck',
'weblate.trans.checks.format.JavascriptFormatCheck',
'weblate.trans.checks.consistency.PluralsCheck',
'weblate.trans.checks.consistency.SamePluralsCheck',
'weblate.trans.checks.consistency.ConsistencyCheck',
'weblate.trans.checks.consistency.TranslatedCheck',
'weblate.trans.checks.chars.NewlineCountingCheck',
'weblate.trans.checks.markup.BBCodeCheck',
'weblate.trans.checks.chars.ZeroWidthSpaceCheck',
'weblate.trans.checks.markup.XMLValidityCheck',
'weblate.trans.checks.markup.XMLTagsCheck',
'weblate.trans.checks.source.OptionalPluralCheck',
'weblate.trans.checks.source.EllipsisCheck',
'weblate.trans.checks.source.MultipleFailingCheck',
)

List of automatic fixups
AUTOFIX_LIST = (
'weblate.trans.autofixes.whitespace.SameBookendingWhitespace',
'weblate.trans.autofixes.chars.ReplaceTrailingDotsWithEllipsis',
'weblate.trans.autofixes.chars.RemoveZeroSpace',
'weblate.trans.autofixes.chars.RemoveControlChars',
)

List of scripts to use in custom processing
POST_UPDATE_SCRIPTS = (
)
PRE_COMMIT_SCRIPTS = (
)

E-mail address that error messages come from.
SERVER_EMAIL = 'noreply@example.com'

Default email address to use for various automated correspondence from
the site managers. Used for registration emails.
DEFAULT_FROM_EMAIL = 'noreply@example.com'

List of URLs your site is supposed to serve
ALLOWED_HOSTS = []

Example configuration to use memcached for caching
CACHES = {
'default': {
'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',
'LOCATION': '127.0.0.1:11211',
},
'avatar': {
'BACKEND': 'django.core.cache.backends.filebased.FileBasedCache',
'LOCATION': os.path.join(DATA_DIR, 'avatar-cache'),
'TIMEOUT': 3600,
'OPTIONS': {
'MAX_ENTRIES': 1000,
},
}
}

REST framework settings for API
REST_FRAMEWORK = {
 # Use Django's standard `django.contrib.auth` permissions,
 # or allow read-only access for unauthenticated users.
 'DEFAULT_PERMISSION_CLASSES': [
 'rest_framework.permissions.IsAuthenticatedOrReadOnly'
],
 'DEFAULT_AUTHENTICATION_CLASSES': (
 'rest_framework.authentication.TokenAuthentication',
 'rest_framework.authentication.SessionAuthentication',
),
 'DEFAULT_THROTTLE_CLASSES': (
 'rest_framework.throttling.AnonRateThrottle',
 'rest_framework.throttling.UserRateThrottle'
),
 'DEFAULT_THROTTLE_RATES': {
 'anon': '100/day',
 'user': '1000/day'
 },
 'DEFAULT_PAGINATION_CLASS': (
 'rest_framework.pagination.PageNumberPagination'
),
 'PAGE_SIZE': 20,
 'VIEW_DESCRIPTION_FUNCTION': 'weblate.api.views.get_view_description',
 'UNAUTHENTICATED_USER': 'weblate.accounts.models.get_anonymous',
}

Example for restricting access to logged in users
LOGIN_REQUIRED_URLS = (
r'/(.*)$',
)

In such case you will want to include some of the exceptions
LOGIN_REQUIRED_URLS_EXCEPTIONS = (
r'/accounts/(.*)$', # Required for login
r'/static/(.*)$', # Required for development mode
r'/widgets/(.*)$', # Allowing public access to widgets
r'/data/(.*)$', # Allowing public access to data exports
r'/hooks/(.*)$', # Allowing public access to notification hooks
r'/api/(.*)$', # Allowing access to API
)

Force sane test runner
TEST_RUNNER = 'django.test.runner.DiscoverRunner'

Management commands

Note

Running management commands under a different user than is running your
webserver can cause wrong permissions on some files, please check
Filesystem permissions for more details.

Django comes with a management script (available as ./manage.py in
sources or installed as weblate when Weblate is installed). It
provides various management commands and Weblate extends it with several
additional commands.

Invoking management commands

As mentioned before, invocation depends on how you have installed Weblate.

If you are using source code directly (either tarball or Git checkout), the
management script is ./manage.py in Weblate sources. Execution can be
done as:

python ./manage.py list_versions

If you’ve installed Weblate using PIP installer or by ./setup.py script,
the weblate is installed to your path and you can use it to control
Weblate:

weblate list_versions

For Docker image, the script is installed same as above, you can execute it
using docker exec:

docker exec <container> weblate list_versions

With docker-compose this is quite similar, you just have to use
docker-compose run:

docker-compose run <container> weblate list_versions

See also

Running Weblate in the Docker,
Installing Weblate by pip

add_suggestions

	
manage.py add_suggesstions <project> <component> <language> <file>

	

New in version 2.5.

Imports translation from the file as a suggestion to given translation. It
skips translations which are the same as existing ones, only different ones are
added.

	
--author USER@EXAMPLE.COM

	Email of author for the suggestions. This user has to exist prior importing
(you can create one in the admin interface if needed).

Example:

./manage.py --author michal@cihar.com add_suggestions weblate master cs /tmp/suggestions-cs.po

auto_translate

	
manage.py auto_translate <project> <component> <language>

	

New in version 2.5.

Performs automatic translation based on other component translations.

	
--source PROJECT/COMPONENT

	Specifies component to use as source for translation. If not specified
all components in the project are used.

	
--user USERNAME

	Specify username who will be author of the translations. Anonymous user
is used if not specified.

	
--overwrite

	Whether to overwrite existing translations.

	
--inconsistent

	Whether to overwrite existing translations which are inconsistent (see
Inconsistent).

	
--add

	Automatically add language if given translation does not exist.

Example:

./manage.py --user nijel --inconsistent --source phpmyadmin/master phpmyadmin 4-5 cs

See also

Automatic translation

changesite

	
manage.py changesite

	

New in version 2.4.

You can use this to change or display site name from command line without using
admin interface.

	
--set-name NAME

	Sets name for the site.

	
--get-name

	Prints currently configured site name.

See also

Set correct site name

checkgit

	
manage.py checkgit <project|project/component>

	

Prints current state of the backend git repository.

You can either define which project or component to update (eg.
weblate/master) or use --all to update all existing components.

commitgit

	
manage.py commitgit <project|project/component>

	

Commits any possible pending changes to backend git repository.

You can either define which project or component to update (eg.
weblate/master) or use --all to update all existing components.

commit_pending

	
manage.py commit_pending <project|project/component>

	

Commits pending changes older than given age.

You can either define which project or component to update (eg.
weblate/master) or use --all to update all existing components.

	
--age HOURS

	Age in hours for committing. If not specified value configured
in Component configuration is used.

This is most useful if executed periodically from cron or similar tool:

./manage.py commit_pending --all

See also

Running maintenance tasks,
COMMIT_PENDING_HOURS

cleanuptrans

	
manage.py cleanuptrans

	

Cleanups orphaned checks and translation suggestions.

See also

Running maintenance tasks

createadmin

	
manage.py createadmin

	

Creates admin account with random password unless it is specified.

	
--password PASSWORD

	Provide password on the command line and skip generating random one.

	
--username USERNAME

	Use given name instead of admin.

	
--email USER@EXAMPLE.COM

	Specify admin email.

	
--name

	Specify admin name (visible).

	
--update

	Update existing user (you can use this to change password).

Changed in version 2.9: Added parameters --username, --email, --name and --update.

dumpuserdata

	
manage.py dumpuserdata <file.json>

	

Dumps userdata to file for later use by importuserdata

This is useful when migrating or merging Weblate instances.

import_json

	
manage.py import_json <json-file>

	

New in version 2.7.

Batch import of components based on JSON data.

The imported JSON file structure pretty much corresponds to the component
object (see GET /api/components/(string:project)/(string:component)/).
You always have to include fields name and filemask.

	
--project PROJECT

	Specifies where the components will be imported.

	
--main-component COMPONENT

	Use VCS repository from this component for all.

	
--ignore

	Skip already imported components.

	
--update

	Update already imported components.

Changed in version 2.9: Added parameters --ignore and --update to deal with already
imported components.

Example of JSON file:

[
 {
 "slug": "po",
 "name": "Gettext PO",
 "file_format": "po",
 "filemask": "po/*.po"
 },
 {
 "name": "Android",
 "filemask": "android/values-*/strings.xml",
 "template": "android/values/strings.xml",
 "repo": "weblate://test/test"
 }
]

See also

import_project

import_project

	
manage.py import_project <project> <gitrepo> <branch> <filemask>

	

Batch imports components into project based on file mask.

<project> names an existing project, into which the components should
be imported.

The <gitrepo> defines URL of Git repository to use, and <branch> the
git branch.
To import additional translation components, from an existing Weblate component,
use a weblate://<project>/<component> URL for the <gitrepo>.

The repository is searched for directories matching a double wildcard
(**) in the <filemask>.
Each of these is then added as a component, named after the matched
directory.
Existing components will be skipped.

	
--name-template TEMPLATE

	Customise the component’s name, its parameter is a python formatting
string, which will expect the match from <filemask>.

	
--base-file-template TEMPLATE

	Customise base file for monolingual translations.

	
--file-format FORMAT

	You can also specify file format to use (see Supported formats), the default
is autodetection.

	
--language-regex REGEX

	You can specify language filtering (see Component configuration) by this
parameter. It has to be valid regular expression.

	
--main-component

	You can specify which component will be chosen as main - the one actually
containing VCS repository.

	
--license NAME

	Specify translation license.

	
--license-url URL

	Specify translation license URL.

	
--vcs NAME

	In case you need to specify version control system to use, you can do it
here. The default version control is Git.

	
--component-regexp REGEX

	You can override parsing of component name from matched files here. This is
a regular expression which will be matched against file name (as matched by
<filemask>) and has to contain named groups name and language. This
can be also used for excluding files in case they do not match this
expression. For example: (?P<language>.*)/(?P<name>[^-]*)\.po

	
--no-skip-duplicates

	By default the import does skip already existing projects. This is to allow
repeated importing of same repository. However if you want to force
importing additional components even if name or slug matches existing one,
you can do it by passing --no-skip-duplicates. This is generally useful
for components with long names, which will get truncated on import and many
of them will get same name or slug.

To give you some examples, let’s try importing two projects.

As first we import The Debian Handbook translations, where each language has
separate folder with translations of each chapter:

./manage.py import_project \
 debian-handbook \
 git://anonscm.debian.org/debian-handbook/debian-handbook.git \
 squeeze/master \
 '*/**.po'

Another example can be Tanaguru tool, where we need to specify file format,
base file template and has all components and translations located in single
folder:

./manage.py import_project \
 --file-format=properties \
 --base-file-template=web-app/tgol-web-app/src/main/resources/i18n/%s-I18N.properties \
 tanaguru \
 https://github.com/Tanaguru/Tanaguru \
 master \
 web-app/tgol-web-app/src/main/resources/i18n/**-I18N_*.properties

Example of more complex parsing of filenames to get correct component and
language out of file name like
src/security/Numerous_security_holes_in_0.10.1.de.po:

./manage.py import_project \
 --component-regexp 'wiki/src/security/(?P<name>.*)\.([^.]*)\.po$' \
 tails \
 git://git.tails.boum.org/tails master \
 'wiki/src/security/**.*.po'

Filtering only translations in chosen language:

./manage import_project \
 --language-regex '^(cs|sk)$' \
 weblate \
 https://github.com/WeblateOrg/weblate.git \
 'weblate/locale/*/LC_MESSAGES/**.po'

See also

More detailed examples can be found in the Starting with internationalization chapter,
alternatively you might want to use import_json.

importuserdata

	
manage.py importuserdata <file.json>

	

Imports userdata from file created by dumpuserdata

importusers

	
manage.py importusers --check <file.json>

	

Imports users from JSON dump of Django auth_users database.

	
--check

	With this option it will just check whether given file can be imported and
report possible conflicts on usernames or emails.

You can dump users from existing Django installation using:

./manage.py dumpdata auth.User > users.json

list_ignored_checks

	
manage.py list_ignored_checks

	

Lists most frequently ignored checks. This can be useful for tuning your setup,
if users have to ignore too many of consistency checks.

list_languages

	
manage.py list_languages <locale>

	

Lists supported language in MediaWiki markup - language codes, English names
and localized names.

This is used to generate <http://wiki.l10n.cz/Jazyky>.

list_translators

	
manage.py list_translators <project|project/component>

	

Renders the list of translators by language for the given project:

[French]
Jean Dupont <jean.dupont@example.com>
[English]
John Doe <jd@exemple.com>

	
--language-code

	Use language code instead of language name in output.

You can either define which project or component to use (eg.
weblate/master) or use --all to list translators from all existing
components.

list_versions

	
manage.py list_versions

	

Lists versions of Weblate dependencies.

loadpo

	
manage.py loadpo <project|project/component>

	

Reloads translations from disk (eg. in case you did some updates in VCS
repository).

	
--force

	Force update even if the files should be up to date.

	
--lang LANGUAGE

	Limit processing to single languaguage.

You can either define which project or component to update (eg.
weblate/master) or use --all to update all existing components.

lock_translation

	
manage.py lock_translation <project|project/component>

	

Locks given component for translating. This is useful in case you want to do
some maintenance on underlaying repository.

You can either define which project or component to update (eg.
weblate/master) or use --all to update all existing components.

See also

unlock_translation

pushgit

	
manage.py pushgit <project|project/component>

	

Pushes committed changes to upstream VCS repository.

	
--force-commit

	Force committing any pending changes prior to push.

You can either define which project or component to update (eg.
weblate/master) or use --all to update all existing components.

rebuild_index

	
manage.py rebuild_index <project|project/component>

	

Rebuilds index for fulltext search. This might be lengthy operation if you
have a huge set of translation units.

	
--clean

	Removes all words from database prior updating.

	
--optimize

	The index will not be processed again, only its content will be optimized
(removing stale entries and merging possibly split index files).

See also

Fulltext search

update_index

	
manage.py update_index

	

Updates index for fulltext search when OFFLOAD_INDEXING is enabled.

It is recommended to run this frequently (eg. every 5 minutes) to have index
uptodate.

See also

Fulltext search, Running maintenance tasks, Enable indexing offloading

unlock_translation

	
manage.py unlock_translation <project|project/component>

	

Unlocks a given component for translating. This is useful in case you want to do
some maintenance on the underlaying repository.

You can either define which project or component to update (eg.
weblate/master) or use --all to update all existing components.

See also

lock_translation

setupgroups

	
manage.py setupgroups

	

Configures default groups and optionally assigns all users to default group.

	
--move

	Assigns all users to the default group.

	
--no-privs-update

	Disables update of existing groups (only adds new ones).

	
--no-projects-update

	Prevents updates of groups for existing projects. This allows to add newly
added groups to existing projects, see Per project access control.

See also

Access control

setuplang

	
manage.py setuplang

	

Setups list of languages (it has own list and all defined in
translate-toolkit).

	
--no-update

	Disables update of existing languages (only adds new ones).

updatechecks

	
manage.py updatechecks <project|project/component>

	

Updates all check for all units. This could be useful only on upgrades
which do major changes to checks.

You can either define which project or component to update (eg.
weblate/master) or use --all to update all existing components.

updategit

	
manage.py updategit <project|project/component>

	

Fetches remote VCS repositories and updates internal cache.

You can either define which project or component to update (eg.
weblate/master) or use --all to update all existing components.

Whiteboard messages

You can use whiteboard messages to give some information to your translators.
The message can be site-wide or targeted to a translation component or language.

This can be useful for various things from announcing the purpose of the website to
specifying targets for translations.

The whiteboard can currently be specified only in the admin interface:

[image: ../_images/whiteboard.png]
The whiteboard messages are then shown based on specified context:

No context specified

Shown on dashboard (landing page).

Project specified

Shown on project, all its components and translations.

Component specified

Shown on component and all its translations.

Language specified

Shown on language overview and all translations in this language.

You can see how it looks on the language overview page:

[image: ../_images/whiteboard-language.png]
And on the project page:

[image: ../_images/whiteboard-project.png]

Advertisement

Weblate allows you to place advertisements inside emails and web pages. You can
add them in the admin interface, defining placement and timespan when it
should be shown.

Active advertisements are chosen randomly to be displayed inside defined
placement.

When no advertisements are enabled, you can enable
SELF_ADVERTISEMENT to show advertisements for Weblate.

Component Lists

Weblate allows you to specify multiple lists of components. These will then
appear as options on the user dashboard, and users can pick a list to be their
default view when they log in. See Dashboard to learn more about this
feature.

The names and contents of component lists can be specified in the admin
interface, in Component lists section. Each component list must
have a name that is displayed to the user, and a slug that represents it in the
URL.

Note

Since version 2.13 you can also change the dashboard settings for the
anonymous user in the admin interface, this will change what dashboard is
visible to unauthenticated users.

Automatic component lists

New in version 2.13.

Additionally you can create Automatic component list assignment
rules to automatically add components to the list based on their slug. This can
be useful for maintaining component lists for large installations or in case
you want to have component list with all components on your Weblate
installation.

To create component list containing all components, you can simply define
Automatic component list assignment with ^.*$ regular expresion
on both project and component as shown on following image:

[image: ../_images/componentlist-add.png]

Optional Weblate modules

Weblate comes with several optional modules which might be useful for your
setup.

Git exporter

New in version 2.10.

The Git exporter provides you read only access to the underlaying Git repository
using http.

Installation

To install, simply add weblate.gitexport to installed applications in
settings.py:

INSTALLED_APPS += (
 'weblate.gitexport',
)

After installing, you need to migrate your database so that existing
repositories are properly exported:

./manage.py migrate

Usage

The module automatically hooks into Weblate and sets exported repository URL in
the Component configuration.
The repositories are accessible under /git/ path of the Weblate, for example
https://example.org/git/weblate/master/:

git clone 'https://example.org/git/weblate/master/'

Repositories are available anonymously unless Per project access control is enabled. In that
case you need to authenticate using your API token (you can obtain it in your
User profile):

git clone 'https://user:KEY@example.org/git/weblate/master/'

Billing

New in version 2.4.

Billing module is used on Hosted Weblate [https://weblate.org/hosting/]
and is used to define billing plans, track invoices and usage limits.

Installation

To install, simply add weblate.billing to installed applications in
settings.py:

INSTALLED_APPS += (
 'weblate.billing',
)

This module includes additional database structures, to have them installed you
should run the database migration:

./manage.py migrate

Usage

After installation you can control billing in the admin interface. Users with
billing enabled will get new Billing tab in their
User profile.

Legal

New in version 2.15.

Legal module is used on Hosted Weblate [https://weblate.org/hosting/]
and is used to provide required legal documents.

Note

The module ships legal documents for Hosted Weblate service. You are
required to adjust the templates to match your use case.

Installation

To install, simply add weblate.legal to installed applications in
settings.py:

INSTALLED_APPS += (
 'weblate.legal',
)

Optionals:

Social auth pipeline to confirm TOS on registration/login
SOCIAL_AUTH_PIPELINE += (
 'weblate.legal.pipeline.tos_confirm',
)

Middleware to enforce TOS confirmation of logged in users
MIDDLEWARE += [
 'weblate.legal.middleware.RequireTOSMiddleware',
]

This module includes additional database structures, to have them installed you
should run the database migration:

./manage.py migrate

Now you should edit the legal documents to match your service. You can
find them in the weblate/legal/templates/legal/ folder.

Usage

After installation the legal documents are shown in Weblate UI.

Avatars

Weblate comes with built in support for showing user avatars based on emails.
This can be disabled using ENABLE_AVATARS. The avatars are
downloaded and cached server side to reduce information leaks to the sites
serving them.

Weblate currently supports two backends:

	Libravatar [https://www.libravatar.org/], what is federated avatar service
with fallback to Gravatar [https://gravatar.com/]. Libravatar is used automatically when
pyLibravatar [https://pypi.python.org/pypi/pyLibravatar] is installed.

	Gravatar [https://gravatar.com/] can be also used directly by Weblate and is used if the
pyLibravatar library is not found.

See also

Avatar caching,
ENABLE_AVATARS

Spam protection

Optionally Weblate can be protected against suggestion spamming by
unauthenticated users through akismet.com [https://akismet.com/]
service.

To enable this, you need to install akismet Python module and configure
Akismet API key.

See also

AKISMET_API_KEY

Translation workflows

Weblate can be configured to support several translation workflows. This
document is not a complete listing of ways to configure Weblate, there are
certainly more options. You can base another workflows on the most usual
examples listed here.

Translation access

The Access control is not much discussed in the workflows as each of
access control options can be applied to any workflows. Please consult that
documentation for information how to manage access to translations.

In following chapters, any user means any user who has access to the
translation. It can be any authenticated user if project is public or user
having Translate permission on the project.

Translation states

Each translated string can be in following states:

	Untranslated

	Translation is empty, it might or not be stored in the file, depending
on the file format.

	Needs edit

	Translation needs editing, this is usually result of source string change.
The translation is stored in the file, depending on the file format it might
be marked as needing edit (eg. fuzzy flag).

	Waiting for review

	Translation is done, but not reviewed. It is stored in the file as a valid
translation.

	Approved

	Translation has been approved in the review. It can no longer be changed by
translators, but only by reviewers. Translators can only add suggestions to
it.

	Suggestions

	Suggestions are stored in Weblate only and not in the translation file.

Direct translation

This is most usual setup for smaller teams - anybody can directly translate.
This is also default setup in Weblate.

	Any user can edit translations.

	Suggestions are optional way to suggest changes, when translators are not
sure about the change.

	Setting

	Value

	Note

	Enable reviews

	disabled

	configured at project level

	Enable suggestions

	enabled

	it is useful for users to be able
suggest when they are not sure

	Suggestion voting

	disabled

	

	Autoaccept suggestions

	0

	

	Translators group

	Users

	or Translate with access control

	Reviewers group

	N/A

	not used

Peer review

With this workflow, anybody can add suggestions, however they need approval
from additional member before it is accepted as a translation.

	Any user can add suggestions

	Any user can vote for suggestions

	Suggestions become translations when they get given number of votes

	Setting

	Value

	Note

	Enable reviews

	disabled

	configured at project level

	Enable suggestions

	enabled

	

	Suggestion voting

	enabled

	

	Autoaccept suggestions

	1

	you can set higher value to require
more peer reviews

	Translators group

	Users

	or Translate with access control

	Reviewers group

	N/A

	not used, all translators review

Dedicated reviewers

New in version 2.18: The proper review workflow is supported since Weblate 2.18.

With dedicated reviewers you have two groups of users - one which can submit
translations and one which reviews them. Review is there to ensure the
translations are consistent and in a good quality.

	Any user can edit non approved translations.

	Reviewer can approve / unapprove strings.

	Reviewer can edit all translations (including approved ones).

	Suggestions are now also way to suggest changes for approved strings.

	Setting

	Value

	Note

	Enable reviews

	enabled

	configured at project level

	Enable suggestions

	enabled

	it is useful for users to be able
suggest when they are not sure

	Suggestion voting

	disabled

	

	Autoaccept suggestions

	0

	

	Translators group

	Users

	or Translate with access control

	Reviewers group

	Reviewers

	or Review with access control

Enabling reviews

The reviews can be enabled on project configuration, you can find the setting
on bottom of Manage users page (to be found in the Manage menu):

[image: _images/project-access1.png]

Note

Depending on Weblate configuration, the setting might not be available to
you. For example on Hosted Weblate this is not available for projects hosted
for free.

Frequently Asked Questions

Configuration

How to create an automated workflow?

Weblate can handle all the translation things semi-automatically for you. If
you give it push access to your repository, the translations can happen
without interaction unless some merge conflict occurs.

	Set up your git repository to tell Weblate whenever there is any change, see
Notification hooks for information how to do it.

	Set push URL at your Component configuration in Weblate, this will allow Weblate
to push changes to your repository.

	Enable push on commit on your Project configuration in Weblate, this will make
Weblate push changes to your repository whenever they are committed at Weblate.

	Optionally set up a cron job for commit_pending.

See also

Continuous translation, Avoiding merge conflicts

How to access repositories over SSH?

Please see Accessing repositories for information about setting up SSH keys.

How to fix merge conflicts in translations?

The merge conflicts happen from time to time when the translation file is changed in
both Weblate and the upstream repository. You can usually avoid this by merging
Weblate translations prior to doing some changes in the translation files (e.g.
before executing msgmerge). Just tell Weblate to commit all pending
tranlslations (you can do it in the Repository maintenance in the
Tools menu) and merge the repository (if automatic push is not
enabled).

If you’ve already ran into the merge conflict, the easiest way is to solve all
conflicts locally at your workstation - simply add Weblate as a remote
repository, merge it into upstream and fix any conflicts. Once you push changes
back, Weblate will be able to use the merged version without any other special
actions.

Add weblate as remote
git remote add weblate https://hosted.weblate.org/git/weblate/master/
You might need to include credentials in some cases:
git remote add weblate https://username:APIKEY@hosted.weblate.org/git/weblate/master/

Update weblate remote
git remote update weblate

Merge Weblate changes
git merge weblate/master

Resolve conflicts
edit
git add ...
...
git commit

Push changes to upstream respository, Weblate will fetch merge from there
git push

If you’re using multiple branches in Weblate, you can work similarly on all
branches:

Add and update remotes
git remote add weblate-4.7 https://hosted.weblate.org/git/phpmyadmin/4-7/
git remote add weblate https://hosted.weblate.org/git/phpmyadmin/master/
git remote update weblate-4.7 weblate

Merge QA_4_7 branch
git checkout QA_4_7
git merge weblate-4.7/QA_4_7
... # Resolve conflicts
git commit

Merge master branch
git checkout master
git merge weblate/master
... # Resolve conflicts
git commit

Push changes to upstream respository, Weblate will fetch merge from there
git push

See also

How to export the Git repository that Weblate uses?

How do I translate several branches at once?

Weblate supports pushing translation changes within one Project configuration. For
every Component configuration which has it enabled (the default behavior), the change
made is automatically propagated to others. This way the translations are kept
synchronized even if the branches themselves have already diverged quite a lot
and it is not possible to simply merge translation changes between them.

Once you merge changes from Weblate, you might have to merge these branches
(depending on your development workflow) discarding differences:

git merge -s ours origin/maintenance

How to export the Git repository that Weblate uses?

There is nothing special about the repository, it lives under the
DATA_DIR directory and is named vcs/<project>/<component>/. If you
have SSH access to this machine, you can use the repository directly.

For anonymous access you might want to run a git server and let it serve the
repository to the outside world.

Alternatively you can use Git exporter inside Weblate to automate this.

What are the options for pushing changes back upstream?

This heavily depends on your setup, Weblate is quite flexible in this area.
Here are examples of workflows used with Weblate:

	Weblate automatically pushes and merges changes (see How to create an automated workflow?)

	You manually tell Weblate to push (it needs push access to the upstream repository)

	Somebody manually merges changes from the Weblate git repository into the upstream
repository

	Somebody rewrites history produced by Weblate (eg. by eliminating merge
commits), merges changes and tells Weblate to reset the content on the upstream
repository.

Of course you are free to mix all of these as you wish.

How can I limit Weblates access to translations only without exposing source code to it?

You can use git submodule [https://git-scm.com/docs/git-submodule] for separating translations from source code
while still having them under version control.

	Create a repository with your translation files.

	Add this as a submodule to your code:

git submodule add git@example.com:project-translations.git path/to/translations

	Link Weblate to this repository, it no longer needs access to the repository
with your source code.

	You can update the main repository with translations from Weblate by:

git submodule update --remote path/to/translations

Please consult git submodule [https://git-scm.com/docs/git-submodule] documentation for more details.

How can I check if my Weblate is configured properly?

Weblate includes a set of configuration checks which you can see in the admin
interface, just follow the Performance report link in the admin interface or
open the /admin/performance/ URL directly.

Why do links contain example.com as the domain?

Weblate uses Django’s sites framework and it defines the site name inside the
database. You need to set the domain name to match your installation.

See also

Set correct site name

Why are all commits committed by Weblate <noreply@weblate.org>?

This is the default committer name, configured when you create a translation component.
You can also change it in the administration at any time.

The author of every commit (if the underlaying VCS supports it) is still recorded
correctly as the user who has made the translation.

See also

Component configuration

Why do I get a warning about not reflected changes on database migration?

When running ./manage.py migrate, you can get the following warning:

Your models have changes that are not yet reflected in a migration, and so won't be applied.
Run 'manage.py makemigrations' to make new migrations, and then re-run 'manage.py migrate' to apply them.

This is expected as Weblate generates choices for some fields and Django
migrations can not reflect this. You can safely ignore this warning.

Usage

How do I review others translations?

	You can subscribe to any changes made in Subscriptions and then check
others contributions in email.

	There is a review tool available at the bottom of the translation view, where you can
choose to browse translations made by others since a given date.

How do I provide feedback on a source string?

On context tabs below translation, you can use the Source tab to
provide feedback on a source string or discuss it with other translators.

How can I use existing translations while translating?

Weblate provides you with several ways to utilize existing translations while
translating:

	You can use the import functionality to load compendium as translations,
suggestions or translations needing review. This is the best approach for a one time
translation using compendium or similar translation database.

	You can setup tmserver with all databases you have and let Weblate use
it. This is good for cases when you want to use it for several times during
translating.

	Another option is to translate all related projects in a single Weblate
instance, which will make it automatically pick up translations from other
projects as well.

See also

Machine translation, Machine translation

Does Weblate update translation files besides translations?

Weblate tries to limit changes in translation files to a minimum. For some file
formats it might unfortunately lead to reformatting the file. If you want to
keep the file formattted in your way, please use a pre-commit hook for that.

For monolingual files (see Supported formats) Weblate might add new translation
units which are present in the template and not in actual
translations. It does not however perform any automatic cleanup of stale
strings as that might have unexpected outcomes. If you want to do this, please
install a pre-commit hook which will handle the cleanup according to your requirements.

Weblate also will not try to update bilingual files in any way, so if you need
po files being updated from pot, you need to do it yourself.

See also

Processing repository with scripts

Where do language definitions come from and how can I add my own?

The basic set of language definitions is included within Weblate and
Translate-toolkit. This covers more than 150 languages and includes information
about used plural forms or text direction.

You are free to define own languages in the administrative interface, you just need
to provide information about it.

Can Weblate highlight changes in a fuzzy string?

Weblate supports this, however it needs the data to show the difference.

For Gettext PO files, you have to pass the parameter --previous to
msgmerge when updating PO files, for example:

msgmerge --previous -U po/cs.po po/phpmyadmin.pot

For monolingual translations, Weblate can find the previous string by ID, so it
shows the differences automatically.

Why does Weblate still show old translation strings when I’ve updated the template?

Weblate does not try to manipulate the translation files in any way other
than allowing translators to translate. So it also does not update the
translatable files when the template or source code have been changed. You
simply have to do this manually and push changes to the repository, Weblate
will then pick up the changes automatically.

Note

It is usually a good idea to merge changes done in Weblate before updating
translation files, as otherwise you will usually end up with some conflicts
to merge.

For example with Gettext PO files, you can update the translation files using
the msgmerge tool:

msgmerge -U locale/cs/LC_MESSAGES/django.mo locale/django.pot

In case you want to do the update automatically, you can add a custom script
to handle this to POST_UPDATE_SCRIPTS and enable it in the
Component configuration.

Troubleshooting

Requests sometimes fail with too many open files error

This happens sometimes when your Git repository grows too much and you have
many of them. Compressing the Git repositories will improve this situation.

The easiest way to do this is to run:

Go to DATA_DIR directory
cd data/vcs
Compress all Git repositories
for d in */* ; do
 pushd $d
 git gc
 popd
done

See also

DATA_DIR

Fulltext search is too slow

Depending on various conditions (frequency of updates, server restarts and
other), the fulltext index might become too fragmented over time. It is recommended to
optimize it from time to time:

./manage.py rebuild_index --optimize

In case it does not help (or if you have removed a lot of strings) it might be
better to rebuild it from scratch:

./manage.py rebuild_index --clean

See also

rebuild_index

I get “Lock Error” quite often while translating

This is usually caused by concurrent updates to the fulltext index. In case you are
running a multi-threaded server (e.g. mod_wsgi), this happens quite often. For such
a setup it is recommended to enable OFFLOAD_INDEXING.

See also

Fulltext search

Rebuilding index has failed with “No space left on device”

Whoosh uses a temporary directory to build indices. In case you have a small /tmp
(eg. using ramdisk), this might fail. Change the temporary directory by passing it
as TEMP variable:

TEMP=/path/to/big/temp ./manage.py rebuild_index --clean

See also

rebuild_index

Database operations fail with “too many SQL variables”

This can happen when using theSQLite database as it is not powerful enough for some
relations used within Weblate. The only way to fix this is to use some more
capable database, see Use powerful database engine for more information.

See also

Use powerful database engine,
Databases [https://docs.djangoproject.com/en/stable/ref/databases/]

When accessing the site I get Bad Request (400) error

This is most likely caused by an improperly configured ALLOWED_HOSTS.
It needs to contain all hostnames you want to access your Weblate. For example:

ALLOWED_HOSTS = ['weblate.example.com', 'weblate', 'localhost']

See also

Allowed hosts setup

Features

Does Weblate support other VCS than Git and Mercurial?

Weblate currently does not have native support for anything other than
Git (with extended support for GitHub and
Subversion) and ref:vcs-mercurial, but it is possible to write
backends for other VCSes.

You can also use Git remote helpers in Git to access other VCSes.

Note

For native support of other VCS, Weblate requires distributed VCS and could
be probably adjusted to work with anything other than Git and Mercurial, but
somebody has to implement this support.

See also

Version control integration

How does Weblate credit translators?

Every change made in Weblate is committed into VCS under the translators name. This
way every single change has proper authorship and you can track it down using
standard VCS tools you use for code.

Additionally, when the translation file format supports it, the file headers are
updated to include the translator name.

See also

list_translators

Why does Weblate force to show all po files in a single tree?

Weblate was designed in a way that every po file is represented as a single
component. This is beneficial for translators, so they know what they are
actually translating. If you feel your project should be translated as one,
consider merging these po files. It will make life easier even for translators
not using Weblate.

Note

In case there will be big demand for this feature, it might be implemented
in future versions, but it’s definitely not a priority for now.

Why does Weblate use language codes such sr_Latn or zh_Hant?

These are language codes defined by RFC 4646 [https://tools.ietf.org/html/rfc4646.html] to better indicate that they
are really different languages instead previously wrongly used modifiers (for
@latin variants) or country codes (for Chinese).

Weblate will still understand legacy language codes and will map them to
current one - for example sr@latin will be handled as sr_Latn or
zh@CN as sr_Hans.

Supported formats

Weblate supports any translation format understood by Translate-toolkit,
however each format being slightly different, there might be some issues with
formats that are not well tested.

See also

Translation Related File Formats [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/index.html]

Note

When choosing a file format for your application, it’s better to stick some
well established format in the toolkit/platform you use. This way your
translators can use whatever tools they are get used to and will more
likely contribute to your project.

Weblate does support both monolingual
and bilingual formats. Bilingual
formats store two languages in single file - source and translation (typical
examples are GNU Gettext, XLIFF or Apple OS X strings). On the other side,
monolingual formats identify the string by ID and each language file contains
only mapping of those to given language (typically Android string resources). Some file
formats are used in both variants, see detailed description below.

For correct use of monolingual files, Weblate requires access to a file
containing complete list of strings to translate with their source - this file
is called Monolingual base language file within Weblate, though the
naming might vary in your application.

Automatic detection

Weblate can automatically detect several widely spread file formats, but this
detection can harm your performance and will limit features specific to given
file format (for example automatic adding of new translations).

GNU Gettext

Most widely used format in translating free software. This was first format
supported by Weblate and still has the best support.

Weblate supports contextual information stored in the file, adjusting its
headers or linking to corresponding source files.

The bilingual gettext PO file typically looks like:

#: weblate/media/js/bootstrap-datepicker.js:1421
msgid "Monday"
msgstr "Pondělí"

#: weblate/media/js/bootstrap-datepicker.js:1421
msgid "Tuesday"
msgstr "Úterý"

#: weblate/accounts/avatar.py:163
msgctxt "No known user"
msgid "None"
msgstr "Žádný"

See also

Gettext on Wikipedia [https://en.wikipedia.org/wiki/Gettext],
PO Files [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/po.html]

Monolingual Gettext

Some projects decide to use Gettext as monolingual formats - they code just IDs
in their source code and the string needs to be translated to all languages,
including English. Weblate does support this, though you have to choose explicitly
this file format when importing components into Weblate.

The monolingual gettext PO file typically looks like:

#: weblate/media/js/bootstrap-datepicker.js:1421
msgid "day-monday"
msgstr "Pondělí"

#: weblate/media/js/bootstrap-datepicker.js:1421
msgid "day-tuesday"
msgstr "Úterý"

#: weblate/accounts/avatar.py:163
msgid "none-user"
msgstr "Žádný"

While the base language file will be:

#: weblate/media/js/bootstrap-datepicker.js:1421
msgid "day-monday"
msgstr "Monday"

#: weblate/media/js/bootstrap-datepicker.js:1421
msgid "day-tuesday"
msgstr "Tuesday"

#: weblate/accounts/avatar.py:163
msgid "none-user"
msgstr "None"

XLIFF

XML-based format created to standardize translation files, but in the end it
is one of many standards in this area.

XLIFF is usually used as bilingual, but Weblate supports it as monolingual as well.

Translations marked for review

Changed in version 2.18: Since version 2.18 Weblate differentiates approved and fuzzy states, so
it should work as expected with Xliff. You still might apply note below in
cases where you don’t want to use review process in Weblate.

If the translation unit doesn’t have approved="yes" it will be imported into
Weblate as needing review (which matches XLIFF specification).

You can override this by adding skip-review-flag flag to the component,
see Component configuration, which will make Weblate ignore this and all strings
will appear as approved.

Similarly on importing such files, you should choose
Import as translated under
Processing of strings needing review.

Whitespace and newlines in XLIFF

Generally the XML formats do not differentiate between types or ammounts of whitespace.
If you want to keep it, you have to add the xml:space="preserve" flag to
the unit.

For example:

 <trans-unit id="10" approved="yes">
 <source xml:space="preserve">hello</source>
 <target xml:space="preserve">Hello, world!
</target>
 </trans-unit>

See also

XLIFF on Wikipedia [https://en.wikipedia.org/wiki/XLIFF],
XLIFF [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/xliff.html]

Java properties

Native Java format for translations.

Java properties are usually used as monolingual.

Weblate supports ISO-8859-1, UTF-8 and UTF-16 variants of this format.

See also

Java properties on Wikipedia [https://en.wikipedia.org/wiki/.properties],
Mozilla and Java properties files [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/properties.html]

Joomla translations

New in version 2.12.

Native Joomla format for translations.

Joomla translations are usually used as monolingual.

Note

You need translate-toolkit 2.1.0 or newer for Joomla support.

See also

Specification of Joomla language files [https://docs.joomla.org/Specification_of_language_files],
Mozilla and Java properties files [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/properties.html]

Qt Linguist .ts

Translation format used in Qt based applications.

Qt Linguist files are used as both bilingual and monolingual.

See also

Qt Linguist manual [http://doc.qt.io/qt-5/qtlinguist-index.html],
Qt .ts [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/ts.html]

Android string resources

Android specific file format for translating applications.

Android string resources are monolingual, the
Monolingual base language file file is stored in a different
location from the others res/values/strings.xml.

See also

Android string resources documentation [https://developer.android.com/guide/topics/resources/string-resource.html],
Android string resources [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/android.html]

Note

Android string-array structures are not currently supported. To work around this,
you can break you string arrays apart:

<string-array name="several_strings">
 <item>First string</item>
 <item>Second string</item>
</string-array>

become:

<string-array name="several_strings">
 <item>@string/several_strings_0</item>
 <item>@string/several_strings_1</item>
</string-array>
<string name="several_strings_0">First string</string>
<string name="several_strings_1">Second string</string>

The string-array that points to the string elements should be stored in a different
file, and not localized.

This script may help pre-process your existing strings.xml files and translations: https://gist.github.com/paour/11291062

Apple OS X strings

Apple specific file format for translating applications, used for both OS X
and iPhone/iPad application translations.

Apple OS X strings are usually used as bilingual.

See also

Apple Strings Files documentation [https://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPInternational/Articles/StringsFiles.html],
Mac OSX strings [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/strings.html]

Note

You need translate-toolkit 1.12.0 or newer for proper support of Apple OS X
strings. Older versions might produce corrupted files.

PHP strings

PHP translations are usually monolingual, so it is recommended to specify base
file with English strings.

Example file:

<?php
$LANG['foo'] = 'bar';
$LANG['foo1'] = 'foo bar';
$LANG['foo2'] = 'foo bar baz';
$LANG['foo3'] = 'foo bar baz bag';

Note

Translate-toolkit currently has some limitations in processing PHP files,
so please double check that your files won’t get corrupted before using
Weblate in production setup.

Following things are known to be broken:

	Adding new units to translation, every translation has to contain all strings (even if empty).

	Handling of special chars like newlines.

See also

PHP [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/php.html]

JSON files

New in version 2.0.

Changed in version 2.16: Since Weblate 2.16 and with translate-toolkit at least 2.2.4 nested
structure JSON files are supported as well.

Changed in version 2.17: Since Weblate 2.17 and with translate-toolkit at least 2.2.5 i18next
JSON files with plurals are supported as well.

JSON format is used mostly for translating applications implemented in
Javascript.

Weblate currently supports several variants of JSON translations:

	Simple key / value files.

	Files with nested keys.

	The i18next files with support for plurals.

JSON translations are usually monolingual, so it is recommended to specify base
file with English strings.

Example file:

{
 "Hello, world!\n": "Ahoj světe!\n",
 "Orangutan has %d banana.\n": "",
 "Try Weblate at https://demo.weblate.org/!\n": "",
 "Thank you for using Weblate.": ""
}

Nested files are supported as well (see above for requirements), such file can look like:

{
 "weblate": {
 "hello": "Ahoj světe!\n",
 "orangutan": "",
 "try": "",
 "thanks": ""
 }
}

See also

JSON [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/json.html]

WebExtension JSON

New in version 2.16: This is supported since Weblate 2.16 and with translate-toolkit at least 2.2.4.

File format used when translating extensions for Google Chrome or Mozilla Firefox.

Example file:

{
 "hello": {
 "message": "Ahoj světe!\n",
 "description": "Description"
 },
 "orangutan": {
 "message": "",
 "description": "Description"
 },
 "try": {
 "message": "",
 "description": "Description"
 },
 "thanks": {
 "message": "",
 "description": "Description"
 }
}

See also

JSON [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/json.html],
Google chrome.i18n [https://developer.chrome.com/extensions/i18n],
Mozilla Extensions Internationalization [https://developer.mozilla.org/en-US/Add-ons/WebExtensions/Internationalization]

.Net Resource files

New in version 2.3.

.Net Resource (.resx) file is a monolingual XML file format used in Microsoft
.Net Applications.

Note

You need translate-toolkit 1.13.0 or newer to include support for this format.

See also

.NET Resource files (.resx) [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/resx.html]

CSV files

New in version 2.4.

CSV files can contain a simple list of source and translation. Weblate supports
the following files:

	Files with header defining fields (source, translation, location, …)

	Files with two fields - source and translation (in this order), choose
Simple CSV file as file format

	Files with fields as defined by translate-toolkit: location, source,
target, id, fuzzy, context, translator_comments, developer_comments

Example file:

Thank you for using Weblate.,Děkujeme za použití Weblate.

See also

CSV [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/csv.html]

YAML files

New in version 2.9.

There are several variants of using YAML as a translation format. Weblate
currently supports following:

	Plain YAML files with string keys and values

	Ruby i18n YAML files with language as root node

Note

You currently need a patched version of translate-toolkit to support YAML.
Check translate-toolkit issue tracker [https://github.com/translate/translate/issues/3248] for more details.

Example YAML file:

weblate:
 hello: ""
 orangutan": ""
 try": ""
 thanks": ""

Example Ruby i18n YAML file:

cs:
 weblate:
 hello: ""
 orangutan: ""
 try: ""
 thanks: ""

See also

YAML [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/yaml.html]

DTD files

New in version 2.18.

Example DTD file:

<!ENTITY hello "">
<!ENTITY orangutan "">
<!ENTITY try "">
<!ENTITY thanks "">

See also

Mozilla DTD format [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/dtd.html]

Others

As already mentioned, all Translate-toolkit formats are supported, but they
did not (yet) receive deeper testing.

See also

Translation Related File Formats [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/index.html]

Adding new translations

Changed in version 2.18: In versions prior to 2.18 the behaviour of adding new translations was file
format specific.

Weblate can automatically start new translation for all of the the file
formats.

Some formats expect to start with empty file and only translated
strings to be included (eg. Android string resources), while others expect to have all
keys present (eg. GNU Gettext). In some situations this really doesn’t depend
on the format, but rather on framework you use to handle the translation (eg. with
JSON files).

When you specify Base file for new translations in
Component configuration, Weblate will use this file to start new translations. Any
exiting translations will be removed from the file when doing so.

When Base file for new translations is empty and file format
supports it, empty file is created where new units will be added once they are
translated.

Version control integration

Weblate currently supports Git (with extended support for
GitHub) and Mercurial as version control backends.

Accessing repositories

The VCS repository you want to use has to be accessible to Weblate. With a
publicly available repository you just need to enter correct URL (for example
git://github.com/WeblateOrg/weblate.git or
https://github.com/WeblateOrg/weblate.git), but for private repositories the
setup might be more complex.

Weblate internal URLs

To share one repository between different components you can use a special URL
like weblate://project/component. This way, the component will share the VCS
repository configuration with referenced component and the VCS repository will
be stored just once on the disk.

SSH repositories

The most frequently used method to access private repositories is based on SSH. To
have access to such a repository, you generate SSH key for Weblate and authorize
it to access the repository. Weblate also needs to know the host key to avoid
man in the middle attacks. This all can be done in the Weblate administration
interface:

[image: _images/ssh-keys.png]

Generating SSH keys

You can generate or display the key currently used by Weblate in the admin
interface (follow SSH keys link on main admin page). Once you’ve
done this, Weblate should be able to access your repository.

Note

The keys need to be without password to make it work, so be sure they are
well protected against malicious usage.

Warning

On GitHub, you can add the key to only one repository. See the following
sections for other solutions for GitHub.

Verifying SSH host keys

Before connecting to the repository, you also need to verify SSH host keys of
servers you are going to access in the same section of the admin interface.
You can do this in the Add host key section. Just enter hostname
you are going to access (eg. gitlab.com) and press Submit.
After adding it please verify that the fingerprint matches the server you’re
adding, the fingerprints will be displayed in the confirmation message:

[image: _images/ssh-keys-added.png]

HTTPS repositories

To access protected HTTPS repositories, you need to include the username and password
in the URL. Don’t worry, Weblate will strip this information when showing the URL
to the users (if they are allowed to see the repository URL at all).

For example the GitHub URL with authentication might look like
https://user:your_access_token@github.com/WeblateOrg/weblate.git.

Note

In case your username or password contains special chars, those have to be
URL encoded, for example
https://user%40example.com:%24password%23@bitbucket.org/...`.

Using proxy

If you need to access http/https VCS repositories using a proxy server, you
need to configure the VCS to use it.

This can be configured using the http_proxy, https_proxy, and
all_proxy environment variables (check cURL documentation for more details)
or by enforcing it in VCS configuration, for example:

git config --global http.proxy http://user:password@proxy.example.com:80

Note

The proxy setting needs to be done in the same context which is used to execute
Weblate. For the environment it should be set for both server and cron
jobs. The VCS configuration has to be set for the user which is running
Weblate.

See also

curl manpage [https://curl.haxx.se/docs/manpage.html],
git config documentation [https://git-scm.com/docs/git-config]

Git

Git is first VCS backend that was available in Weblate and is still the most
stable and tested one.

See also

See Accessing repositories for information how to access different kind of
repositories.

GitHub repositories

You can access GitHub repositories by SSH as mentioned above, but in case you
need to access more repositories, you will hit a GitHub limitation on the SSH key
usage (one key can be used only for one repository). There are several ways to
work around this limitation.

For smaller deployments, you can use HTTPS authentication using a personal access
token and your account, see Creating an access token for command-line use [https://help.github.com/articles/creating-an-access-token-for-command-line-use/].

For a bigger setup, it is usually better to create dedicated user for Weblate,
assign him the SSH key generated in Weblate and grant him access to all
repositories you want.

Git remote helpers

You can also use Git remote helpers [https://git-scm.com/docs/git-remote-helpers] for supporting other VCS as well, but
this usually leads to other problems, so be prepared to debug them.

At this time, helpers for Bazaar and Mercurial are available within separate
repositories on GitHub: git-remote-hg [https://github.com/felipec/git-remote-hg] and git-remote-bzr [https://github.com/felipec/git-remote-bzr]. You can
download them manually and put somewhere in your search path (for example
~/bin). You also need to have installed appropriate version control
programs as well.

Once you have these installed, you can use such remotes to specify repository
in Weblate.

To clone gnuhello project from Launchpad with Bazaar use:

bzr::lp:gnuhello

For hello repository from selenic.com with Mercurial use:

hg::http://selenic.com/repo/hello

Warning

Please be prepared to some incovenience when using Git remote helpers,
for example with Mercurial, the remote helper sometimes tends to create new
tip when pushing changes back.

GitHub

New in version 2.3.

This just adds a thin layer on top of Git to allow push translation
changes as pull requests instead of pushing directory to the repository.
It currently uses the hub [https://hub.github.com/] tool to do the integration.

There is no need to use this to access Git repositories, ordinary
Git works the same, the only difference is how pushing to a repository is
handled. With Git changes are pushed directly to the repository, while
GitHub creates pull requests.

Pushing changes to GitHub as pull request

If you are translating a project that’s hosted on GitHub and don’t want to
push translations to the repository, you can have them sent as a pull request instead.

You need to configure the hub [https://hub.github.com/] command line tool and set
GITHUB_USERNAME for this to work.

See also

GITHUB_USERNAME, Setting up hub for configuration instructions

Setting up hub

Pushing changes to GitHub as pull request requires a configured hub [https://hub.github.com/] installation on your server.
Follow the installation instructions at https://hub.github.com/ and perform an
action with hub [https://hub.github.com/] to finish the configuration, for example:

HOME=${DATA_DIR}/home hub clone octocat/Spoon-Knife

The hub [https://hub.github.com/] will ask you for your GitHub credentials, retrieve a token and
store it into ~/.config/hub.

Note

Use the username you configured hub with as GITHUB_USERNAME.

Mercurial

New in version 2.1.

Mercurial is another VCS you can use directly in Weblate.

Note

It should work with any Mercurial version, but there are sometimes
incompatible changes to the command line interface which break Weblate.

See also

See Accessing repositories for information how to access different kind of
repositories.

Subversion

New in version 2.8.

Thanks to git-svn [https://git-scm.com/docs/git-svn], Weblate can work with subversion [https://subversion.apache.org/] repositories. Git-svn
is a Perl script that enables the usage of subversion with a git client, enabling
users to have a full clone of the internal repository and commit locally.

Note

Weblate supports only subversion repositories with standard layout (branches/,
tags/ and trunk/). See git-svn documentation [https://git-scm.com/docs/git-svn#git-svn---stdlayout]
for more information.

Subversion Credentials

Weblate expects you to have accepted the certificate upfront and inserted your
credential, if needed. It will look into the DATA_DIR directory. To insert your
credential and accept the certificate, you can run svn once with the $HOME
environment variable set to the DATA_DIR:

HOME=${DATA_DIR}/home svn co https://svn.example.com/example

See also

DATA_DIR

Weblate’s Web API

REST API

New in version 2.6: The API is available since Weblate 2.6.

The API is accessible on the /api/ URL and it is based on
Django REST framework [http://www.django-rest-framework.org/].
You can use it directly or by Weblate Client.

Authentication and generic parameters

The public project API is available without authentication, though
unauthenticated requests are heavily throttled (by default to 100 requests per
day), so it is recommended to use authentication. The authentication uses a
token, which you can get in your profile. Use it in the Authorization header:

	
ANY /

	Generic request behaviour for the API, the headers, status codes and
parameters here apply to all endpoints as well.

	Query Parameters

	
	format – Response format (overrides Accept [http://tools.ietf.org/html/rfc7231#section-5.3.2]).
Possible values depends on REST framework setup,
by default json and api are supported. The
latter provides web browser interface for API.

	Request Headers

	
	Accept [http://tools.ietf.org/html/rfc7231#section-5.3.2] – the response content type depends on
Accept [http://tools.ietf.org/html/rfc7231#section-5.3.2] header

	Authorization [http://tools.ietf.org/html/rfc7235#section-4.2] – optional token to authenticate

	Response Headers

	
	Content-Type [http://tools.ietf.org/html/rfc7231#section-3.1.1.5] – this depends on Accept [http://tools.ietf.org/html/rfc7231#section-5.3.2]
header of request

	Allow [http://tools.ietf.org/html/rfc7231#section-7.4.1] – list of allowed HTTP methods on object

	Response JSON Object

	
	detail (string) – verbose description of failure (for HTTP status codes other than 200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1])

	count (int) – total item count for object lists

	next (string) – next page URL for object lists

	previous (string) – previous page URL for object lists

	results (array) – results for object lists

	url (string) – URL to access this resource using API

	web_url (string) – URL to access this resource using web browser

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – when request was correctly handled

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – when form parameters are missing

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – when access is denied

	429 Too Many Requests [http://tools.ietf.org/html/rfc6585#section-4] – when throttling is in place

Authentication examples

Example request:

GET /api/ HTTP/1.1
Host: example.com
Accept: application/json, text/javascript
Autorization: Token YOUR-TOKEN

Example response:

HTTP/1.0 200 OK
Date: Fri, 25 Mar 2016 09:46:12 GMT
Server: WSGIServer/0.1 Python/2.7.11+
Vary: Accept, Accept-Language, Cookie
X-Frame-Options: SAMEORIGIN
Content-Type: application/json
Content-Language: en
Allow: GET, HEAD, OPTIONS

{
 "projects":"http://example.com/api/projects/",
 "components":"http://example.com/api/components/",
 "translations":"http://example.com/api/translations/",
 "languages":"http://example.com/api/languages/"
}

CURL example:

curl \
 -H "Authorization: Token TOKEN" \
 https://example.com/api/

Passing Parameters Examples

For the POST [http://tools.ietf.org/html/rfc7231#section-4.3.3] method the parameters can be specified either as
form submission (application/x-www-form-urlencoded) or as JSON
(application/json).

Form request example:

POST /api/projects/hello/repository/ HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/x-www-form-urlencoded
Authorization: Token TOKEN

operation=pull

JSON request example:

POST /api/projects/hello/repository/ HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Token TOKEN
Content-Length: 20

{"operation":"pull"}

CURL example:

curl \
 -d operation=pull \
 -H "Authorization: Token TOKEN" \
 http://example.com/api/components/hello/weblate/repository/

CURL JSON example:

curl \
 --data-binary '{"operation":"pull"}' \
 -H "Content-Type: application/json" \
 -H "Authorization: Token TOKEN" \
 http://example.com/api/components/hello/weblate/repository/

API Entry Point

	
GET /api/

	The API root entry point.

Example request:

GET /api/ HTTP/1.1
Host: example.com
Accept: application/json, text/javascript
Autorization: Token YOUR-TOKEN

Example response:

HTTP/1.0 200 OK
Date: Fri, 25 Mar 2016 09:46:12 GMT
Server: WSGIServer/0.1 Python/2.7.11+
Vary: Accept, Accept-Language, Cookie
X-Frame-Options: SAMEORIGIN
Content-Type: application/json
Content-Language: en
Allow: GET, HEAD, OPTIONS

{
 "projects":"http://example.com/api/projects/",
 "components":"http://example.com/api/components/",
 "translations":"http://example.com/api/translations/",
 "languages":"http://example.com/api/languages/"
}

Languages

	
GET /api/languages/

	Returns a list of all languages.

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Language object attributes are documented at GET /api/languages/(string:language)/.

	
GET /api/languages/(string: language)/

	Returns information about a language.

	Parameters

	
	language (string) – Language code

	Response JSON Object

	
	code (string) – Language code

	direction (string) – Text direction

	nplurals (int) – Number of plurals

	pluralequation (string) – Gettext plural equation

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Example JSON data:

{
 "code": "en",
 "direction": "ltr",
 "name": "English",
 "nplurals": 2,
 "pluralequation": "n != 1",
 "url": "http://example.com/api/languages/en/",
 "web_url": "http://example.com/languages/en/"
}

Projects

	
GET /api/projects/

	Returns a list of all projects.

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Project object attributes are documented at GET /api/projects/(string:project)/.

	
GET /api/projects/(string: project)/

	Returns information about a project.

	Parameters

	
	project (string) – Project URL slug

	Response JSON Object

	
	name (string) – project name

	slug (string) – project slug

	source_language (object) – source language object, see GET /api/languages/(string:language)/

	web (string) – project website

	components_list_url (string) – URL to components list, see GET /api/projects/(string:project)/components/

	repository_url (string) – URL to repository status, see GET /api/projects/(string:project)/repository/

	changes_list_url (string) – URL to changes list, see GET /api/projects/(string:project)/changes/

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Example JSON data:

{
 "name": "Hello",
 "slug": "hello",
 "source_language": {
 "code": "en",
 "direction": "ltr",
 "name": "English",
 "nplurals": 2,
 "pluralequation": "n != 1",
 "url": "http://example.com/api/languages/en/",
 "web_url": "http://example.com/languages/en/"
 },
 "url": "http://example.com/api/projects/hello/",
 "web": "https://weblate.org/",
 "web_url": "http://example.com/projects/hello/"
}

	
GET /api/projects/(string: project)/changes/

	Returns a list of project changes.

	Parameters

	
	project (string) – Project URL slug

	Response JSON Object

	
	results (array) – array of component objects, see GET /api/changes/(int:pk)/

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
GET /api/projects/(string: project)/repository/

	Returns information about VCS repository status. This endpoint contains
only overall summary for all repositories for project. To get more detailed
status use GET /api/components/(string:project)/(string:component)/repository/.

	Parameters

	
	project (string) – Project URL slug

	Response JSON Object

	
	needs_commit (boolean) – whether there are any pending changes to commit

	needs_merge (boolean) – whether there are any upstream changes to merge

	needs_push (boolean) – whether there are any local changes to push

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Example JSON data:

{
 "needs_commit": true,
 "needs_merge": false,
 "needs_push": true
}

	
POST /api/projects/(string: project)/repository/

	Performs given operation on the VCS repository.

	Parameters

	
	project (string) – Project URL slug

	Request JSON Object

	
	operation (string) – Operation to perform, one of push, pull, commit, reset

	Response JSON Object

	
	result (boolean) – result of the operation

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

CURL example:

curl \
 -d operation=pull \
 -H "Authorization: Token TOKEN" \
 http://example.com/api/components/hello/weblate/repository/

JSON request example:

POST /api/projects/hello/repository/ HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Token TOKEN
Content-Length: 20

{"operation":"pull"}

JSON response example:

HTTP/1.0 200 OK
Date: Tue, 12 Apr 2016 09:32:50 GMT
Server: WSGIServer/0.1 Python/2.7.11+
Vary: Accept, Accept-Language, Cookie
X-Frame-Options: SAMEORIGIN
Content-Type: application/json
Content-Language: en
Allow: GET, POST, HEAD, OPTIONS

{"result":true}

	
GET /api/projects/(string: project)/components/

	Returns a list of translation components in the given project.

	Parameters

	
	project (string) – Project URL slug

	Response JSON Object

	
	results (array) – array of component objects, see GET /api/components/(string:project)/(string:component)/

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
GET /api/components/(string: project)/(string: component)/statistics/

	Returns paginated statistics for all languages within a project.

New in version 2.10.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Response JSON Object

	
	results (array) – array of translation statistics objects

	language (string) – language name

	code (string) – language code

	total (int) – total number of strings

	translated (int) – number of translated strings

	translated_percent (float) – percentage of translated strings

	total_words (int) – total number of words

	translated_words (int) – number of translated words

	words_percent (float) – percentage of translated words

Components

	
GET /api/components/

	Returns a list of translation components.

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Component object attributes are documented at GET /api/components/(string:project)/(string:component)/.

	
GET /api/components/(string: project)/(string: component)/

	Returns information about translation component.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Response JSON Object

	
	branch (string) – VCS repository branch

	file_format (string) – file format of translations

	filemask (string) – mask of translation files in the repository

	git_export (string) – URL of the exported VCS repository with translations

	license (string) – license for translations

	license_url (string) – URL of license for translations

	name (string) – name of component

	slug (string) – slug of component

	project (object) – the translation project, see GET /api/projects/(string:project)/

	repo (string) – VCS repository URL

	template (string) – base file for monolingual translations

	new_base (string) – base file for adding new translations

	vcs (string) – version control system

	repository_url (string) – URL to repository status, see GET /api/components/(string:project)/(string:component)/repository/

	translations_url (string) – URL to translations list, see GET /api/components/(string:project)/(string:component)/translations/

	lock_url (string) – URL to lock status, see GET /api/components/(string:project)/(string:component)/lock/

	changes_list_url (string) – URL to changes list, see GET /api/components/(string:project)/(string:component)/changes/

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Example JSON data:

{
 "branch": "master",
 "file_format": "po",
 "filemask": "po/*.po",
 "git_export": "",
 "license": "",
 "license_url": "",
 "name": "Weblate",
 "slug": "weblate",
 "project": {
 "name": "Hello",
 "slug": "hello",
 "source_language": {
 "code": "en",
 "direction": "ltr",
 "name": "English",
 "nplurals": 2,
 "pluralequation": "n != 1",
 "url": "http://example.com/api/languages/en/",
 "web_url": "http://example.com/languages/en/"
 },
 "url": "http://example.com/api/projects/hello/",
 "web": "https://weblate.org/",
 "web_url": "http://example.com/projects/hello/"
 },
 "repo": "file:///home/nijel/work/weblate-hello",
 "template": "",
 "new_base": "",
 "url": "http://example.com/api/components/hello/weblate/",
 "vcs": "git",
 "web_url": "http://example.com/projects/hello/weblate/"
}

	
GET /api/components/(string: project)/(string: component)/changes/

	Returns a list of component changes.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Response JSON Object

	
	results (array) – array of component objects, see GET /api/changes/(int:pk)/

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
GET /api/components/(string: project)/(string: component)/lock/

	Returns component lock status.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Response JSON Object

	
	locked (boolean) – whether component is locked for updates

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Example JSON data:

{
 "locked": false
}

	
POST /api/components/(string: project)/(string: component)/lock/

	Sets component lock status.

Response is same as GET /api/components/(string:project)/(string:component)/lock/.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Request JSON Object

	
	lock – Boolean whether to lock or not.

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
GET /api/components/(string: project)/(string: component)/repository/

	Returns information about VCS repository status.

The response is same as for GET /api/projects/(string:project)/repository/.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Response JSON Object

	
	needs_commit (boolean) – whether there are any pending changes to commit

	needs_merge (boolean) – whether there are any upstream changes to merge

	needs_push (boolean) – whether there are any local changes to push

	remote_commit (string) – Remote commit information

	status (string) – VCS repository status as reported by VCS

	merge_failure – Text describing merge failure, null if there is none

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
POST /api/components/(string: project)/(string: component)/repository/

	Performs the given operation on a VCS repository.

See POST /api/projects/(string:project)/repository/ for documentation.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Request JSON Object

	
	operation (string) – Operation to perform, one of push, pull, commit, reset

	Response JSON Object

	
	result (boolean) – result of the operation

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
GET /api/components/(string: project)/(string: component)/monolingual_base/

	Downloads base file for monolingual translations.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
GET /api/components/(string: project)/(string: component)/new_template/

	Downloads template file for new translations.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
GET /api/components/(string: project)/(string: component)/translations/

	Returns a list of translation objects in the given component.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Response JSON Object

	
	results (array) – array of translation objects, see GET /api/translations/(string:project)/(string:component)/(string:language)/

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
GET /api/components/(string: project)/(string: component)/statistics/

	Returns paginated statistics for all translations within component.

New in version 2.7.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Response JSON Object

	
	results (array) – array of translation statistics objects, see GET /api/translations/(string:project)/(string:component)/(string:language)/statistics/

Translations

	
GET /api/translations/

	Returns a list of translations.

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Translation object attributes are documented at GET /api/translations/(string:project)/(string:component)/(string:language)/.

	
GET /api/translations/(string: project)/(string: component)/(string: language)/

	Returns information about a translation.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

	Response JSON Object

	
	component (object) – component object, see GET /api/components/(string:project)/(string:component)/

	failing_checks (int) – number of units failing check

	failing_checks_percent (float) – percentage of units failing check

	failing_checks_words (int) – number of words with failing check

	filename (string) – translation filename

	fuzzy (int) – number of units marked for review

	fuzzy_percent (float) – percentage of units marked for review

	fuzzy_words (int) – number of words marked for review

	have_comment (int) – number of units with comment

	have_suggestion (int) – number of units with suggestion

	is_template (boolean) – whether translation is monolingual base

	language (object) – source language object, see GET /api/languages/(string:language)/

	language_code (string) – language code used in the repository, this can be different from language code in the language object

	last_author (string) – name of last author

	last_change (timestamp) – last change timestamp

	revision (string) – hash revision of the file

	share_url (string) – URL for sharing leading to engage page

	total (int) – total number of units

	total_words (int) – total number of words

	translate_url (string) – URL for translating

	translated (int) – number of translated units

	translated_percent (float) – percentage of translated units

	translated_words (int) – number of translated words

	repository_url (string) – URL to repository status, see GET /api/translations/(string:project)/(string:component)/(string:language)/repository/

	file_url (string) – URL to file object, see GET /api/translations/(string:project)/(string:component)/(string:language)/file/

	changes_list_url (string) – URL to changes list, see GET /api/translations/(string:project)/(string:component)/(string:language)/changes/

	units_list_url (string) – URL to units list, see GET /api/translations/(string:project)/(string:component)/(string:language)/units/

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Example JSON data:

{
 "component": {
 "branch": "master",
 "file_format": "po",
 "filemask": "po/*.po",
 "git_export": "",
 "license": "",
 "license_url": "",
 "name": "Weblate",
 "new_base": "",
 "project": {
 "name": "Hello",
 "slug": "hello",
 "source_language": {
 "code": "en",
 "direction": "ltr",
 "name": "English",
 "nplurals": 2,
 "pluralequation": "n != 1",
 "url": "http://example.com/api/languages/en/",
 "web_url": "http://example.com/languages/en/"
 },
 "url": "http://example.com/api/projects/hello/",
 "web": "https://weblate.org/",
 "web_url": "http://example.com/projects/hello/"
 },
 "repo": "file:///home/nijel/work/weblate-hello",
 "slug": "weblate",
 "template": "",
 "url": "http://example.com/api/components/hello/weblate/",
 "vcs": "git",
 "web_url": "http://example.com/projects/hello/weblate/"
 },
 "failing_checks": 3,
 "failing_checks_percent": 75.0,
 "failing_checks_words": 11,
 "filename": "po/cs.po",
 "fuzzy": 0,
 "fuzzy_percent": 0.0,
 "fuzzy_words": 0,
 "have_comment": 0,
 "have_suggestion": 0,
 "is_template": false,
 "language": {
 "code": "cs",
 "direction": "ltr",
 "name": "Czech",
 "nplurals": 3,
 "pluralequation": "(n==1) ? 0 : (n>=2 && n<=4) ? 1 : 2",
 "url": "http://example.com/api/languages/cs/",
 "web_url": "http://example.com/languages/cs/"
 },
 "language_code": "cs",
 "last_author": "Weblate Admin",
 "last_change": "2016-03-07T10:20:05.499",
 "revision": "7ddfafe6daaf57fc8654cc852ea6be212b015792",
 "share_url": "http://example.com/engage/hello/cs/",
 "total": 4,
 "total_words": 15,
 "translate_url": "http://example.com/translate/hello/weblate/cs/",
 "translated": 4,
 "translated_percent": 100.0,
 "translated_words": 15,
 "url": "http://example.com/api/translations/hello/weblate/cs/",
 "web_url": "http://example.com/projects/hello/weblate/cs/"
}

	
GET /api/translations/(string: project)/(string: component)/(string: language)/changes/

	Returns a list of translation changes.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

	Response JSON Object

	
	results (array) – array of component objects, see GET /api/changes/(int:pk)/

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
GET /api/translations/(string: project)/(string: component)/(string: language)/units/

	Returns a list of translation units.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

	Response JSON Object

	
	results (array) – array of component objects, see GET /api/units/(int:pk)/

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
GET /api/translations/(string: project)/(string: component)/(string: language)/file/

	Download current translation file as stored in VCS (without format
parameter) or converted to one of standard formats (currently supported are
Gettext PO, MO, Xliff or TBX).

Note

This API endpoint uses different logic for output than rest of API as
it operates on whole file rather than on data. Set of accepted format
parameter differs and without such parameter you get translation file
as stored in VCS.

	Query Parameters

	
	format – File format to use, if not specified no format conversion happens, supported file formats: po, mo, xliff, xliff11, tbx

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
POST /api/translations/(string: project)/(string: component)/(string: language)/file/

	Upload new file with translations.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

	Form Parameters

	
	boolean overwrite – Whether to overwrite existing translations (defaults to no)

	file file – Uploaded file

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

CURL example:

curl -X POST \
 -F file=@strings.xml \
 -H "Authorization: Token TOKEN" \
 http://example.com/api/translations/hello/android/cs/file/

	
GET /api/translations/(string: project)/(string: component)/(string: language)/repository/

	Returns information about VCS repository status.

The response is same as for GET /api/components/(string:project)/(string:component)/repository/.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
POST /api/translations/(string: project)/(string: component)/(string: language)/repository/

	Performs given operation on the VCS repository.

See POST /api/projects/(string:project)/repository/ for documentation.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

	Request JSON Object

	
	operation (string) – Operation to perform, one of push, pull, commit, reset

	Response JSON Object

	
	result (boolean) – result of the operation

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
GET /api/translations/(string: project)/(string: component)/(string: language)/statistics/

	Returns detailed translation statistics.

New in version 2.7.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

	Response JSON Object

	
	code (string) – language code

	failing (int) – number of failing checks

	failing_percent (float) – percentage of failing checks

	fuzzy (int) – number of strings needing review

	fuzzy_percent (float) – percentage of strings needing review

	total_words (int) – total number of words

	translated_words (int) – number of translated words

	last_author (string) – name of last author

	last_change (timestamp) – date of last change

	name (string) – language name

	total (int) – total number of strings

	translated (int) – number of translated strings

	translated_percent (float) – percentage of translated strings

	url (string) – URL to access the translation (engagement URL)

	url_translate (string) – URL to access the translation (real translation URL)

Units

New in version 2.10.

	
GET /api/units/

	Returns list of translation units.

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Unit object attributes are documented at GET /api/units/(int:pk)/.

	
GET /api/units/(int: pk)/

	Returns information about translation unit.

	Parameters

	
	pk (int) – Unit ID

	Response JSON Object

	
	translation (string) – URL of a related translation object

	source (string) – source string

	previous_source (string) – previous source string used for fuzzy matching

	target (string) – target string

	id_hash (string) – unique identifier of the unit

	content_hash (string) – unique identifier of the source string

	location (string) – location of the unit in source code

	context (string) – translation unit context

	comment (string) – translation unit comment

	flags (string) – translation unit flags

	fuzzy (boolean) – whether unit is fuzzy or marked for review

	translated (boolean) – whether unit is translated

	position (int) – unit position in translation file

	has_suggestion (boolean) – whether unit has suggestions

	has_comment (boolean) – whether unit has comments

	has_failing_check (boolean) – whether unit has failing checks

	num_words (int) – number of source words

	priority (int) – translation priority, 100 is default

	id (int) – unit identifier

	web_url (string) – URL where unit can be edited

	souce_info (string) – Source string information link, see GET /api/sources/(int:pk)/

Changes

New in version 2.10.

	
GET /api/changes/

	Returns a list of translation changes.

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Change object attributes are documented at GET /api/changes/(int:pk)/.

	
GET /api/changes/(int: pk)/

	Returns information about translation change.

	Parameters

	
	pk (int) – Change ID

	Response JSON Object

	
	unit (string) – URL of a related unit object

	translation (string) – URL of a related translation object

	component (string) – URL of a related component object

	dictionary (string) – URL of a related dictionary object

	user (string) – URL of a related user object

	author (string) – URL of a related author object

	timestamp (timestamp) – event timestamp

	action (int) – numeric identification of action

	action_name (string) – text description of action

	target (string) – event changed text or detail

	id (int) – change identifier

Sources

New in version 2.14.

	
GET /api/sources/

	Returns a list of source string information.

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Sources object attributes are documented at GET /api/sources/(int:pk)/.

	
GET /api/sources/(int: pk)/

	Returns information about source information.

	Parameters

	
	pk (int) – Source information ID

	Response JSON Object

	
	id_hash (string) – unique identifier of the unit

	component (string) – URL of a related component object

	timestamp (timestamp) – timestamp when source string was first seen by Weblate

	priority (int) – source string priority, 100 is default

	check_flags (string) – source string flags

	units (array) – links to units, see GET /api/units/(int:pk)/

	screenshots (array) – links to assigned screenshots, see GET /api/screenshots/(int:pk)/

Screenshots

New in version 2.14.

	
GET /api/screenshots/

	Returns a list of screenshot string informations.

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Sources object attributes are documented at GET /api/screenshots/(int:pk)/.

	
GET /api/screenshots/(int: pk)/

	Returns information about screenshot information.

	Parameters

	
	pk (int) – Screenshot ID

	Response JSON Object

	
	name (string) – name of a screenshot

	component (string) – URL of a related component object

	file_url (string) – URL to download a file, see GET /api/screenshots/(int:pk)/file/

	sources (array) – link to asssociated source string information, see GET /api/sources/(int:pk)/

	
GET /api/screenshots/(int: pk)/file/

	Download the screenshot image.

	Parameters

	
	pk (int) – Screenshot ID

	
POST /api/screenshots/(int: pk)/file/

	Replace screenshot image.

	Parameters

	
	pk (int) – Screenshot ID

	Form Parameters

	
	file image – Uploaded file

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

CURL example:

curl -X POST \
 -F image=@image.png \
 -H "Authorization: Token TOKEN" \
 http://example.com/api/screenshots/1/file/

Notification hooks

Notification hooks allow external applications to notify Weblate that the VCS
repository has been updated.

You can use repository endpoints for project, component and translation to
update individual repositories, see
POST /api/projects/(string:project)/repository/ for documentation.

	
GET /hooks/update/(string: project)/(string: component)/

	
Deprecated since version 2.6: Please use POST /api/components/(string:project)/(string:component)/repository/
instead which works properly with authentication for ACL limited projects.

Triggers update of a component (pulling from VCS and scanning for
translation changes).

	
GET /hooks/update/(string: project)/

	
Deprecated since version 2.6: Please use POST /api/projects/(string:project)/repository/
instead which works properly with authentication for ACL limited projects.

Triggers update of all components in a project (pulling from VCS and
scanning for translation changes).

	
POST /hooks/github/

	Special hook for handling GitHub notifications and automatically updating
matching components.

Note

GitHub includes direct support for notifying Weblate, just enable
Weblate service hook in repository settings and set the URL to URL of your
Weblate installation.

See also

	Automatically receiving changes from GitHub

	For instruction on setting up GitHub integration

	https://help.github.com/articles/creating-webhooks

	Generic information about GitHub Webhooks

	ENABLE_HOOKS

	For enabling hooks for whole Weblate

	
POST /hooks/gitlab/

	Special hook for handling GitLab notifications and automatically updating
matching components.

See also

	Automatically receiving changes from GitLab

	For instruction on setting up GitLab integration

	https://docs.gitlab.com/ce/user/project/integrations/webhooks.html

	Generic information about GitLab Webhooks

	ENABLE_HOOKS

	For enabling hooks for whole Weblate

	
POST /hooks/bitbucket/

	Special hook for handling Bitbucket notifications and automatically
updating matching components.

See also

	Automatically receiving changes from Bitbucket

	For instruction on setting up Bitbucket integration

	https://confluence.atlassian.com/bitbucket/manage-webhooks-735643732.html

	Generic information about Bitbucket Webhooks

	ENABLE_HOOKS

	For enabling hooks for whole Weblate

Exports

Weblate provides various exports to allow you further process the data.

	
GET /exports/stats/(string: project)/(string: component)/

	
	Query Parameters

	
	format (string) – Output format, either json or csv

Deprecated since version 2.6: Please use GET /api/components/(string:project)/(string:component)/statistics/
and GET /api/translations/(string:project)/(string:component)/(string:language)/statistics/
instead, it allows to access ACL controlled projects as well.

Retrieves statistics for given component in given format.

Example request:

GET /exports/stats/weblate/master/ HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

[
 {
 "code": "cs",
 "failing": 0,
 "failing_percent": 0.0,
 "fuzzy": 0,
 "fuzzy_percent": 0.0,
 "last_author": "Michal \u010ciha\u0159",
 "last_change": "2012-03-28T15:07:38+00:00",
 "name": "Czech",
 "total": 436,
 "total_words": 15271,
 "translated": 436,
 "translated_percent": 100.0,
 "translated_words": 3201,
 "url": "http://hosted.weblate.org/engage/weblate/cs/",
 "url_translate": "http://hosted.weblate.org/projects/weblate/master/cs/"
 },
 {
 "code": "nl",
 "failing": 21,
 "failing_percent": 4.8,
 "fuzzy": 11,
 "fuzzy_percent": 2.5,
 "last_author": null,
 "last_change": null,
 "name": "Dutch",
 "total": 436,
 "total_words": 15271,
 "translated": 319,
 "translated_percent": 73.2,
 "translated_words": 3201,
 "url": "http://hosted.weblate.org/engage/weblate/nl/",
 "url_translate": "http://hosted.weblate.org/projects/weblate/master/nl/"
 },
 {
 "code": "el",
 "failing": 11,
 "failing_percent": 2.5,
 "fuzzy": 21,
 "fuzzy_percent": 4.8,
 "last_author": null,
 "last_change": null,
 "name": "Greek",
 "total": 436,
 "total_words": 15271,
 "translated": 312,
 "translated_percent": 71.6,
 "translated_words": 3201,
 "url": "http://hosted.weblate.org/engage/weblate/el/",
 "url_translate": "http://hosted.weblate.org/projects/weblate/master/el/"
 },
]

RSS feeds

Changes in translations are exported in RSS feeds.

	
GET /exports/rss/(string: project)/(string: component)/(string: language)/

	Retrieves RSS feed with recent changes for a translation.

	
GET /exports/rss/(string: project)/(string: component)/

	Retrieves RSS feed with recent changes for a component.

	
GET /exports/rss/(string: project)/

	Retrieves RSS feed with recent changes for a project.

	
GET /exports/rss/language/(string: language)/

	Retrieves RSS feed with recent changes for a language.

	
GET /exports/rss/

	Retrieves RSS feed with recent changes for Weblate instance.

See also

RSS on wikipedia [https://en.wikipedia.org/wiki/RSS]

Weblate Client

New in version 2.7: The wlc utility is fully supported since Weblate 2.7. If you are using an older version
some incompatibilities with the API might occur.

Installation

The Weblate Client is shipped separately and includes the Python module.
You need to install wlc:, wlc to use these.

pip3 install wlc

Synopsis

wlc [parameter] <command> [options]

Commands actually indicate which operation should be performed.

Description

Weblate Client is Python library and command line utility to manage Weblate remotely
using Weblate’s Web API. The command line utility can be invoked as wlc and is
built on wlc.

Global options

The program accepts the following global options, which must be entered before subcommand.

	
--format {csv,json,text,html}

	Specify output format.

	
--url URL

	Specify API URL. Overrides value from configuration file, see Files.
The URL should end with /api/, for example https://hosted.weblate.org/api/.

	
--key KEY

	Specify API user key to use. Overrides value from configuration file, see Files.
You can figure out your key in your profile in Weblate.

	
--config PATH

	Override path to configuration file, see Files.

	
--config-section SECTION

	Override section to use in configuration file, see Files.

Subcommands

Currently the following subcommands are available:

	
version

	Prints current version.

	
list-languages

	List used languages in Weblate.

	
list-projects

	List projects in Weblate.

	
list-components

	List components in Weblate.

	
list-translations

	List translations in Weblate.

	
show

	Shows Weblate object (translation, component or project).

	
ls

	Lists Weblate object (translation, component or project).

	
commit

	Commits changes in Weblate object (translation, component or project).

	
pull

	Pulls remote repository changes into Weblate object (translation, component or project).

	
push

	Pushes changes in Weblate object into remote repository (translation, component or project).

	
reset

	
New in version 0.7: Supported since wlc 0.7.

Resets changes in Weblate object to match remote repository (translation, component or project).

	
repo

	Displays repository status for given Weblate object (translation, component or project).

	
statistics

	Displays detailed statistics for given Weblate object (translation, component or project).

	
lock-status

	
New in version 0.5: Supported since wlc 0.5.

Displays lock status.

	
lock

	
New in version 0.5: Supported since wlc 0.5.

Locks compontent from translating in Weblate.

	
unlock

	
New in version 0.5: Supported since wlc 0.5.

Unlocks compontent from translating in Weblate.

	
changes

	
New in version 0.7: Supported since wlc 0.7 and Weblate 2.10.

Displays changes for given object.

	
download

	
New in version 0.7: Supported since wlc 0.7.

Downloads translation file.

	
--convert

	Convert file format, if not specified not conversion happens on server
and file is downloaded as is in the repository.

	
--output

	File where to store output, if not specified file is printed to stdout.

Files

	.weblate

	Per project configuration file

	~/.config/weblate

	User configuration file

	/etc/xdg/weblate

	Global configration file

The program follows XDG specification, so you can adjust placement of config files
by environment variables XDG_CONFIG_HOME or XDG_CONFIG_DIRS.

Following settings can be configured in the [weblate] section (you can
customize this by --config-section):

	
key

	API KEY to access Weblate.

	
url

	API server URL, defaults to http://127.0.0.1:8000/api/.

	
translation

	Path of default translation, component or project.

The configuration file is INI file, for example:

[weblate]
url = https://hosted.weblate.org/api/
key = APIKEY
translation = weblate/master

Additionally API keys can be stored in the [keys] section:

[keys]
https://hosted.weblate.org/api/ = APIKEY

This allows you to store keys in your personal settings, while having
.weblate configuration in the VCS repository so that wlc knows to which
server it should talk.

Examples

Print current program version:

$ wlc version
version: 0.1

List all projects:

$ wlc list-projects
name: Hello
slug: hello
source_language: en
url: http://example.com/api/projects/hello/
web: https://weblate.org/
web_url: http://example.com/projects/hello/

You can also let wlc know current project and it will then operate on it:

$ cat .weblate
[weblate]
url = https://hosted.weblate.org/api/
translation = weblate/master

$ wlc show
branch: master
file_format: po
filemask: weblate/locale/*/LC_MESSAGES/django.po
git_export: https://hosted.weblate.org/git/weblate/master/
license: GPL-3.0+
license_url: https://spdx.org/licenses/GPL-3.0+
name: master
new_base: weblate/locale/django.pot
project: weblate
repo: git://github.com/WeblateOrg/weblate.git
slug: master
template:
url: https://hosted.weblate.org/api/components/weblate/master/
vcs: git
web_url: https://hosted.weblate.org/projects/weblate/master/

With such setup it is easy to commit pending changes in current project:

$ wlc commit

Weblate’s Python API

Instalation

The Python API is shipped separately, you need to install
Weblate Client:, wlc, to have it.

pip install wlc

wlc

WeblateException

	
exception wlc.WeblateException

	Base class for all exceptions.

Weblate

	
class wlc.Weblate(key='', url=None, config=None)

	
	Parameters

	
	key (string [https://docs.python.org/2.7/library/string.html#module-string]) – User key

	url (string [https://docs.python.org/2.7/library/string.html#module-string]) – API server URL, if not specified default is used

	config (WeblateConfig) – Configuration object, overrides any other parameters.

Access class to the API, define API key and optionally API URL.

	
get(path)

	
	Parameters

	path (string [https://docs.python.org/2.7/library/string.html#module-string]) – Request path

	Return type

	object [https://docs.python.org/2.7/library/functions.html#object]

Performs single API GET call.

	
post(path, **kwargs)

	
	Parameters

	path (string [https://docs.python.org/2.7/library/string.html#module-string]) – Request path

	Return type

	object [https://docs.python.org/2.7/library/functions.html#object]

Performs single API GET call.

wlc.config

WeblateConfig

	
class wlc.config.WeblateConfig(section='wlc')

	
	Parameters

	section (string [https://docs.python.org/2.7/library/string.html#module-string]) – Configuration section to use

Configuration file parser following XDG specification.

	
load(path=None)

	
	Parameters

	path (string [https://docs.python.org/2.7/library/string.html#module-string]) – Path from which to load configuration.

Loads configuration from a file, if none is specified it loads from
wlc configuration file placed in XDG configuration path
(~/.config/wlc and /etc/xdg/wlc).

wlc.main

	
wlc.main.main(settings=None, stdout=None, args=None)

	
	Parameters

	
	settings (list [https://docs.python.org/3.5/library/stdtypes.html#list]) – settings to override as list of tuples

	stdout (object [https://docs.python.org/2.7/library/functions.html#object]) – stdout file object for printing output, uses sys.stdout as default

	args (list [https://docs.python.org/3.5/library/stdtypes.html#list]) – command line argumets to process, uses sys.args as default

Main entry point for command line interface.

	
@wlc.main.register_command(command)

	Decorator to register Command class in main parser used by
main().

Command

	
class wlc.main.Command(args, config, stdout=None)

	Main class for invoking commands.

Changes

weblate 2.18

Released on December 15th 2017.

	Extended contributor stats.

	Improved configuration of special chars virtual keyboard.

	Added support for DTD file format.

	Changed keyboard shortcuts to less likely collide with browser/system ones.

	Improved support for approved flag in Xliff files.

	Added support for not wrapping long strings in Gettext po files.

	Added button to copy permalink for current translation.

	Dropped support for Django 1.10 and added support for Django 2.0.

	Removed locking of translations while translating.

	Added support for adding new units to monolingual translations.

weblate 2.17.1

Released on October 13th 2017.

	Fixed running testsuite in some specific situations.

	Locales updates.

weblate 2.17

Released on October 13th 2017.

	Weblate by default does shallow Git clones now.

	Improved performance when updating large translation files.

	Added support for blocking certain emails from registration.

	Users can now delete their own comments.

	Added preview step to search and replace feature.

	Client side persistence of settings in search and upload forms.

	Extended search capabilities.

	More fine grained per project ACL configuration.

	Default value of BASE_DIR has been changed.

	Added two step account removal to prevent accidental removal.

	Project access control settings is now editable.

	Added optional spam protection for suggestions using Akismet.

weblate 2.16

Released on August 11th 2017.

	Various performance improvements.

	Added support for nested JSON format.

	Added support for WebExtension JSON format.

	Fixed git exporter authentication.

	Improved CSV import in certain situations.

	Improved look of Other translations widget.

	The max-length checks is now enforcing length of text in form.

	Make the commit_pending age configurable per component.

	Various user interface cleanups.

	Fixed component/project/sitewide search for translations.

weblate 2.15

Released on June 30th 2017.

	Show more related translations in other translations.

	Add option to see translations of current unit to other languages.

	Use 4 plural forms for Lithuanian by default.

	Fixed upload for monolingual files of different format.

	Improved error messages on failed authentication.

	Keep page state when removing word from glossary.

	Added direct link to edit secondary language translation.

	Added Perl format quality check.

	Added support for rejecting reused passwords.

	Extended toolbar for editing RTL languages.

weblate 2.14.1

Released on May 24th 2017.

	Fixed possible error when paginating search results.

	Fixed migrations from older versions in some corner cases.

	Fixed possible CSRF on project watch and unwatch.

	The password reset no longer authenticates user.

	Fixed possible captcha bypass on forgotten password.

weblate 2.14

Released on May 17th 2017.

	Add glossary entries using AJAX.

	The logout now uses POST to avoid CSRF.

	The API key token reset now uses POST to avoid CSRF.

	Weblate sets Content-Security-Policy by default.

	The local editor URL is validated to avoid self-XSS.

	The password is now validated against common flaws by default.

	Notify users about imporant activity with their account such as password change.

	The CSV exports now escape potential formulas.

	Various minor improvements in security.

	The authentication attempts are now rate limited.

	Suggestion content is stored in the history.

	Store important account activity in audit log.

	Ask for password confirmation when removing account or adding new associations.

	Show time when suggestion has been made.

	There is new quality check for trailing semicolon.

	Ensure that search links can be shared.

	Included source string information and screenshots in the API.

	Allow to overwrite translations through API upload.

weblate 2.13.1

Released on Apr 12th 2017.

	Fixed listing of managed projects in profile.

	Fixed migration issue where some permissions were missing.

	Fixed listing of current file format in translation download.

	Return HTTP 404 when trying to access project where user lacks privileges.

weblate 2.13

Released on Apr 12th 2017.

	Fixed quality checks on translation templates.

	Added quality check to trigger on losing translation.

	Add option to view pending suggestions from user.

	Add option to automatically build component lists.

	Default dashboard for unauthenticated users can be configured.

	Add option to browse 25 random strings for review.

	History now indicates string change.

	Better error reporting when adding new translation.

	Added per language search within project.

	Group ACLs can now be limited to certain permissions.

	The per project ALCs are now implemented using Group ACL.

	Added more fine grained privileges control.

	Various minor UI improvements.

weblate 2.12

Released on Mar 3rd 2017.

	Improved admin interface for groups.

	Added support for Yandex Translate API.

	Improved speed of sitewide search.

	Added project and component wide search.

	Added project and component wide search and replace.

	Improved rendering of inconsistent translations.

	Added support for opening source files in local editor.

	Added support for configuring visual keyboard with special characters.

	Improved screenshot management with OCR support for matching source strings.

	Default commit message now includes translation information and URL.

	Added support for Joomla translation format.

	Improved reliability of import across file formats.

weblate 2.11

Released on Jan 31st 2017.

	Include language detailed information on language page.

	Mercurial backend improvements.

	Added option to specify translation component priority.

	More consistent usage of Group ACL even with less used permissions.

	Added WL_BRANCH variable to hook scripts.

	Improved developer documentation.

	Better compatibility with various Git versions in Git exporter addon.

	Included per project and component stats.

	Added language code mapping for better support of Microsoft Translate API.

	Moved fulltext cleanup to background job to make translation removal faster.

	Fixed displaying of plural source for languages with single plural form.

	Improved error handling in import_project.

	Various performance improvements.

weblate 2.10.1

Released on Jan 20th 2017.

	Do not leak account existence on password reset form (CVE-2017-5537).

weblate 2.10

Released on Dec 15th 2016.

	Added quality check to check whether plurals are translated differently.

	Fixed GitHub hooks for repositories with authentication.

	Added optional Git exporter module.

	Support for Microsoft Cognitive Services Translator API.

	Simplified project and component user interface.

	Added automatic fix to remove control chars.

	Added per language overview to project.

	Added support for CSV export.

	Added CSV download for stats.

	Added matrix view for quick overview of all translations

	Added basic API for changes and units.

	Added support for Apertium APy server for machine translations.

weblate 2.9

Released on Nov 4th 2016.

	Extended parameters for createadmin management command.

	Extended import_json to be able to handle with existing components.

	Added support for YAML files.

	Project owners can now configure translation component and project details.

	Use “Watched” instead of “Subscribed” projects.

	Projects can be watched directly from project page.

	Added multi language status widget.

	Highlight secondary language if not showing source.

	Record suggestion deletion in history.

	Improved UX of languages selection in profile.

	Fixed showing whiteboard messages for component.

	Keep preferences tab selected after saving.

	Show source string comment more prominently.

	Automatically install Gettext PO merge driver for Git repositories.

	Added search and replace feature.

	Added support for uploading visual context (screenshots) for translations.

weblate 2.8

Released on Aug 31st 2016.

	Documentation improvements.

	Translations.

	Updated bundled javascript libraries.

	Added list_translators management command.

	Django 1.8 is no longer supported.

	Fixed compatibility with Django 1.10.

	Added Subversion support.

	Separated XML validity check from XML mismatched tags.

	Fixed API to honor HIDE_REPO_CREDENTIALS settings.

	Show source change in zen mode.

	Alt+PageUp/PageDown/Home/End now works in zen mode as well.

	Add tooltip showing exact time of changes.

	Add option to select filters and search from translation page.

	Added UI for translation removal.

	Improved behavior when inserting placeables.

	Fixed auto locking issues in zen mode.

weblate 2.7

Released on Jul 10th 2016.

	Removed Google web translate machine translation.

	Improved commit message when adding translation.

	Fixed Google Translate API for Hebrew language.

	Compatibility with Mercurial 3.8.

	Added import_json management command.

	Correct ordering of listed traslations.

	Show full suggestion text, not only a diff.

	Extend API (detailed repository status, statistics, …).

	Testsuite no longer requires network access to test repositories.

weblate 2.6

Released on Apr 28th 2016.

	Fixed validation of subprojects with language filter.

	Improved support for XLIFF files.

	Fixed machine translation for non English sources.

	Added REST API.

	Django 1.10 compatibility.

	Added categories to whiteboard messages.

weblate 2.5

Released on Mar 10th 2016.

	Fixed automatic translation for project owners.

	Improved performance of commit and push operations.

	New management command to add suggestions from command line.

	Added support for merging comments on file upload.

	Added support for some GNU extensions to C printf format.

	Documentation improvements.

	Added support for generating translator credits.

	Added support for generating contributor stats.

	Site wide search can search only in one language.

	Improve quality checks for Armenian.

	Support for starting translation components without existing translations.

	Support for adding new transations in Qt TS.

	Improved support for translating PHP files.

	Performance improvements for quality checks.

	Fixed sitewide search for failing checks.

	Added option to specify source language.

	Improved support for XLIFF files.

	Extended list of options for import_project.

	Improved targeting for whiteboard messages.

	Support for automatic translation across projects.

	Optimized fulltext search index.

	Added management command for auto translation.

	Added placeables highlighting.

	Added keyboard shortcuts for placeables, checks and machine translations.

	Improved translation locking.

	Added quality check for AngularJS interpolation.

	Added extensive group based ACLs.

	Clarified terminology on strings needing review (formerly fuzzy).

	Clarified terminology on strings needing action and not translated strings.

	Support for Python 3.

	Dropped support for Django 1.7.

	Dropped dependency on msginit for creating new Gettext po files.

	Added configurable dashboard views.

	Improved notifications on parse erorrs.

	Added option to import components with duplicate name to import_project.

	Improved support for translating PHP files

	Added XLIFF export for dictionary.

	Added XLIFF and Gettext PO export for all translations.

	Documentation improvements.

	Added support for configurable automatic group assignments.

	Improved adding of new translations.

weblate 2.4

Released on Sep 20th 2015.

	Improved support for PHP files.

	Ability to add ACL to anonymous user.

	Improved configurability of import_project command.

	Added CSV dump of history.

	Avoid copy/paste errors with whitespace chars.

	Added support for Bitbucket webhooks.

	Tigher control on fuzzy strings on translation upload.

	Several URLs have changed, you might have to update your bookmarks.

	Hook scripts are executed with VCS root as current directory.

	Hook scripts are executed with environment variables descriping current component.

	Add management command to optimize fulltext index.

	Added support for error reporting to Rollbar.

	Projects now can have multiple owners.

	Project owners can manage themselves.

	Added support for javascript-format used in Gettext PO.

	Support for adding new translations in XLIFF.

	Improved file format autodetection.

	Extended keyboard shortcuts.

	Improved dictionary matching for several languages.

	Improved layout of most of pages.

	Support for adding words to dictionary while translating.

	Added support for filtering languages to be managed by Weblate.

	Added support for translating and importing CSV files.

	Rewritten handling of static files.

	Direct login/registration links to third party service if that’s the only one.

	Commit pending changes on account removal.

	Add management command to change site name.

	Add option to confiugure default committer.

	Add hook after adding new translation.

	Add option to specify multiple files to add to commit.

weblate 2.3

Released on May 22nd 2015.

	Dropped support for Django 1.6 and South migrations.

	Support for adding new translations when using Java Property files

	Allow to accept suggestion without editing.

	Improved support for Google OAuth2.

	Added support for Microsoft .resx files.

	Tuned default robots.txt to disallow big crawling of translations.

	Simplified workflow for accepting suggestions.

	Added project owners who always receive important notifications.

	Allow to disable editing of monolingual template.

	More detailed repository status view.

	Direct link for editing template when changing translation.

	Allow to add more permissions to project owners.

	Allow to show secondary language in zen mode.

	Support for hiding source string in favor of secondary language.

weblate 2.2

Released on Feb 19th 2015.

	Performance improvements.

	Fulltext search on location and comments fields.

	New SVG/javascript based activity charts.

	Support for Django 1.8.

	Support for deleting comments.

	Added own SVG badge.

	Added support for Google Analytics.

	Improved handling of translation file names.

	Added support for monolingual JSON translations.

	Record component locking in a history.

	Support for editing source (template) language for monolingual translations.

	Added basic support for Gerrit.

weblate 2.1

Released on Dec 5th 2014.

	Added support for Mercurial repositories.

	Replaced Glyphicon font by Awesome.

	Added icons for social authentication services.

	Better consistency of button colors and icons.

	Documentation improvements.

	Various bugfixes.

	Automatic hiding of columns in translation listing for small screens.

	Changed configuration of filesystem paths.

	Improved SSH keys handling and storage.

	Improved repository locking.

	Customizable quality checks per source string.

	Allow to hide completed translations from dashboard.

weblate 2.0

Released on Nov 6th 2014.

	New responsive UI using Bootstrap.

	Rewritten VCS backend.

	Documentation improvements.

	Added whiteboard for site wide messages.

	Configurable strings priority.

	Added support for JSON file format.

	Fixed generating mo files in certain cases.

	Added support for GitLab notifications.

	Added support for disabling translation suggestions.

	Django 1.7 support.

	ACL projects now have user management.

	Extended search possibilites.

	Give more hints to translators about plurals.

	Fixed Git repository locking.

	Compatibility with older Git versions.

	Improved ACL support.

	Added buttons for per language quotes and other special chars.

	Support for exporting stats as JSONP.

weblate 1.9

Released on May 6th 2014.

	Django 1.6 compatibility.

	No longer maintained compatibility with Django 1.4.

	Management commands for locking/unlocking translations.

	Improved support for Qt TS files.

	Users can now delete their account.

	Avatars can be disabled.

	Merged first and last name attributes.

	Avatars are now fetched and cached server side.

	Added support for shields.io badge.

weblate 1.8

Released on November 7th 2013.

	Please check manual for upgrade instructions.

	Nicer listing of project summary.

	Better visible options for sharing.

	More control over anonymous users privileges.

	Supports login using third party services, check manual for more details.

	Users can login by email instead of username.

	Documentation improvements.

	Improved source strings review.

	Searching across all units.

	Better tracking of source strings.

	Captcha protection for registration.

weblate 1.7

Released on October 7th 2013.

	Please check manual for upgrade instructions.

	Support for checking Python brace format string.

	Per component customization of quality checks.

	Detailed per translation stats.

	Changed way of linking suggestions, checks and comments to units.

	Users can now add text to commit message.

	Support for subscribing on new language requests.

	Support for adding new translations.

	Widgets and charts are now rendered using Pillow instead of Pango + Cairo.

	Add status badge widget.

	Dropped invalid text direction check.

	Changes in dictionary are now logged in history.

	Performance improvements for translating view.

weblate 1.6

Released on July 25th 2013.

	Nicer error handling on registration.

	Browsing of changes.

	Fixed sorting of machine translation suggestions.

	Improved support for MyMemory machine translation.

	Added support for Amagama machine translation.

	Various optimizations on frequently used pages.

	Highlights searched phrase in search results.

	Support for automatic fixups while saving the message.

	Tracking of translation history and option to revert it.

	Added support for Google Translate API.

	Added support for managing SSH host keys.

	Various form validation improvements.

	Various quality checks improvements.

	Performance improvements for import.

	Added support for voting on suggestions.

	Cleanup of admin interface.

weblate 1.5

Released on April 16th 2013.

	Please check manual for upgrade instructions.

	Added public user pages.

	Better naming of plural forms.

	Added support for TBX export of glossary.

	Added support for Bitbucket notifications.

	Activity charts are now available for each translation, language or user.

	Extended options of import_project admin command.

	Compatible with Django 1.5.

	Avatars are now shown using libravatar.

	Added possibility to pretty print JSON export.

	Various performance improvements.

	Indicate failing checks or fuzzy strings in progress bars for projects or languages as well.

	Added support for custom pre-commit hooks and commiting additional files.

	Rewritten search for better performance and user experience.

	New interface for machine translations.

	Added support for monolingual po files.

	Extend amount of cached metadata to improve speed of various searches.

	Now shows word counts as well.

weblate 1.4

Released on January 23rd 2013.

	Fixed deleting of checks/comments on unit deletion.

	Added option to disable automatic propagation of translations.

	Added option to subscribe for merge failures.

	Correctly import on projects which needs custom ttkit loader.

	Added sitemaps to allow easier access by crawlers.

	Provide direct links to string in notification emails or feeds.

	Various improvements to admin interface.

	Provide hints for production setup in admin interface.

	Added per language widgets and engage page.

	Improved translation locking handling.

	Show code snippets for widgets in more variants.

	Indicate failing checks or fuzzy strings in progress bars.

	More options for formatting commit message.

	Fixed error handling with machine translation services.

	Improved automatic translation locking behaviour.

	Support for showing changes from previous source string.

	Added support for substring search.

	Various quality checks improvements.

	Support for per project ACL.

	Basic unit tests coverage.

weblate 1.3

Released on November 16th 2012.

	Compatibility with PostgreSQL database backend.

	Removes languages removed in upstream git repository.

	Improved quality checks processing.

	Added new checks (BB code, XML markup and newlines).

	Support for optional rebasing instead of merge.

	Possibility to relocate Weblate (eg. to run it under /weblate path).

	Support for manually choosing file type in case autodetection fails.

	Better support for Android resources.

	Support for generating SSH key from web interface.

	More visible data exports.

	New buttons to enter some special characters.

	Support for exporting dictionary.

	Support for locking down whole Weblate installation.

	Checks for source strings and support for source strings review.

	Support for user comments for both translations and source strings.

	Better changes log tracking.

	Changes can now be monitored using RSS.

	Improved support for RTL languages.

weblate 1.2

Released on August 14th 2012.

	Weblate now uses South for database migration, please check upgrade instructions if you are upgrading.

	Fixed minor issues with linked git repos.

	New introduction page for engaging people with translating using Weblate.

	Added widgets which can be used for promoting translation projects.

	Added option to reset repository to origin (for privileged users).

	Project or component can now be locked for translations.

	Possibility to disable some translations.

	Configurable options for adding new translations.

	Configuration of git commits per project.

	Simple antispam protection.

	Better layout of main page.

	Support for automatically pushing changes on every commit.

	Support for email notifications of translators.

	List only used languages in preferences.

	Improved handling of not known languages when importing project.

	Support for locking translation by translator.

	Optionally maintain Language-Team header in po file.

	Include some statistics in about page.

	Supports (and requires) django-registration 0.8.

	Caching of counted units with failing checks.

	Checking of requirements during setup.

	Documentation improvements.

weblate 1.1

Released on July 4th 2012.

	Improved several translations.

	Better validation while creating component.

	Added support for shared git repositories across components.

	Do not necessary commit on every attempt to pull remote repo.

	Added support for offloading indexing.

weblate 1.0

Released on May 10th 2012.

	Improved validation while adding/saving component.

	Experimental support for Android component files (needs patched ttkit).

	Updates from hooks are run in background.

	Improved installation instructions.

	Improved navigation in dictionary.

weblate 0.9

Released on April 18th 2012.

	Fixed import of unknown languages.

	Improved listing of nearby messages.

	Improved several checks.

	Documentation updates.

	Added definition for several more languages.

	Various code cleanups.

	Documentation improvements.

	Changed file layout.

	Update helper scripts to Django 1.4.

	Improved navigation while translating.

	Better handling of po file renames.

	Better validation while creating component.

	Integrated full setup into syncdb.

	Added list of recent changes to all translation pages.

	Check for not translated strings ignores format string only messages.

weblate 0.8

Released on April 3rd 2012.

	Replaced own full text search with Whoosh.

	Various fixes and improvements to checks.

	New command updatechecks.

	Lot of translation updates.

	Added dictionary for storing most frequently used terms.

	Added /admin/report/ for overview of repositories status.

	Machine translation services no longer block page loading.

	Management interface now contains also useful actions to update data.

	Records log of changes made by users.

	Ability to postpone commit to Git to generate less commits from single user.

	Possibility to browse failing checks.

	Automatic translation using already translated strings.

	New about page showing used versions.

	Django 1.4 compatibility.

	Ability to push changes to remote repo from web interface.

	Added review of translations done by others.

weblate 0.7

Released on February 16th 2012.

	Direct support for GitHub notifications.

	Added support for cleaning up orphaned checks and translations.

	Displays nearby strings while translating.

	Displays similar strings while translating.

	Improved searching for string.

weblate 0.6

Released on February 14th 2012.

	Added various checks for translated messages.

	Tunable access control.

	Improved handling of translations with new lines.

	Added client side sorting of tables.

	Please check upgrading instructions in case you are upgrading.

weblate 0.5

Released on February 12th 2012.

	
	Support for machine translation using following online services:

	
	Apertium

	Microsoft Translator

	MyMemory

	Several new translations.

	Improved merging of upstream changes.

	Better handle concurrent git pull and translation.

	Propagating works for fuzzy changes as well.

	Propagating works also for file upload.

	Fixed file downloads while using FastCGI (and possibly others).

weblate 0.4

Released on February 8th 2012.

	Added usage guide to documentation.

	Fixed API hooks not to require CSRF protection.

weblate 0.3

Released on February 8th 2012.

	Better display of source for plural translations.

	New documentation in Sphinx format.

	Displays secondary languages while translating.

	Improved error page to give list of existing projects.

	New per language stats.

weblate 0.2

Released on February 7th 2012.

	Improved validation of several forms.

	Warn users on profile upgrade.

	Remember URL for login.

	Naming of text areas while entering plural forms.

	Automatic expanding of translation area.

weblate 0.1

Released on February 6th 2012.

	Initial release.

Contributing

There are dozens of ways to contribute to Weblate. We welcome any help, be it
coding help, graphics design, documentation or sponsorship.

Code and development

Weblate is being developed on GitHub <https://github.com/WeblateOrg/weblate>. You
are welcome to fork the code and open pull requests. Patches in any other form
are welcome as well.

See also

Check out Internals to see how Weblate looks from inside.

Coding standard

The code should follow PEP-8 coding guidelines.

It is good idea to check your contributions using pep8,
pylint and pyflages. You can execute all checks
by script ci/run-lint.

Developer’s Certificate of Origin

If you would like to make a contribution to the Weblate Project, please
certify to the following:

Weblate Developer’s Certificate of Origin. Version 1.0

By making a contribution to this project, I certify that:

	The contribution was created in whole or in part by me and I have the
right to submit it under the license of “GNU General Public License or
any later version” (“GPLv3-or-later”); or

	The contribution is based upon previous work that, to the best of my
knowledge, is covered under an appropriate open source license and I have
the right under that license to submit that work with modifications,
whether created in whole or in part by me, under GPLv3-or-later; or

	The contribution was provided directly to me by some other person who
certified (a) or (b) and I have not modified it.

	I understand and agree that this project and the contribution are public
and that a record of the contribution (including all metadata and
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
Weblate’s policies and the requirements of the GPLv2-or-later where
they are relevant.

	I am granting this work to this project under the terms of the
GPLv3-or-later.

https://www.gnu.org/licenses/gpl-3.0.html

And please confirm your certification to the above by adding the following
line to your patch:

Signed-off-by: Jane Developer <jane@example.org>

using your real name (sorry, no pseudonyms or anonymous contributions).

If you are a developer who is authorized to contribute to Weblate on
behalf of your employer, then please use your corporate email address in the
Signed-off-by tag. If not, then please use a personal email address.

Testsuite

We do write testsuite for our code, so please add testcases for any new
functionality and verify that it works. You can see current test results on
Travis <https://travis-ci.org/WeblateOrg/weblate> and coverage on Codecov
<https://codecov.io/github/WeblateOrg/weblate>.

To run testsuite locally use:

./manage.py test --settings weblate.settings_test

You can also specify individual tests to run:

./manage.py test --settings weblate.settings_test weblate.gitexport

See also

See Testing in Django [https://docs.djangoproject.com/en/stable/topics/testing/] for more information on running and
writing tests for Django.

Reporting issues

Our issue tracker is hosted at GitHub:
<https://github.com/WeblateOrg/weblate/issues>

Feel welcome to report any issues or suggestions to improve Weblate there. In
case you have found a security issue in Weblate, please consult the “Security
issues” section below.

Security issues

In order to give the community time to respond and upgrade we strongly urge you
report all security issues privately. We’re currently using HackerOne to handle
security issues, so you are welcome to report issues directly at
<https://hackerone.com/weblate>.

Alternatively you can report them to security@weblate.org, which ends up on
HackerOne as well.

If you don’t want to use HackerOne for whatever reason, you can send the report
by email to michal@cihar.com. You can choose to encrypt it using his PGP key
9C27B31342B7511D.

Note

We’re heavily depending on third party components for many things. In case
you find a vulnerability which is affecting those components in general,
please report it directly to them.

Some of these are:

	Django [https://docs.djangoproject.com/en/stable/internals/security/]

	Django REST Framework [http://www.django-rest-framework.org/#security]

	Python Social Auth [https://github.com/python-social-auth]

Starting with our codebase

If you are looking for some bugs which should be good for starting with our
codebase, you can find them labelled with good first issue tag:

https://github.com/WeblateOrg/weblate/labels/good%20first%20issue

Earning money by coding

We’re using Bountysource to fund our development, you can participate on this
as well by implementing issues with bounties:

https://github.com/WeblateOrg/weblate/labels/bounty

Translating

Weblate is being translated using Weblate on <https://hosted.weblate.org/>, feel
free to join us in effort to make Weblate available in as many world languages
as possible.

Funding Weblate development

You can fund further Weblate development on Bountysource [https://salt.bountysource.com/teams/weblate]. Funds collected
there are used to fund free hosting for free software projects and further
development of Weblate. Please check the Bountysource [https://salt.bountysource.com/teams/weblate] page for details such
as funding goals and rewards you can get for funding.

Backers who have funded Weblate

List of Weblate supporters from
Bountysource [https://salt.bountysource.com/teams/weblate]:

	Yashiro Ccs

	Cheng-Chia Tseng

	Timon Reinhard

	Cassidy James [https://cassidyjames.com/]

Internals

Note

This chapter will give you basic overview of Weblate internals.

Weblate is based on Django [https://www.djangoproject.com/] and most of its code structure comes from that.
If you are not familiar with Django, you might want to check
Django at a glance [https://docs.djangoproject.com/en/stable/intro/overview/] to get basic understanding of files structure.

Modules

Weblate consists of several Django applications (some of them are optional, see
Optional Weblate modules):

accounts`

User account, profiles and notifications.

api

API based on Django REST framework [http://www.django-rest-framework.org/].

billing

The optional Billing module.

gitexport

The optional Git exporter module.

lang

Module defining language parameters.

legal

The optional Legal module.

permissions

The Group-based access control code with various helpers.

screenshots

Screenshots management and OCR module.

trans

Main module handling translations.

utils

Various helper utilities.

License

Copyright (C) 2012 - 2017 Michal Čihař <michal@cihar.com>

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program. If not, see <https://www.gnu.org/licenses/>.

 HTTP Routing Table

 / |
 /api |
 /exports |
 /hooks

 		 	

 		
 /	

 	
 	
 ANY /	

 		 	

 		
 /api	

 	
 	
 GET /api/	

 	
 	
 GET /api/changes/	

 	
 	
 GET /api/changes/(int:pk)/	

 	
 	
 GET /api/components/	

 	
 	
 GET /api/components/(string:project)/(string:component)/	

 	
 	
 GET /api/components/(string:project)/(string:component)/changes/	

 	
 	
 GET /api/components/(string:project)/(string:component)/lock/	

 	
 	
 GET /api/components/(string:project)/(string:component)/monolingual_base/	

 	
 	
 GET /api/components/(string:project)/(string:component)/new_template/	

 	
 	
 GET /api/components/(string:project)/(string:component)/repository/	

 	
 	
 GET /api/components/(string:project)/(string:component)/statistics/	

 	
 	
 GET /api/components/(string:project)/(string:component)/translations/	

 	
 	
 GET /api/languages/	

 	
 	
 GET /api/languages/(string:language)/	

 	
 	
 GET /api/projects/	

 	
 	
 GET /api/projects/(string:project)/	

 	
 	
 GET /api/projects/(string:project)/changes/	

 	
 	
 GET /api/projects/(string:project)/components/	

 	
 	
 GET /api/projects/(string:project)/repository/	

 	
 	
 GET /api/screenshots/	

 	
 	
 GET /api/screenshots/(int:pk)/	

 	
 	
 GET /api/screenshots/(int:pk)/file/	

 	
 	
 GET /api/sources/	

 	
 	
 GET /api/sources/(int:pk)/	

 	
 	
 GET /api/translations/	

 	
 	
 GET /api/translations/(string:project)/(string:component)/(string:language)/	

 	
 	
 GET /api/translations/(string:project)/(string:component)/(string:language)/changes/	

 	
 	
 GET /api/translations/(string:project)/(string:component)/(string:language)/file/	

 	
 	
 GET /api/translations/(string:project)/(string:component)/(string:language)/repository/	

 	
 	
 GET /api/translations/(string:project)/(string:component)/(string:language)/statistics/	

 	
 	
 GET /api/translations/(string:project)/(string:component)/(string:language)/units/	

 	
 	
 GET /api/units/	

 	
 	
 GET /api/units/(int:pk)/	

 	
 	
 POST /api/components/(string:project)/(string:component)/lock/	

 	
 	
 POST /api/components/(string:project)/(string:component)/repository/	

 	
 	
 POST /api/projects/(string:project)/repository/	

 	
 	
 POST /api/screenshots/(int:pk)/file/	

 	
 	
 POST /api/translations/(string:project)/(string:component)/(string:language)/file/	

 	
 	
 POST /api/translations/(string:project)/(string:component)/(string:language)/repository/	

 		 	

 		
 /exports	

 	
 	
 GET /exports/rss/	

 	
 	
 GET /exports/rss/(string:project)/	

 	
 	
 GET /exports/rss/(string:project)/(string:component)/	

 	
 	
 GET /exports/rss/(string:project)/(string:component)/(string:language)/	

 	
 	
 GET /exports/rss/language/(string:language)/	

 	
 	
 GET /exports/stats/(string:project)/(string:component)/	

 		 	

 		
 /hooks	

 	
 	
 GET /hooks/update/(string:project)/	

 	
 	
 GET /hooks/update/(string:project)/(string:component)/	

 	
 	
 POST /hooks/bitbucket/	

 	
 	
 POST /hooks/github/	

 	
 	
 POST /hooks/gitlab/	

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 wlc	
 Weblate API

 	
 	
 wlc.config	
 Configuration parsing

 	
 	
 wlc.main	
 Command line interface

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

Symbols

 	
 	
 --add

 	auto_translate command line option

 	
 --age HOURS

 	commit_pending command line option

 	
 --author USER@EXAMPLE.COM

 	add_suggesstions command line option

 	
 --base-file-template TEMPLATE

 	import_project command line option

 	
 --check

 	importusers command line option

 	
 --clean

 	rebuild_index command line option

 	
 --component-regexp REGEX

 	import_project command line option

 	
 --config PATH

 	wlc command line option

 	
 --config-section SECTION

 	wlc command line option

 	
 --convert

 	wlc command line option

 	
 --email USER@EXAMPLE.COM

 	createadmin command line option

 	
 --file-format FORMAT

 	import_project command line option

 	
 --force

 	loadpo command line option

 	
 --force-commit

 	pushgit command line option

 	
 --format {csv,json,text,html}

 	wlc command line option

 	
 --get-name

 	changesite command line option

 	
 --ignore

 	import_json command line option

 	
 --inconsistent

 	auto_translate command line option

 	
 --key KEY

 	wlc command line option

 	
 --lang LANGUAGE

 	loadpo command line option

 	
 --language-code

 	list_translators command line option

 	
 --language-regex REGEX

 	import_project command line option

 	
 --license NAME

 	import_project command line option

 	
 	
 --license-url URL

 	import_project command line option

 	
 --main-component

 	import_project command line option

 	
 --main-component COMPONENT

 	import_json command line option

 	
 --move

 	setupgroups command line option

 	
 --name

 	createadmin command line option

 	
 --name-template TEMPLATE

 	import_project command line option

 	
 --no-privs-update

 	setupgroups command line option

 	
 --no-projects-update

 	setupgroups command line option

 	
 --no-skip-duplicates

 	import_project command line option

 	
 --no-update

 	setuplang command line option

 	
 --optimize

 	rebuild_index command line option

 	
 --output

 	wlc command line option

 	
 --overwrite

 	auto_translate command line option

 	
 --password PASSWORD

 	createadmin command line option

 	
 --project PROJECT

 	import_json command line option

 	
 --set-name NAME

 	changesite command line option

 	
 --source PROJECT/COMPONENT

 	auto_translate command line option

 	
 --update

 	createadmin command line option

 	import_json command line option

 	
 --url URL

 	wlc command line option

 	
 --user USERNAME

 	auto_translate command line option

 	
 --username USERNAME

 	createadmin command line option

 	
 --vcs NAME

 	import_project command line option

 	
 .Net Resource

 	file format

A

 	
 	
 add_suggesstions

 	django-admin command

 	
 add_suggesstions command line option

 	--author USER@EXAMPLE.COM

 	
 ADMINS

 	setting

 	
 AKISMET_API_KEY

 	setting

 	
 ALLOWED_HOSTS

 	setting

 	
 Android

 	file format

 	
 ANONYMOUS_USER_NAME

 	setting

 	API, [1], [2]

 	
 Apple strings

 	file format

 	
 AUTH_CHECK_WINDOW

 	setting

 	
 AUTH_LOCK_ATTEMPTS

 	setting

 	
 	
 AUTH_LOCKOUT_TIME

 	setting

 	
 AUTH_MAX_ATTEMPTS

 	setting

 	
 AUTH_TOKEN_VALID

 	setting

 	
 AUTO_LOCK

 	setting

 	
 AUTO_LOCK_TIME

 	setting

 	
 auto_translate

 	django-admin command

 	
 auto_translate command line option

 	--add

 	--inconsistent

 	--overwrite

 	--source PROJECT/COMPONENT

 	--user USERNAME

 	
 AUTOFIX_LIST

 	setting

B

 	
 	
 BACKGROUND_HOOKS

 	setting

 	
 BASE_DIR

 	setting

 	
 	
 bilingual

 	translation

C

 	
 	
 changes

 	wlc command line option

 	
 changesite

 	django-admin command

 	
 changesite command line option

 	--get-name

 	--set-name NAME

 	
 CHECK_LIST

 	setting

 	
 checkgit

 	django-admin command

 	
 cleanuptrans

 	django-admin command

 	
 Comma separated values

 	file format

 	Command (class in wlc.main)

 	
 commit

 	wlc command line option

 	
 	
 commit_pending

 	django-admin command

 	
 commit_pending command line option

 	--age HOURS

 	
 COMMIT_PENDING_HOURS

 	setting

 	
 commitgit

 	django-admin command

 	
 createadmin

 	django-admin command

 	
 createadmin command line option

 	--email USER@EXAMPLE.COM

 	--name

 	--password PASSWORD

 	--update

 	--username USERNAME

 	
 CSV

 	file format

D

 	
 	
 DATA_DIR

 	setting

 	
 DATABASES

 	setting

 	
 DEBUG

 	setting

 	
 DEFAULT_COMMITER_EMAIL

 	setting

 	
 DEFAULT_COMMITER_NAME

 	setting

 	
 DEFAULT_FROM_EMAIL

 	setting

 	
 DEFAULT_TRANSLATION_PROPAGATION

 	setting

 	
 django-admin command

 	add_suggesstions

 	auto_translate

 	changesite

 	checkgit

 	cleanuptrans

 	commit_pending

 	commitgit

 	createadmin

 	dumpuserdata

 	import_json

 	import_project

 	importuserdata

 	importusers

 	list_ignored_checks

 	list_languages

 	list_translators

 	list_versions

 	loadpo

 	lock_translation

 	pushgit

 	rebuild_index

 	setupgroups

 	setuplang

 	unlock_translation

 	update_index

 	updatechecks

 	updategit

 	
 	
 download

 	wlc command line option

 	
 DTD

 	file format

 	
 dumpuserdata

 	django-admin command

E

 	
 	
 ENABLE_AVATARS

 	setting

 	
 ENABLE_HOOKS

 	setting

 	
 ENABLE_HTTPS

 	setting

 	
 ENABLE_SHARING

 	setting

 	
 environment variable

 	MEMCACHED_HOST

 	MEMCACHED_PORT

 	POSTGRES_DATABASE

 	POSTGRES_HOST

 	POSTGRES_PASSWORD

 	POSTGRES_PORT

 	POSTGRES_USER

 	WEBLATE_ADMIN_EMAIL, [1]

 	WEBLATE_ADMIN_NAME, [1]

 	WEBLATE_ADMIN_PASSWORD, [1], [2]

 	WEBLATE_AKISMET_API_KEY

 	WEBLATE_ALLOWED_HOSTS

 	WEBLATE_AUTH_LDAP_SERVER_URI

 	WEBLATE_AUTH_LDAP_USER_ATTR_MAP

 	WEBLATE_AUTH_LDAP_USER_DN_TEMPLATE

 	WEBLATE_DEBUG

 	WEBLATE_DEFAULT_FROM_EMAIL

 	WEBLATE_EMAIL_HOST

 	WEBLATE_EMAIL_HOST_PASSWORD

 	WEBLATE_EMAIL_HOST_USER

 	WEBLATE_EMAIL_PORT

 	WEBLATE_EMAIL_USE_SSL, [1]

 	WEBLATE_EMAIL_USE_TLS, [1]

 	WEBLATE_ENABLE_HTTPS

 	WEBLATE_GITHUB_USERNAME

 	WEBLATE_GOOGLE_ANALYTICS_ID

 	WEBLATE_IP_PROXY_HEADER

 	WEBLATE_LOGLEVEL

 	WEBLATE_MT_GOOGLE_KEY

 	WEBLATE_MT_MICROSOFT_COGNITIVE_KEY

 	WEBLATE_OFFLOAD_INDEXING, [1]

 	WEBLATE_POST_ADD_SCRIPTS

 	WEBLATE_POST_COMMIT_SCRIPTS

 	WEBLATE_POST_PUSH_SCRIPTS

 	WEBLATE_POST_UPDATE_SCRIPTS

 	WEBLATE_PRE_COMMIT_SCRIPTS

 	WEBLATE_REGISTRATION_OPEN

 	WEBLATE_REQUIRE_LOGIN

 	WEBLATE_SECRET_KEY

 	WEBLATE_SERVER_EMAIL

 	WEBLATE_SIMPLIFY_LANGUAGES

 	WEBLATE_SITE_TITLE

 	WEBLATE_SOCIAL_AUTH_BITBUCKET_KEY

 	WEBLATE_SOCIAL_AUTH_BITBUCKET_SECRET

 	WEBLATE_SOCIAL_AUTH_FACEBOOK_KEY

 	WEBLATE_SOCIAL_AUTH_FACEBOOK_SECRET

 	WEBLATE_SOCIAL_AUTH_GITHUB_KEY

 	WEBLATE_SOCIAL_AUTH_GITHUB_SECRET

 	WEBLATE_SOCIAL_AUTH_GITLAB_API_URL

 	WEBLATE_SOCIAL_AUTH_GITLAB_KEY

 	WEBLATE_SOCIAL_AUTH_GITLAB_SECRET

 	WEBLATE_SOCIAL_AUTH_GOOGLE_OAUTH2_KEY

 	WEBLATE_SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET

 	WEBLATE_TIME_ZONE

 	WL_BRANCH

 	WL_FILEMASK

 	WL_FILE_FORMAT

 	WL_LANGUAGE

 	WL_NEW_BASE

 	WL_PATH

 	WL_PREVIOUS_HEAD

 	WL_REPO

 	WL_TEMPLATE

 	WL_VCS

F

 	
 	
 file format

 	.Net Resource

 	Android

 	Apple strings

 	CSV

 	Comma separated values

 	DTD

 	Gettext

 	JSON

 	Java properties

 	Joomla translations

 	PHP strings

 	PO

 	Qt

 	RESX

 	TS

 	XLIFF

 	YAML

 	YAML Ain't Markup Language

 	string resources

G

 	
 	get() (wlc.Weblate method)

 	
 Gettext

 	file format

 	
 GIT_ROOT

 	setting

 	
 	
 GITHUB_USERNAME

 	setting

 	
 GOOGLE_ANALYTICS_ID

 	setting

H

 	
 	
 HIDE_REPO_CREDENTIALS

 	setting

I

 	
 	
 import_json

 	django-admin command

 	
 import_json command line option

 	--ignore

 	--main-component COMPONENT

 	--project PROJECT

 	--update

 	
 import_project

 	django-admin command

 	
 import_project command line option

 	--base-file-template TEMPLATE

 	--component-regexp REGEX

 	--file-format FORMAT

 	--language-regex REGEX

 	--license NAME

 	--license-url URL

 	--main-component

 	--name-template TEMPLATE

 	--no-skip-duplicates

 	--vcs NAME

 	
 	
 importuserdata

 	django-admin command

 	
 importusers

 	django-admin command

 	
 importusers command line option

 	--check

 	
 IP_BEHIND_REVERSE_PROXY

 	setting

 	
 IP_PROXY_HEADER

 	setting

 	
 IP_PROXY_OFFSET

 	setting

 	
 iPad

 	translation

 	
 iPhone

 	translation

J

 	
 	
 Java properties

 	file format

 	
 Joomla translations

 	file format

 	
 	
 JSON

 	file format

L

 	
 	
 LAZY_COMMITS

 	setting

 	
 list-components

 	wlc command line option

 	
 list-languages

 	wlc command line option

 	
 list-projects

 	wlc command line option

 	
 list-translations

 	wlc command line option

 	
 list_ignored_checks

 	django-admin command

 	
 list_languages

 	django-admin command

 	
 list_translators

 	django-admin command

 	
 list_translators command line option

 	--language-code

 	
 list_versions

 	django-admin command

 	
 	load() (wlc.config.WeblateConfig method)

 	
 loadpo

 	django-admin command

 	
 loadpo command line option

 	--force

 	--lang LANGUAGE

 	
 lock

 	wlc command line option

 	
 lock-status

 	wlc command line option

 	
 LOCK_TIME

 	setting

 	
 lock_translation

 	django-admin command

 	
 LOGIN_REQUIRED_URLS

 	setting

 	
 LOGIN_REQUIRED_URLS_EXCEPTIONS

 	setting

 	
 ls

 	wlc command line option

M

 	
 	
 MACHINE_TRANSLATION_SERVICES

 	setting

 	main() (in module wlc.main)

 	
 monolingual

 	translation

 	
 MT_APERTIUM_APY

 	setting

 	
 MT_APERTIUM_KEY

 	setting

 	
 MT_GOOGLE_KEY

 	setting

 	
 MT_MICROSOFT_COGNITIVE_KEY

 	setting

 	
 	
 MT_MICROSOFT_ID

 	setting

 	
 MT_MICROSOFT_SECRET

 	setting

 	
 MT_MYMEMORY_EMAIL

 	setting

 	
 MT_MYMEMORY_KEY

 	setting

 	
 MT_MYMEMORY_USER

 	setting

 	
 MT_TMSERVER

 	setting

 	
 MT_YANDEX_KEY

 	setting

N

 	
 	
 NEARBY_MESSAGES

 	setting

O

 	
 	
 OFFLOAD_INDEXING

 	setting

P

 	
 	
 PHP strings

 	file format

 	
 PIWIK_SITE_ID

 	setting

 	
 PIWIK_URL

 	setting

 	
 PO

 	file format

 	post() (wlc.Weblate method)

 	
 POST_ADD_SCRIPTS

 	setting

 	
 POST_COMMIT_SCRIPTS

 	setting

 	
 POST_PUSH_SCRIPTS

 	setting

 	
 	
 POST_UPDATE_SCRIPTS

 	setting

 	
 PRE_COMMIT_SCRIPTS

 	setting

 	
 pull

 	wlc command line option

 	
 push

 	wlc command line option

 	
 pushgit

 	django-admin command

 	
 pushgit command line option

 	--force-commit

 	Python

Q

 	
 	
 Qt

 	file format

R

 	
 	
 rebuild_index

 	django-admin command

 	
 rebuild_index command line option

 	--clean

 	--optimize

 	register_command() (in module wlc.main)

 	
 REGISTRATION_CAPTCHA

 	setting

 	
 REGISTRATION_EMAIL_MATCH

 	setting

 	
 	
 REGISTRATION_OPEN

 	setting

 	
 repo

 	wlc command line option

 	
 reset

 	wlc command line option

 	REST

 	
 RESX

 	file format

 	
 RFC

 	RFC 4646

S

 	
 	
 SECRET_KEY

 	setting

 	
 SELF_ADVERTISEMENT

 	setting

 	
 SERVER_EMAIL

 	setting

 	
 SESSION_ENGINE

 	setting

 	
 setting

 	ADMINS

 	AKISMET_API_KEY

 	ALLOWED_HOSTS

 	ANONYMOUS_USER_NAME

 	AUTH_CHECK_WINDOW

 	AUTH_LOCKOUT_TIME

 	AUTH_LOCK_ATTEMPTS

 	AUTH_MAX_ATTEMPTS

 	AUTH_TOKEN_VALID

 	AUTOFIX_LIST

 	AUTO_LOCK

 	AUTO_LOCK_TIME

 	BACKGROUND_HOOKS

 	BASE_DIR

 	CHECK_LIST

 	COMMIT_PENDING_HOURS

 	DATABASES

 	DATA_DIR

 	DEBUG

 	DEFAULT_COMMITER_EMAIL

 	DEFAULT_COMMITER_NAME

 	DEFAULT_FROM_EMAIL

 	DEFAULT_TRANSLATION_PROPAGATION

 	ENABLE_AVATARS

 	ENABLE_HOOKS

 	ENABLE_HTTPS

 	ENABLE_SHARING

 	GITHUB_USERNAME

 	GIT_ROOT

 	GOOGLE_ANALYTICS_ID

 	HIDE_REPO_CREDENTIALS

 	IP_BEHIND_REVERSE_PROXY

 	IP_PROXY_HEADER

 	IP_PROXY_OFFSET

 	LAZY_COMMITS

 	LOCK_TIME

 	LOGIN_REQUIRED_URLS

 	LOGIN_REQUIRED_URLS_EXCEPTIONS

 	MACHINE_TRANSLATION_SERVICES

 	MT_APERTIUM_APY

 	MT_APERTIUM_KEY

 	MT_GOOGLE_KEY

 	MT_MICROSOFT_COGNITIVE_KEY

 	MT_MICROSOFT_ID

 	MT_MICROSOFT_SECRET

 	MT_MYMEMORY_EMAIL

 	MT_MYMEMORY_KEY

 	MT_MYMEMORY_USER

 	MT_TMSERVER

 	MT_YANDEX_KEY

 	NEARBY_MESSAGES

 	OFFLOAD_INDEXING

 	PIWIK_SITE_ID

 	PIWIK_URL

 	POST_ADD_SCRIPTS

 	POST_COMMIT_SCRIPTS

 	POST_PUSH_SCRIPTS

 	POST_UPDATE_SCRIPTS

 	PRE_COMMIT_SCRIPTS

 	REGISTRATION_CAPTCHA

 	REGISTRATION_EMAIL_MATCH

 	REGISTRATION_OPEN

 	SECRET_KEY

 	SELF_ADVERTISEMENT

 	SERVER_EMAIL

 	SESSION_ENGINE

 	SIMPLIFY_LANGUAGES

 	SITE_TITLE

 	SPECIAL_CHARS

 	STATUS_URL

 	TTF_PATH

 	URL_PREFIX

 	WHOOSH_INDEX

 	
 	
 setupgroups

 	django-admin command

 	
 setupgroups command line option

 	--move

 	--no-privs-update

 	--no-projects-update

 	
 setuplang

 	django-admin command

 	
 setuplang command line option

 	--no-update

 	
 show

 	wlc command line option

 	
 SIMPLIFY_LANGUAGES

 	setting

 	
 SITE_TITLE

 	setting

 	
 SPECIAL_CHARS

 	setting

 	
 statistics

 	wlc command line option

 	
 STATUS_URL

 	setting

 	
 string resources

 	file format

T

 	
 	
 translation

 	bilingual

 	iPad

 	iPhone

 	monolingual

 	
 	
 TS

 	file format

 	
 TTF_PATH

 	setting

U

 	
 	
 unlock

 	wlc command line option

 	
 unlock_translation

 	django-admin command

 	
 update_index

 	django-admin command

 	
 	
 updatechecks

 	django-admin command

 	
 updategit

 	django-admin command

 	
 URL_PREFIX

 	setting

V

 	
 	
 version

 	wlc command line option

W

 	
 	Weblate (class in wlc)

 	WEBLATE_ADMIN_EMAIL

 	WEBLATE_ADMIN_NAME

 	WEBLATE_ADMIN_PASSWORD, [1]

 	WEBLATE_EMAIL_USE_SSL

 	WEBLATE_EMAIL_USE_TLS

 	WEBLATE_OFFLOAD_INDEXING

 	WeblateConfig (class in wlc.config)

 	WeblateException

 	
 WHOOSH_INDEX

 	setting

 	wlc

 	(module)

 	
 wlc command line option

 	--config PATH

 	--config-section SECTION

 	--convert

 	--format {csv,json,text,html}

 	--key KEY

 	--output

 	--url URL

 	changes

 	commit

 	download

 	list-components

 	list-languages

 	list-projects

 	list-translations

 	lock

 	lock-status

 	ls

 	pull

 	push

 	repo

 	reset

 	show

 	statistics

 	unlock

 	version

 	
 	wlc.config (module)

 	wlc.main (module)

X

 	
 	
 XLIFF

 	file format

Y

 	
 	
 YAML

 	file format

 	
 	
 YAML Ain't Markup Language

 	file format

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Weblate’s documentation!

 		
 About Weblate

 		
 Project goals

 		
 Project name

 		
 Project website

 		
 Authors

 		
 Translators guide

 		
 Weblate basics

 		
 Projects structure

 		
 Registration and user profile

 		
 Registration

 		
 Dashboard

 		
 User profile

 		
 Translating using Weblate

 		
 Translation links

 		
 Suggestions

 		
 Translating

 		
 Glossary

 		
 Machine translation

 		
 Automatic translation

 		
 Downloading and uploading translations

 		
 Downloading translations

 		
 Uploading translations

 		
 Checks and fixups

 		
 Automatic fixups

 		
 Quality checks

 		
 Application developer guide

 		
 Starting with internationalization

 		
 Translating software using GNU Gettext

 		
 Translating documentation using Sphinx

 		
 Managing translations

 		
 Adding new translations

 		
 Reviewing source strings

 		
 Activity reports

 		
 Source strings checks

 		
 Failing checks on translation

 		
 String comments

 		
 Promoting the translation

 		
 Translation progress reporting

 		
 Translator credits

 		
 Contributor stats

 		
 Administrators guide

 		
 Quick setup guide

 		
 Installing from sources

 		
 Installing using Docker

 		
 Installing on OpenShift 2

 		
 Adding translation

 		
 Installation instructions

 		
 Hardware requirements

 		
 Software requirements

 		
 Installing Weblate

 		
 Filesystem permissions

 		
 Database setup for Weblate

 		
 Other configurations

 		
 Installation

 		
 Filling up the database

 		
 Production setup

 		
 Running server

 		
 Monitoring Weblate

 		
 Collecting error reports

 		
 Migrating Weblate to another server

 		
 Weblate deployments

 		
 Running Weblate in the Docker

 		
 Running Weblate on OpenShift 2

 		
 Bitnami Weblate stack

 		
 Weblate in YunoHost

 		
 Upgrading Weblate

 		
 Generic upgrade instructions

 		
 Version specific instructions

 		
 Upgrading to Django 1.7

 		
 Upgrading from Python 2.x to 3.x

 		
 Migrating from Pootle

 		
 Authentication

 		
 User registration

 		
 Rate limiting

 		
 Authentication backends

 		
 Social authentication

 		
 Password authentication

 		
 LDAP authentication

 		
 CAS authentication

 		
 Access control

 		
 Extra privileges

 		
 Per project access control

 		
 Automatic group assignments

 		
 Group-based access control

 		
 Managing users and groups

 		
 Translation projects

 		
 Translation organization

 		
 Administration

 		
 Adding new components

 		
 Project configuration

 		
 Component configuration

 		
 Importing speed

 		
 Automatic creation of components

 		
 Fulltext search

 		
 Language definitions

 		
 Parsing language codes

 		
 Changing language defintions

 		
 Continuous translation

 		
 Updating repositories

 		
 Pushing changes

 		
 Merge or rebase

 		
 Interacting with others

 		
 Lazy commits

 		
 Processing repository with scripts

 		
 Translation process

 		
 Suggestion voting

 		
 Translation locking

 		
 Additional information on source strings

 		
 Checks and fixups

 		
 Custom automatic fixups

 		
 Customizing checks

 		
 Using custom modules and classes

 		
 Machine translation

 		
 Amagama

 		
 Apertium

 		
 Glosbe

 		
 Google Translate

 		
 Microsoft Translator

 		
 Microsoft Cognitive Services Translator

 		
 MyMemory

 		
 tmserver

 		
 Yandex Translate

 		
 Weblate

 		
 Custom machine translation

 		
 Configuration

 		
 AKISMET_API_KEY

 		
 ANONYMOUS_USER_NAME

 		
 AUTH_LOCK_ATTEMPTS

 		
 AUTH_MAX_ATTEMPTS

 		
 AUTH_CHECK_WINDOW

 		
 AUTH_LOCKOUT_TIME

 		
 AUTH_TOKEN_VALID

 		
 AUTH_PASSWORD_DAYS

 		
 AUTO_LOCK

 		
 AUTO_LOCK_TIME

 		
 AUTOFIX_LIST

 		
 BACKGROUND_HOOKS

 		
 BASE_DIR

 		
 CHECK_LIST

 		
 COMMIT_PENDING_HOURS

 		
 DATA_DIR

 		
 DEFAULT_COMMITER_EMAIL

 		
 DEFAULT_COMMITER_NAME

 		
 DEFAULT_TRANSLATION_PROPAGATION

 		
 ENABLE_AVATARS

 		
 ENABLE_HOOKS

 		
 ENABLE_HTTPS

 		
 ENABLE_SHARING

 		
 GIT_ROOT

 		
 GITHUB_USERNAME

 		
 GOOGLE_ANALYTICS_ID

 		
 HIDE_REPO_CREDENTIALS

 		
 IP_BEHIND_REVERSE_PROXY

 		
 IP_PROXY_HEADER

 		
 IP_PROXY_OFFSET

 		
 LAZY_COMMITS

 		
 LOCK_TIME

 		
 LOGIN_REQUIRED_URLS

 		
 LOGIN_REQUIRED_URLS_EXCEPTIONS

 		
 MACHINE_TRANSLATION_SERVICES

 		
 MT_APERTIUM_APY

 		
 MT_APERTIUM_KEY

 		
 MT_GOOGLE_KEY

 		
 MT_MICROSOFT_ID

 		
 MT_MICROSOFT_SECRET

 		
 MT_MICROSOFT_COGNITIVE_KEY

 		
 MT_MYMEMORY_EMAIL

 		
 MT_MYMEMORY_KEY

 		
 MT_MYMEMORY_USER

 		
 MT_TMSERVER

 		
 MT_YANDEX_KEY

 		
 NEARBY_MESSAGES

 		
 OFFLOAD_INDEXING

 		
 PIWIK_SITE_ID

 		
 PIWIK_URL

 		
 POST_ADD_SCRIPTS

 		
 POST_UPDATE_SCRIPTS

 		
 PRE_COMMIT_SCRIPTS

 		
 POST_COMMIT_SCRIPTS

 		
 POST_PUSH_SCRIPTS

 		
 REGISTRATION_CAPTCHA

 		
 REGISTRATION_EMAIL_MATCH

 		
 REGISTRATION_OPEN

 		
 SELF_ADVERTISEMENT

 		
 SIMPLIFY_LANGUAGES

 		
 SITE_TITLE

 		
 SPECIAL_CHARS

 		
 STATUS_URL

 		
 TTF_PATH

 		
 URL_PREFIX

 		
 WHOOSH_INDEX

 		
 Sample configuration

 		
 Management commands

 		
 Invoking management commands

 		
 add_suggestions

 		
 auto_translate

 		
 changesite

 		
 checkgit

 		
 commitgit

 		
 commit_pending

 		
 cleanuptrans

 		
 createadmin

 		
 dumpuserdata

 		
 import_json

 		
 import_project

 		
 importuserdata

 		
 importusers

 		
 list_ignored_checks

 		
 list_languages

 		
 list_translators

 		
 list_versions

 		
 loadpo

 		
 lock_translation

 		
 pushgit

 		
 rebuild_index

 		
 update_index

 		
 unlock_translation

 		
 setupgroups

 		
 setuplang

 		
 updatechecks

 		
 updategit

 		
 Whiteboard messages

 		
 Advertisement

 		
 Component Lists

 		
 Automatic component lists

 		
 Optional Weblate modules

 		
 Git exporter

 		
 Billing

 		
 Legal

 		
 Avatars

 		
 Spam protection

 		
 Translation workflows

 		
 Translation access

 		
 Translation states

 		
 Direct translation

 		
 Peer review

 		
 Dedicated reviewers

 		
 Enabling reviews

 		
 Frequently Asked Questions

 		
 Configuration

 		
 How to create an automated workflow?

 		
 How to access repositories over SSH?

 		
 How to fix merge conflicts in translations?

 		
 How do I translate several branches at once?

 		
 How to export the Git repository that Weblate uses?

 		
 What are the options for pushing changes back upstream?

 		
 How can I limit Weblates access to translations only without exposing source code to it?

 		
 How can I check if my Weblate is configured properly?

 		
 Why do links contain example.com as the domain?

 		
 Why are all commits committed by Weblate <noreply@weblate.org>?

 		
 Why do I get a warning about not reflected changes on database migration?

 		
 Usage

 		
 How do I review others translations?

 		
 How do I provide feedback on a source string?

 		
 How can I use existing translations while translating?

 		
 Does Weblate update translation files besides translations?

 		
 Where do language definitions come from and how can I add my own?

 		
 Can Weblate highlight changes in a fuzzy string?

 		
 Why does Weblate still show old translation strings when I’ve updated the template?

 		
 Troubleshooting

 		
 Requests sometimes fail with too many open files error

 		
 Fulltext search is too slow

 		
 I get “Lock Error” quite often while translating

 		
 Rebuilding index has failed with “No space left on device”

 		
 Database operations fail with “too many SQL variables”

 		
 When accessing the site I get Bad Request (400) error

 		
 Features

 		
 Does Weblate support other VCS than Git and Mercurial?

 		
 How does Weblate credit translators?

 		
 Why does Weblate force to show all po files in a single tree?

 		
 Why does Weblate use language codes such sr_Latn or zh_Hant?

 		
 Supported formats

 		
 Automatic detection

 		
 GNU Gettext

 		
 Monolingual Gettext

 		
 XLIFF

 		
 Translations marked for review

 		
 Whitespace and newlines in XLIFF

 		
 Java properties

 		
 Joomla translations

 		
 Qt Linguist .ts

 		
 Android string resources

 		
 Apple OS X strings

 		
 PHP strings

 		
 JSON files

 		
 WebExtension JSON

 		
 .Net Resource files

 		
 CSV files

 		
 YAML files

 		
 DTD files

 		
 Others

 		
 Adding new translations

 		
 Version control integration

 		
 Accessing repositories

 		
 Weblate internal URLs

 		
 SSH repositories

 		
 HTTPS repositories

 		
 Using proxy

 		
 Git

 		
 GitHub repositories

 		
 Git remote helpers

 		
 GitHub

 		
 Pushing changes to GitHub as pull request

 		
 Setting up hub

 		
 Mercurial

 		
 Subversion

 		
 Subversion Credentials

 		
 Weblate’s Web API

 		
 REST API

 		
 Authentication and generic parameters

 		
 API Entry Point

 		
 Languages

 		
 Projects

 		
 Components

 		
 Translations

 		
 Units

 		
 Changes

 		
 Sources

 		
 Screenshots

 		
 Notification hooks

 		
 Exports

 		
 RSS feeds

 		
 Weblate Client

 		
 Installation

 		
 Synopsis

 		
 Description

 		
 Global options

 		
 Subcommands

 		
 Files

 		
 Examples

 		
 Weblate’s Python API

 		
 Instalation

 		
 wlc

 		
 WeblateException

 		
 Weblate

 		
 wlc.config

 		
 WeblateConfig

 		
 wlc.main

 		
 Command

 		
 Changes

 		
 weblate 2.18

 		
 weblate 2.17.1

 		
 weblate 2.17

 		
 weblate 2.16

 		
 weblate 2.15

 		
 weblate 2.14.1

 		
 weblate 2.14

 		
 weblate 2.13.1

 		
 weblate 2.13

 		
 weblate 2.12

 		
 weblate 2.11

 		
 weblate 2.10.1

 		
 weblate 2.10

 		
 weblate 2.9

 		
 weblate 2.8

 		
 weblate 2.7

 		
 weblate 2.6

 		
 weblate 2.5

 		
 weblate 2.4

 		
 weblate 2.3

 		
 weblate 2.2

 		
 weblate 2.1

 		
 weblate 2.0

 		
 weblate 1.9

 		
 weblate 1.8

 		
 weblate 1.7

 		
 weblate 1.6

 		
 weblate 1.5

 		
 weblate 1.4

 		
 weblate 1.3

 		
 weblate 1.2

 		
 weblate 1.1

 		
 weblate 1.0

 		
 weblate 0.9

 		
 weblate 0.8

 		
 weblate 0.7

 		
 weblate 0.6

 		
 weblate 0.5

 		
 weblate 0.4

 		
 weblate 0.3

 		
 weblate 0.2

 		
 weblate 0.1

 		
 Contributing

 		
 Code and development

 		
 Coding standard

 		
 Developer’s Certificate of Origin

 		
 Testsuite

 		
 Reporting issues

 		
 Security issues

 		
 Starting with our codebase

 		
 Earning money by coding

 		
 Translating

 		
 Funding Weblate development

 		
 Backers who have funded Weblate

 		
 Internals

 		
 Modules

 		
 License

_images/add-component.png
Home , Weblate translations

Ghange Compeonert

Required fields are marked as bold, you can find more information in the documentation.

Name to display
URL slug: website |

Name used in URLs and file names.

Version control system: Git M

Version control system to use to access your repository with translations.

‘Source code repository: hitps://github.com/WeblateOrg/website git |
URL of a repository, use weblate://project/component fo sharing with other component.

Repository push URL: git@github.com:WeblateOrg/website git |
URL of a push repository, pushingis isabled if empty.

Repository browser: ‘Currently:https://github,com/nijel/weblate-web/blob/(branch)s/ /% fle)s#L%(ine)s
Change: https://github.com/mnijel/weblate-webyblob/s(branch)s//s(fle)s#L% |

Link to repository browser, use %(branch)s for branch, %(file)s and %(ine)s as filename and line placeholders

Exported repository URL: | hitpsi//hosted weblate org/git/weblate/websi
URL of a repository where users can fetch changes from Weblate

‘Source string bug report ‘weblate@lists.cihar.com

address:
Email address where errors in source string will be reported, keep empty for no emails.
Repository branch: master
Repository branch to translate
File mask: locale//LC_MESSAGES/django.po

Path of files to translate relative to repository root,use « instead of language code, for example: po/* po or locale/+/LC_MESSAGES/django po.

Monolingual base language
file:

Filename of translations base file, which contains all strings and their source; this is recommended to use for monolingual translation formats.

(¥ Edit base file
Whether users will be able to edit base filefor monolingual translations.

Base file for new Iocale/django.pot
translations:

Filename of file which is used for creating new translations. For Gettext choose pot file.

File format: Gettext PO file

‘Automatic detection might failfor some formats and s slightly slower.

‘Additional commit files:

‘Additional files to include in commits, one per line; lease check documentation for more details

Post-update script N

Scriptto be executed after receiving a repository update, please check documentation for more details

Pre-commit script |

Scriptto be executed before committing translation, please check documentation for more detals.

Post-commit script

‘Scriptto be executed after committing translation, please check documentation for more details.

Post-push script: 5

Script to be executed after pushing translation to remote, please check documentation for more details.

Post-add script:

Scriptto be executed after adding new translation, please check documentation for more details.

(O Locked
Whether component islocked for translation updates.

(@ Allow translation propagation
Whether translation updates in other components will cause automatic translation in this one

(@ save translation history
Whether Weblate should keep history of translations

(M Enable suggestions
Whether to allow translation suggestions at all

(O suggestion voting
Whether users can vote for suggestions.

Autoaccept suggestions: 0
Automatically accept suggestions with this number of votes, use 0 to disable.
Quality checks flags:
Additional comma-separated flags to influence quality checks, check documentation for possible values.
Translation license: GPL-3.0+
‘Optional short summary of license used for translations.
License URL: Currently: https://spdx.org/licenses/GPL-3.0+
Change: https://spdx.org/licenses/GPL-30+
‘Optional URL with license details.
Contributor agreement:
Agreement which needs to be approved before user can translate this component.
New translation: Automatically add language file

How to handle requests for creating new translations. Please note that availabilty of choices depends on the file format.

Merge style: Merge |

Define whether Weblate should merge upstream repository or rebase changes onto it

Commit message when Translated using Weblate (% (language_name)s)
N ™ using
‘Gurrently translated at %(translated_percent)s®% (%(translated)s of %(total)s strings)

o1 skip]

‘You can use format strings for various information, please check documentation for more details.

Commit message when Added translation using Weblate (% (language_name)s)

‘You can use format strings for various information, please check documentation for more details.

Commit message when Deleted translation using Weblate (%(language_name)s)

removing translation:
You can use format strings for various information, please check documentation for more detals.
Committer email: noreply@weblate.org J

(@ Push on commit
Whether the repository should be pushed upsiream on every commit

Age of changes to commit: | 24 |
Time in hours after which any pending changes will be committed o the VCS.

Language filter: IS
Regular expression which is used to filter ranslation when scanning for file mask.

Priority: Medium

‘Components with higher priority are offered first to translators.

_images/add-project.png
Add Project

Add Project
Required fields are marked as bold, you can find mor the documentation.
Nameto display
URL slug: weblate |

Name used in URLs and file names.

Main website of translated project.

Mailing ist: ‘weblate@listscihar.com

Mailing lst for translators.

Translation instructions: | https://weblate.org/

'URL with instructions for translators.

[set Translation-Team header
Whether the Translation-Team in fle headers should be updated by Weblate.

(O Enable AcL
Whether to enable ACL for this project please check documentation before enabling this.

(@ Enable hooks
Whether to allow updating this repository by remote hooks.

P

Language used for source strings in all components

ontinue editi

_images/activity.png
Activity in last 30 days

9000
8000
7000

6000 . ¥
5000
4000 i

s Il 1l
. (BENRRRRNI

19/6 24/6 29/6 o7 1477 1977

Activity in last year
35000) :
30000 : , I ; ; ; B
20000

15000 [. o : R o

10000 | ! R g
QLT TP T T T

7/2018/2016 9/2016 102016 112016 12/2016 12017 202017 372017 42017 52017 62017 72017

_images/add-component-mono.png
Home > Weblate translations » Components » OsmAnd/iC

Change Component

Required fields are marked as bold, you can find more information in the documentation.

Name to display
. s \

Name used in URLs and file names.

Project:

Version control system: Git M

Version control system to use to access your repository with translations.

URL of a repository, use weblate://project/component for sharing with other component.

Repository push URL: git@github com:/osmandapp/OsmAnd-ios git
URL of a push repository, pushing is disabled f empty.

Repository browser:

Link to repository browser, use %(branch)s for branch, %(file)s and %(ine)s as filename and line placeholders

Exported repository URL: hitps://hosted weblate org/git/osmand/ios/
URL of a repository where users can fetch changes from Weblate

‘Source string bug report
address:
Email address where errors in source string will be reported, keep empty for no emails.
Repository branch: master
Repository branch to translate
File mask: Resources/« Iproj/Localizable strings.

Path of files to translate relative to repository root,use « instead of language code, for example: po/* po or locale/+/LC_MESSAGES/django po.
Monolingual base language | Resources/enlproj/Localizable strings
Filename of translations base file, which contains allstrings and their source;this is recommended to use for monolingual translation formats.

(] Edit base file
Whether users will be able to edit base filefor monolingual translations.

Base file for new
translations:

Filename of file which is used for creating new translations. For Gettext choose pot file.

File format: 05 X Strings (UTF-8) M

‘Automatic detection might failfor some formats and s slightly slower.

‘Additional files to include in commits, one per line; please check documentation for more detals.

Post-update script: M

Scriptto be executed after receiving a repository update, please check documentation for more details

Pre-commit script: |

Scriptto be executed before committing translation, please check documentation for more detals.

Post-commit script

Scriptto be executed after committing translation, please check documentation for more details.

Post-push script |

Scriptto be executed after pushing translation to remote, please check documentation for more details.

Post-add script

Scriptto be executed after adding new translation, please check documentation for more detals.

(J Locked
Whether component is locked for translation updates.

(@ Allow translation propagation
Whether translation updates in other components will cause automatic translation in this one

(@ save translation history
Whether Weblate should keep history of translations

(@ Enable suggestions
Whether to allow translation suggestions at all

(] suggestion voting
Whether users can vote for suggestions.
Autoaccept suggestions: 0

‘Automatically accept suggestions with this number of votes, use 0 to disable

Quality checks flags:
‘Additional comma-separated flags to influence quality checks, check documentation for possible values.
Translation license:
‘Optional short summary of license used for translations.
License URL:
‘Optional URL with license details
Contributor agreement

‘Agreement which needs to be approved before user can translate this component

New translation: Use contact form

How to handle requests for creating new translations. Please note that availabilty of choices depends on the file format.

Merge style: Merge]

Define whether Weblate should merge upstream repository or rebase changes onto it

‘Commit message when Translated using Weblate (% (language_name)s)
translating:
Currently translated at %(translated_percent)s%% (%(translated)s of %(total)s strings)

‘You can use format strings for various information, please check documentation for more details.

‘Commit message when Added translation using Weblate (% (language_name)s)

‘You can use format strings for various information, please check documentation for more details.

Commit message when Deleted translation using Weblate (% (language_name)s)

removing translation:
You can use format strings for various nformation, please check documentation for more defail.

[Push on commit
Whether the epository should be pushed upsiream on every commit

Age of changes to commit: | 24
“Time in hours after which any pending changes will be committed to the VCS.

Regular expression which is used to fiter translation when scanning for file mask.

Priority: Medium

‘Components with higher priority are offered first to translators.

_images/admin.png
Site administration

REPORTS

Status of repositories
SsHkeys
Performance report
_ Recent actions
+Add # Change
Profiles +Add # Change My actions
Verfed emais +add 2 change + 2017-07-01 - 2017-07-31: Soichio
Soishino (Basic)
Invoice
 rouneseows
Component
+Add # Change
F-Droid/Website Posts
Component
AUTHENTICATION AND AUTHORI ’ ;""::""’::"sﬂe
Groups +add # Change # F-Droid/Website Docs
Component
Users +add &
change # F-Droid/repomaker
Component
BILLING # F-Droid/Privileged Extension
g Component
+Add & Change # F-Droid/Data
Component
Invoices +Add # Change
F-Droid/F-Droid Server
Plans +Add # Change Component
Airsonic/Translations
Component
+Add # Change

SCREENSHOTS

+Add # Change

+Add # Change

_images/authentication.png
Your profile

Languages Preferences Subscriptions Account

Current user identities

Identity User ID Action

Profile Licenses Auditlog APl access

Password nijel Change password

@ Email michal@cihar.com
©) GitHub 212189

G Google michal@cihar.com
@ Bitbucket nijel

f Facebook 10205553793104757
G Ubuntu

G Google michal@cihar.com

Fedora GitLab opensUSE Email

Removal

Removal of the account deletes all your private data.

You can manage identities which are associated to this account and which can be used to log in.

You can configure how you will log in on this site.

Documentation

Powered by Weblate 2.16-dev About Weblate Legal ~ Contactus ~ Documentation Donate to Weblate!

_images/admin-wrench.png

_images/componentlist-add.png
ate translations » Component lists » Add Component st

Add Component list

Required fields are marked as bold, you can find more information in the documentation.

‘Component fist name: All components |
Nameto display
URL slug: all-components |
Name used in URLS and file names
Components: Relative theory money introduction-de-la-version-2.718

Relative theory money/licence-et-versionning
Relative theory money/masse-monetaire-et-relativite

Relative theory money/precedentes-publications +
Relative theory money/preface-de-la-version-1.0-par-Yoland-Bresson

Relative theory money/principe-de-resonance-psychologique-les-bulles-sont-une-consequence-de-I-emission-monetaire-asymetrique
Relative theory money/probleme-de-la-monnaie-dette

Relative theory money/probleme-de-la-valeur-de-reference

Hold down “Control’,or “Command” on a Mac, to select more than one.

PROJECT REGULAR EXPRESSION © COMPONENT REGULAR EXPRESSION © DELETE?

+ Add another Automatic component st assignment

and add another I save and continue editing

_images/dashboard-dropdown.png
Dashboard

Your languages Suggested translations Pulse + Tools +
9

Words Review Checks Suggestions

Project Translated

Gammu/Gammu: Documenta O oo 427% 423% 2 o # Translate
(czech)

Gammu/Wammu: Documentation) o56% 972% 43% 3 o # Translate
(czech)

Gammu/Website (Czech) [] 837% 523% 0.0% 0 o # Translate
Liberapay/Core (Czech) O sos5% 826% 0.1% 1 o # Translate
phpMyAdmin/a.7 (Czech) O o19% 912% 5.4% 0 o # Translate
phpMyAdmin/Development (Czech) O o13% 904% 5.8% o o # Translate
phpMyAdmin/Documentation [| 145% 6.8% 10.4% o o # Translate
(czech)

phpMyAdmin/sQL parser (Czech) [] 6.9% 3.1% 465% 0 o # Translate

B - Good translations [- Translations with failing checks [l - Fuzzy translations

Manage your languages | Manage watched projects

Powered by Weblate 2.16-dev About Weblate Legal ~ Contactus ~ Documentation Donate to Weblate!

_images/automatic-translation.png
Weblate / Application / Czech

Overview Information Search Pulse Files ~ Share ~ @ Unwatch

Data exports

Automatic translation

Locking

y y - I . Commit
Automatic translation takes existing translations in this project

a different branch, to fix inconsistent translations or to translat__Repository maintenance

int component. It can be used to push translations to

1slation memory.

() Overwrite strings

Search and replace

(] Replace inconsistent
Component to use

All components in current project

Process.

Powered by Weblate 2.16-dev About Weblate Legal ~ Contactus ~Documentation Donate to Weblate!

_images/bitbucket-settings.png
@ LN weblate-test Michal Cihaf' / weblate-test
Settings
Q B overview
+ GENERAL Webhooks
<> Source i
Repository details Edit Weblate
¢ Commits User and group access To learn more about how webhooks work, check out the documentation.
Access keys T
35 mranches Tille | Weblate]
Username aliases
T3 Pull requests Strip commits URL | hitps:/iosted.weblate.org/hooksibitb. |
© Pipelines Unpublish commits Status (W Active
B nacive webhooks don' figger requess.
B pownloads WORKFLOW
SSL/TLS (] skip certificate verification
{3 settings Branch permissions Unirusted o self-signed certficates may not be secure. Leam
Bookmark management more
SHARE YOUR THOUGHTS Defaultreviewers Triggers (®) Repository push
Give feedback Webhooks O Choose from a full st of triggers
5 o rew e Links By cancel
FEATURES
wiki
Issue tracker

_images/github-settings-edit.png
Pull requests Issues Marketplace

[WeblateOrg / hello @Unwatch~ 2 sUnstar 7 | YFork 12
Code Pull requests Projects 0 £ Settings Insights ~
Options Services / Add Weblate

Collaborators & teams
“This service will notify Weblate about pushes to your repository
Branches Weblate will then refresh updated translations and merge them with your
changes.
Webhooks
More info: htp:/weblate.org/
Integrations & services.

Install Notes
Deploy keys

‘You need to have enabled hooks in your Weblate installation (this is default)

see documentation for more information:
hitps:/weblate.readthedocs. org/enviatest/api. htminotification-hooks

url

hitps://hosted weblate.org/

(@ Active
We willrun ths service when an event s tiggered.

©2017GitHub, Inc. Terms Privacy Securlty Status Help ContactGitHub API

Training Shop Blog About

_images/engage.png
Get involved in Weblate!

Hi, and thank you for your interest!

Weblate is being translated using Weblate, a web tool designed to ease translating for
both developers and translators.

Translation project for Weblate currently contains 2014 strings for translation and is
being translated into 56 languages. Overall, these translations are 55.9% complete.

If you would like to contribute to translation of Weblate, you need to register on this
server.

Once you have activated your account just proceed to the translation section.

Powered by Weblate 2.16-dev About Weblate Legal ~ Contactus ~ Documentation Donate to Weblate!

_images/export-import.png
Weblate / Application / Czech

Overview Information Search Pulse + Tools - Share - ® Unwatch
Download original translation file (Gettext PO file)
L Download translation as XLIFF _

Download translation as XLIFF 1.2

Uploaded file will be merged with current translatio \gs, don't forget to enable it.
Download translation as Gettext PO

nslated

File Download translation as Gettext MO

ey SOUbOT nevybran. Download translation as CSV.

Merge method Download compiled translation

Add as translation up
Processing of strings needing review

Do notimport j

(¥ Merge file header
Merges content of file header into the translation.

(@ Overwrite existing translations
Whether to overwrite existing translations if the string is already translated.

Author name

Keep empty for using currently logged in user.

Author email

Keep empty for using currently logged in user.

Upload

Powered by Weblate 2.16-dev About Weblate Legal ~ Contactus ~Documentation Donate to Weblate!

_images/install-with-yunohost.png

_images/github-settings.png
WeblateOrg / hello @Unwatch~ 2 sUnstar 7 YFork 12

Code Pull requests 0 Projects 0 £ Settings Insights +
Options Installed GitHub Apps

Collaborators & teams
GitHub Apps augment and extend your workflows on GitHub with commercial, open source, and homegrown tools.

Branches
Webhooke . Codecov Configure
Integrations & services. .
@, probot-stale Configure
Deploy keys
Services Add service
Avallable Services
Services are pre-buil integrations that perform certain actions when
weblate
WebTranslatelt

©2017 GitHub, Inc. Terms Privacy Securty Status Help GonfactGitHub API Tralning Shop Biog About

_images/glossary-edit.png
GePeS / glossaries / Czech

Source Translation

latitude sitka

Powered by Weblate 2.16-dev About Weblate Legal

Export glossary ~ History

Contact us

Documentation

Donate to Weblate!

_images/profile-subscriptions.png
Your profile

Languages Preferences Account Authentication Profile Licenses Auditlog APlaccess Billing
SIS e

You will receive chosen notifications via email for all your languages.

Darky

Watched projects are also shown on dashboard, so choose all projects you want to
Gammu translate.
GePeS

Documentation

odorik
phpMyAdmin Subscription settings
Ukolovnik Component wide notifications
Weblate You will receive notification on every such event in your watched projects.
Website (] Notification on merge failure

() Notification on new language request
You will automatically receive important notifications on managed projects.
Translation notifications

You will receive these notifications only for your translated languages in your watched
projects.

ject

Watched projects () Notification on any translation

Available: Selected: (1) Notification on new string to translate

Airsonic Darky
; () Notification on new suggestion

Andor's Trail Gammu
AndroBD GePeS [m] Notification on new contributor
Android Betterpickers Liberapay O Notification on new comment
Android IMSI-Catcher Detector Odorik
Android-Open-Radio phpMyAdmin
Appstream Ukolovnik save
ARandR Weblate

You can receive notifications for watched projects and they are shown on dashboard

by default.
Save

Powered by Weblate 2.16-dev About Weblate Legal ~ Contactus ~ Documentation Donate to Weblate!

_images/project-access.png
Access control

Public ki

How to restrict access to this project, please check documentation for more details.

Public
Publicly visible and translatable
Protected

Publicly visible but translatable only for selected users
Private

Visible and translatable only for selected users

(W Enable reviews

Enable this if you intend to use deditated reviewers to approve translations.

Change

_images/manage-users.png
Website / Manage users

Username Full name E-mail Glossary ~ Languages Screenshots ~ Template Translate VCS

nijel Michal Cihaf michal@cihar.com ~ ~ ~ ~ ™~ ™~ 4

‘The user will be removed from the project once you remove last user permission.

Add new user

User to add

Please provide username or email. User needs to already have an active account in Weblate.

Add

Powered by Weblate 2.16-dev About Weblate Legal ~ Contactus ~ Documentation Donate to Weblate!

_images/plurals.png
phpMyAdmin / Development / Czech

W« Allstings(787/3213)~ B M

Source

One
%1$s| 1| match in | 2 [%2$s| 3 | 4

Other
%1s| 5 | matches in 6 %2$s| 7 | 8 |

One @

%1$s odpovidajici zéznam v %2$s

Few ©

%1$s odpovidajici ziznamy v 2%2$s

Other @

%1$s odpovidajicich zaznamé v 2%2$s

Plural equation: (1==1)70: (n>=2 &&n<=4)?71:2

(] Needs review

translate

B copy| []e]]L

®copy | []e .],

BCopy - « .. . ",

Commit message: | Ad

Nearby messages @ Other translations @) Comments Machine translation Other languages
When user Action Translation
No matching activity has been found.
Browse all component changes
Powered by Weblate 2.16-dev About Weblate Legal Contactus Documentation Donate to Weblate!

Things to check

Other translations.

XZzen

Translation

Screenshot context

No screenshot currently associated!
Flags

php-format

Source string location
librariesclasses/DbSearch.php:330
Source string age

2 years ago

Translation file

pojcs.po, translation unit 787
String priority

Medium

No related strings were found in the glossary.

_images/project-access1.png
Access control

Public ki

How to restrict access to this project, please check documentation for more details.

Public
Publicly visible and translatable
Protected

Publicly visible but translatable only for selected users
Private

Visible and translatable only for selected users

(W Enable reviews

Enable this if you intend to use deditated reviewers to approve translations.

Change

_images/project-glossaries.png
F-Droid

Components Languages Information

Arabic
Chinese (Hong Kong)
Chinese (simplified)
Chinese (Traditional)
Estonian

Finnish

German

Hebrew

Hungarian

Icelandic

Indonesian

Italian

persian

Russian

serbian

Turkish

Vietnamese

Manage all glossaries

Powered by Weblate 2.16-dev About Weblate

Legal

Gl

Contact us

Pulse v+ Tools~ Share v

Documentation

Donate to Weblate!

® Watch

1715

_images/secondary-language.png
Weblate / Application / Czech / translate

K @ Allstrings (358/1691) ~ W M xzen
Translate = Glossary 3
Slovaks Source Translation

report oznamit copy
Spravy
Source Translation ddd
Source
Reports
Translation copy) Clel=ERRER
1 Copy Screenshot context ’
Zprévy

(] Needs review

» skip Commit message: | Additional text to include in t

Nearby messages @) ~ Comments Machine translation Other languages Flags s
No flags currently sett
When User Action Translation Source string location

No matching activity has been found. weblatejtemplates/adminjcustom-
index html:10

Source string age
Browse all component changes

2 years ago
Translation file

‘weblate/locale/cs/LC_MESSAGES/django.po,
translation unit 358

Powered by Weblate 2.16-dev About Weblate Legal ~ Contactus ~ Documentation Donate to Weblate!

_images/source-information.png
Screenshot context s

No screenshot currently associated!
Flags s
No flags currently set!

Source string location

‘weblate/templates/admin/custom-
index html:13 weblate/templates/admin/
reporthtml:4 weblateftemplates/admin/
reporthtml:13

Source string age
2 years ago
Translation file

‘weblate/locale/cs/LC_MESSAGES/django.po,
translation unit 359

String priority s
Medium

_images/screenshot-context.png
T

T ——

No flags currently set!
Source string location

‘weblate/templates/about html:5 weblate/
templates/about html:13 weblate/templates/
footerhtml:6 weblate/trans/views/basic.py:592

Source string age
2 years ago
Translation file

‘weblate/locale/cs/LC_MESSAGES/django.po,
translation unit 234

String priority s

Medium

_images/screenshot-ocr.png
Weblate / Application / Screenshots / Reporting

Screenshot has been uploaded, you can now assign it to source strings.

Assigned source stri

Source st

No source strings are currently assigned!

Screenshot is shown to add visual context for all listed source strings.

Reports number of strings and words translated by each translator.
translate

Download

Unwatch

Starting date

Ranart farmat

Source string search

Image

Weblate / Application

Translations Information [NUEFUICEAN Tools ~ Share + @ Unwatch

Download statistics (CSV)
Credits list all translators who t entin a given time Reports number of strings and words translated by each translator.

period. It can be useful for incli_ Download statistics SON) _appjication to thank
translators. Translatio

Report format

restructuredText

Report format

reStructuredText J Choose file format for the report
Choose file format for the report starting date
Starting date 2000-01-01

2000-01-01 Ending date
Ending date 2100-01-01

2100-01-01

Generate
Generate

Powered by Weblate 2.16-dev About Weblate Legal Contactus Documentation Donate to Weblate!

ho

Screenshot name

Reporting
Image
Currently: screenshots/reporting.png
Change:

Prochizet.. | Soubor nevybran.

Upload JPEG or PNG images up to 2000x2000 pixels.

Delete screenshot

Deleting screenshot will remove it from all associated source strings.

Powered by Weblate 2.16-dev About Weblate Legal ~ Contactus ~ Documentation Donate to Weblate!

_images/source-review.png
Weblate / Application / source strings

All strings. [1691} Project website https://weblate.org/

SR S S o Mailing list for translators weblate@lists.cihar.com

The iranslations in several languages have failing checks o Instructions for translators https://weblate org/contribute/
Translation process « Translations can be made directly.

Strings with comments (3]

« Any authenticated users can contribute.

Translation license GPL-3.0+

Repository https://github.con/WeblateOrg/weblate . git
Repository branch master 21ee16548

Repository with Weblate https://hosted.weblate.org/git/weblate
translations /master/

Powered by Weblate 2.16-dev About Weblate Legal ~ Contactus ~ Documentation Donate to Weblate!

_images/ssh-keys-added.png
Weblate administration WELGOME, MICHAL EIHAR. VIEW SITE / DOCUMENTATION / GHAN ORD / LOG OUT

Home» SSH keys

A Added host key for bitbucket org with fingerprint 97.8¢:1b:2:6114:6b:5¢:3biec:aa46:46:747c:40 (ssh-rsa), please verify thatitis correct.

_images/source-review-detail.png
Weblate / Application / source strings / review

Ko« 171 »

Source Priority
v . Medium #
Status of repositories
Language Status Checks Check flags Add~
Galician °
X Please enter a comma separated list of check flags, see documentation for more
Turkish) ;
details.
Lithuanian ° o
Thai o Priority
Medium 5
Ta o
Strings with higher priority are offered first to translators.
Portuguese (Brazil) °
Save
Cerman ° Screenshot context
Dat] No screenshot currently associated! [l Manage screenshots
Greek ° Add new
Esperanto o Screenshot name
Russian °
Image
Romanian °
Prochizet.. | Soubor nevybran.
Belarusian) Upload JPEG or PNG images up to 2000x2000 pixels.
Bulgarian °
Ukrainian ° -
Astui o Source string location
weblate/templates/admin/custom-index.html:13 weblate/templates/admin/
Breton ° reporthtml:4 weblate/templates/admin/reporthtml:13
Japanese ® Source string age
2 years ago
Occit:
citan ° Translation file
Catalan © weblate/locale/gl/LC_MESSAGES/django.po, translation unit 359
czech °
Portuguese °
Punjabi °
Vietnamese °
English (United Kingdom) °
Armenian °
Hungarian °
Hebrew °
Polish °
Swahi °
Italian °
Arabic °
Azerbaijani °
Indonesian °
Dutch o
Spanish °
French °
Frisian °
Swedish °
Persian °
Finnish °
Serbian °
Albanian °
Korean °
Central Khmer °
Slovak °
Slovenian °
Norwegian Bokmal °
Belarusian (latin) °
Kurdish Sorani °
Klingon °
Colognian °
Acholi °
Chinese (Traditional) °
Chinese (simplified) °
Kabyle °

Ko« 171 »

Powered by Weblate 2.16-dev About Weblate Legal ~ Contactus ~Documentation Donate to Weblate!

_images/source-review-edit.png
Check flags Add v

Please enter a comma separated list of check flags, see documentation for more
details.

Medium J
Strings with higher priority are offered first to translators.

Save
Screenshot context

No screenshot currently associated! @l Manage screenshots

Screenshot name

Image

Prochézet.. | Soubor nevybran.

Upload JPEG or PNG images up to 2000x2000 pixels.

Source string location

weblate/templates/admin/custom-index.html:13 weblate/templates/admin/
reporthtml:4 weblate/templates/admin/report.html:13

Source string age
2 yearsago
Translation file

weblate/locale/gl/LC_MESSAGES/django.po, translation unit 359

_images/ssh-keys.png
Public SSH key

Weblate currently uses following SSH key:

‘ssh-rsa AAAABINZACTyC2EAAAADAQABAAABAQDdrqqM25qcUOY OpKhvBWzXWTJal/lyb23IP6Wsow

/NEbShCZNDS36wD21KUXIMIBQErMS2JBynx2g4QkakMjSpCrPCiAXibXCSOY CrXEWStEASZrA2YVXWWC3rVSBIBpXNe8mnpgS
/P /maimdnivSFmineVTiAONSrvx.I00kfl ASHMXaMLUWASeeSFYiiFmaalimsIK.IXoKDhbwh6NaaGmGwe/dS1/SafMwFROHARA7 33V 4/0d/al WhowAASVOTx

Known host keys

HOSTNAME KEY TYPE FINGERPRINT
github.com ssh-rsa 16:27:ac:a5:76:28:20:36:63:1b:56:4d eb:dif-a6:48.
19230252130 ssh-rsa 16:27:ac:a5:76:28:2d:36:63:1b:56:4d-eb:df-a6:48
gitlab.com ssh-rsa b6:03:00:39:97-9e:d0:€7:24:ce:a3:77:3e:01:42:09
gitlab.com ecdsa-sha2-nistp256 f1:d0:fb:46:73:7a:70:92:5a:ab:5d ef 43:e21¢:35
gitlab.com 'ssh-ed25519 2e:65:6a:c8:cfbf b2:8b:9a:bd:6d:9f:11:5¢:12:16
19230253112 ssh-rsa 16:27:ac:a5:76:28:2d:36:63:1b:56:4d-eb:df-a6:48
Add host key

To access SSH hosts, its host key needs to be verified. You can get the host key by entering a domain name or IP for the host in the form below.
Host: Port:

bm

More information

You can find more information about setting up SSH keys in the Weblate manual.

_static/weblate.png

_images/reporting.png
Weblate / Application

Translations Information il Tools + Share ~ @ Unwatch

History
Activity _ contributo

o Download statistics (CSV) P .
Credits list all translators who entin a given time Reports number of strings and words translated by each translator.

period. It can be useful for incli__Download statistics §SON) 5 ppjication to thank
translators.

at: o

Report format

Report format restructuredText J
reStructuredText Choose file format for the report
Choose file format for the report starting date
starting date 2000-01-01
2000-01-01 Ending date
Ending date 2100-01-01
2100-01-01
Generate
Generate

Powered by Weblate 2.16-dev About Weblate Legal ~ Contactus ~ Documentation Donate to Weblate!

_images/weblate-status-badge.png
translated 62%

_images/weblate-287x66-white.png
Weblate
L translating 1104 strings nto 33 languages

62% complete, hel us improve!

_images/weblate-88x31-grey.png
Weblate
W rimition
'L {ranslatir

_images/whiteboard.png
Home Weblate translations » Whiteboard messages » Translations will be used only if they reach 60%

Change Whiteboard message

Required fields are marked as bold, you can find more information in the documentation.

Message: Translations will be used only if they reach 60%.

Project: Hello oo+

category: Info (ightbive)]

Category defines color used for the message.

and add another Save and continue editing

_images/your-translations.png
Dashboard

Watched tra

Your languages @9 Suggested translations @ Insights v Tools ~

Project Translated Words Review Checks Suggestions ul

Gammu/Gammu: Documentation (Czech) O soo0% 427% 423% 2 o # Tanslate
Gammu/Wammu: Documentation (Czech) O 56% 972% 4.3% 3 o # Tanslate
Gammu/Website (Czech) [] 83.7% 523% 0.0% 0 o # Translate
Liberapay/Core (Czech) O sos% 826% 0.1% 1 o # Translate
phpMyAdmin/4.7 (Czech) O o19% 912% 5.4% 0 o # Translate
phpMyAdmin/Development (Czech) N o13% 904% 5.8% o o # Translate
phpMyAdmin/Documentation (Czech) [| 145% 6.8% 10.4% o o # Tanslate
phpMyAdmin/SQL parser (Czech) [| 6.9% 3.1% 46.5% 0 o # Translate

(B - Good translations [- Translations with failing checks [l - Fuzzy translations

Manage your languages || Manage watched projects

Powered by Weblate 2.16-dev About Weblate Legal ~ Contactus ~ Documentation ~ Donate to Weblate!

_images/whiteboard-language.png
Languages / Czech

Czech translators rock!

Project

AcL

Hello

Powered by Weblate 2.16-dev

History Activity

About Weblate

Legal

Glossaries

Tools +

Translated

Contact us

Documentation

58.3%

76.9%

182%

Donate to Weblate!

Words

53.3%

76.0%

6.8%

_images/whiteboard-project.png
Hello

Translations will be used only if they reach 60%.

mponen Languages Information Glossaries Insights ~ Tools ~

Component Translated

Android [1]
Gettext EWY

Weblate]

B - Good translations (1] - Translations with failing checks [l - Fuzzy translations

Share +

14.4%

417%

3.8%

Powered by Weblate 2.16-dev About Weblate Legal ~ Contactus ~Documentation Donate to Weblate!

@ Unwatch

Words

- 14.4%
- s

(] 3.0%

_images/strings-to-check.png
Weblate / Application / Kabyle

Information ~ Search Insights ~ Files~ Tools~ Share v @ Unwatch

lation status

strings - s16% =
words - 16%

B - Good translations (] - Translations with failing checks [l - Fuzzy translations

Strings to check e
All strings
Translated strings [536
strings needing action
Not translated strings
strings marked for review (2]

Strings with suggestions

Strings with any failing checks

Source and translation do not both end with a space

Source and translation do not both end with an ellipsis

Source and translation do not both end with a colon or colon is not correctly spaced
Source and translation do not both end with a full stop

strings with comments

Random strings for review

Other component

Translated Words Review Checks Suggestions ul
N 100.0% 100.0% 0.0% 0 1 # Translate
Website [] 37.1% 19.9% 0.0% 4 o # Translate

B - Good translations (1] - Translations with failing checks [- Fuzzy translations

Powered by Weblate 2.16-dev About Weblate Legal ~ Contactus ~Documentation Donate to Weblate!

_images/visual-keyboard.png
Source
Hello, world!e

Translation

. nBs

— | zwny

2w) | LRM | RLM | LRE | RLE | PDF | LRO RLO| 'RTL LTR

() Needs review

Commit message: | Additional text to include

_static/ajax-loader.gif

_static/comment-close.png

_static/comment-bright.png

