

Weblate

[image: Build status]
 [https://cloud.drone.io/WeblateOrg/weblate][image: Translation status]
 [https://hosted.weblate.org/engage/weblate/?utm_source=widget][image: Codecov Coverage Status]
 [https://codecov.io/gh/WeblateOrg/weblate][image: CII Best Practices]
 [https://bestpractices.coreinfrastructure.org/projects/552][image: _images/Weblate.svg]
 [https://pypi.org/project/Weblate/][image: _images/weblate.svg]
 [https://docs.weblate.org/]Weblate is a libre software web-based continuous localization system used by
over 1150+ opensource projects & companies in over 115+ countries around the
World.

The Weblate is to be found at https://weblate.org/

Documentation

Detailed documentation is available in the docs directory of the sources.

The documentation can be also viewed online on https://docs.weblate.org/.

Installation

Installation and setup instructions are provided in the manual, check
the quick setup guide:

https://docs.weblate.org/en/latest/admin/quick.html

Bugs

Please report bugs to https://github.com/WeblateOrg/weblate/issues

License

Copyright © 2012 - 2019 Michal Čihař michal@cihar.com

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program. If not, see https://www.gnu.org/licenses/.

User docs

	Weblate basics

	Registration and user profile

	Translating using Weblate

	Downloading and uploading translations

	Checks and fixups

	Searching

	Simple search

	Fields

	Boolean operators

	Field operators

	Regular expressions

	Application developer guide

	Translation workflows

	Frequently Asked Questions

	Supported file formats

	Version control integration

	Weblate’s Web API

	Weblate Client

	Weblate’s Python API

Administrator docs

	Installation instructions

	Configuration instructions

	Weblate deployments

	Upgrading Weblate

	Backing up and moving Weblate

	Authentication

	Access control

	Translation projects

	Language definitions

	Continuous localization

	Licensing translations

	Translation process

	Checks and fixups

	Machine translation

	Addons

	Translation Memory

	Configuration

	Sample configuration

	Management commands

	Whiteboard messages

	Component Lists

	Optional Weblate modules

	Customizing Weblate

	Django admin interface

	Getting support for Weblate

	Changes

Contributor docs

	About Weblate

	Contributing

	Debugging Weblate

	Internals

	License

	Legal documents

Indices and tables

	Index

	Search Page

Weblate basics

Project structure

Internally, each project has translations to common strings propagated across
other components within it by default. This lightens the burden of repetitive
and multi version translation. Disable it as per Component configuration, still
producing errors for seemingly inconsistent resulting translations.

Registration and user profile

Registration

While everybody can browse projects, view translations or suggest them, only
registered users are allowed to actually save changes and are credited for
every translation made.

You can register by following a few simple steps:

	Fill out the registration form with your credentials

	Activate registration by following in e-mail you receive

	Possibly adjust your profile to choose which languages you know

Dashboard

When you log in to Weblate, you will see an overview of projects and components
as well as their translation progress.

New in version 2.5.

By default, this will show the components of projects you are watching,
cross-referenced with your preferred languages. You can switch to different
views using the navigation tabs.

[image: ../_images/dashboard-dropdown.png]
The tabs will show several options:

	All projects will show translation status of all projects on the
Weblate instance.

	Your languages will show translation status of all projects,
filtered by your primary languages.

	Watched will show translation status of only those
projects you are watching, filtered by your primary languages.

In addition, the drop-down can also show any number of component lists, sets
of project components preconfigured by the Weblate administrator, see
Component Lists.

You can configure your preferred view in the Preferences section of
your user profile settings.

Note

When Weblate is configured for single project using
SINGLE_PROJECT, the dashboard month not be shown at all.

User profile

User profile contains your preferences, name and e-mail. Name and e-mail
are being used in VCS commits, so keep this information accurate.

Note

All language selections offers only languages which are currently being
translated. If you want to translate to other language, please request it
first on the project you want to translate.

Translated languages

Choose here which languages you prefer to translate. These will be offered to
you on main page for watched projects to have easier access to these translations.

[image: ../_images/your-translations.png]

Secondary languages

You can define secondary languages, which will be shown you while translating
together with source language. Example can be seen on following image, where
Slovak language is shown as secondary:

[image: ../_images/secondary-language.png]

Default dashboard view

On the Preferences tab, you can pick which of the available
dashboard views will be displayed by default. If you pick Component
list, you have to select which component list will be displayed from the
Default component list drop-down.

See also

Component Lists

Avatar

Weblate can be configured to show avatar for each user (depending on
ENABLE_AVATARS). These images are obtained using
https://gravatar.com/.

Editor link

By default Weblate does display source code in web browser configured in the
Component configuration. By setting Editor link you can override this to
use your local editor to open the source code where translated strings is being
used. You can use Template markup.

Usually something like editor://open/?file={{filename}}&line={{line}} is a good
option.

See also

You can find more information on registering custom URL protocols for editor in
nette documentation [https://tracy.nette.org/en/open-files-in-ide].

Notifications

You can subscribe to various notifications on Subscriptions tab.
You will receive notifications for selected events on watched or administered
projects.

Some of the notifications are sent only for events in your languages (for
example about new strings to translate), while some trigger at component level
(for example merge errors). These two groups of notifications are visually
separated in the settings.

You can toggle notifications for watched projects, administered project and it
can be further tweaked per project and component. To configure (or mute)
notifications per project or component, visit component page and select
appropriate choice from the Watching menu.

Note

You will not receive notifications for actions you’ve done.

[image: ../_images/profile-subscriptions.png]

Account

On the Account tab you can configure basic aspects of your account,
connect various services which you can use to login into Weblate, completely
remove your account or download your user data.

Note

List of services depends on Weblate configuration, but can include popular
sites such as Google, Facebook, GitHub or Bitbucket.

[image: ../_images/authentication.png]

Translating using Weblate

Thank you for interest in translating using Weblate. Projects can be either be
set up for direct translation, or by way of accepting suggestions on behalf of
users without accounts.

Overall, there are the modes of translation:

	Projects accepts direct translations

	Projects accepts only suggestions, which are accepted once given a defined number of votes

Options for translation project visibility:

	Publicly visible and anybody can contribute

	Visible only to a certain group of translators

Please see Translation workflows for more info on translation workflow.

Translation projects

Translation projects hold related components, related to the same software, book, or project.

[image: ../_images/project-overview.png]

Translation links

Having navigated to a component, a set of links lead to actual translation.
The translation is further divided into individual checks, like
Untranslated or Needing review. If the whole project
is translated, without error, All translations is still available.
Alternatively you can use the search field to find a specific string or term.

[image: ../_images/strings-to-check.png]

Suggestions

Note

Actual permissions might vary depending on your Weblate configuration.

Anonymous users can only (if permitted) forward suggestions. Doing so is still
available to logged in users, in cases where uncertainty about the translation
arises, which will prompt another translator to review it.

The suggestions are dialy scanned to remove duplicate ones or the one where
suggestion matches current translation.

Comments

The comments can be posted in two scopes - source string or translation. Choose
the one which matches topic you want to discuss. The source string comments are
good for prividing feedback on the original string, for example that it should
be rephrased or is confusing.

Translating

On the translation page, the source string and an edit area for translating it is shown.
Should the translation be plural, multiple source strings and edit areas are
shown, each described and label in plural form.

Any special whitespace characters you will find underlined in red and indicated with grey
symbols. More than one subsequent space is also underlined in red to alert the translator to
its formatting.

Various bits of extra info can be shown on this page, most which comes from the project source code
(like context, comments or where the message is being used). When you choose secondary languages in your
preferences, translation to these languages will be shown (see Secondary languages).

Below the translation, any suggestions made by others will be shown, which you
can in turn accept, accept and make changes, or delete.

Plurals

Words that change form to account of their numeric designation are called
plurals. Each language has its own definition of plurals. English, for
example, supports one plural. In the singular definition of for example “car”,
implicitly one car is referenced, in the plural definition, “cars” two or more
cars are referenced, or the concept of cars as a noun. Languages like for
example Czech or Arabic have more plurals and also their rules for plurals are
different.

Weblate has full support for each of these forms, in each respective language
by translating every plural separately. The number of fields and how it is
used in the translated application depends on the configured plural equation.
Weblate shows the basic info, but you can find a more detailed description in
the Language Plural Rules [https://unicode.org/cldr/charts/latest/supplemental/language_plural_rules.html] by the Unicode Consortium.

[image: ../_images/plurals.png]

Keyboard shortcuts

Changed in version 2.18: The keyboard shortcuts have been revamped in 2.18 to less likely collide
with browser or system defaults.

The following keyboard shortcuts can be utilized during translation:

	Alt+Home

	Navigates to first translation in current search.

	Alt+End

	Navigates to last translation in current search.

	Alt+PageUp

	Navigates to previous translation in current search.

	Alt+PageDown

	Navigates to next translation in current search.

	Ctrl+⏎ or ⌘+⏎ or Ctrl+Enter or ⌘+⏎

	Saves current translation.

	Ctrl+Shift+⏎ or ⌘+Shift+⏎

	Unmarks translation as fuzzy and submits it.

	Ctrl+E or ⌘+E

	Focus translation editor.

	Ctrl+U or ⌘+U

	Focus comment editor.

	Ctrl+M or ⌘+M

	Shows machine translation tab.

	Ctrl+<NUMBER> or ⌘+<NUMBER>

	Copies placeable of given number from source string.

	Ctrl+M <NUMBER> or ⌘+M <NUMBER>

	Copy machine translation of given number to current translation.

	Ctrl+I <NUMBER> or ⌘+I <NUMBER>

	Ignore failing check of given number.

	Ctrl+J or ⌘+J

	Shows nearby strings tab.

	Ctrl+S or ⌘+S

	Shows search tab.

	Ctrl+O or ⌘+O

	Copies source string

	Ctrl+T or ⌘+T

	Toggles edit needed flag.

Visual keyboard

A small visual keyboard is shown when translating. This can be useful for
typing characters not usually found or otherwise hard to type.

The shown symbols factor into three categories:

	User configured characters defined in the User profile

	Per language characters provided by Weblate (e.g. quotes or RTL specific characters)

	Chars configured using SPECIAL_CHARS

[image: ../_images/visual-keyboard.png]

Translation context

This contextual description provides related info about the current string.

	String attributes

	Things like message ID, context (msgctxt) or location in source code.

	Screenshots

	Can be uploaded to Weblate to better inform translators
of where and how the string is used, see Visual context for strings.

	Nearby messages

	Displays neighbouring messages from the translation file. These
are usually also used in a similar context and prove useful in keeping the translation consistent.

	Similar messages

	Messages found to be similar the current source string, which helps in providing a consistent translation.

	All locations

	In case a message appears in multiple places (e.g. multiple components),
this tab shows all of them if found to be inconsistent (see
Inconsistent), you can choose which one to use.

	Glossary

	Displays terms from the project glossary used in the current message.

	Recent edits

	List of people whom have changed this message recently using Weblate.

	Project

	Project info like instructions for translators, or info about
its version control system repository.

If the translation format supports it, you can also follow supplied links to respective
source code containing each source string.

Translation history

Every change is by default (unless turned off in component settings) saved in
the database, and can be reverted. Optionally one can still also revert anything
in the underlying version control system.

Translated string length

Weblate can limit length of translation in several ways to ensure the
translated string is not too long.

	The default limitation for translation is ten times longer than source
string. This can be turned of by
LIMIT_TRANSLATION_LENGTH_BY_SOURCE_LENGTH. In case you are hitting
this, it might be also caused by monolingual translation being configured as
bilingual, making Weblate see translation key as source string instead of the
actual source string. See Bilingual and monolingual formats for more info.

	Maximal length in characters defined by translation file or flag, see
Maximum Length.

	Maximal rendered size in pixels defined by flags, see Maximum size of translation.

Glossary

Each project can have an assigned glossary for any language as a shorthand for storing terminology.
Consistency is more easily maintained this way.
Terms from the currently translated string can be displayed in the bottom tabs.

Managing glossaries

On the Glossaries tab of each project page, you can find a link that reads
Manage all glossaries, wherein you can start new glossaries or edit
existing ones. Once a glossary exists, it will also show up in this tab.

[image: ../_images/project-glossaries.png]
On the next page, you can choose which glossary to manage (all languages used in
the current project are shown). Following this language link will lead you to a page
which can be used to edit, import or export the glossary:

[image: ../_images/glossary-edit.png]

Machine translation

Based on configuration and your translated language, Weblate provides you
suggestions from several machine translation tools. All machine translations
are available in a single tab of each translation page.

See also

You can find list of supported tools in Machine translation.

Automatic translation

You can use automatic translation to bootstrap translation based on external sources.
This tool is called Automatic translation accessible in the Tools menu:

[image: ../_images/automatic-translation.png]
Two modes of operation are possible:

	Using other Weblate components as a source for translations.

	Using selected machine translation services with translations above a certain
quality threshold.

You can also choose which strings are to be auto-translated.

Warning

Be mindful that this will overwrite existing translations if employed with
wide filters such as All strings.

Useful in several situations like consolidating translation
between different components (for example website and application) or when
bootstrapping translation for a new component using existing translations
(translation memory).

Rate limiting

To avoid abuse of the interface, there is rate limiting applied to several
operations like searching, sending contact form or translating. In case you are
are hit by this, you are blocked for certain period until you can perform the
operation again.

The default limits are described in the administrative manual in
Rate limiting, but can be tweaked by configuration.

Downloading and uploading translations

You can export files from a translation, make changes, and import them again. This allows
working offline, and then merging changes back into the existing translation.
This works even if it has been changed in the meantime.

Note

The available options might be limited by Access control.

Downloading translations

Translatable files can be downloaded using the Download source file
in the Files menu, producing a copy of the file as it is stored
in upstream version control system.

You can either download the original file as is or converted into one of widely
used localization formats. The converted files will be enriched with data
provided in Weblate such as additional context, comments or flags.

Several file formats are available, including a compiled file
to use in your choice of application (for example .mo files for GNU Gettext) using
the Files.

Uploading translations

When you have made your changes, use Upload translation
in the Files menu.

Any of supported file formats can be uploaded, but it is still
recommended to use the same file format as is used for translation, otherwise some
features might not be translated properly.

See also

Supported file formats

The uploaded file is merged to update the translation, overwriting existing
entries by default (this can be turned off or on in the upload dialog).

Import methods

These are the choices presented when uploading translation files:

	Add as translation

	Imported translations are added as translations. This is the most common usecase, and
the default behavior.

	Add as suggestion

	Imported translations are added as suggestions, do this when you want your
uploaded strings reviewed.

	Add as needing review

	Imported translations are added as translations needing review. This can be useful
when you want translations to be used, but also reviewed.

There is also an option for how to handle strings needing review in the imported
file.

[image: ../_images/export-import.png]

Checks and fixups

The quality checks help catch common translator errors, ensuring the
translation is in good shape. The checks are divided into three levels of severity,
and can be ignored in case of false positives.

Once submitting a translation with a failing check, this is immediately shown to
the user:

[image: ../_images/checks.png]

Automatic fixups

In addition to Quality checks, Weblate can also fix some common
errors in translated strings automatically. Use it with caution to not have
it add errors.

See also

AUTOFIX_LIST

Quality checks

Weblate employs a wide range of quality checks on strings. The following section
describes them all in further detail. There are also language specific checks.
Please file a bug if anything is reported in error.

See also

CHECK_LIST, Customizing behavior

Translation checks

Executed upon every translation change, helping translators maintain
good quality translations.

Unchanged translation

Happens if the source and correspanding translation strings is identical, down to
at least one of the plural forms. Some strings commonly found across all
languages are ignored, and various markup is stripped. This reduces
the number of false positives.

This check can help find strings mistakenly untranslated.

Starting or trailing newline

Source and translation do not both start (or end) with a newline.

Newlines usually appear in source strings for good reason, omissions or additions
can lead to formatting problems when the translated text is put to use.

Starting spaces

Source and translation do not both start with the same number of spaces.

A space in the beginning of a string is usually used for indentation in the interface and thus
important to keep.

Trailing space

Checks that trailing spaces are replicated between both source and translation.

Trailing space is usually utilized to space out neighbouring elements, so
removing it might break layout.

Trailing stop

Checks that full stops are replicated between both source and translation.
The presence of full stops is checked for various languages where they do not belong
(Chinese, Japanese, Devanagari or Urdu).

See also

Full stop on Wikipedia [https://en.wikipedia.org/wiki/Full_stop]

Trailing colon

Checks that colons are replicated between both source and translation. The
presence of colons is also checked for various languages where they do not
belong (Chinese or Japanese).

See also

Colon on Wikipedia [https://en.wikipedia.org/wiki/Colon_(punctuation)]

Trailing question mark

Checks that question marks are replicated between both source and translation.
The presence of question marks is also checked for various languages where they
do not belong (Armenian, Arabic, Chinese, Korean, Japanese, Ethiopic, Vai or
Coptic).

See also

Question mark on Wikipedia [https://en.wikipedia.org/wiki/Question_mark]

Trailing exclamation

Checks that exclamations are replicated between both source and translation.
The presence of exclamation marks is also checked for various languages where
they do not belong (Chinese, Japanese, Korean, Armenian, Limbu, Myanmar or
Nko).

See also

Exclamation mark on Wikipedia [https://en.wikipedia.org/wiki/Exclamation_mark]

Punctuation spacing

New in version 3.9.

Checks that there is non breakable space before double punctuation sign
(exclamation mark, question mark, semicolon and colon). This rule is used only
in a few selected languages like French or Breton, where space before double
punctuation sign is a typographic rule.

See also

French and English spacing on Wikipedia [https://en.wikipedia.org/wiki/History_of_sentence_spacing#French_and_English_spacing]

Trailing ellipsis

Checks that trailing ellipsises are replicated between both source and translation.
This only checks for real ellipsis (…) not for three dots (...).

An ellipsis is usually rendered nicer than three dots in print, and sound better with text-to-speech.

See also

Ellipsis on Wikipedia [https://en.wikipedia.org/wiki/Ellipsis]

Trailing semicolon

Checks that semicolons at the end of sentences are replicated between both source and translation.
This can be useful to keep formatting of entries such as desktop files.

See also

Semicolon on Wikipedia [https://en.wikipedia.org/wiki/Semicolon]

Maximum Length

Checks that translations are of acceptable length to fit available space.
This only checks for the length of translation characters.

Unlike the other checks, the flag should be set as a key:value pair like
max-length:100.

Formatted strings

Checks that formatting in strings are replicated between both source and translation.
Omitting format strings in translation usually cause severe problems, so the formatting in strings
should usually match the source.

Weblate supports checking format strings in several languages. The check is not
enabled automatically, only if a string is flagged appropriately (e.g.
c-format for C format). Gettext adds this automatically, but you will
probably have to add it manually for other file formats or if your PO files are
not generated by xgettext.

This can be done per unit (see Additional info on source strings) or in Component configuration.
Having it defined per component is simpler, but can lead to false positives in
case the string is not interpreted as a formating string, but format string syntax
happens to be used.

Besides checking, this will also highligh the formatting strings to easily
insert them into translated strings:

[image: ../_images/format-highlight.png]

Python format

	Simple format string

	There are %d apples

	Named format string

	Your balance is %(amount) %(currency)

	Flag to enable

	python-format

See also

Python string formatting [https://docs.python.org/3.7/library/stdtypes.html#old-string-formatting],
Python Format Strings [https://www.gnu.org/software/gettext/manual/html_node/python_002dformat.html]

Python brace format

	Simple format string

	There are {} apples

	Named format string

	Your balance is {amount} {currency}

	Flag to enable

	python-brace-format

See also

Python brace format [https://docs.python.org/3.7/library/string.html#formatstrings],
Python Format Strings [https://www.gnu.org/software/gettext/manual/html_node/python_002dformat.html]

PHP format

	Simple format string

	There are %d apples

	Position format string

	Your balance is %1$d %2$s

	Flag to enable

	php-format

See also

PHP sprintf documentation [https://secure.php.net/manual/en/function.sprintf.php],
PHP Format Strings [https://www.gnu.org/software/gettext/manual/html_node/php_002dformat.html]

C format

	Simple format string

	There are %d apples

	Position format string

	Your balance is %1$d %2$s

	Flag to enable

	c-format

See also

C format strings [https://www.gnu.org/software/gettext/manual/html_node/c_002dformat.html],
C printf format [https://en.wikipedia.org/wiki/Printf_format_string]

Perl format

	Simple format string

	There are %d apples

	Position format string

	Your balance is %1$d %2$s

	Flag to enable

	perl-format

See also

Perl sprintf [https://perldoc.perl.org/functions/sprintf.html],
Perl Format Strings [https://www.gnu.org/software/gettext/manual/html_node/perl_002dformat.html]

JavaScript format

	Simple format string

	There are %d apples

	Flag to enable

	javascript-format

See also

JavaScript formatting strings [https://www.gnu.org/software/gettext/manual/html_node/javascript_002dformat.html]

AngularJS interpolation string

	Named format string

	Your balance is {{amount}} {{ currency }}

	Flag to enable

	angularjs-format

See also

AngularJS: API: $interpolate [https://docs.angularjs.org/api/ng/service/$interpolate]

C# format

	Position format string

	There are {0} apples

	Flag to enable

	c-sharp-format

See also

C# String Format [https://docs.microsoft.com/en-us/dotnet/api/system.string.format?view=netframework-4.7.2]

Java format

	Simple format string

	There are %d apples

	Position format string

	Your balance is %1$d %2$s

	Flag to enable

	java-format

See also

Java Format Strings [https://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html]

Java MessageFormat

	Position format string

	There are {0} apples

	Flag to enable

	java-messageformat enables the check unconditionally

	
	auto-java-messageformat enables check only if there is a
format string in the source

See also

Java MessageFormat [https://docs.oracle.com/javase/7/docs/api/java/text/MessageFormat.html]

Qt format

	Position format string

	There are %1 apples

	Plural format string

	There are %Ln apple(s)

	Flag to enable

	qt-format, qt-plural-format

See also

Qt QString::arg() [https://doc.qt.io/qt-5/qstring.html#arg],
Qt i18n guide [https://doc.qt.io/qt-5/i18n-source-translation.html#handling-plurals]

Ruby format

	Simple format string

	There are %d apples

	Position format string

	Your balance is %1$f %2$s

	Named format string

	Your balance is %+.2<amount>f %<currency>s

	Named template string

	Your balance is %{amount} %{currency}

	Flag to enable

	ruby-format

See also

Ruby Kernel#sprintf [https://ruby-doc.org/core/Kernel.html#method-i-sprintf]

Placeholders

New in version 3.9.

Translation is missing some placeholders. These are either extracted from the
translation file or defined manually using placeholders flag, more can be
sparated with colon:

placeholders:URL:$TARGET$

Regular expression

New in version 3.9.

Translation does not match regular expression. The expression iseither extracted from the
translation file or defined manually using regex flag:

regex:^foo|bar$

Missing plurals

Checks that all plural forms of a source string have been translated.
Specifics on how each plural form is used can be found in the string definition.

Failing to fill in plural forms will in some cases lead to displaying nothing when
the plural tense is in use.

Same plurals

Check that fails if some plural forms duplicated in the translation.
In most languages they have to be different.

Inconsistent

Weblate checks translations of the same string across all translation within a
project to help you keep consistent translations.

The check fails on differing translations of one string within a project. This can also lead to
inconsistencies in displayed checks. You can find other translations of this
string on the All locations tab.

Has been translated

Means a string has been translated already. This can happen when the
translations have been reverted in VCS or lost otherwise.

Mismatched \n

Usually escaped newlines are important for formatting program output.
Check fails if the number of \\n literals in translation do not match the source.

BBcode markup

BBCode represents simple markup, like for example highlighting important parts of a
message in bold font, or italics.

This check ensures they are also found in translation.

Note

The method for detecting BBcode is currently quite simple so this check
might produce false positives.

Zero-width space

Zero-width space (<U+200B>) character are used to truncate messages within words.

As they are usually inserted by mistake, this check is triggered once they are present
in translation. Some programs might have problems when this character is used.

See also

Zero width space on Wikipedia [https://en.wikipedia.org/wiki/Zero-width_space]

XML syntax

New in version 2.8.

The XML markup is not valid.

XML markup

This usually means the resulting output will look different. In most cases this is
not desired result from changing the translation, but occasionally it is.

Checks that XML tags are replicated between both source and translation.

Unsafe HTML

New in version 3.9.

The translation uses unsafe HTML markup. This check has to be enabled using
safe-html flag (see Customizing behavior). There is also accompanied
autofixer which can automatically sanitize the markup.

See also

The HTML check is performed by the Bleach [https://bleach.readthedocs.io/]
library developed by Mozilla.

Markdown references

New in version 3.5.

Markdown link references do not match source.

See also

Markdown links [https://daringfireball.net/projects/markdown/syntax#link]

Markdown links

New in version 3.5.

Markdown links do not match source.

See also

Markdown links [https://daringfireball.net/projects/markdown/syntax#link]

Markdown syntax

New in version 3.5.

Markdown syntax does not match source

See also

Markdown span elements [https://daringfireball.net/projects/markdown/syntax#span]

Kashida letter used

New in version 3.5.

The decorative Kashida letters should not be used in translation. These are
also known as Tatweel.

See also

Kashida on Wikipedia [https://en.wikipedia.org/wiki/Kashida]

URL

New in version 3.5.

The translation does not contain an URL. This is triggered only in case the
unit is marked as containing URL. In that case the translation has to be a
valid URL.

Maximum size of translation

New in version 3.7.

Translation rendered text should not exceed given size. It renders the text
with line wrapping and checks if it fits into given boundaries.

This check needs one or two parameters - maximal width and maximal number of
lines. In case the number of lines is not provided, one line text is
considered.

You can also configured used font by font-* directives (see
Customizing behavior), for example following translation flags say that the
text rendered with ubuntu font size 22 should fit into two lines and 500
pixels:

max-size:500:2, font-family:ubuntu, font-size:22

Hint

You might want to set font-* directives in Component configuration to have same
font configured for all strings within a component. You can override those
values per string in case you need to customize it per string.

See also

Managing fonts, Customizing behavior

Source checks

Source checks can help developers improve the quality of source strings.

Unpluralised

The string is used as a plural, but does not use plural forms. In case your
translation system supports this, you should use the plural aware variant of
it.

For example with Gettext in Python it could be:

from gettext import ngettext

print ngettext('Selected %d file', 'Selected %d files', files) % files

Ellipsis

This fails when the string uses three dots (...) when it should use an ellipsis character (…).

Using the Unicode character is in most cases the better approach and looks better
rendered, and may sound better with text-to-speech.

See also

Ellipsis on Wikipedia [https://en.wikipedia.org/wiki/Ellipsis]

Multiple failing checks

Numerous translations of this string have failing quality checks. This is
usually an indication that something could be done to improving the source
string.

This check failing can quite often be caused by a missing full stop at the end of
a sentence, or similar minor issues which translators tend to fix in
translation, while it would be better to fix it in the source string.

Searching

New in version 3.9.

Weblate supports advanced queries where you can lookup strings you need. It
supports boolean operations, parenthesis or field specific lookups.

When not defining any field, the lookup happens on Source,
Target and Context fields.

[image: ../_images/search.png]

Simple search

When you type phrase into search box, it is split into words and it looks for
all strings containing all the words. To lookup exact phrase, put it into
quotes (both single and double quotes will work).

Fields

	source:TEXT

	Source string case insensitive search.

	target:TEXT

	Target string case insensitive search.

	context:TEXT

	Context string case insensitive search.

	comment:TEXT

	Comment string case insensitive search.

	location:TEXT

	Location string case insensitive search.

	state:TEXT

	State search (approved, translated, needs-editing, empty), supports Field operators.

	pending:BOOLEAN

	String pending for flushing to VCS.

	has_suggestion:BOOLEAN

	String has suggestion.

	has_comment:BOOLEAN

	String has comment.

	has_failing_check:BOOLEAN

	String has failing check.

	language:TEXT

	String target language.

	changed_by:TEXT

	String was changed by author with given username.

	changed:DATETIME

	String was changed on date, supports Field operators.

Boolean operators

You can combine the lookups using AND, OR, NOT and parenthesis to
form complex queries. For exmaple: state:translated AND (source:hello OR source:bar)

Field operators

You can specify operators, ranges or partial lookups for date or numeric searches:

	state:>=translated

	State is translated or better (approved).

	changed:2019

	Changed in year 2019.

	changed:[2019-03-01 to 2019-04-01]

	Changed between two given dates.

Regular expressions

Anywhere text is accepted you can also specify regular expression as r"regexp".

Application developer guide

Using Weblate for translating your projects can bring you quite a lot of
benefits. It’s only up to you how much of that you will use.

	Starting with internationalization
	Choosing internationalization framework

	Translating software using GNU Gettext
	Sample program

	Extracting translatable strings

	Starting new translation

	Updating strings

	Importing to Weblate

	Translating documentation using Sphinx

	Integrating with Weblate
	Getting translations updates from Weblate

	Pushing string changes to Weblate

	Translation component alerts

	Building translators community
	Localization guide

	Managing translations
	Adding new translations

	Reviewing source strings
	Activity reports

	Source strings checks

	Translation string checks

	String comments

	Promoting the translation

	Translation progress reporting
	Translator credits

	Contributor stats

Starting with internationalization

You have a project and want to to translate it into several languages? This
guide will help you to do so. We will showcase several typical situations, but
most of the examples are generic and can be applied to other scenarios as
well.

Before translating any software, you should realize that languages around the
world are really different and you should not make any assumption based on
your experience. For most of languages it will look weird if you try to
concatenate a sentence out of translated segments. You also should properly
handle plural forms because many languages have complex rules for that and the
internationalization framework you end up using should support this.

Last but not least, sometimes it might be necessary to add some context to the
translated string. Imagine a translator would get string Sun to translate.
Without context most people would translate that as our closest star, but it
might be actually used as an abbreviation for Sunday.

Choosing internationalization framework

Choose whatever is standard on your platform, try to avoid reinventing the
wheel by creating your own framework to handle localizations. Weblate supports
most of the widely used frameworks, see Supported file formats for more information
(especially Translation types capabilities).

Our personal recommendation for some plaforms is in the following table. This
is based on our experience, but that can not cover all use cases, so always
consider your environment when doing the choice.

	Platform

	Recommended format

	Android

	Android string resources

	iOS

	Apple iOS strings

	Qt

	Qt Linguist .ts

	Python

	GNU Gettext

	PHP

	GNU Gettext 1

	C/C++

	GNU Gettext

	C#

	.NET Resource files

	Perl

	GNU Gettext

	Ruby

	Ruby YAML files

	Web extensions

	WebExtension JSON

	Java

	XLIFF 2

	JavaScript

	JSON i18next files 3

	1

	The native Gettext support in PHP is buggy and often missing on Windows
builds, it is recommended to use third party library motranslator [https://github.com/phpmyadmin/motranslator] instead.

	2

	You can also use Java properties if plurals are not needed.

	3

	You can also use plain JSON files if plurals are not needed.

Following chapters describe two use cases - GNU Gettext and Sphinx, but many of
the steps are quite generic and apply to the other frameworks as well.

Translating software using GNU Gettext

GNU Gettext [https://www.gnu.org/software/gettext/] is one of the most widely used tool for internationalization of
free software. It provides a simple yet flexible way to localize the software.
It has great support for plurals, it can add further context to the translated
string and there are quite a lot of tools built around it. Of course it has
great support in Weblate (see GNU Gettext file format description).

Note

If you are about to use it in proprietary software, please consult
licensing first, it might not be suitable for you.

GNU Gettext can be used from variety of languages (C, Python, PHP, Ruby,
JavaScript and much more) and usually the UI frameworks already come with some
support for it. The standard usage is though the gettext() function call,
which is often aliased to _() to make the code simpler and easier to read.

Additionally it provides pgettext() call to provide additional context to
translators and ngettext() which can handle plural types as defined for
target language.

As a widely spread tool, it has many wrappers which make its usage really
simple, instead of manual invoking of Gettext described below, you might want
to try one of them, for example intltool [https://freedesktop.org/wiki/Software/intltool/].

Sample program

The simple program in C using Gettext might look like following:

#include <libintl.h>
#include <locale.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 int count = 1;
 setlocale(LC_ALL, "");
 bindtextdomain("hello", "/usr/share/locale");
 textdomain("hello");
 printf(
 ngettext(
 "Orangutan has %d banana.\n",
 "Orangutan has %d bananas.\n",
 count
),
 count
);
 printf("%s\n", gettext("Thank you for using Weblate."));
 exit(0);
}

Extracting translatable strings

Once you have code using the gettext calls, you can use xgettext to
extract messages from it and store them into a .pot [https://www.gnu.org/software/gettext/manual/gettext.html#index-files_002c-_002epot]:

$ xgettext main.c -o po/hello.pot

Note

There are alternative programs to extract strings from the code, for example
pybabel [http://babel.pocoo.org/].

This creates a template file, which you can use for starting new translations
(using msginit) or updating existing ones after code change (you
would use msgmerge for that). The resulting file is simply
a structured text file:

SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER
This file is distributed under the same license as the PACKAGE package.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2015-10-23 11:02+0200\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"Language: \n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=CHARSET\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=INTEGER; plural=EXPRESSION;\n"

#: main.c:14
#, c-format
msgid "Orangutan has %d banana.\n"
msgid_plural "Orangutan has %d bananas.\n"
msgstr[0] ""
msgstr[1] ""

#: main.c:20
msgid "Thank you for using Weblate."
msgstr ""

Each msgid line defines a string to translate, the special empty string
in the beginning is the file header containing metadata about the translation.

Starting new translation

With the template in place, we can start our first translation:

$ msginit -i po/hello.pot -l cs --no-translator -o po/cs.po
Created cs.po.

The just created cs.po already has some information filled in. Most
importantly it got the proper plural forms definition for chosen language and you
can see number of plurals have changed according to that:

Czech translations for PACKAGE package.
Copyright (C) 2015 THE PACKAGE'S COPYRIGHT HOLDER
This file is distributed under the same license as the PACKAGE package.
Automatically generated, 2015.
#
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2015-10-23 11:02+0200\n"
"PO-Revision-Date: 2015-10-23 11:02+0200\n"
"Last-Translator: Automatically generated\n"
"Language-Team: none\n"
"Language: cs\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=ASCII\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=3; plural=(n==1) ? 0 : (n>=2 && n<=4) ? 1 : 2;\n"

#: main.c:14
#, c-format
msgid "Orangutan has %d banana.\n"
msgid_plural "Orangutan has %d bananas.\n"
msgstr[0] ""
msgstr[1] ""
msgstr[2] ""

#: main.c:20
msgid "Thank you for using Weblate."
msgstr ""

This file is compiled into an optimized binary form, the .mo [https://www.gnu.org/software/gettext/manual/gettext.html#MO-Files]
file used by the GNU Gettext [https://www.gnu.org/software/gettext/] functions at runtime.

Updating strings

Once you add more strings or change some strings in your program, you execute again
xgettext which regenerates the template file:

$ xgettext main.c -o po/hello.pot

Then you can update individual translation files to match newly created templates
(this includes reordering the strings to match new template):

$ msgmerge --previous --update po/cs.po po/hello.pot

Importing to Weblate

To import such translation into Weblate, all you need to define are the following
fields when creating component (see Component configuration for detailed description
of the fields):

	Field

	Value

	Source code repository

	URL of the VCS repository with your project

	File mask

	po/*.po

	Template for new translations

	po/hello.pot

	File format

	Choose Gettext PO file

	New language

	Choose Create new language file

And that’s it, you’re now ready to start translating your software!

See also

You can find a Gettext example with many languages in the Weblate Hello project on
GitHub: <https://github.com/WeblateOrg/hello>.

Translating documentation using Sphinx

Sphinx [http://www.sphinx-doc.org/] is a tool for creating beautiful documentation. It uses simple
reStructuredText syntax and can generate output in many formats. If you’re
looking for an example, this documentation is also build using it. The very
useful companion for using Sphinx is the Read the Docs [https://readthedocs.org/] service, which will
build and publish your documentation for free.

I will not focus on writing documentation itself, if you need guidance with
that, just follow instructions on the Sphinx [http://www.sphinx-doc.org/] website. Once you have
documentation ready, translating it is quite easy as Sphinx comes with support
for this and it is quite nicely covered in their Internationalization [https://www.sphinx-doc.org/en/master/usage/advanced/intl.html#intl]. It’s
matter of few configuration directives and invoking of the sphinx-intl
tool.

If you are using Read the Docs service, you can start building translated
documentation on the Read the Docs. Their Localization of Documentation [https://docs.readthedocs.io/en/latest/localization.html] covers pretty
much everything you need - creating another project, set its language and link
it from master project as a translation.

Now all you need is translating the documentation content. As Sphinx splits
the translation files per source file, you might end up with dozen of files,
which might be challenging to import using the Weblate’s web interface. For
that reason, there is the import_project management command.

Depending on exact setup, importing of the translation might look like:

$./manage.py import_project --name-template 'Documentation: %s' \
 --file-format po \
 project https://github.com/project/docs.git master \
 'docs/locale/*/LC_MESSAGES/**.po'

If you have more complex document structure, importing different folders is not
directly supported, you currently have to list them separately:

$./manage.py import_project --name-template 'Directory 1: %s' \
 --file-format po \
 project https://github.com/project/docs.git master \
 'docs/locale/*/LC_MESSAGES/dir1/**.po'
$./manage.py import_project --name-template 'Directory 2: %s' \
 --file-format po \
 project https://github.com/project/docs.git master \
 'docs/locale/*/LC_MESSAGES/dir2/**.po'

See also

The Odorik [https://github.com/nijel/odorik/] python module documentation is built using Sphinx, Read the
Docs and translated using Weblate.

Integrating with Weblate

Getting translations updates from Weblate

To fetch updated strings from Weblate you can simply fetch the underlying
repository (either from filesystem or it can be made available through
Git exporter). Prior to this, you might want to commit any pending
changes (see Lazy commits). This can be achieved in the user interface
(in the Repository maintenance) or from command line using Weblate Client.

This can be automated if you grant Weblate push access to your repository and
configure Push URL in the Component configuration.

See also

Continuous localization

Pushing string changes to Weblate

To push newly updated strings to Weblate, just let it to pull from the upstream
repo. This can be achieved in the user interface (in the Repository
maintenance) or from command line using Weblate Client.

This can be automated by installing a webhook on your repository to trigger
Weblate whenever there is new commit, see Updating repositories for more details.

See also

Continuous localization

Translation component alerts

Shows errors in the Weblate configuration or the translation project for any given translation component.
Guidance on how to address found issues is also offered.

Currently the following is covered:

	Duplicated source strings in translation files

	Duplicated languages within translations

	Merge or update failures in the source repository

	Unused new base in component settings

	Parse errors in the translation files

Alerts are listed on each respective component page as Alerts.
If it is missing, the component clears all current checks. Alerts can not be ignored,
but will disappear once the underlying problem has been fixed.

A component with both duplicated strings and languages looks like this:

[image: ../_images/alerts.png]

Building translators community

Localization guide

New in version 3.9.

The Localization guide which can be found in the
Insights menu of each component can give you guidance to make your
localization process easy for translators.

[image: ../_images/guide.png]

Managing translations

Adding new translations

Weblate can add new translations to your translation components when configured
Template for new translations (see Component configuration) or your file
format doesn’t require it (for most of monolingual files it is okay to start
with blank files).

Weblate can be configured to automatically add translation when requested by
user or to send notification to project admins for approval and manual
processing. This can be done using New translation in
Component configuration. The project admins can still start translation within Weblate
even if contact form is shown for regular users.

Alternatively you can add the files manually to the VCS. Weblate will
automatically detect new languages which are added to the VCS repository and
makes them available for translation. This makes adding new translations
incredibly easy:

	Add the translation file to VCS.

	Let Weblate update the repository (usually set up automatically, see
Updating repositories).

Reviewing source strings

Activity reports

Check changes of translations, projects or for individual users.

[image: ../_images/activity.png]

Source strings checks

There are many Quality checks, some of them focus on improving the
quality of source strings. Many failing checks make for a hint to make source strings
easier to translate. All types failing source checks are displayed on the Source
tab of every component.

Translation string checks

Erroneous failing translation string checks indicate the problem is with
the source string. Translators sometimes fix mistakes in the translation
instead of reporting it - a typical example is a missing full stop at the end of
a sentence.

Reviewing all failing checks of your translation, for every language, can
provide valuable feedback to improve its source strings.

Source strings review is in the Tools
menu of any given translation component. A similar view is presented when opening
a translation, with slightly different checks displayed:

[image: ../_images/source-review.png]
One of the most interesting checks here is the Multiple failing checks -
it is triggered whenever there is failure on multiple translations of a given string.
Usually this is something to look for, as this is a string translators have
problems translating properly.

The detailed listing is a per language overview:

[image: ../_images/source-review-detail.png]

String comments

Translators can comment on both translation and source strings.
Each Component configuration can be configured to receive such comments to an e-mail
address, and using the developers mailing list is usually the best approach.
This way you can keep an eye on when problems arise in translation, tend to, and fix them quickly.

Promoting the translation

Weblate provides you widgets to share on your website or other sources to
promote the translation project. It also has a nice welcome page for new contributors
to give them basic information about the translation. Additionally you can
share information about translation using Facebook or Twitter. All these
possibilities can be found on the Share tab:

[image: ../_images/promote.png]
All these badges are provided with the link to simple page which explains users
how to translate using Weblate:

[image: ../_images/engage.png]

Translation progress reporting

Reporting features give insight into how a translation progresses over a given
period. A summary of contributions to any given component over time is
provided. The reporting tool is found in the Insights menu of any
translation component, project or on the dashboard:

[image: ../_images/reporting.png]
Several reporting tools are available on this page and all can produce output
in HTML, reStructuredText or JSON. The first two formats are suitable for
embedding statistics into existing documentation, while JSON is useful for further
processing of the data.

Translator credits

Generates a document usable for crediting translators - sorted by language
and lists all contributors to a given language:

* Czech

 * Michal Čihař <michal@cihar.com>
 * John Doe <john@example.com>

* Dutch

 * Jane Doe <jane@example.com>

It will render as:

	Czech

	Michal Čihař <michal@cihar.com>

	John Doe <john@example.com>

	Dutch

	Jae Doe <jane@example.com>

Contributor stats

Generates the number of translated words and strings by translator name:

== == ========================
Name Email Count total Source words total Source chars total Target words total Target chars total Count new Source words new Source chars new Target words new Target chars new Count approved Source words approved Source chars approved Target words approved Target chars approved Count edited Source words edited Source chars edited Target words edited Target chars edited
== == ========================
Michal Čihař michal@cihar.com 1 3 24 3 21 1 3 24 3 21 0 0 0 0 0 0 0 0 0 0
Allan Nordhøy allan@example.com 2 5 25 4 28 2 3 24 3 21 0 0 0 0 0 0 0 0 0 0
== == ========================

And it will get rendered as:

	Name

	Email

	Count total

	Source words total

	Source chars total

	Target words total

	Target chars total

	Count new

	Source words new

	Source chars new

	Target words new

	Target chars new

	Count approved

	Source words approved

	Source chars approved

	Target words approved

	Target chars approved

	Count edited

	Source words edited

	Source chars edited

	Target words edited

	Target chars edited

	Michal Čihař

	michal@cihar.com

	1

	3

	24

	3

	21

	1

	3

	24

	3

	21

	0

	0

	0

	0

	0

	0

	0

	0

	0

	0

	Allan Nordhøy

	allan@example.com

	2

	5

	25

	4

	28

	2

	3

	24

	3

	21

	0

	0

	0

	0

	0

	0

	0

	0

	0

	0

It can be useful if you pay your translators based on amount of work, it gives
you various stats on translators work.

All stats are available in three variants:

	Total

	Overall number of edited strings.

	New

	Newly translated strings which didn’t have translation before.

	Approved

	Count for string approavals in review workflow (see Dedicated reviewers).

	Edited

	Edited strings which had translation before.

The following metrics are available for each:

	Count

	Number of strings.

	Source words

	Number of words in the source string.

	Source characters

	Number of characters in the source string.

	Target words

	Number of words in the translated string.

	Target characters

	Number of characters in the translated string.

Translation workflows

Weblate can be configured to support several translation workflows. This
document is not a complete listing of ways to configure Weblate, there are
certainly more options. You can base another workflows on the most usual
examples listed here.

Translation access

The Access control is not much discussed in the workflows as each of
access control options can be applied to any workflows. Please consult that
documentation for information how to manage access to translations.

In following chapters, any user means any user who has access to the
translation. It can be any authenticated user if project is public or user
having Translate permission on the project.

Translation states

Each translated string can be in following states:

	Untranslated

	Translation is empty, it might or not be stored in the file, depending
on the file format.

	Needs editing

	Translation needs editing, this is usually result of source string change.
The translation is stored in the file, depending on the file format it might
be marked as needing edit (eg. fuzzy flag).

	Waiting for review

	Translation is done, but not reviewed. It is stored in the file as a valid
translation.

	Approved

	Translation has been approved in the review. It can no longer be changed by
translators, but only by reviewers. Translators can only add suggestions to
it.

	Suggestions

	Suggestions are stored in Weblate only and not in the translation file.

Direct translation

This is most usual setup for smaller teams - anybody can directly translate.
This is also default setup in Weblate.

	Any user can edit translations.

	Suggestions are optional way to suggest changes, when translators are not
sure about the change.

	Setting

	Value

	Note

	Enable reviews

	disabled

	configured at project level

	Enable suggestions

	enabled

	it is useful for users to be able
suggest when they are not sure

	Suggestion voting

	disabled

	

	Autoaccept suggestions

	0

	

	Translators group

	Users

	or Translate with access control

	Reviewers group

	N/A

	not used

Peer review

With this workflow, anybody can add suggestions, however they need approval
from additional member before it is accepted as a translation.

	Any user can add suggestions

	Any user can vote for suggestions

	Suggestions become translations when they get given number of votes

	Setting

	Value

	Note

	Enable reviews

	disabled

	configured at project level

	Enable suggestions

	enabled

	

	Suggestion voting

	enabled

	

	Autoaccept suggestions

	1

	you can set higher value to require
more peer reviews

	Translators group

	Users

	or Translate with access control

	Reviewers group

	N/A

	not used, all translators review

Dedicated reviewers

New in version 2.18: The proper review workflow is supported since Weblate 2.18.

With dedicated reviewers you have two groups of users - one which can submit
translations and one which reviews them. Review is there to ensure the
translations are consistent and in a good quality.

	Any user can edit non approved translations.

	Reviewer can approve / unapproved strings.

	Reviewer can edit all translations (including approved ones).

	Suggestions are now also way to suggest changes for approved strings.

	Setting

	Value

	Note

	Enable reviews

	enabled

	configured at project level

	Enable suggestions

	enabled

	it is useful for users to be able
suggest when they are not sure

	Suggestion voting

	disabled

	

	Autoaccept suggestions

	0

	

	Translators group

	Users

	or Translate with access control

	Reviewers group

	Reviewers

	or Review with access control

Enabling reviews

The reviews can be enabled on project configuration, you can find the setting
on bottom of Manage users page (to be found in the
Manage/Users menu):

[image: _images/project-access.png]

Note

Depending on Weblate configuration, the setting might not be available to
you. For example on Hosted Weblate this is not available for projects hosted
for free.

Frequently Asked Questions

Configuration

How to create an automated workflow?

Weblate can handle all the translation things semi-automatically for you. If
you give it push access to your repository, the translations can happen
without interaction unless some merge conflict occurs.

	Set up your git repository to tell Weblate whenever there is any change, see
Notification hooks for information how to do it.

	Set push URL at your Component configuration in Weblate, this will allow Weblate
to push changes to your repository.

	Enable push on commit on your Project configuration in Weblate, this will make
Weblate push changes to your repository whenever they are committed at Weblate.

See also

Continuous localization, Avoiding merge conflicts

How to access repositories over SSH?

Please see Accessing repositories for information about setting up SSH keys.

How to fix merge conflicts in translations?

The merge conflicts happen from time to time when the translation file is changed in
both Weblate and the upstream repository. You can usually avoid this by merging
Weblate translations prior to doing some changes in the translation files (e.g.
before executing msgmerge). Just tell Weblate to commit all pending
translations (you can do it in the Repository maintenance in the
Manage menu) and merge the repository (if automatic push is not
enabled).

If you’ve already ran into the merge conflict, the easiest way is to solve all
conflicts locally at your workstation - simply add Weblate as a remote
repository, merge it into upstream and fix any conflicts. Once you push changes
back, Weblate will be able to use the merged version without any other special
actions.

Note

Depending on your setup, access to the Weblte repository might require
authentication. When using Weblate built in Git exporter, you
authenticate with your username and the API key.

Commit all pending changes in Weblate, you can do this in the UI as well
wlc commit
Lock translation in Weblate, again this can be done in the UI as well
wlc lock
Add Weblate as remote
git remote add weblate https://hosted.weblate.org/git/project/component/
You might need to include credentials in some cases:
git remote add weblate https://username:APIKEY@hosted.weblate.org/git/project/component/

Update weblate remote
git remote update weblate

Merge Weblate changes
git merge weblate/master

Resolve conflicts
edit
git add ...
...
git commit

Push changes to upstream repository, Weblate will fetch merge from there
git push

Open Weblate for translation
wlc unlock

If you’re using multiple branches in Weblate, you can work similarly on all
branches:

Add and update Weblate remotes
git remote add weblate-one https://hosted.weblate.org/git/project/one/
git remote add weblate-second https://hosted.weblate.org/git/project/second/
git remote update weblate-one weblate-second

Merge QA_4_7 branch
git checkout QA_4_7
git merge weblate-one/QA_4_7
... # Resolve conflicts
git commit

Merge master branch
git checkout master
git merge weblates-second/master
... # Resolve conflicts
git commit

Push changes to upstream repository, Weblate will fetch merge from there
git push

In case of Gettext po files, there is a way to merge conflict in a semi-automatic way:

Get and keep local clone of the Weblate git repository. Also get a second fresh
local clone of the upstream git repository (i. e. you need two copies of the
upstream git repository: intact and working copy):

Add remote
git remote add weblate /path/to/weblate/snapshot/

Update weblate remote
git remote update weblate

Merge Weblate changes
git merge weblate/master

Resolve conflicts in the po files
for PO in `find . -name '*.po'` ; do
 msgcat --use-first /path/to/weblate/snapshot/$PO\
 /path/to/upstream/snapshot/$PO -o $PO.merge
 msgmerge --previous --lang=${PO%.po} $PO.merge domain.pot -o $PO
 rm $PO.merge
 git add $PO
done
git commit

Push changes to upstream repository, Weblate will fetch merge from there
git push

See also

How to export the Git repository that Weblate uses?, Continuous localization, Avoiding merge conflicts

How do I translate several branches at once?

Weblate supports pushing translation changes within one Project configuration. For
every Component configuration which has it enabled (the default behavior), the change
made is automatically propagated to others. This way the translations are kept
synchronized even if the branches themselves have already diverged quite a lot
and it is not possible to simply merge translation changes between them.

Once you merge changes from Weblate, you might have to merge these branches
(depending on your development workflow) discarding differences:

git merge -s ours origin/maintenance

How to export the Git repository that Weblate uses?

There is nothing special about the repository, it lives under the
DATA_DIR directory and is named vcs/<project>/<component>/. If you
have SSH access to this machine, you can use the repository directly.

For anonymous access you might want to run a git server and let it serve the
repository to the outside world.

Alternatively you can use Git exporter inside Weblate to automate this.

What are the options for pushing changes back upstream?

This heavily depends on your setup, Weblate is quite flexible in this area.
Here are examples of workflows used with Weblate:

	Weblate automatically pushes and merges changes (see How to create an automated workflow?)

	You manually tell Weblate to push (it needs push access to the upstream repository)

	Somebody manually merges changes from the Weblate git repository into the upstream
repository

	Somebody rewrites history produced by Weblate (eg. by eliminating merge
commits), merges changes and tells Weblate to reset the content on the upstream
repository.

Of course you are free to mix all of these as you wish.

How can I limit Weblate access to translations only without exposing source code to it?

You can use git submodule [https://git-scm.com/docs/git-submodule] for separating translations from source code
while still having them under version control.

	Create a repository with your translation files.

	Add this as a submodule to your code:

git submodule add git@example.com:project-translations.git path/to/translations

	Link Weblate to this repository, it no longer needs access to the repository
with your source code.

	You can update the main repository with translations from Weblate by:

git submodule update --remote path/to/translations

Please consult git submodule [https://git-scm.com/docs/git-submodule] documentation for more details.

How can I check if my Weblate is configured properly?

Weblate includes a set of configuration checks which you can see in the admin
interface, just follow the Performance report link in the admin interface or
open the /admin/performance/ URL directly.

Why do links contain example.com as the domain?

Weblate uses Django’s sites framework and it defines the site name inside the
database. You need to set the domain name to match your installation.

See also

Set correct sitename

Why are all commits committed by Weblate <noreply@weblate.org>?

This is the default committer name, configured when you create a translation component.
You can also change it in the administration at any time.

The author of every commit (if the underlying VCS supports it) is still recorded
correctly as the user who has made the translation.

See also

Component configuration

Usage

How do I review others translations?

	You can subscribe to any changes made in Notifications and then check
others contributions in e-mail.

	There is a review tool available at the bottom of the translation view, where you can
choose to browse translations made by others since a given date.

How do I provide feedback on a source string?

On context tabs below translation, you can use the Source tab to
provide feedback on a source string or discuss it with other translators.

How can I use existing translations while translating?

Weblate provides you with several ways to utilize existing translations while
translating:

	You can use the import functionality to load compendium as translations,
suggestions or translations needing review. This is the best approach for a one time
translation using compendium or similar translation database.

	You can setup tmserver with all databases you have and let Weblate use
it. This is good for cases when you want to use it for several times during
translating.

	Another option is to translate all related projects in a single Weblate
instance, which will make it automatically pick up translations from other
projects as well.

See also

Machine translation, Machine translation

Does Weblate update translation files besides translations?

Weblate tries to limit changes in translation files to a minimum. For some file
formats it might unfortunately lead to reformatting the file. If you want to
keep the file formatted in your way, please use a pre-commit hook for that.

For monolingual files (see Supported file formats) Weblate might add new translation
strings which are present in the template and not in actual
translations. It does not however perform any automatic cleanup of stale
strings as that might have unexpected outcomes. If you want to do this, please
install a pre-commit hook which will handle the cleanup according to your requirements.

Weblate also will not try to update bilingual files in any way, so if you need
po files being updated from pot, you need to do it yourself.

See also

Processing repository with scripts

Where do language definitions come from and how can I add my own?

The basic set of language definitions is included within Weblate and
Translate-toolkit. This covers more than 150 languages and includes information
about used plural forms or text direction.

You are free to define own languages in the administrative interface, you just need
to provide information about it.

Can Weblate highlight changes in a fuzzy string?

Weblate supports this, however it needs the data to show the difference.

For Gettext PO files, you have to pass the parameter --previous to
msgmerge when updating PO files, for example:

msgmerge --previous -U po/cs.po po/phpmyadmin.pot

For monolingual translations, Weblate can find the previous string by ID, so it
shows the differences automatically.

Why does Weblate still show old translation strings when I’ve updated the template?

Weblate does not try to manipulate the translation files in any way other
than allowing translators to translate. So it also does not update the
translatable files when the template or source code have been changed. You
simply have to do this manually and push changes to the repository, Weblate
will then pick up the changes automatically.

Note

It is usually a good idea to merge changes done in Weblate before updating
translation files, as otherwise you will usually end up with some conflicts
to merge.

For example with Gettext PO files, you can update the translation files using
the msgmerge tool:

msgmerge -U locale/cs/LC_MESSAGES/django.mo locale/django.pot

In case you want to do the update automatically, you can install
addon Update PO files to match POT (msgmerge).

Troubleshooting

Requests sometimes fail with too many open files error

This happens sometimes when your Git repository grows too much and you have
many of them. Compressing the Git repositories will improve this situation.

The easiest way to do this is to run:

Go to DATA_DIR directory
cd data/vcs
Compress all Git repositories
for d in */* ; do
 pushd $d
 git gc
 popd
done

See also

DATA_DIR

Fulltext search is too slow

Depending on various conditions (frequency of updates, server restarts and
other), the fulltext index might become too fragmented over time. It is recommended to
optimize it from time to time:

./manage.py rebuild_index --optimize

In case it does not help (or if you have removed a lot of strings) it might be
better to rebuild it from scratch:

./manage.py rebuild_index --clean

See also

rebuild_index

I get “Lock Error” quite often while translating

This is usually caused by concurrent updates to the fulltext index. In case you are
running a multi-threaded server (e.g. mod_wsgi), this happens quite often. For such
a setup it is recommended to use Celery to perform updates in the background.

See also

Fulltext search, Background tasks using Celery

Rebuilding index has failed with “No space left on device”

Whoosh uses a temporary directory to build indices. In case you have a small /tmp
(eg. using ramdisk), this might fail. Change the temporary directory by passing it
as TEMP variable:

TEMP=/path/to/big/temp ./manage.py rebuild_index --clean

See also

rebuild_index

Database operations fail with “too many SQL variables”

This can happen when using theSQLite database as it is not powerful enough for some
relations used within Weblate. The only way to fix this is to use some more
capable database, see Use a powerful database engine for more information.

See also

Use a powerful database engine,
Databases [https://docs.djangoproject.com/en/stable/ref/databases/]

When accessing the site I get Bad Request (400) error

This is most likely caused by an improperly configured ALLOWED_HOSTS.
It needs to contain all hostnames you want to access your Weblate. For example:

ALLOWED_HOSTS = ['weblate.example.com', 'weblate', 'localhost']

See also

Allowed hosts setup

Features

Does Weblate support other VCS than Git and Mercurial?

Weblate currently does not have native support for anything other than
Git (with extended support for GitHub, Gerrit
and Subversion) and ref:vcs-mercurial, but it is possible to write
backends for other VCSes.

You can also use Git remote helpers in Git to access other VCSes.

Weblate also supports VCS less operation, see Local files.

Note

For native support of other VCS, Weblate requires distributed VCS and could
be probably adjusted to work with anything other than Git and Mercurial, but
somebody has to implement this support.

See also

Version control integration

How does Weblate credit translators?

Every change made in Weblate is committed into VCS under the translators name. This
way every single change has proper authorship and you can track it down using
standard VCS tools you use for code.

Additionally, when the translation file format supports it, the file headers are
updated to include the translator name.

See also

list_translators

Why does Weblate force to show all po files in a single tree?

Weblate was designed in a way that every po file is represented as a single
component. This is beneficial for translators, so they know what they are
actually translating. If you feel your project should be translated as one,
consider merging these po files. It will make life easier even for translators
not using Weblate.

Note

In case there will be big demand for this feature, it might be implemented
in future versions, but it’s definitely not a priority for now.

Why does Weblate use language codes such sr_Latn or zh_Hant?

These are language codes defined by RFC 4646 [https://tools.ietf.org/html/rfc4646.html] to better indicate that they
are really different languages instead previously wrongly used modifiers (for
@latin variants) or country codes (for Chinese).

Weblate will still understand legacy language codes and will map them to
current one - for example sr@latin will be handled as sr_Latn or
zh@CN as sr_Hans.

Supported file formats

Weblate supports most translation format understood by the translate-toolkit,
however each format being slightly different, there might be some issues with
formats that are not well tested.

See also

Translation Related File Formats [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/index.html]

Note

When choosing a file format for your application, it’s better to stick some
well established format in the toolkit/platform you use. This way your
translators can use whatever tools they are get used to and will more
likely contribute to your project.

Bilingual and monolingual formats

Weblate does support both monolingual
and bilingual formats. Bilingual
formats store two languages in single file - source and translation (typical
examples are GNU Gettext, XLIFF or Apple iOS strings). On the other side,
monolingual formats identify the string by ID and each language file contains
only mapping of those to given language (typically Android string resources). Some file
formats are used in both variants, see detailed description below.

For correct use of monolingual files, Weblate requires access to a file
containing complete list of strings to translate with their source - this file
is called Monolingual base language file within Weblate, though the
naming might vary in your application.

Automatic detection

Weblate can automatically detect several widely spread file formats, but this
detection can harm your performance and will limit features specific to given
file format (for example automatic adding of new translations).

Translation types capabilities

Below are listed capabilities of all supported formats.

	Format

	Linguality 1

	Plurals 2

	Comments 3

	Context 4

	Location 5

	Flags 8

	Additional states 6

	GNU Gettext

	bilingual

	yes

	yes

	yes

	yes

	yes 9

	needs editing

	Monolingual Gettext

	mono

	yes

	yes

	yes

	yes

	yes 9

	needs editing

	XLIFF

	both

	yes

	yes

	yes

	yes

	yes 10

	needs editing, approved

	Java properties

	both

	no

	yes

	no

	no

	no

	

	Joomla translations

	mono

	no

	yes

	no

	yes

	no

	

	Qt Linguist .ts

	both

	yes

	yes

	no

	yes

	yes 10

	needs editing

	Android string resources

	mono

	yes

	yes 7

	no

	no

	yes 10

	

	Apple iOS strings

	bilingual

	no

	yes

	no

	no

	no

	

	PHP strings

	mono

	no

	yes

	no

	no

	no

	

	JSON files

	mono

	no

	no

	no

	no

	no

	

	JSON i18next files

	mono

	yes

	no

	no

	no

	no

	

	WebExtension JSON

	mono

	yes

	yes

	no

	no

	no

	

	.NET Resource files

	mono

	no

	yes

	no

	no

	yes 10

	

	CSV files

	mono

	no

	yes

	yes

	yes

	no

	needs editing

	YAML files

	mono

	no

	yes

	no

	no

	no

	

	Ruby YAML files

	mono

	yes

	yes

	no

	no

	no

	

	DTD files

	mono

	no

	no

	no

	no

	no

	

	Flat XML [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/flatxml.html#flatxml]

	mono

	no

	no

	no

	no

	yes 10

	

	Windows RC files

	mono

	no

	yes

	no

	no

	no

	

	Excel Open XML

	mono

	no

	yes

	yes

	yes

	no

	needs editing

	App store metadata files

	mono

	no

	no

	no

	no

	no

	

	Subtitle files

	mono

	no

	no

	no

	yes

	no

	

	1

	See Bilingual and monolingual formats

	2

	Plurals are necessary to properly localize strings with variable count.

	3

	Comments can be used to pass additional information about string to translate.

	4

	Context is used to differentiate same strings used in different scope (eg. Sun can be used as abbreviated name of day or as a name of our closest star).

	5

	Location of string in source code might help skilled translators to figure out how the string is used.

	6

	Additional states supported by the file format in addition to not translated and translated.

	7

	XML comment placed before the <string> element is parsed as a developer comment.

	8

	See Customizing behavior

	9(1,2)

	The Gettext type comments are used as flags.

	10(1,2,3,4,5)

	The flags are extracted from non standard attibute weblate-flags for all XML based formats. Additionally max-length:N is supported through maxwidth attribute as defined in the Xliff standard, see Specifying translation flags.

GNU Gettext

Most widely used format in translating free software. This was first format
supported by Weblate and still has the best support.

Weblate supports contextual information stored in the file, adjusting its
headers or linking to corresponding source files.

The bilingual gettext PO file typically looks like:

#: weblate/media/js/bootstrap-datepicker.js:1421
msgid "Monday"
msgstr "Pondělí"

#: weblate/media/js/bootstrap-datepicker.js:1421
msgid "Tuesday"
msgstr "Úterý"

#: weblate/accounts/avatar.py:163
msgctxt "No known user"
msgid "None"
msgstr "Žádný"

	Typical Weblate Component configuration

	File mask

	po/*.po

	Monolingual base language file

	Empty

	Template for new translations

	po/messages.pot

	File format

	Gettext PO file

See also

Gettext on Wikipedia [https://en.wikipedia.org/wiki/Gettext],
PO Files [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/po.html],
Update ALL_LINGUAS variable in the “configure” file,
Customize gettext output,
Update LINGUAS file,
Generate MO files,
Update PO files to match POT (msgmerge),

Monolingual Gettext

Some projects decide to use Gettext as monolingual formats - they code just IDs
in their source code and the string needs to be translated to all languages,
including English. Weblate does support this, though you have to choose explicitly
this file format when importing components into Weblate.

The monolingual gettext PO file typically looks like:

#: weblate/media/js/bootstrap-datepicker.js:1421
msgid "day-monday"
msgstr "Pondělí"

#: weblate/media/js/bootstrap-datepicker.js:1421
msgid "day-tuesday"
msgstr "Úterý"

#: weblate/accounts/avatar.py:163
msgid "none-user"
msgstr "Žádný"

While the base language file will be:

#: weblate/media/js/bootstrap-datepicker.js:1421
msgid "day-monday"
msgstr "Monday"

#: weblate/media/js/bootstrap-datepicker.js:1421
msgid "day-tuesday"
msgstr "Tuesday"

#: weblate/accounts/avatar.py:163
msgid "none-user"
msgstr "None"

	Typical Weblate Component configuration

	File mask

	po/*.po

	Monolingual base language file

	po/en.po

	Template for new translations

	po/messages.pot

	File format

	Gettext PO file (monolingual)

XLIFF

XML-based format created to standardize translation files, but in the end it
is one of many standards in this area.

XLIFF is usually used as bilingual, but Weblate supports it as monolingual as well.

Translations states

Changed in version 3.3: Weblate did ignore the state attribute prior to the 3.3 release.

The state attribute in the file is partially processed and mapped to needs
edit state in Weblate (the following states are used to flag the string as
needing edit if there is some target present: new, needs-translation,
needs-adaptation, needs-l10n). Should the state attribute be
missing a string is considered translated as soon as a <target> element
exists.

Also if the translation string has approved="yes" it will be imported into Weblate
as approved, anything else will be imported as waiting for review (which matches XLIFF
specification).

That means that when using XLIFF format, it is strongly recommended to enable Weblate
review process, in order to see and change the approved state of strings.
See Dedicated reviewers.

Similarly on importing such files, you should choose
Import as translated under
Processing of strings needing review.

Whitespace and newlines in XLIFF

Generally the XML formats do not differentiate between types or amounts of whitespace.
If you want to keep it, you have to add the xml:space="preserve" flag to
the string.

For example:

 <trans-unit id="10" approved="yes">
 <source xml:space="preserve">hello</source>
 <target xml:space="preserve">Hello, world!
</target>
 </trans-unit>

Specifying translation flags

You can specify additional translation flags (see Customizing behavior) in
using weblate-flags attribute. Weblate also understands maxwidth and font
attributes from the Xliff specification:

<trans-unit id="10" maxwidth="100" size-unit="pixel" font="ubuntu;22;bold">
 <source>Hello %s</source>
</trans-unit>
<trans-unit id="20" maxwidth="100" size-unit="char" weblate-flags="c-format">
 <source>Hello %s</source>
</trans-unit>

The font attribute is parsed for font family, size and weight, the above
example shows all of that, though only font family is required. Any whitespace
in the font family is converted to underscore, so Source Sans Pro becomes
Source_Sans_Pro, please keep that in mind when naming font group (see
Managing fonts).

	Typical Weblate Component configuration for bilingual XLIFF

	File mask

	localizations/*.xliff

	Monolingual base language file

	Empty

	Template for new translations

	localizations/en-US.xliff

	File format

	XLIFF Translation File

	Typical Weblate Component configuration for monolingual XLIFF

	File mask

	localizations/*.xliff

	Monolingual base language file

	localizations/en-US.xliff

	Template for new translations

	localizations/en-US.xliff

	File format

	XLIFF Translation File

See also

XLIFF on Wikipedia [https://en.wikipedia.org/wiki/XLIFF],
XLIFF [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/xliff.html],
font attribute in XLIFF 1.2 [http://docs.oasis-open.org/xliff/v1.2/os/xliff-core.html#font],
maxwidth attribute in XLIFF 1.2 [http://docs.oasis-open.org/xliff/v1.2/os/xliff-core.html#maxwidth]

Java properties

Native Java format for translations.

Java properties are usually used as monolingual.

Weblate supports ISO-8859-1, UTF-8 and UTF-16 variants of this format. All of
them supports storing all Unicode characters, it’s just differently encoded. In
the ISO-8859-1 the Unicode escape sequences are used (eg. zkou\u0161ka),
all others encode characters directly either in UTF-8 or UTF-16.

Note

Loading of escape sequences will work in UTF-8 mode as well, so please be
careful choosing correct enconding set matching your application needs.

	Typical Weblate Component configuration

	File mask

	src/app/Bundle_*.properties

	Monolingual base language file

	src/app/Bundle.properties

	Template for new translations

	Empty

	File format

	Java Properties (ISO-8859-1)

See also

Java properties on Wikipedia [https://en.wikipedia.org/wiki/.properties],
Mozilla and Java properties files [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/properties.html],
Formats the Java properties file,
Cleanup translation files,

Joomla translations

New in version 2.12.

Native Joomla format for translations.

Joomla translations are usually used as monolingual.

	Typical Weblate Component configuration

	File mask

	language/*/com_foobar.ini

	Monolingual base language file

	language/en-GB/com_foobar.ini

	Template for new translations

	Empty

	File format

	Joomla Language File

See also

Specification of Joomla language files [https://docs.joomla.org/Specification_of_language_files],
Mozilla and Java properties files [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/properties.html]

Qt Linguist .ts

Translation format used in Qt based applications.

Qt Linguist files are used as both bilingual and monolingual.

	Typical Weblate Component configuration when using as bilingual

	File mask

	i18n/app.*.ts

	Monolingual base language file

	Empty

	Template for new translations

	i18n/app.de.ts

	File format

	Qt Linguist Translation File

	Typical Weblate Component configuration when using as monolingual

	File mask

	i18n/app.*.ts

	Monolingual base language file

	i18n/app.en.ts

	Template for new translations

	i18n/app.en.ts

	File format

	Qt Linguist Translation File

See also

Qt Linguist manual [https://doc.qt.io/qt-5/qtlinguist-index.html],
Qt .ts [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/ts.html],
Bilingual and monolingual formats

Android string resources

Android specific file format for translating applications.

Android string resources are monolingual, the
Monolingual base language file file is stored in a different
location from the others res/values/strings.xml.

	Typical Weblate Component configuration

	File mask

	res/values-*/strings.xml

	Monolingual base language file

	res/values/strings.xml

	Template for new translations

	Empty

	File format

	Android String Resource

See also

Android string resources documentation [https://developer.android.com/guide/topics/resources/string-resource],
Android string resources [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/android.html]

Note

Android string-array structures are not currently supported. To work around this,
you can break you string arrays apart:

<string-array name="several_strings">
 <item>First string</item>
 <item>Second string</item>
</string-array>

become:

<string-array name="several_strings">
 <item>@string/several_strings_0</item>
 <item>@string/several_strings_1</item>
</string-array>
<string name="several_strings_0">First string</string>
<string name="several_strings_1">Second string</string>

The string-array that points to the string elements should be stored in a different
file, and not localized.

This script may help pre-process your existing strings.xml files and translations: https://gist.github.com/paour/11291062

Apple iOS strings

Apple specific file format for translating applications, used for both iOS
and iPhone/iPad application translations.

Apple iOS strings are usually used as bilingual.

	Typical Weblate Component configuration

	File mask

	Resources/*.lproj/Localizable.strings

	Monolingual base language file

	Resources/en.lproj/Localizable.strings

	Template for new translations

	Empty

	File format

	iOS Strings (UTF-8)

See also

Apple Strings Files documentation [https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPInternational/MaintaingYourOwnStringsFiles/MaintaingYourOwnStringsFiles.html],
Mac OSX strings [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/strings.html]

PHP strings

PHP translations are usually monolingual, so it is recommended to specify base
file with English strings.

Example file:

<?php
$LANG['foo'] = 'bar';
$LANG['foo1'] = 'foo bar';
$LANG['foo2'] = 'foo bar baz';
$LANG['foo3'] = 'foo bar baz bag';

	Typical Weblate Component configuration

	File mask

	lang/*/texts.php

	Monolingual base language file

	lang/en/texts.php

	Template for new translations

	lang/en/texts.php

	File format

	PHP strings

Note

Translate-toolkit currently has some limitations in processing PHP files,
so please double check that your files won’t get corrupted before using
Weblate in production setup.

Following things are known to be broken:

	Adding new strings to translation, every translation has to contain all strings (even if empty).

	Handling of special characters like newlines.

See also

PHP [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/php.html]

JSON files

New in version 2.0.

Changed in version 2.16: Since Weblate 2.16 and with translate-toolkit at least 2.2.4 nested
structure JSON files are supported as well.

JSON format is used mostly for translating applications implemented in
JavaScript.

Weblate currently supports several variants of JSON translations:

	Simple key / value files.

	Files with nested keys.

	JSON i18next files

	WebExtension JSON

JSON translations are usually monolingual, so it is recommended to specify base
file with English strings.

Example file:

{
 "Hello, world!\n": "Ahoj světe!\n",
 "Orangutan has %d banana.\n": "",
 "Try Weblate at https://demo.weblate.org/!\n": "",
 "Thank you for using Weblate.": ""
}

Nested files are supported as well (see above for requirements), such file can look like:

{
 "weblate": {
 "hello": "Ahoj světe!\n",
 "orangutan": "",
 "try": "",
 "thanks": ""
 }
}

	Typical Weblate Component configuration

	File mask

	langs/translation-*.json

	Monolingual base language file

	langs/translation-en.json

	Template for new translations

	Empty

	File format

	JSON nested structure file

See also

JSON [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/json.html],
Customize JSON output,
Cleanup translation files,

JSON i18next files

Changed in version 2.17: Since Weblate 2.17 and with translate-toolkit at least 2.2.5 i18next
JSON files with plurals are supported as well.

i18next [https://www.i18next.com/] is an internationalization-framework
written in and for JavaScript. Weblate supports its localization files with
features such as plurals.

i18next translations are monolingual, so it is recommended to specify base file
with English strings.

Note

Weblate supports i18next JSON v3 format. The v2 and v1 variants are mostly
compatible, with exception of handling plurals.

Example file:

{
 "hello": "Hello",
 "apple": "I have an apple",
 "apple_plural": "I have {{count}} apples",
 "apple_negative": "I have no apples"
}

	Typical Weblate Component configuration

	File mask

	langs/*.json

	Monolingual base language file

	langs/en.json

	Template for new translations

	Empty

	File format

	i18next JSON file

See also

JSON [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/json.html],
i18next JSON Format [https://www.i18next.com/misc/json-format],
Customize JSON output,
Cleanup translation files,

WebExtension JSON

New in version 2.16: This is supported since Weblate 2.16 and with translate-toolkit at least 2.2.4.

File format used when translating extensions for Google Chrome or Mozilla Firefox.

Example file:

{
 "hello": {
 "message": "Ahoj světe!\n",
 "description": "Description",
 "placeholders": {
 "url" : {
 "content" : "$1",
 "example" : "https://developer.mozilla.org"
 }
 }
 },
 "orangutan": {
 "message": "",
 "description": "Description"
 },
 "try": {
 "message": "",
 "description": "Description"
 },
 "thanks": {
 "message": "",
 "description": "Description"
 }
}

	Typical Weblate Component configuration

	File mask

	_locales/*/messages.json

	Monolingual base language file

	_locales/en/messages.json

	Template for new translations

	Empty

	File format

	WebExtension JSON file

See also

JSON [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/json.html],
Google chrome.i18n [https://developer.chrome.com/extensions/i18n],
Mozilla Extensions Internationalization [https://developer.mozilla.org/en-US/Add-ons/WebExtensions/Internationalization]

.NET Resource files

New in version 2.3.

.NET Resource (.resx) file is a monolingual XML file format used in Microsoft
.NET Applications. It works with .resw files as well as they use identical
syntax to .resx.

	Typical Weblate Component configuration

	File mask

	Resources/Language.*.resx

	Monolingual base language file

	Resources/Language.resx

	Template for new translations

	Empty

	File format

	.NET resource file

See also

.NET Resource files (.resx) [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/resx.html],
Cleanup translation files,

CSV files

New in version 2.4.

CSV files can contain a simple list of source and translation. Weblate supports
the following files:

	Files with header defining fields (source, translation, location, …). This
is recommended approach as it’s least error prone.

	Files with two fields - source and translation (in this order), choose
Simple CSV file as file format

	Files with fields as defined by translate-toolkit: location, source,
target, id, fuzzy, context, translator_comments, developer_comments

Warning

The CSV format currently automatically detects dialect of the CSV file. In
some cases the automatic detection might fail and you will get mixed
results. This is especially true for the CSV files with newlines in the
values. As a workaround it is recommended to avoid omitting quoting characters.

Example file:

Thank you for using Weblate.,Děkujeme za použití Weblate.

	Typical Weblate Component configuration

	File mask

	locale/*.csv

	Monolingual base language file

	Empty

	Template for new translations

	locale/en.csv

	File format

	CSV file

See also

CSV [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/csv.html]

YAML files

New in version 2.9.

The plain YAML files with string keys and values.

Example YAML file:

weblate:
 hello: ""
 orangutan": ""
 try": ""
 thanks": ""

	Typical Weblate Component configuration

	File mask

	translations/messages.*.yml

	Monolingual base language file

	translations/messages.en.yml

	Template for new translations

	Empty

	File format

	YAML file

See also

YAML [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/yaml.html], Ruby YAML files

Ruby YAML files

New in version 2.9.

Ruby i18n YAML files with language as root node.

Example Ruby i18n YAML file:

cs:
 weblate:
 hello: ""
 orangutan: ""
 try: ""
 thanks: ""

	Typical Weblate Component configuration

	File mask

	translations/messages.*.yml

	Monolingual base language file

	translations/messages.en.yml

	Template for new translations

	Empty

	File format

	Ruby YAML file

See also

YAML [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/yaml.html], YAML files

DTD files

New in version 2.18.

Example DTD file:

<!ENTITY hello "">
<!ENTITY orangutan "">
<!ENTITY try "">
<!ENTITY thanks "">

	Typical Weblate Component configuration

	File mask

	locale/*.dtd

	Monolingual base language file

	locale/en.dtd

	Template for new translations

	Empty

	File format

	DTD file

See also

Mozilla DTD format [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/dtd.html]

Flat XML files

New in version 3.9.

Example falt XML file:

<?xml version='1.0' encoding='UTF-8'?>
<root>
 <str key="hello_world">Hello World!</str>
 <str key="resource_key">Translated value.</str>
</root>

	Typical Weblate Component configuration

	File mask

	locale/*.xml

	Monolingual base language file

	locale/en.xml

	Template for new translations

	Empty

	File format

	Flat XML file

See also

Flat XML [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/flatxml.html]

Windows RC files

New in version 3.0: Experimental support has been added in Weblate 3.0, not supported on Python 3.

Example Windows RC file:

LANGUAGE LANG_CZECH, SUBLANG_DEFAULT

STRINGTABLE DISCARDABLE
BEGIN

IDS_MSG1 "Hello, world!\n"
IDS_MSG2 "Orangutan has %d banana.\n"
IDS_MSG3 "Try Weblate at http://demo.weblate.org/!\n"
IDS_MSG4 "Thank you for using Weblate."
END

	Typical Weblate Component configuration

	File mask

	lang/*.rc

	Monolingual base language file

	lang/en-US.rc

	Template for new translations

	lang/en-US.rc

	File format

	RC file

See also

Windows RC files [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/rc.html]

App store metadata files

New in version 3.5.

Weblate can translate metadata used for publishing apps in various app stores.
Currently it is known to be compatible with following tools:

	Triple-T gradle-play-publisher [https://github.com/Triple-T/gradle-play-publisher]

	Fastlane [https://docs.fastlane.tools/getting-started/android/setup/#fetch-your-app-metadata]

	F-Droid [https://f-droid.org/docs/All_About_Descriptions_Graphics_and_Screenshots/]

The metadata consist of several text files which Weblate will present as
separate strings to translate.

	Typical Weblate Component configuration

	File mask

	fastlane/android/metadata/*

	Monolingual base language file

	fastlane/android/metadata/en-US

	Template for new translations

	fastlane/android/metadata/en-US

	File format

	App store metadata files

Subtitle files

New in version 3.7.

Weblate can translate various subtile files:

	SubRip subtitle file (*.srt)

	MicroDVD subtitles file (*.sub)

	Advanced Substation Alpha subtitles file (*.ass)

	Substation Alpha subtitles file (*.ssa)

	Typical Weblate Component configuration

	File mask

	path/*.srt

	Monolingual base language file

	path/en.srt

	Template for new translations

	path/en.srt

	File format

	SubRip subtitle file

See also

Subtitles [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/subtitles.html]

Excel Open XML

New in version 3.2.

Weblate can import and export Excel Open XML (xlsx) files.

When using xlsx files for translation upload, be aware that only the active
worksheet is considered and there must be at least a column called source
(which contains the source string) and a column called target (which
contains the translation). Additionally there should be the column context
(which contains the context path of the translation string). If you use the xlsx
download for exporting the translations into an Excel workbook, you already get
a file with the correct file format.

Others

Most formats supported by translate-toolkit which support serializing can be
easily supported, but they did not (yet) receive any testing. In most cases
some thin layer is needed in Weblate to hide differences in behavior of
different translate-toolkit storages.

See also

Translation Related File Formats [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/index.html]

Adding new translations

Changed in version 2.18: In versions prior to 2.18 the behaviour of adding new translations was file
format specific.

Weblate can automatically start new translation for all of the file
formats.

Some formats expect to start with empty file and only translated
strings to be included (eg. Android string resources), while others expect to have all
keys present (eg. GNU Gettext). In some situations this really doesn’t depend
on the format, but rather on framework you use to handle the translation (eg. with
JSON files).

When you specify Template for new translations in
Component configuration, Weblate will use this file to start new translations. Any
exiting translations will be removed from the file when doing so.

When Template for new translations is empty and file format
supports it, empty file is created where new strings will be added once they are
translated.

The Language code style allows you to customize language code used
in generated filenames:

	Default based on the file format

	Dependent on file format, for most of them POSIX is used.

	POSIX style using underscore as a separator

	Typically used by Gettext and related tools, produces language codes like
pt_BR.

	BCP style using hyphen as a separator

	Typically used on web platforms, produces language codes like
pt-BR.

	Android style

	Used only on Android apps, produces language codes like
pt-rBR.

	Java style

	User by Java - mostly BCP with legacy codes for Chinese.

Note

Weblate recognizes any of these when parsing translation files, the above
settings only influences how new files are created.

Version control integration

Weblate currently supports Git (with extended support for
GitHub, Gerrit and Subversion) and
Mercurial as version control backends.

Accessing repositories

The VCS repository you want to use has to be accessible to Weblate. With a
publicly available repository you just need to enter correct URL (for example
git://github.com/WeblateOrg/weblate.git or
https://github.com/WeblateOrg/weblate.git), but for private repositories the
setup might be more complex.

Weblate internal URLs

To share one repository between different components you can use a special URL
like weblate://project/component. This way, the component will share the VCS
repository configuration with referenced component and the VCS repository will
be stored just once on the disk.

SSH repositories

The most frequently used method to access private repositories is based on SSH. To
have access to such a repository, you generate SSH key for Weblate and authorize
it to access the repository. Weblate also needs to know the host key to avoid
man in the middle attacks. This all can be done in the Weblate administration
interface:

[image: _images/ssh-keys.png]

Generating SSH keys

You can generate or display the key currently used by Weblate in the admin
interface (follow SSH keys link on main admin page). Once you’ve
done this, Weblate should be able to access your repository.

Note

The keys need to be without password to make it work, so be sure they are
well protected against malicious usage.

Hint

You can backup the Weblate generated private key as well.

Warning

On GitHub, you can add the key to only one repository. See the following
sections for other solutions for GitHub.

Verifying SSH host keys

Before connecting to the repository, you also need to verify SSH host keys of
servers you are going to access in the same section of the admin interface.
You can do this in the Add host key section. Just enter hostname
you are going to access (eg. gitlab.com) and press Submit.
After adding it please verify that the fingerprint matches the server you’re
adding, the fingerprints will be displayed in the confirmation message:

[image: _images/ssh-keys-added.png]

HTTPS repositories

To access protected HTTPS repositories, you need to include the username and password
in the URL. Don’t worry, Weblate will strip this information when showing the URL
to the users (if they are allowed to see the repository URL at all).

For example the GitHub URL with authentication might look like
https://user:your_access_token@github.com/WeblateOrg/weblate.git.

Note

In case your username or password contains special characters, those have to be
URL encoded, for example
https://user%40example.com:%24password%23@bitbucket.org/...`.

Using proxy

If you need to access http/https VCS repositories using a proxy server, you
need to configure the VCS to use it.

This can be configured using the http_proxy, https_proxy, and
all_proxy environment variables (check cURL documentation for more details)
or by enforcing it in VCS configuration, for example:

git config --global http.proxy http://user:password@proxy.example.com:80

Note

The proxy setting needs to be done in the same context which is used to
execute Weblate. For the environment it should be set for both wsgi and
Celery servers. The VCS configuration has to be set for the user which is
running Weblate.

See also

curl manpage [https://curl.haxx.se/docs/manpage.html],
git config documentation [https://git-scm.com/docs/git-config]

Git

Git is first VCS backend that was available in Weblate and is still the most
stable and tested one.

See also

See Accessing repositories for information how to access different kind of
repositories.

GitHub repositories

You can access GitHub repositories by SSH as mentioned above, but in case you
need to access more repositories, you will hit a GitHub limitation on the SSH key
usage (one key can be used only for one repository). There are several ways to
work around this limitation.

For smaller deployments, you can use HTTPS authentication using a personal access
token and your account, see Creating an access token for command-line use [https://help.github.com/articles/creating-an-access-token-for-command-line-use/].

For a bigger setup, it is usually better to create dedicated user for Weblate,
assign him the SSH key generated in Weblate and grant him access to all
repositories you want.

Customizing Git configuration

Weblate invokes all VCS commands with HOME pointed to home directory in
DATA_DIR, therefore if you want to edit user configuration, you need
to do this in DATA_DIR/home/.git.

Git remote helpers

You can also use Git remote helpers [https://git-scm.com/docs/git-remote-helpers] for supporting other VCS as well, but
this usually leads to other problems, so be prepared to debug them.

At this time, helpers for Bazaar and Mercurial are available within separate
repositories on GitHub: git-remote-hg [https://github.com/felipec/git-remote-hg] and git-remote-bzr [https://github.com/felipec/git-remote-bzr]. You can
download them manually and put somewhere in your search path (for example
~/bin). You also need to have installed appropriate version control
programs as well.

Once you have these installed, you can use such remotes to specify repository
in Weblate.

To clone gnuhello project from Launchpad with Bazaar use:

bzr::lp:gnuhello

For hello repository from selenic.com with Mercurial use:

hg::http://selenic.com/repo/hello

Warning

Please be prepared to some inconvenience when using Git remote helpers,
for example with Mercurial, the remote helper sometimes tends to create new
tip when pushing changes back.

GitHub

New in version 2.3.

This just adds a thin layer on top of Git to allow push translation
changes as pull requests instead of pushing directory to the repository.
It currently uses the hub [https://hub.github.com/] tool to do the integration.

There is no need to use this to access Git repositories, ordinary
Git works the same, the only difference is how pushing to a repository is
handled. With Git changes are pushed directly to the repository, while
GitHub creates pull requests.

Pushing changes to GitHub as pull request

If you are translating a project that’s hosted on GitHub and don’t want to
push translations to the repository, you can have them sent as a pull request instead.

You need to configure the hub [https://hub.github.com/] command line tool and set
GITHUB_USERNAME for this to work.

See also

GITHUB_USERNAME, Setting up hub for configuration instructions

Setting up hub

Pushing changes to GitHub as pull request requires a configured hub [https://hub.github.com/] installation on your server.
Follow the installation instructions at https://hub.github.com/ and perform an
action with hub [https://hub.github.com/] to finish the configuration, for example:

DATA_DIR is set in Weblate settings.py, set it accordingy.
Is is /app/data in Docker
HOME=${DATA_DIR}/home hub clone octocat/Spoon-Knife

The hub [https://hub.github.com/] will ask you for your GitHub credentials, retrieve a token and store
it into ~/.config/hub. This file has to be readable by user running
Weblate.

Note

Use the username you configured hub with as
GITHUB_USERNAME (WEBLATE_GITHUB_USERNAME for the
Docker image).

Gerrit

New in version 2.2.

Adds a thin layer atop Git to allow pushing translation
changes as Gerrit review requests, instead of pushing a directory to the repository.
Currently uses the git-review [https://pypi.org/project/git-review/] tool to do the integration.

Please refer to the Gerrit documentation for setting up the repository with
necessary configuration.

Mercurial

New in version 2.1.

Mercurial is another VCS you can use directly in Weblate.

Note

It should work with any Mercurial version, but there are sometimes
incompatible changes to the command line interface which break Weblate.

See also

See Accessing repositories for information how to access different kind of
repositories.

Subversion

New in version 2.8.

Thanks to git-svn [https://git-scm.com/docs/git-svn], Weblate can work with subversion [https://subversion.apache.org/] repositories. Git-svn
is a Perl script that enables the usage of subversion with a git client, enabling
users to have a full clone of the internal repository and commit locally.

Note

Weblate tries to detect Subversion repository layout automatically - it
supports both direct URLs for branch or repositories with standard layout
(branches/, tags/ and trunk/). See git-svn documentation [https://git-scm.com/docs/git-svn#Documentation/git-svn.txt---stdlayout]
for more information.

Changed in version 2.19: In older versions only repositories with standard layout were supported.

Subversion Credentials

Weblate expects you to have accepted the certificate upfront and inserted your
credential, if needed. It will look into the DATA_DIR directory. To insert your
credential and accept the certificate, you can run svn once with the $HOME
environment variable set to the DATA_DIR:

HOME=${DATA_DIR}/home svn co https://svn.example.com/example

See also

DATA_DIR

Local files

New in version 3.8.

Weblate can operate without remote VCS as well. The initial translations are
imported by ZIP upload. Later you can replace individual files by file upload
or add translation strings directly in Weblate (currently available only for
monolingual translations).

In the background Weblate creates Git repository for you and all changes are
tracked in in. In case you decide later to use VCS to store the translations,
it’s already within Weblate and you can base on that.

GitLab

New in version 3.9.

This just adds a thin layer on top of Git to allow pushing
translation changes as merge requests instead of pushing directly to the
repository. It currently uses the lab [https://github.com/zaquestion/lab] tool to do the push.

There is no need to use this access Git repositories, ordinary Git
works the same, the only difference is how pushing to a repository is
handled. With Git changes are pushed directly to the repository,
while GitLab creates merge request.

Pushing changes to GitLab as merge request

If you are translating a project that is hosted on GitLab and don’t want to
push translations to the repository, you can have them sent as a merge request.

You need to configure the lab [https://github.com/zaquestion/lab] command line tool and set
GITLAB_USERNAME for this to work.

See also

GITLAB_USERNAME, Setting up lab for configuration instructions

Setting up lab

Pushing changes to GitLab as merge request requires a configured lab [https://github.com/zaquestion/lab] installation on your
server. Follow the installation instructions at
https://github.com/zaquestion/lab#installation and perform and run it without
any arguments to finish configuration, for example:

DATA_DIR is set in Weblate settings.py, set it accordingy.
Is is /app/data in Docker
$ HOME=${DATA_DIR}/home lab
Enter GitLab host (default: https://gitlab.com):
Create a token here: https://gitlab.com/profile/personal_access_tokens
Enter default GitLab token (scope: api):
Config saved to ~/.config/lab.hcl

The lab [https://github.com/zaquestion/lab] will ask you for your GitLab access token, retrieve a token and
store it into ~/.config/lab.hcl. The file has to be readable by user
running Weblate.

Note

Use the username you configured lab with as
GITLAB_USERNAME (WEBLATE_GITLAB_USERNAME for the
Docker image).

Weblate’s Web API

REST API

New in version 2.6: The API is available since Weblate 2.6.

The API is accessible on the /api/ URL and it is based on
Django REST framework [https://www.django-rest-framework.org/].
You can use it directly or by Weblate Client.

Authentication and generic parameters

The public project API is available without authentication, though
unauthenticated requests are heavily throttled (by default to 100 requests per
day), so it is recommended to use authentication. The authentication uses a
token, which you can get in your profile. Use it in the Authorization header:

	
ANY /

	Generic request behaviour for the API, the headers, status codes and
parameters here apply to all endpoints as well.

	Query Parameters

	
	format – Response format (overrides Accept [https://tools.ietf.org/html/rfc7231#section-5.3.2]).
Possible values depends on REST framework setup,
by default json and api are supported. The
latter provides web browser interface for API.

	Request Headers

	
	Accept [https://tools.ietf.org/html/rfc7231#section-5.3.2] – the response content type depends on
Accept [https://tools.ietf.org/html/rfc7231#section-5.3.2] header

	Authorization [https://tools.ietf.org/html/rfc7235#section-4.2] – optional token to authenticate

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – this depends on Accept [https://tools.ietf.org/html/rfc7231#section-5.3.2]
header of request

	Allow [https://tools.ietf.org/html/rfc7231#section-7.4.1] – list of allowed HTTP methods on object

	Response JSON Object

	
	detail (string) – verbose description of failure (for HTTP status codes other than 200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1])

	count (int) – total item count for object lists

	next (string) – next page URL for object lists

	previous (string) – previous page URL for object lists

	results (array) – results for object lists

	url (string) – URL to access this resource using API

	web_url (string) – URL to access this resource using web browser

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – when request was correctly handled

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – when form parameters are missing

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – when access is denied

	429 Too Many Requests [http://tools.ietf.org/html/rfc6585#section-4] – when throttling is in place

Authentication examples

Example request:

GET /api/ HTTP/1.1
Host: example.com
Accept: application/json, text/javascript
Authorization: Token YOUR-TOKEN

Example response:

HTTP/1.0 200 OK
Date: Fri, 25 Mar 2016 09:46:12 GMT
Server: WSGIServer/0.1 Python/2.7.11+
Vary: Accept, Accept-Language, Cookie
X-Frame-Options: SAMEORIGIN
Content-Type: application/json
Content-Language: en
Allow: GET, HEAD, OPTIONS

{
 "projects":"http://example.com/api/projects/",
 "components":"http://example.com/api/components/",
 "translations":"http://example.com/api/translations/",
 "languages":"http://example.com/api/languages/"
}

CURL example:

curl \
 -H "Authorization: Token TOKEN" \
 https://example.com/api/

Passing Parameters Examples

For the POST [https://tools.ietf.org/html/rfc7231#section-4.3.3] method the parameters can be specified either as
form submission (application/x-www-form-urlencoded) or as JSON
(application/json).

Form request example:

POST /api/projects/hello/repository/ HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/x-www-form-urlencoded
Authorization: Token TOKEN

operation=pull

JSON request example:

POST /api/projects/hello/repository/ HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Token TOKEN
Content-Length: 20

{"operation":"pull"}

CURL example:

curl \
 -d operation=pull \
 -H "Authorization: Token TOKEN" \
 http://example.com/api/components/hello/weblate/repository/

CURL JSON example:

curl \
 --data-binary '{"operation":"pull"}' \
 -H "Content-Type: application/json" \
 -H "Authorization: Token TOKEN" \
 http://example.com/api/components/hello/weblate/repository/

Rate limiting

The API requests are rate limited; the default configuration limits it to 100
requests per day for anonymous users and 1000 requests per day for authenticated
users.

Rate limiting can be adjusted in the settings.py; see
Throttling in Django REST framework documentation [https://www.django-rest-framework.org/api-guide/throttling/]
for more details how to configure it.

API Entry Point

	
GET /api/

	The API root entry point.

Example request:

GET /api/ HTTP/1.1
Host: example.com
Accept: application/json, text/javascript
Authorization: Token YOUR-TOKEN

Example response:

HTTP/1.0 200 OK
Date: Fri, 25 Mar 2016 09:46:12 GMT
Server: WSGIServer/0.1 Python/2.7.11+
Vary: Accept, Accept-Language, Cookie
X-Frame-Options: SAMEORIGIN
Content-Type: application/json
Content-Language: en
Allow: GET, HEAD, OPTIONS

{
 "projects":"http://example.com/api/projects/",
 "components":"http://example.com/api/components/",
 "translations":"http://example.com/api/translations/",
 "languages":"http://example.com/api/languages/"
}

Languages

	
GET /api/languages/

	Returns a list of all languages.

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Language object attributes are documented at GET /api/languages/(string:language)/.

	
GET /api/languages/(string: language)/

	Returns information about a language.

	Parameters

	
	language (string) – Language code

	Response JSON Object

	
	code (string) – Language code

	direction (string) – Text direction

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Example JSON data:

{
 "code": "en",
 "direction": "ltr",
 "name": "English",
 "url": "http://example.com/api/languages/en/",
 "web_url": "http://example.com/languages/en/"
}

Projects

	
GET /api/projects/

	Returns a list of all projects.

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Project object attributes are documented at GET /api/projects/(string:project)/.

	
POST /api/projects/

	
New in version 3.9.

Creates a new project.

	Parameters

	
	name (string) – project name

	slug (string) – project slug

	web (string) – project website

	
GET /api/projects/(string: project)/

	Returns information about a project.

	Parameters

	
	project (string) – Project URL slug

	Response JSON Object

	
	name (string) – project name

	slug (string) – project slug

	source_language (object) – source language object; see GET /api/languages/(string:language)/

	web (string) – project website

	components_list_url (string) – URL to components list; see GET /api/projects/(string:project)/components/

	repository_url (string) – URL to repository status; see GET /api/projects/(string:project)/repository/

	changes_list_url (string) – URL to changes list; see GET /api/projects/(string:project)/changes/

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Example JSON data:

{
 "name": "Hello",
 "slug": "hello",
 "source_language": {
 "code": "en",
 "direction": "ltr",
 "name": "English",
 "url": "http://example.com/api/languages/en/",
 "web_url": "http://example.com/languages/en/"
 },
 "url": "http://example.com/api/projects/hello/",
 "web": "https://weblate.org/",
 "web_url": "http://example.com/projects/hello/"
}

	
DELETE /api/projects/(string: project)/

	
New in version 3.9.

Deletes a project.

	Parameters

	
	project (string) – Project URL slug

	
GET /api/projects/(string: project)/changes/

	Returns a list of project changes.

	Parameters

	
	project (string) – Project URL slug

	Response JSON Object

	
	results (array) – array of component objects; see GET /api/changes/(int:pk)/

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
GET /api/projects/(string: project)/repository/

	Returns information about VCS repository status. This endpoint contains
only an overall summary for all repositories for the project. To get more detailed
status use GET /api/components/(string:project)/(string:component)/repository/.

	Parameters

	
	project (string) – Project URL slug

	Response JSON Object

	
	needs_commit (boolean) – whether there are any pending changes to commit

	needs_merge (boolean) – whether there are any upstream changes to merge

	needs_push (boolean) – whether there are any local changes to push

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Example JSON data:

{
 "needs_commit": true,
 "needs_merge": false,
 "needs_push": true
}

	
POST /api/projects/(string: project)/repository/

	Performs given operation on the VCS repository.

	Parameters

	
	project (string) – Project URL slug

	Request JSON Object

	
	operation (string) – Operation to perform: one of push, pull, commit, reset, cleanup

	Response JSON Object

	
	result (boolean) – result of the operation

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

CURL example:

curl \
 -d operation=pull \
 -H "Authorization: Token TOKEN" \
 http://example.com/api/components/hello/weblate/repository/

JSON request example:

POST /api/projects/hello/repository/ HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Token TOKEN
Content-Length: 20

{"operation":"pull"}

JSON response example:

HTTP/1.0 200 OK
Date: Tue, 12 Apr 2016 09:32:50 GMT
Server: WSGIServer/0.1 Python/2.7.11+
Vary: Accept, Accept-Language, Cookie
X-Frame-Options: SAMEORIGIN
Content-Type: application/json
Content-Language: en
Allow: GET, POST, HEAD, OPTIONS

{"result":true}

	
GET /api/projects/(string: project)/components/

	Returns a list of translation components in the given project.

	Parameters

	
	project (string) – Project URL slug

	Response JSON Object

	
	results (array) – array of component objects; see GET /api/components/(string:project)/(string:component)/

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
POST /api/projects/(string: project)/components/

	
New in version 3.9.

Creates translation components in the given project.

	Parameters

	
	project (string) – Project URL slug

	
GET /api/projects/(string: project)/languages/

	Returns paginated statistics for all languages within a project.

New in version 3.8.

	Parameters

	
	project (string) – Project URL slug

	Response JSON Object

	
	results (array) – array of translation statistics objects

	language (string) – language name

	code (string) – language code

	total (int) – total number of strings

	translated (int) – number of translated strings

	translated_percent (float) – percentage of translated strings

	total_words (int) – total number of words

	translated_words (int) – number of translated words

	words_percent (float) – percentage of translated words

	
GET /api/projects/(string: project)/statistics/

	Returns statistics for a project.

New in version 3.8.

	Parameters

	
	project (string) – Project URL slug

	Response JSON Object

	
	total (int) – total number of strings

	translated (int) – number of translated strings

	translated_percent (float) – percentage of translated strings

	total_words (int) – total number of words

	translated_words (int) – number of translated words

	words_percent (float) – percentage of translated words

Components

	
GET /api/components/

	Returns a list of translation components.

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Component object attributes are documented at GET /api/components/(string:project)/(string:component)/.

	
GET /api/components/(string: project)/(string: component)/

	Returns information about translation component.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Response JSON Object

	
	branch (string) – VCS repository branch

	file_format (string) – file format of translations

	filemask (string) – mask of translation files in the repository

	git_export (string) – URL of the exported VCS repository with translations

	license (string) – license for translations

	license_url (string) – URL of license for translations

	name (string) – name of component

	slug (string) – slug of component

	project (object) – the translation project; see GET /api/projects/(string:project)/

	repo (string) – VCS repository URL

	template (string) – base file for monolingual translations

	new_base (string) – base file for adding new translations

	vcs (string) – version control system

	repository_url (string) – URL to repository status; see GET /api/components/(string:project)/(string:component)/repository/

	translations_url (string) – URL to translations list; see GET /api/components/(string:project)/(string:component)/translations/

	lock_url (string) – URL to lock status; see GET /api/components/(string:project)/(string:component)/lock/

	changes_list_url (string) – URL to changes list; see GET /api/components/(string:project)/(string:component)/changes/

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Example JSON data:

{
 "branch": "master",
 "file_format": "po",
 "filemask": "po/*.po",
 "git_export": "",
 "license": "",
 "license_url": "",
 "name": "Weblate",
 "slug": "weblate",
 "project": {
 "name": "Hello",
 "slug": "hello",
 "source_language": {
 "code": "en",
 "direction": "ltr",
 "name": "English",
 "url": "http://example.com/api/languages/en/",
 "web_url": "http://example.com/languages/en/"
 },
 "url": "http://example.com/api/projects/hello/",
 "web": "https://weblate.org/",
 "web_url": "http://example.com/projects/hello/"
 },
 "repo": "file:///home/nijel/work/weblate-hello",
 "template": "",
 "new_base": "",
 "url": "http://example.com/api/components/hello/weblate/",
 "vcs": "git",
 "web_url": "http://example.com/projects/hello/weblate/"
}

	
DELETE /api/components/(string: project)/(string: component)/

	
New in version 3.9.

Deletes a component.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	
GET /api/components/(string: project)/(string: component)/changes/

	Returns a list of component changes.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Response JSON Object

	
	results (array) – array of component objects; see GET /api/changes/(int:pk)/

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
GET /api/components/(string: project)/(string: component)/lock/

	Returns component lock status.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Response JSON Object

	
	locked (boolean) – whether component is locked for updates

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Example JSON data:

{
 "locked": false
}

	
POST /api/components/(string: project)/(string: component)/lock/

	Sets component lock status.

Response is same as GET /api/components/(string:project)/(string:component)/lock/.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Request JSON Object

	
	lock – Boolean whether to lock or not.

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
GET /api/components/(string: project)/(string: component)/repository/

	Returns information about VCS repository status.

The response is same as for GET /api/projects/(string:project)/repository/.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Response JSON Object

	
	needs_commit (boolean) – whether there are any pending changes to commit

	needs_merge (boolean) – whether there are any upstream changes to merge

	needs_push (boolean) – whether there are any local changes to push

	remote_commit (string) – Remote commit information

	status (string) – VCS repository status as reported by VCS

	merge_failure – Text describing merge failure or null if there is none

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
POST /api/components/(string: project)/(string: component)/repository/

	Performs the given operation on a VCS repository.

See POST /api/projects/(string:project)/repository/ for documentation.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Request JSON Object

	
	operation (string) – Operation to perform: one of push, pull, commit, reset, cleanup

	Response JSON Object

	
	result (boolean) – result of the operation

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
GET /api/components/(string: project)/(string: component)/monolingual_base/

	Downloads base file for monolingual translations.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
GET /api/components/(string: project)/(string: component)/new_template/

	Downloads template file for new translations.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
GET /api/components/(string: project)/(string: component)/translations/

	Returns a list of translation objects in the given component.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Response JSON Object

	
	results (array) – array of translation objects; see GET /api/translations/(string:project)/(string:component)/(string:language)/

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
GET /api/components/(string: project)/(string: component)/statistics/

	Returns paginated statistics for all translations within component.

New in version 2.7.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Response JSON Object

	
	results (array) – array of translation statistics objects; see GET /api/translations/(string:project)/(string:component)/(string:language)/statistics/

Translations

	
GET /api/translations/

	Returns a list of translations.

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Translation object attributes are documented at GET /api/translations/(string:project)/(string:component)/(string:language)/.

	
GET /api/translations/(string: project)/(string: component)/(string: language)/

	Returns information about a translation.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

	Response JSON Object

	
	component (object) – component object; see GET /api/components/(string:project)/(string:component)/

	failing_checks (int) – number of strings failing check

	failing_checks_percent (float) – percentage of strings failing check

	failing_checks_words (int) – number of words with failing check

	filename (string) – translation filename

	fuzzy (int) – number of strings marked for review

	fuzzy_percent (float) – percentage of strings marked for review

	fuzzy_words (int) – number of words marked for review

	have_comment (int) – number of strings with comment

	have_suggestion (int) – number of strings with suggestion

	is_template (boolean) – whether translation is monolingual base

	language (object) – source language object; see GET /api/languages/(string:language)/

	language_code (string) – language code used in the repository; this can be different from language code in the language object

	last_author (string) – name of last author

	last_change (timestamp) – last change timestamp

	revision (string) – hash revision of the file

	share_url (string) – URL for sharing leading to engage page

	total (int) – total number of strings

	total_words (int) – total number of words

	translate_url (string) – URL for translating

	translated (int) – number of translated strings

	translated_percent (float) – percentage of translated strings

	translated_words (int) – number of translated words

	repository_url (string) – URL to repository status; see GET /api/translations/(string:project)/(string:component)/(string:language)/repository/

	file_url (string) – URL to file object; see GET /api/translations/(string:project)/(string:component)/(string:language)/file/

	changes_list_url (string) – URL to changes list; see GET /api/translations/(string:project)/(string:component)/(string:language)/changes/

	units_list_url (string) – URL to strings list; see GET /api/translations/(string:project)/(string:component)/(string:language)/units/

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Example JSON data:

{
 "component": {
 "branch": "master",
 "file_format": "po",
 "filemask": "po/*.po",
 "git_export": "",
 "license": "",
 "license_url": "",
 "name": "Weblate",
 "new_base": "",
 "project": {
 "name": "Hello",
 "slug": "hello",
 "source_language": {
 "code": "en",
 "direction": "ltr",
 "name": "English",
 "url": "http://example.com/api/languages/en/",
 "web_url": "http://example.com/languages/en/"
 },
 "url": "http://example.com/api/projects/hello/",
 "web": "https://weblate.org/",
 "web_url": "http://example.com/projects/hello/"
 },
 "repo": "file:///home/nijel/work/weblate-hello",
 "slug": "weblate",
 "template": "",
 "url": "http://example.com/api/components/hello/weblate/",
 "vcs": "git",
 "web_url": "http://example.com/projects/hello/weblate/"
 },
 "failing_checks": 3,
 "failing_checks_percent": 75.0,
 "failing_checks_words": 11,
 "filename": "po/cs.po",
 "fuzzy": 0,
 "fuzzy_percent": 0.0,
 "fuzzy_words": 0,
 "have_comment": 0,
 "have_suggestion": 0,
 "is_template": false,
 "language": {
 "code": "cs",
 "direction": "ltr",
 "name": "Czech",
 "url": "http://example.com/api/languages/cs/",
 "web_url": "http://example.com/languages/cs/"
 },
 "language_code": "cs",
 "last_author": "Weblate Admin",
 "last_change": "2016-03-07T10:20:05.499",
 "revision": "7ddfafe6daaf57fc8654cc852ea6be212b015792",
 "share_url": "http://example.com/engage/hello/cs/",
 "total": 4,
 "total_words": 15,
 "translate_url": "http://example.com/translate/hello/weblate/cs/",
 "translated": 4,
 "translated_percent": 100.0,
 "translated_words": 15,
 "url": "http://example.com/api/translations/hello/weblate/cs/",
 "web_url": "http://example.com/projects/hello/weblate/cs/"
}

	
DELETE /api/translations/(string: project)/(string: component)/(string: language)/

	
New in version 3.9.

Deletes a translation.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

	
GET /api/translations/(string: project)/(string: component)/(string: language)/changes/

	Returns a list of translation changes.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

	Response JSON Object

	
	results (array) – array of component objects; see GET /api/changes/(int:pk)/

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
GET /api/translations/(string: project)/(string: component)/(string: language)/units/

	Returns a list of translation units.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

	Response JSON Object

	
	results (array) – array of component objects; see GET /api/units/(int:pk)/

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
GET /api/translations/(string: project)/(string: component)/(string: language)/file/

	Download current translation file as stored in VCS (without format
parameter) or as converted to a standard format (currently supported:
Gettext PO, MO, XLIFF and TBX).

Note

This API endpoint uses different logic for output than rest of API as
it operates on whole file rather than on data. Set of accepted format
parameter differs and without such parameter you get translation file
as stored in VCS.

	Query Parameters

	
	format – File format to use; if not specified no format conversion happens; supported file formats: po, mo, xliff, xliff11, tbx

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
POST /api/translations/(string: project)/(string: component)/(string: language)/file/

	Upload new file with translations.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

	Form Parameters

	
	boolean overwrite – Whether to overwrite existing translations (defaults to no)

	file file – Uploaded file

	string email – Author e-mail

	string author – Author name

	string method – Upload method (translate, approve, suggest, fuzzy, replace)

	string fuzzy – Fuzzy strings processing (empty, process, approve)

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

CURL example:

curl -X POST \
 -F file=@strings.xml \
 -H "Authorization: Token TOKEN" \
 http://example.com/api/translations/hello/android/cs/file/

	
GET /api/translations/(string: project)/(string: component)/(string: language)/repository/

	Returns information about VCS repository status.

The response is same as for GET /api/components/(string:project)/(string:component)/repository/.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
POST /api/translations/(string: project)/(string: component)/(string: language)/repository/

	Performs given operation on the VCS repository.

See POST /api/projects/(string:project)/repository/ for documentation.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

	Request JSON Object

	
	operation (string) – Operation to perform: one of push, pull, commit, reset, cleanup

	Response JSON Object

	
	result (boolean) – result of the operation

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

	
GET /api/translations/(string: project)/(string: component)/(string: language)/statistics/

	Returns detailed translation statistics.

New in version 2.7.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

	Response JSON Object

	
	code (string) – language code

	failing (int) – number of failing checks

	failing_percent (float) – percentage of failing checks

	fuzzy (int) – number of strings needing review

	fuzzy_percent (float) – percentage of strings needing review

	total_words (int) – total number of words

	translated_words (int) – number of translated words

	last_author (string) – name of last author

	last_change (timestamp) – date of last change

	name (string) – language name

	total (int) – total number of strings

	translated (int) – number of translated strings

	translated_percent (float) – percentage of translated strings

	url (string) – URL to access the translation (engagement URL)

	url_translate (string) – URL to access the translation (real translation URL)

Units

New in version 2.10.

	
GET /api/units/

	Returns list of translation units.

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Unit object attributes are documented at GET /api/units/(int:pk)/.

	
GET /api/units/(int: pk)/

	Returns information about translation unit.

	Parameters

	
	pk (int) – Unit ID

	Response JSON Object

	
	translation (string) – URL of a related translation object

	source (string) – source string

	previous_source (string) – previous source string used for fuzzy matching

	target (string) – target string

	id_hash (string) – unique identifier of the unit

	content_hash (string) – unique identifier of the source string

	location (string) – location of the unit in source code

	context (string) – translation unit context

	comment (string) – translation unit comment

	flags (string) – translation unit flags

	fuzzy (boolean) – whether unit is fuzzy or marked for review

	translated (boolean) – whether unit is translated

	position (int) – unit position in translation file

	has_suggestion (boolean) – whether unit has suggestions

	has_comment (boolean) – whether unit has comments

	has_failing_check (boolean) – whether unit has failing checks

	num_words (int) – number of source words

	priority (int) – translation priority; 100 is default

	id (int) – unit identifier

	web_url (string) – URL where unit can be edited

	souce_info (string) – Source string information link; see GET /api/sources/(int:pk)/

Changes

New in version 2.10.

	
GET /api/changes/

	Returns a list of translation changes.

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Change object attributes are documented at GET /api/changes/(int:pk)/.

	
GET /api/changes/(int: pk)/

	Returns information about translation change.

	Parameters

	
	pk (int) – Change ID

	Response JSON Object

	
	unit (string) – URL of a related unit object

	translation (string) – URL of a related translation object

	component (string) – URL of a related component object

	dictionary (string) – URL of a related dictionary object

	user (string) – URL of a related user object

	author (string) – URL of a related author object

	timestamp (timestamp) – event timestamp

	action (int) – numeric identification of action

	action_name (string) – text description of action

	target (string) – event changed text or detail

	id (int) – change identifier

Sources

New in version 2.14.

	
GET /api/sources/

	Returns a list of source string information.

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Sources object attributes are documented at GET /api/sources/(int:pk)/.

	
GET /api/sources/(int: pk)/

	Returns information about source information.

	Parameters

	
	pk (int) – Source information ID

	Response JSON Object

	
	id_hash (string) – unique identifier of the unit

	component (string) – URL of a related component object

	timestamp (timestamp) – timestamp when source string was first seen by Weblate

	priority (int) – source string priority, 100 is default

	check_flags (string) – source string flags

	units (array) – links to units; see GET /api/units/(int:pk)/

	screenshots (array) – links to assigned screenshots; see GET /api/screenshots/(int:pk)/

Screenshots

New in version 2.14.

	
GET /api/screenshots/

	Returns a list of screenshot string information.

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

Sources object attributes are documented at GET /api/screenshots/(int:pk)/.

	
GET /api/screenshots/(int: pk)/

	Returns information about screenshot information.

	Parameters

	
	pk (int) – Screenshot ID

	Response JSON Object

	
	name (string) – name of a screenshot

	component (string) – URL of a related component object

	file_url (string) – URL to download a file; see GET /api/screenshots/(int:pk)/file/

	sources (array) – link to associated source string information; see GET /api/sources/(int:pk)/

	
GET /api/screenshots/(int: pk)/file/

	Download the screenshot image.

	Parameters

	
	pk (int) – Screenshot ID

	
POST /api/screenshots/(int: pk)/file/

	Replace screenshot image.

	Parameters

	
	pk (int) – Screenshot ID

	Form Parameters

	
	file image – Uploaded file

See also

Additional common headers, parameters and status codes are documented at Authentication and generic parameters.

CURL example:

curl -X POST \
 -F image=@image.png \
 -H "Authorization: Token TOKEN" \
 http://example.com/api/screenshots/1/file/

Notification hooks

Notification hooks allow external applications to notify Weblate that the VCS
repository has been updated.

You can use repository endpoints for projects, components and translations to
update individual repositories; see
POST /api/projects/(string:project)/repository/ for documentation.

	
GET /hooks/update/(string: project)/(string: component)/

	
Deprecated since version 2.6: Please use POST /api/components/(string:project)/(string:component)/repository/
instead which works properly with authentication for ACL limited projects.

Triggers update of a component (pulling from VCS and scanning for
translation changes).

	
GET /hooks/update/(string: project)/

	
Deprecated since version 2.6: Please use POST /api/projects/(string:project)/repository/
instead which works properly with authentication for ACL limited projects.

Triggers update of all components in a project (pulling from VCS and
scanning for translation changes).

	
POST /hooks/github/

	Special hook for handling GitHub notifications and automatically updating
matching components.

Note

GitHub includes direct support for notifying Weblate: enable
Weblate service hook in repository settings and set the URL to the URL of your
Weblate installation.

See also

	Automatically receiving changes from GitHub

	For instruction on setting up GitHub integration

	https://help.github.com/articles/creating-webhooks

	Generic information about GitHub Webhooks

	ENABLE_HOOKS

	For enabling hooks for whole Weblate

	
POST /hooks/gitlab/

	Special hook for handling GitLab notifications and automatically updating
matching components.

See also

	Automatically receiving changes from GitLab

	For instruction on setting up GitLab integration

	https://docs.gitlab.com/ce/user/project/integrations/webhooks.html

	Generic information about GitLab Webhooks

	ENABLE_HOOKS

	For enabling hooks for whole Weblate

	
POST /hooks/bitbucket/

	Special hook for handling Bitbucket notifications and automatically
updating matching components.

See also

	Automatically receiving changes from Bitbucket

	For instruction on setting up Bitbucket integration

	https://confluence.atlassian.com/bitbucket/manage-webhooks-735643732.html

	Generic information about Bitbucket Webhooks

	ENABLE_HOOKS

	For enabling hooks for whole Weblate

	
POST /hooks/pagure/

	
New in version 3.3.

Special hook for handling Pagure notifications and automatically
updating matching components.

See also

	Automatically receiving changes from Pagure

	For instruction on setting up Pagure integration

	https://docs.pagure.org/pagure/usage/using_webhooks.html

	Generic information about Pagure Webhooks

	ENABLE_HOOKS

	For enabling hooks for whole Weblate

	
POST /hooks/azure/

	
New in version 3.8.

Special hook for handling Azure Repos notifications and automatically
updating matching components.

See also

	Automatically receiving changes from Azure Repos

	For instruction on setting up Azure integration

	https://docs.microsoft.com/azure/devops/service-hooks/services/webhooks

	Generic information about Azure Repos Web Hooks

	ENABLE_HOOKS

	For enabling hooks for whole Weblate

	
POST /hooks/gitea/

	
New in version 3.9.

Special hook for handling Gitea Webhook notifications and automatically
updating matching components.

See also

	Automatically receiving changes from Gitea Repos

	For instruction on setting up Gitea integration

	https://docs.gitea.io/en-us/webhooks/

	Generic information about Gitea Webhooks

	ENABLE_HOOKS

	For enabling hooks for whole Weblate

	
POST /hooks/gitee/

	
New in version 3.9.

Special hook for handling Gitee Webhook notifications and automatically
updating matching components.

See also

	Automatically receiving changes from Gitee Repos

	For instruction on setting up Gitee integration

	https://gitee.com/help/categories/40

	Generic information about Gitee Webhooks

	ENABLE_HOOKS

	For enabling hooks for whole Weblate

Exports

Weblate provides various exports to allow you to further process the data.

	
GET /exports/stats/(string: project)/(string: component)/

	
	Query Parameters

	
	format (string) – Output format: either json or csv

Deprecated since version 2.6: Please use GET /api/components/(string:project)/(string:component)/statistics/
and GET /api/translations/(string:project)/(string:component)/(string:language)/statistics/
instead; it allows access to ACL controlled projects as well.

Retrieves statistics for given component in given format.

Example request:

GET /exports/stats/weblate/master/ HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

[
 {
 "code": "cs",
 "failing": 0,
 "failing_percent": 0.0,
 "fuzzy": 0,
 "fuzzy_percent": 0.0,
 "last_author": "Michal \u010ciha\u0159",
 "last_change": "2012-03-28T15:07:38+00:00",
 "name": "Czech",
 "total": 436,
 "total_words": 15271,
 "translated": 436,
 "translated_percent": 100.0,
 "translated_words": 3201,
 "url": "http://hosted.weblate.org/engage/weblate/cs/",
 "url_translate": "http://hosted.weblate.org/projects/weblate/master/cs/"
 },
 {
 "code": "nl",
 "failing": 21,
 "failing_percent": 4.8,
 "fuzzy": 11,
 "fuzzy_percent": 2.5,
 "last_author": null,
 "last_change": null,
 "name": "Dutch",
 "total": 436,
 "total_words": 15271,
 "translated": 319,
 "translated_percent": 73.2,
 "translated_words": 3201,
 "url": "http://hosted.weblate.org/engage/weblate/nl/",
 "url_translate": "http://hosted.weblate.org/projects/weblate/master/nl/"
 },
 {
 "code": "el",
 "failing": 11,
 "failing_percent": 2.5,
 "fuzzy": 21,
 "fuzzy_percent": 4.8,
 "last_author": null,
 "last_change": null,
 "name": "Greek",
 "total": 436,
 "total_words": 15271,
 "translated": 312,
 "translated_percent": 71.6,
 "translated_words": 3201,
 "url": "http://hosted.weblate.org/engage/weblate/el/",
 "url_translate": "http://hosted.weblate.org/projects/weblate/master/el/"
 },
]

RSS feeds

Changes in translations are exported in RSS feeds.

	
GET /exports/rss/(string: project)/(string: component)/(string: language)/

	Retrieves RSS feed with recent changes for a translation.

	
GET /exports/rss/(string: project)/(string: component)/

	Retrieves RSS feed with recent changes for a component.

	
GET /exports/rss/(string: project)/

	Retrieves RSS feed with recent changes for a project.

	
GET /exports/rss/language/(string: language)/

	Retrieves RSS feed with recent changes for a language.

	
GET /exports/rss/

	Retrieves RSS feed with recent changes for Weblate instance.

See also

RSS on wikipedia [https://en.wikipedia.org/wiki/RSS]

Weblate Client

New in version 2.7: The wlc utility is fully supported since Weblate 2.7. If you are using an older version
some incompatibilities with the API might occur.

Installation

The Weblate Client is shipped separately and includes the Python module.
You need to install wlc:, wlc to use these.

pip3 install wlc

Synopsis

wlc [parameter] <command> [options]

Commands actually indicate which operation should be performed.

Description

Weblate Client is Python library and command line utility to manage Weblate remotely
using Weblate’s Web API. The command line utility can be invoked as wlc and is
built on wlc.

Global options

The program accepts the following global options, which must be entered before subcommand.

	
--format {csv,json,text,html}

	Specify output format.

	
--url URL

	Specify API URL. Overrides value from configuration file, see Files.
The URL should end with /api/, for example https://hosted.weblate.org/api/.

	
--key KEY

	Specify API user key to use. Overrides value from configuration file, see Files.
You can figure out your key in your profile in Weblate.

	
--config PATH

	Override path to configuration file, see Files.

	
--config-section SECTION

	Override section to use in configuration file, see Files.

Subcommands

Currently the following subcommands are available:

	
version

	Prints current version.

	
list-languages

	List used languages in Weblate.

	
list-projects

	List projects in Weblate.

	
list-components

	List components in Weblate.

	
list-translations

	List translations in Weblate.

	
show

	Shows Weblate object (translation, component or project).

	
ls

	Lists Weblate object (translation, component or project).

	
commit

	Commits changes in Weblate object (translation, component or project).

	
pull

	Pulls remote repository changes into Weblate object (translation, component or project).

	
push

	Pushes changes in Weblate object into remote repository (translation, component or project).

	
reset

	
New in version 0.7: Supported since wlc 0.7.

Resets changes in Weblate object to match remote repository (translation, component or project).

	
cleanup

	
New in version 0.9: Supported since wlc 0.9.

Removes any untracked changes in Weblate object to match remote repository (translation, component or project).

	
repo

	Displays repository status for given Weblate object (translation, component or project).

	
statistics

	Displays detailed statistics for given Weblate object (translation, component or project).

	
lock-status

	
New in version 0.5: Supported since wlc 0.5.

Displays lock status.

	
lock

	
New in version 0.5: Supported since wlc 0.5.

Locks component from translating in Weblate.

	
unlock

	
New in version 0.5: Supported since wlc 0.5.

Unlocks component from translating in Weblate.

	
changes

	
New in version 0.7: Supported since wlc 0.7 and Weblate 2.10.

Displays changes for given object.

	
download

	
New in version 0.7: Supported since wlc 0.7.

Downloads translation file.

	
--convert

	Convert file format, if not specified not conversion happens on server
and file is downloaded as is in the repository.

	
--output

	File where to store output, if not specified file is printed to stdout.

	
upload

	
New in version 0.9: Supported since wlc 0.9.

Uploads translation file.

	
--overwrite

	Overwrite existing translations on upload.

	
--input

	File where to read content, if not specified file is read from stdin.

Files

	.weblate

	Per project configuration file

	~/.config/weblate

	User configuration file

	/etc/xdg/weblate

	Global configuration file

The program follows XDG specification, so you can adjust placement of config files
by environment variables XDG_CONFIG_HOME or XDG_CONFIG_DIRS.

Following settings can be configured in the [weblate] section (you can
customize this by --config-section):

	
key

	API KEY to access Weblate.

	
url

	API server URL, defaults to http://127.0.0.1:8000/api/.

	
translation

	Path of default translation, component or project.

The configuration file is INI file, for example:

[weblate]
url = https://hosted.weblate.org/api/
key = APIKEY
translation = weblate/master

Additionally API keys can be stored in the [keys] section:

[keys]
https://hosted.weblate.org/api/ = APIKEY

This allows you to store keys in your personal settings, while having
.weblate configuration in the VCS repository so that wlc knows to which
server it should talk.

Examples

Print current program version:

$ wlc version
version: 0.1

List all projects:

$ wlc list-projects
name: Hello
slug: hello
source_language: en
url: http://example.com/api/projects/hello/
web: https://weblate.org/
web_url: http://example.com/projects/hello/

You can also let wlc know current project and it will then operate on it:

$ cat .weblate
[weblate]
url = https://hosted.weblate.org/api/
translation = weblate/master

$ wlc show
branch: master
file_format: po
filemask: weblate/locale/*/LC_MESSAGES/django.po
git_export: https://hosted.weblate.org/git/weblate/master/
license: GPL-3.0+
license_url: https://spdx.org/licenses/GPL-3.0+
name: master
new_base: weblate/locale/django.pot
project: weblate
repo: git://github.com/WeblateOrg/weblate.git
slug: master
template:
url: https://hosted.weblate.org/api/components/weblate/master/
vcs: git
web_url: https://hosted.weblate.org/projects/weblate/master/

With such setup it is easy to commit pending changes in current project:

$ wlc commit

Weblate’s Python API

Installation

The Python API is shipped separately, you need to install
Weblate Client:, wlc, to have it.

pip install wlc

wlc

WeblateException

	
exception wlc.WeblateException

	Base class for all exceptions.

Weblate

	
class wlc.Weblate(key='', url=None, config=None)

	
	Parameters

	
	key (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – User key

	url (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – API server URL, if not specified default is used

	config (wlc.config.WeblateConfig) – Configuration object, overrides any other parameters.

Access class to the API, define API key and optionally API URL.

	
get(path)

	
	Parameters

	path (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – Request path

	Return type

	object [https://docs.python.org/3.7/library/functions.html#object]

Performs single API GET call.

	
post(path, **kwargs)

	
	Parameters

	path (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – Request path

	Return type

	object [https://docs.python.org/3.7/library/functions.html#object]

Performs single API GET call.

wlc.config

WeblateConfig

	
class wlc.config.WeblateConfig(section='wlc')

	
	Parameters

	section (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – Configuration section to use

Configuration file parser following XDG specification.

	
load(path=None)

	
	Parameters

	path (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – Path from which to load configuration.

Loads configuration from a file, if none is specified it loads from
wlc configuration file placed in XDG configuration path
(~/.config/wlc and /etc/xdg/wlc).

wlc.main

	
wlc.main.main(settings=None, stdout=None, args=None)

	
	Parameters

	
	settings (list [https://docs.python.org/3.7/library/stdtypes.html#list]) – settings to override as list of tuples

	stdout (object [https://docs.python.org/3.7/library/functions.html#object]) – stdout file object for printing output, uses sys.stdout as default

	args (list [https://docs.python.org/3.7/library/stdtypes.html#list]) – command line arguments to process, uses sys.args as default

Main entry point for command line interface.

	
@wlc.main.register_command(command)

	Decorator to register Command class in main parser used by
main().

Command

	
class wlc.main.Command(args, config, stdout=None)

	Main class for invoking commands.

Installation instructions

Depending on your setup and experience, choose appropriate installation method:

	Installing using Docker, recommended for production setup.

	Virtualenv installation, recommended for production setup:

	Installing on Debian and Ubuntu

	Installing on SUSE and openSUSE

	Installing on RedHat, Fedora and CentOS

	Installing from sources, recommended for development.

	Installing on OpenShift 2.

Installing using Docker

With dockerized Weblate deployment you can get your personal Weblate instance
up an running in seconds. All of Weblate’s dependencies are already included.
PostgreSQL is set up as the default database.

Hardware requirements

Weblate should run on all contemporary hardware without problems, the following is
the minimal configuration required to run Weblate on a single host (Weblate, database
and webserver):

	2 GB of RAM

	2 CPU cores

	1 GB of storage space

The more memory the better - it is used for caching on all
levels (filesystem, database and Weblate).

Many concurrent users increases the amount of needed CPU cores.
For hundreds of translation components at least 4 GB of RAM is
recommended.

Note

Actual requirements for your installation of Weblate vary heavily based on the size of
the translations managed in it.

Installation

The following examples assume you have a working Docker environment, with
docker-compose installed. Please check the Docker documentation for instructions.

	Clone the weblate-docker repo:

git clone https://github.com/WeblateOrg/docker-compose.git weblate-docker
cd weblate-docker

	Create a docker-compose.override.yml file with your settings.
See Docker environment variables for full list of environment variables.

version: '3'
services:
 weblate:
 ports:
 - 80:8080
 environment:
 WEBLATE_EMAIL_HOST: smtp.example.com
 WEBLATE_EMAIL_HOST_USER: user
 WEBLATE_EMAIL_HOST_PASSWORD: pass
 WEBLATE_SERVER_EMAIL: weblate@example.com
 WEBLATE_DEFAULT_FROM_EMAIL: weblate@example.com
 WEBLATE_ALLOWED_HOSTS: weblate.example.com,localhost
 WEBLATE_ADMIN_PASSWORD: password for the admin user
 WEBLATE_ADMIN_EMAIL: weblate.admin@example.com

Note

If WEBLATE_ADMIN_PASSWORD is not set, the admin user is created with
a random password shown on first startup.

Append ‘,localhost’ to WEBLATE_ALLOWED_HOSTS to be able to access locally for testing.

You may also need to edit the docker-compose.yml file and change the default port from 80 if you already have a web server running on your local machine

	Start Weblate containers:

docker-compose up

Enjoy your Weblate deployment, it’s accessible on port 80 of the weblate container.

Changed in version 2.15-2: The setup has changed recently, priorly there was separate web server
container, since 2.15-2 the web server is embedded in the Weblate container.

Changed in version 3.7.1-6: In July 2019 (starting with the 3.7.1-6 tag), the containers is not running
as root. As a consequence this has lead to changed exposed port from 80 to
8080.

See also

Invoking management commands

Docker container with HTTPS support

Please see Installation for generic deployment instructions, this
section only mentions differences compared to it.

Using own SSL certificates

New in version 3.8-3.

In case you have own SSL certificate you want to use, simply place the files
into the Weblate data volume (see Docker container volumes):

	ssl/fullchain.pem containing the certificate including any needed CA certificates

	ssl/privkey.pem containing the private key

Additionally Weblate container will now accept SSL connections on port 4443,
you will want include the port forwarding for HTTPS in docker compose override:

version: '3'
services:
 weblate:
 ports:
 - 80:8080
 - 443:4443

Automatic SSL certificates using Let’s Encrypt

In case you want to use Let’s Encrypt [https://letsencrypt.org/]
automatically generated SSL certificates on public installation, you need to
add a reverse HTTPS proxy an additional Docker container, https-portal [https://hub.docker.com/r/steveltn/https-portal/] will be used for that.
This is made use of in the docker-compose-https.yml file. Then create
a docker-compose-https.override.yml file with your settings:

version: '3'
services:
 weblate:
 environment:
 WEBLATE_EMAIL_HOST: smtp.example.com
 WEBLATE_EMAIL_HOST_USER: user
 WEBLATE_EMAIL_HOST_PASSWORD: pass
 WEBLATE_ALLOWED_HOSTS: weblate.example.com
 WEBLATE_ADMIN_PASSWORD: password for admin user
 https-portal:
 environment:
 DOMAINS: 'weblate.example.com -> http://weblate:8080'

Whenever invoking docker-compose you need to pass both files to it,
and then do:

docker-compose -f docker-compose-https.yml -f docker-compose-https.override.yml build
docker-compose -f docker-compose-https.yml -f docker-compose-https.override.yml up

Upgrading the Docker container

Usually it is good idea to only update the Weblate container and keep the PostgreSQL
container at the version you have, as upgrading PostgreSQL is quite painful and in most
cases does not bring many benefits.

You can do this by sticking with the existing docker-compose and just pull
the latest images and then restart:

docker-compose stop
docker-compose pull
docker-compose up

The Weblate database should be automatically migrated on first startup, and there
should be no need for additional manual actions.

Note

Upgrades across 3.0 are not supported by Weblate. If you are on 2.x series
and want to upgrade to 3.x, first upgrade to the latest 3.0.1-x (at time of
writing this it is the 3.0.1-7) image, which will do the migration and then
continue upgrading to newer versions.

Docker environment variables

Many of Weblate’s Configuration can be set in the Docker container using environment variables:

Generic settings

	
WEBLATE_DEBUG

	Configures Django debug mode using DEBUG.

Example:

environment:
 WEBLATE_DEBUG: 1

See also

Disable debug mode.

	
WEBLATE_LOGLEVEL

	Configures the logging verbosity.

	
WEBLATE_SITE_TITLE

	Configures the site-title shown on the heading of all pages.

	
WEBLATE_ADMIN_NAME

	

	
WEBLATE_ADMIN_EMAIL

	Configures the site-admin’s name and e-mail.

Example:

environment:
 WEBLATE_ADMIN_NAME: Weblate admin
 WEBLATE_ADMIN_EMAIL: noreply@example.com

See also

Properly configure admins

	
WEBLATE_ADMIN_PASSWORD

	Sets the password for the admin user. If not set, the admin user is created with a random
password shown on first startup.

Changed in version 2.9: Since version 2.9, the admin user is adjusted on every container
startup to match WEBLATE_ADMIN_PASSWORD, WEBLATE_ADMIN_NAME
and WEBLATE_ADMIN_EMAIL.

	
WEBLATE_SERVER_EMAIL

	

	
WEBLATE_DEFAULT_FROM_EMAIL

	Configures the address for outgoing e-mails.

See also

Configure e-mail addresses

	
WEBLATE_ALLOWED_HOSTS

	Configures allowed HTTP hostnames using ALLOWED_HOSTS and sets
sitename to the first one.

Example:

environment:
 WEBLATE_ALLOWED_HOSTS: weblate.example.com,example.com

See also

Allowed hosts setup,
Set correct sitename

	
WEBLATE_SECRET_KEY

	Configures the secret used by Django for cookie signing.

Deprecated since version 2.9: The secret is now generated automatically on first startup, there is no
need to set it manually.

See also

Django secret key

	
WEBLATE_REGISTRATION_OPEN

	Configures whether registrations are open by toggling REGISTRATION_OPEN.

Example:

environment:
 WEBLATE_REGISTRATION_OPEN: 0

	
WEBLATE_TIME_ZONE

	Configures the used time zone in Weblate, see TIME_ZONE [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-TIME_ZONE].

Note

To change the time zone of the Docker container itself, use the TZ
environment variable.

Example:

environment:
 WEBLATE_TIME_ZONE: Europe/Prague

	
WEBLATE_ENABLE_HTTPS

	Makes Weblate assume it is operated behind a reverse HTTPS proxy, it makes
Weblate use HTTPS in e-mail and API links or set secure flags on cookies.

Note

This does not make the Weblate container accept HTTPS connections, you
need to configure that as well, see Docker container with HTTPS support for examples.

Example:

environment:
 WEBLATE_ENABLE_HTTPS: 1

See also

Set correct sitename

	
WEBLATE_IP_PROXY_HEADER

	Lets Weblate fetch the IP address from any given HTTP header. Use this when using
a reverse proxy in front of the Weblate container.

Enables IP_BEHIND_REVERSE_PROXY and sets IP_PROXY_HEADER.

Note

The format must conform to Django’s expectations. Django
transforms [https://docs.djangoproject.com/en/2.2/ref/request-response/#django.http.HttpRequest.META]
raw HTTP header names as follows:

	converts all characters to uppercase

	replaces any hyphens with underscores

	prepends HTTP_ prefix

So X-Forwarded-For would be mapped to HTTP_X_FORWARDED_FOR.

Example:

environment:
 WEBLATE_IP_PROXY_HEADER: HTTP_X_FORWARDED_FOR

	
WEBLATE_REQUIRE_LOGIN

	Configures login required for the whole of the Weblate installation using LOGIN_REQUIRED_URLS.

Example:

environment:
 WEBLATE_REQUIRE_LOGIN: 1

	
WEBLATE_LOGIN_REQUIRED_URLS_EXCEPTIONS

	Adds URL exceptions for login required for the whole Weblate installation using LOGIN_REQUIRED_URLS_EXCEPTIONS.

	
WEBLATE_GOOGLE_ANALYTICS_ID

	Configures ID for Google Analytics by changing GOOGLE_ANALYTICS_ID.

	
WEBLATE_GITHUB_USERNAME

	Configures GitHub username for GitHub pull-requests by changing
GITHUB_USERNAME.

See also

Pushing changes to GitHub as pull request,
Setting up hub

	
WEBLATE_GITLAB_USERNAME

	Configures GitLab username for GitLab merge-requests by changing
GITLAB_USERNAME

See also

Pushing changes to GitLab as merge request
Setting up lab

	
WEBLATE_SIMPLIFY_LANGUAGES

	Configures the language simplification policy, see SIMPLIFY_LANGUAGES.

	
WEBLATE_AKISMET_API_KEY

	Configures the Akismet API key, see AKISMET_API_KEY.

	
WEBLATE_GPG_IDENTITY

	Configures GPG signing of commits, see WEBLATE_GPG_IDENTITY.

See also

Signing Git commits by GnuPG

	
WEBLATE_URL_PREFIX

	Configures URL prefix where Weblate is running, see URL_PREFIX.

Machine translation settings

	
WEBLATE_MT_DEEPL_KEY

	Enables DeepL machine translation and sets MT_DEEPL_KEY

	
WEBLATE_MT_GOOGLE_KEY

	Enables Google Translate and sets MT_GOOGLE_KEY

	
WEBLATE_MT_MICROSOFT_COGNITIVE_KEY

	Enables Microsoft Cognitive Services Translator and sets MT_MICROSOFT_COGNITIVE_KEY

	
WEBLATE_MT_MYMEMORY_ENABLED

	
Enables MyMemory machine translation and sets
MT_MYMEMORY_EMAIL to WEBLATE_ADMIN_EMAIL.

Example:

environment:
 WEBLATE_MT_MYMEMORY_ENABLED: 1

	
WEBLATE_MT_GLOSBE_ENABLED

	Enables Glosbe machine translation.

environment:
 WEBLATE_MT_GLOSBE_ENABLED: 1

Authentication settings

LDAP

	
WEBLATE_AUTH_LDAP_SERVER_URI

	

	
WEBLATE_AUTH_LDAP_USER_DN_TEMPLATE

	

	
WEBLATE_AUTH_LDAP_USER_ATTR_MAP

	

	
WEBLATE_AUTH_LDAP_BIND_DN

	

	
WEBLATE_AUTH_LDAP_BIND_PASSWORD

	LDAP authentication configuration.

Example:

environment:
 WEBLATE_AUTH_LDAP_SERVER_URI: ldap://ldap.example.org
 WEBLATE_AUTH_LDAP_USER_DN_TEMPLATE: uid=%(user)s,ou=People,dc=example,dc=net
 # map weblate 'full_name' to ldap 'name' and weblate 'email' attribute to 'mail' ldap attribute.
 # another example that can be used with OpenLDAP: 'full_name:cn,email:mail'
 WEBLATE_AUTH_LDAP_USER_ATTR_MAP: full_name:name,email:mail

See also

LDAP authentication

GitHub

	
WEBLATE_SOCIAL_AUTH_GITHUB_KEY

	

	
WEBLATE_SOCIAL_AUTH_GITHUB_SECRET

	Enables GitHub authentication.

BitBucket

	
WEBLATE_SOCIAL_AUTH_BITBUCKET_KEY

	

	
WEBLATE_SOCIAL_AUTH_BITBUCKET_SECRET

	Enables Bitbucket authentication.

Facebook

	
WEBLATE_SOCIAL_AUTH_FACEBOOK_KEY

	

	
WEBLATE_SOCIAL_AUTH_FACEBOOK_SECRET

	Enables Facebook OAuth 2.

Google

	
WEBLATE_SOCIAL_AUTH_GOOGLE_OAUTH2_KEY

	

	
WEBLATE_SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET

	Enables Google OAuth 2.

GitLab

	
WEBLATE_SOCIAL_AUTH_GITLAB_KEY

	

	
WEBLATE_SOCIAL_AUTH_GITLAB_SECRET

	

	
WEBLATE_SOCIAL_AUTH_GITLAB_API_URL

	Enables GitLab OAuth 2.

Azure Active Directory

	
WEBLATE_SOCIAL_AUTH_AZUREAD_OAUTH2_KEY

	

	
WEBLATE_SOCIAL_AUTH_AZUREAD_OAUTH2_SECRET

	Enables Azure Active Directory authentication, see Microsoft Azure Active Directory [https://python-social-auth.readthedocs.io/en/latest/backends/azuread.html].

Azure Active Directory with Tenant support

	
WEBLATE_SOCIAL_AUTH_AZUREAD_TENANT_OAUTH2_KEY

	

	
WEBLATE_SOCIAL_AUTH_AZUREAD_TENANT_OAUTH2_SECRET

	

	
WEBLATE_SOCIAL_AUTH_AZUREAD_TENANT_OAUTH2_TENANT_ID

	Enables Azure Active Directory authentication with Tenant support, see
Microsoft Azure Active Directory [https://python-social-auth.readthedocs.io/en/latest/backends/azuread.html].

Linux vendors

You can enable authentication using Linux vendors authentication services by
setting following variables to any value.

	
WEBLATE_SOCIAL_AUTH_FEDORA

	

	
WEBLATE_SOCIAL_AUTH_OPENSUSE

	

	
WEBLATE_SOCIAL_AUTH_UBUNTU

	

Other authentication settings

	
WEBLATE_NO_EMAIL_AUTH

	Disables e-mail authentication when set to any value.

PostgreSQL database setup

The database is created by docker-compose.yml, so these settings affect
both Weblate and PostgreSQL containers.

See also

Database setup for Weblate

	
POSTGRES_PASSWORD

	PostgreSQL password.

	
POSTGRES_USER

	PostgreSQL username.

	
POSTGRES_DATABASE

	PostgreSQL database name.

	
POSTGRES_HOST

	PostgreSQL server hostname or IP address. Defaults to database.

	
POSTGRES_PORT

	PostgreSQL server port. Defaults to none (uses the default value).

	
POSTGRES_SSL_MODE

	Configure how PostgreSQL handles SSL in connection to the server, for possible choices see
SSL Mode Descriptions [https://www.postgresql.org/docs/11/libpq-ssl.html#LIBPQ-SSL-SSLMODE-STATEMENTS]

Caching server setup

Using Redis is strongly recommended by Weblate and you have to provide a Redis
instance when running Weblate in Docker.

See also

Enable caching

	
REDIS_HOST

	The Redis server hostname or IP address. Defaults to cache.

	
REDIS_PORT

	The Redis server port. Defaults to 6379.

	
REDIS_DB

	The Redis database number, defaults to 1.

	
REDIS_PASSWORD

	The Redis server password, not used by default.

	
REDIS_TLS

	Enables using SSL for Redis connection.

	
REDIS_VERIFY_SSL

	Can be used to disable SSL certificate verification for Redis connection.

Email server setup

To make outgoing e-mail work, you need to provide a mail server.

See also

Configuring outgoing e-mail

	
WEBLATE_EMAIL_HOST

	Mail server, the server has to listen on port 587 and understand TLS.

See also

EMAIL_HOST [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_HOST]

	
WEBLATE_EMAIL_PORT

	Mail server port. Use if your cloud provider or ISP blocks outgoing
connections on port 587.

See also

EMAIL_PORT [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_PORT]

	
WEBLATE_EMAIL_HOST_USER

	Email authentication user, do NOT use quotes here.

See also

EMAIL_HOST_USER [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_HOST_USER]

	
WEBLATE_EMAIL_HOST_PASSWORD

	Email authentication password, do NOT use quotes here.

See also

EMAIL_HOST_PASSWORD [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_HOST_PASSWORD]

	
WEBLATE_EMAIL_USE_SSL

	Whether to use an implicit TLS (secure) connection when talking to the SMTP
server. In most e-mail documentation, this type of TLS connection is referred
to as SSL. It is generally used on port 465. If you are experiencing
problems, see the explicit TLS setting WEBLATE_EMAIL_USE_TLS.

See also

EMAIL_USE_SSL [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_USE_SSL]

	
WEBLATE_EMAIL_USE_TLS

	Whether to use a TLS (secure) connection when talking to the SMTP server.
This is used for explicit TLS connections, generally on port 587. If you
are experiencing connections that hang, see the implicit TLS setting
WEBLATE_EMAIL_USE_SSL.

See also

EMAIL_USE_TLS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_USE_TLS]

Error reporting

It is recommended to collect errors from the installation in a systematic way,
see Collecting error reports.

To enable support for Rollbar, set the following:

	
ROLLBAR_KEY

	Your Rollbar post server access token.

	
ROLLBAR_ENVIRONMENT

	Your Rollbar environment, defaults to production.

To enable support for Sentry, set following:

	
SENTRY_DSN

	Your Sentry DSN.

Changing enabled apps, checks, addons or autofixes

New in version 3.8-5.

The built in configuration of enabled checks, addons or autofixes can be
adjusted by following variables:

	
WEBLATE_ADD_APPS

	

	
WEBLATE_REMOVE_APPS

	

	
WEBLATE_ADD_CHECK

	

	
WEBLATE_REMOVE_CHECK

	

	
WEBLATE_ADD_AUTOFIX

	

	
WEBLATE_REMOVE_AUTOFIX

	

	
WEBLATE_ADD_ADDONS

	

	
WEBLATE_REMOVE_ADDONS

	

For example:

Example:

environment:
 WEBLATE_REMOVE_AUTOFIX: weblate.trans.autofixes.whitespace.SameBookendingWhitespace
 WEBLATE_ADD_ADDONS: customize.addons.MyAddon,customize.addons.OtherAddon

See also

CHECK_LIST,
AUTOFIX_LIST,
WEBLATE_ADDONS,
INSTALLED_APPS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS]

Docker container volumes

There is single data volume exported by the Weblate container. The other
service containers (PostgreSQL or Redis) have their data volumes as well, but
those are not covered by this docs.

The data volume is used to store Weblate persistent data such as cloned
repositories or to customize Weblate installation.

The placement of the Docker volume on host system depends on your Docker
configuration, but usually it is stored in
/var/lib/docker/volumes/weblate-docker_weblate-data/_data/. In the
container it is mounted as /app/data.

See also

Docker volumes documentation [https://docs.docker.com/storage/volumes/]

Further configuration customization

You can further customize Weblate installation in the data volume, see
Docker container volumes.

Custom configuration files

You can additionally override the configuration in
/app/data/settings-override.py (see Docker container volumes). This is
executed after all environment settings are loaded, so it gets completely set
up, and can be used to customize anything.

Replacing logo and other static files

New in version 3.8-5.

The static files coming with Weblate can be overridden by placing into
/app/data/python/customize/static (see Docker container volumes). For
example creating /app/data/python/customize/static/favicon.ico will
replace the favicon.

Hint

The files are copied to correspoding location on container startup, so
restart is needed after changing the volume content.

Alternatively you can also include own module (see Customizing Weblate) and add
it as separate volume to the Docker container, for example:

weblate:
 volumes:
 - weblate-data:/app/data
 - ./weblate_customization/weblate_customization:/app/data/python/weblate_customization
 environment:
 WEBLATE_ADD_APPS: weblate_customization

Adding own Python modules

New in version 3.8-5.

You can place own Python modules in /app/data/python/ (see
Docker container volumes) and they can be then loaded by Weblate, most likely by
using Custom configuration files.

See also

Customizing Weblate

Hub setup

In order to use the GitHub’s pull-request feature, you must initialize hub configuration by entering the Weblate container and executing an arbitrary Hub command. For example:

docker-compose exec --user weblate weblate bash
cd
HOME=/app/data/home hub clone octocat/Spoon-Knife

The username passed for credentials must be the same as GITHUB_USERNAME.

See also

Pushing changes to GitHub as pull request,
Setting up hub

Lab setup

In order to use GitLab’s merge-request feature, you must initialize lab
configuration by entering the weblate contained and executing lab
command. For example:

docker-compose exec --user weblate weblate bash
cd
HOME=/app/data/home lab

The access_token passed for lab configuratoin must be same as GITLAB_USERNAME.

See also

Pushing changes to GitLab as merge request
Setting up lab

Select your machine - local or cloud providers

With docker-machine you can create your Weblate deployment either on your local
machine, or on any large number of cloud-based deployments on e.g. Amazon AWS,
Greenhost, and many other providers.

Installing on Debian and Ubuntu

Hardware requirements

Weblate should run on all contemporary hardware without problems, the following is
the minimal configuration required to run Weblate on a single host (Weblate, database
and webserver):

	2 GB of RAM

	2 CPU cores

	1 GB of storage space

The more memory the better - it is used for caching on all
levels (filesystem, database and Weblate).

Many concurrent users increases the amount of needed CPU cores.
For hundreds of translation components at least 4 GB of RAM is
recommended.

Note

Actual requirements for your installation of Weblate vary heavily based on the size of
the translations managed in it.

Installation

System requirements

Install the dependencies needed to build the Python modules (see Software requirements):

apt install \
 libxml2-dev libxslt-dev libfreetype6-dev libjpeg-dev libz-dev libyaml-dev \
 libcairo-dev gir1.2-pango-1.0 libgirepository1.0-dev libacl1-dev libssl-dev \
 build-essential python3-gdbm python3-dev python3-pip python3-virtualenv virtualenv git

Install wanted optional dependencies depending on features you intend to use (see Optional dependecies):

apt install tesseract-ocr libtesseract-dev libleptonica-dev

Optionally install software for running production server, see Running server,
Database setup for Weblate, Background tasks using Celery. Depending on size of your installation
you might want to run these components on dedicated servers.

The local installation instructions:

Web server option 1: NGINX and uWSGI
apt install nginx uwsgi uwsgi-plugin-python3

Web server option 2: Apache with ``mod_wsgi``
apt install apache2 libapache2-mod-wsgi

Caching backend: Redis
apt install redis-server

Database server: PostgreSQL
apt install postgresql

SMTP server
apt install exim4

Python modules

Hint

We’re using virtualenv to install Weblate in a separate environment from your
system. If you are not familiar with it, check virtualenv User Guide [https://virtualenv.pypa.io/en/stable/userguide/].

	Create the virtualenv for Weblate:

virtualenv --python=python3 ~/weblate-env

	Activate the virtualenv for Weblate:

. ~/weblate-env/bin/activate

	Install Weblate including all dependencies:

pip install Weblate

	Install database driver:

pip install psycopg2-binary

	Install wanted optional dependencies depending on features you intend to use
(some might require additional system libraries, check Optional dependecies):

pip install ruamel.yaml aeidon boto3 zeep chardet tesserocr

Configuring Weblate

Note

Following steps assume virtualenv used by Weblate is active (what can be
done by . ~/weblate-env/bin/activate). In case this is not true, you will
have to specify full path to weblate command as
~/weblate-env/bin/weblate.

	Copy the file ~/weblate-env/lib/python3.7/site-packages/weblate/settings_example.py
to ~/weblate-env/lib/python3.7/site-packages/weblate/settings.py

	Adjust the values in the new settings.py file to your liking. You can
stick with shipped example for testing purposes, but you will want changes for
production setup, see Adjusting configuration.

	Create the database and its structure for Weblate (the example settings use
SQLite, check Database setup for Weblate for pruduction ready setup):

weblate migrate

	Create the administrator user account and copy the password it outputs
to the clipboard, and also save it for later use:

weblate createadmin

	Collect static files for web server (see Running server):

weblate collectstatic

	Start Celery workers. This is not necessary for development purposes, but
strongly recommended otherwise. See Background tasks using Celery for more info:

~/weblate-env/lib/python3.7/site-packages/weblate/examples/celery start

	Start the development server (see Running server for production setup):

weblate runserver

After installation

Congratulations, your Weblate server is now running and you can start using it.

	You can now access Weblate on http://localhost:8000/.

	Login with admin credentials obtained during installation or register with new users.

	You can now run Weblate commands using weblate command when
Weblate virtualenv is active, see Management commands.

	You can stop the test server with Ctrl+C.

Adding translation

	Open the admin interface (http://localhost:8000/create/project/) and create the project you
want to translate. See Project configuration for more details.

All you need to specify here is the project name and its website.

	Create a component which is the real object for translation - it points to the
VCS repository, and selects which files to translate. See Component configuration
for more details.

The important fields here are: Component name, VCS repository address and
mask for finding translatable files. Weblate supports a wide range of formats
including gettext PO files, Android resource strings, iOS string properties,
Java properties or Qt Linguist files, see Supported file formats for more details.

	Once the above is completed (it can be lengthy process depending on the size of
your VCS repository, and number of messages to translate), you can start
translating.

Installing on SUSE and openSUSE

Hardware requirements

Weblate should run on all contemporary hardware without problems, the following is
the minimal configuration required to run Weblate on a single host (Weblate, database
and webserver):

	2 GB of RAM

	2 CPU cores

	1 GB of storage space

The more memory the better - it is used for caching on all
levels (filesystem, database and Weblate).

Many concurrent users increases the amount of needed CPU cores.
For hundreds of translation components at least 4 GB of RAM is
recommended.

Note

Actual requirements for your installation of Weblate vary heavily based on the size of
the translations managed in it.

Installation

System requirements

Install the dependencies needed to build the Python modules (see Software requirements):

zypper install \
 libxslt-devel libxml2-devel freetype-devel libjpeg-devel zlib-devel libyaml-devel \
 cairo-devel typelib-1_0-Pango-1_0 gobject-introspection-devel libacl-devel \
 python3-pip python3-virtualenv python3-devel git

Install wanted optional dependencies depending on features you intend to use (see Optional dependecies):

zypper install tesseract-ocr tesseract-devel leptonica-devel

Optionally install software for running production server, see Running server,
Database setup for Weblate, Background tasks using Celery. Depending on size of your installation
you might want to run these components on dedicated servers.

The local installation instructions:

Web server option 1: NGINX and uWSGI
zypper install nginx uwsgi uwsgi-plugin-python3

Web server option 2: Apache with ``mod_wsgi``
zypper install apache2 apache2-mod_wsgi

Caching backend: Redis
zypper install redis-server

Database server: PostgreSQL
zypper install postgresql

SMTP server
zypper install postfix

Python modules

Hint

We’re using virtualenv to install Weblate in a separate environment from your
system. If you are not familiar with it, check virtualenv User Guide [https://virtualenv.pypa.io/en/stable/userguide/].

	Create the virtualenv for Weblate:

virtualenv --python=python3 ~/weblate-env

	Activate the virtualenv for Weblate:

. ~/weblate-env/bin/activate

	Install Weblate including all dependencies:

pip install Weblate

	Install database driver:

pip install psycopg2-binary

	Install wanted optional dependencies depending on features you intend to use
(some might require additional system libraries, check Optional dependecies):

pip install ruamel.yaml aeidon boto3 zeep chardet tesserocr

Configuring Weblate

Note

Following steps assume virtualenv used by Weblate is active (what can be
done by . ~/weblate-env/bin/activate). In case this is not true, you will
have to specify full path to weblate command as
~/weblate-env/bin/weblate.

	Copy the file ~/weblate-env/lib/python3.7/site-packages/weblate/settings_example.py
to ~/weblate-env/lib/python3.7/site-packages/weblate/settings.py

	Adjust the values in the new settings.py file to your liking. You can
stick with shipped example for testing purposes, but you will want changes for
production setup, see Adjusting configuration.

	Create the database and its structure for Weblate (the example settings use
SQLite, check Database setup for Weblate for pruduction ready setup):

weblate migrate

	Create the administrator user account and copy the password it outputs
to the clipboard, and also save it for later use:

weblate createadmin

	Collect static files for web server (see Running server):

weblate collectstatic

	Start Celery workers. This is not necessary for development purposes, but
strongly recommended otherwise. See Background tasks using Celery for more info:

~/weblate-env/lib/python3.7/site-packages/weblate/examples/celery start

	Start the development server (see Running server for production setup):

weblate runserver

After installation

Congratulations, your Weblate server is now running and you can start using it.

	You can now access Weblate on http://localhost:8000/.

	Login with admin credentials obtained during installation or register with new users.

	You can now run Weblate commands using weblate command when
Weblate virtualenv is active, see Management commands.

	You can stop the test server with Ctrl+C.

Adding translation

	Open the admin interface (http://localhost:8000/create/project/) and create the project you
want to translate. See Project configuration for more details.

All you need to specify here is the project name and its website.

	Create a component which is the real object for translation - it points to the
VCS repository, and selects which files to translate. See Component configuration
for more details.

The important fields here are: Component name, VCS repository address and
mask for finding translatable files. Weblate supports a wide range of formats
including gettext PO files, Android resource strings, iOS string properties,
Java properties or Qt Linguist files, see Supported file formats for more details.

	Once the above is completed (it can be lengthy process depending on the size of
your VCS repository, and number of messages to translate), you can start
translating.

Installing on RedHat, Fedora and CentOS

Hardware requirements

Weblate should run on all contemporary hardware without problems, the following is
the minimal configuration required to run Weblate on a single host (Weblate, database
and webserver):

	2 GB of RAM

	2 CPU cores

	1 GB of storage space

The more memory the better - it is used for caching on all
levels (filesystem, database and Weblate).

Many concurrent users increases the amount of needed CPU cores.
For hundreds of translation components at least 4 GB of RAM is
recommended.

Note

Actual requirements for your installation of Weblate vary heavily based on the size of
the translations managed in it.

Installation

System requirements

Install the dependencies needed to build the Python modules (see Software requirements):

dnf install \
 libxslt-devel libxml2-devel freetype-devel libjpeg-devel zlib-devel libyaml-devel \
 cairo-devel pango-devel gobject-introspection-devel libacl-devel \
 python3-pip python3-virtualenv python3-devel git

Install wanted optional dependencies depending on features you intend to use (see Optional dependecies):

dnf install tesseract-langpack-eng tesseract-devel leptonica-devel

Optionally install software for running production server, see Running server,
Database setup for Weblate, Background tasks using Celery. Depending on size of your installation
you might want to run these components on dedicated servers.

The local installation instructions:

Web server option 1: NGINX and uWSGI
dnf install nginx uwsgi uwsgi-plugin-python3

Web server option 2: Apache with ``mod_wsgi``
dnf install apache2 apache2-mod_wsgi

Caching backend: Redis
dnf install redis

Database server: PostgreSQL
dnf install postgresql

SMTP server
dnf install postfix

Python modules

Hint

We’re using virtualenv to install Weblate in a separate environment from your
system. If you are not familiar with it, check virtualenv User Guide [https://virtualenv.pypa.io/en/stable/userguide/].

	Create the virtualenv for Weblate:

virtualenv --python=python3 ~/weblate-env

	Activate the virtualenv for Weblate:

. ~/weblate-env/bin/activate

	Install Weblate including all dependencies:

pip install Weblate

	Install database driver:

pip install psycopg2-binary

	Install wanted optional dependencies depending on features you intend to use
(some might require additional system libraries, check Optional dependecies):

pip install ruamel.yaml aeidon boto3 zeep chardet tesserocr

Configuring Weblate

Note

Following steps assume virtualenv used by Weblate is active (what can be
done by . ~/weblate-env/bin/activate). In case this is not true, you will
have to specify full path to weblate command as
~/weblate-env/bin/weblate.

	Copy the file ~/weblate-env/lib/python3.7/site-packages/weblate/settings_example.py
to ~/weblate-env/lib/python3.7/site-packages/weblate/settings.py

	Adjust the values in the new settings.py file to your liking. You can
stick with shipped example for testing purposes, but you will want changes for
production setup, see Adjusting configuration.

	Create the database and its structure for Weblate (the example settings use
SQLite, check Database setup for Weblate for pruduction ready setup):

weblate migrate

	Create the administrator user account and copy the password it outputs
to the clipboard, and also save it for later use:

weblate createadmin

	Collect static files for web server (see Running server):

weblate collectstatic

	Start Celery workers. This is not necessary for development purposes, but
strongly recommended otherwise. See Background tasks using Celery for more info:

~/weblate-env/lib/python3.7/site-packages/weblate/examples/celery start

	Start the development server (see Running server for production setup):

weblate runserver

After installation

Congratulations, your Weblate server is now running and you can start using it.

	You can now access Weblate on http://localhost:8000/.

	Login with admin credentials obtained during installation or register with new users.

	You can now run Weblate commands using weblate command when
Weblate virtualenv is active, see Management commands.

	You can stop the test server with Ctrl+C.

Adding translation

	Open the admin interface (http://localhost:8000/create/project/) and create the project you
want to translate. See Project configuration for more details.

All you need to specify here is the project name and its website.

	Create a component which is the real object for translation - it points to the
VCS repository, and selects which files to translate. See Component configuration
for more details.

The important fields here are: Component name, VCS repository address and
mask for finding translatable files. Weblate supports a wide range of formats
including gettext PO files, Android resource strings, iOS string properties,
Java properties or Qt Linguist files, see Supported file formats for more details.

	Once the above is completed (it can be lengthy process depending on the size of
your VCS repository, and number of messages to translate), you can start
translating.

Installing from sources

	Please follow the installatin instructions for your system first:

	Installing on Debian and Ubuntu

	Installing on SUSE and openSUSE

	Installing on RedHat, Fedora and CentOS

	Grab the latest Weblate sources using Git (or download a tarball and unpack that):

git clone https://github.com/WeblateOrg/weblate.git weblate-src

Alternatively you can use released archives. You can download them from our
website <https://weblate.org/>. Those downloads are cryptographically
signed, please see Verifying release signatures.

	Install current Weblate code into the virtualenv:

. ~/weblate-env/bin/activate
pip install -e weblate-src

	Copy weblate/settings_example.py to weblate/settings.py.

	Adjust the values in the new settings.py file to your liking. You can
stick with shipped example for testing purposes, but you will want changes for
production setup, see Adjusting configuration.

	Create the database used by Weblate, see Database setup for Weblate.

	Build Django tables, static files and initial data (see
Filling up the database and Serving static files):

./manage.py migrate
./manage.py collectstatic
./scripts/generate-locales

Note

This step should be repeated whenever you update the repository.

Installing on OpenShift 2

This repository contains a configuration for the OpenShift platform as a
service product, which facilitates easy installation of Weblate on OpenShift
variants (see https://www.openshift.com/ and https://www.okd.io/).

Prerequisites

	OpenShift Account

You need an account on OpenShift Online (https://www.openshift.com/) or
another OpenShift installation you have access to.

You can register a gratis account on OpenShift Online, which allows you to
host up to 3 programs gratis.

	OpenShift Client Tools

In order to follow the examples given in this documentation, you need to have
the OpenShift Client Tools (RHC) installed:
https://docs.openshift.com/online/cli_reference/get_started_cli.html

While there are other possibilities to create and configure OpenShift
programs, this documentation is based on the OpenShift Client Tools
(RHC) because they provide a consistent interface for all described
operations.

Installation

You can install Weblate on OpenShift directly from Weblate’s GitHub repository
with the following command:

Install Git from the development master branch
rhc -aweblate app create -t python-2.7 --from-code https://github.com/WeblateOrg/weblate.git --no-git

Install Weblate release
rhc -aweblate app create -t python-2.7 --from-code https://github.com/WeblateOrg/weblate.git#weblate-3.9 --no-git

The -a option defines the name of your weblate installation, weblate in
this instance. Feel free to specify a different name.

The above example installs the latest development version, you can optionally
specify tag identifier to the right of the # sign to identify the version of
Weblate to install. A list of available versions is available here:
https://github.com/WeblateOrg/weblate/tags.

The --no-git option skips the creation of a
local Git repository.

You can also specify which database you want to use:

For MySQL
rhc -aweblate app create -t python-2.7 -t mysql-5.5 --from-code https://github.com/WeblateOrg/weblate.git --no-git

For PostgreSQL
rhc -aweblate app create -t python-2.7 -t postgresql-9.2 --from-code https://github.com/WeblateOrg/weblate.git --no-git

Default Configuration

After installation on OpenShift, Weblate is ready for use and, preconfigured as follows:

	SQLite embedded database (DATABASES)

	Random admin password

	Random Django secret key (SECRET_KEY)

	Committing of pending changes if the Cron cartridge is installed (commit_pending)

	Weblate machine translations for suggestions, based on previous translations (MT_SERVICES)

	Weblate directories (STATIC_ROOT, DATA_DIR, avatar cache) set according to OpenShift requirements/conventions.

	Django sitename and ALLOWED_HOSTS set to DNS name of your OpenShift program

	Email sender addresses set to no-reply@<OPENSHIFT_CLOUD_DOMAIN>, where <OPENSHIFT_CLOUD_DOMAIN> is the domain OpenShift runs under. In case of OpenShift Online it is rhcloud.com.

See also

Customize the Weblate Configuration

Retrieve the Admin Password

Retrieve the generated admin password using the following command:

rhc -aweblate ssh credentials

Pending Changes

Weblate’s OpenShift configuration contains a Cron job which periodically commits pending changes older than a certain age (24h by default).
To enable the Cron job you need to add the Cron cartridge and restart Weblate as described in the previous section.
You can change the age parameter by setting the environment variable WEBLATE_PENDING_AGE
to the desired number of hours, e.g.:

rhc -aweblate env set WEBLATE_PENDING_AGE=48

Customize the Weblate Configuration

Customize the configuration of your Weblate installation on OpenShift
through the use of environment variables. Override any of Weblate’s settings documented
under Configuration using rhc env set by prepending the settings name with
WEBLATE_. The variable content is put into the configuration file verbatim,
so it is parsed as a Python string, after replacing the environment variables in it
(e.g. $PATH). To put in a literal $ you need to escape it as $$.

For example override the ADMINS setting like this:

rhc -aweblate env set WEBLATE_ADMINS='(("John Doe", "john@example.org"),)'

To change the sitetitle, do not forget to include additional quotes:

rhc -aweblate env set WEBLATE_SITE_TITLE='"Custom Title"'

The new settings will only take effect once Weblate is restarted:

rhc -aweblate app stop
rhc -aweblate app start

Restarting using rhc -aweblate app restart does not work.
For security reasons only constant expressions are allowed as values.
With the exception of environment variables, which can be referenced using ${ENV_VAR}. For example:

rhc -aweblate env set WEBLATE_SCRIPTS='("${OPENSHIFT_DATA_DIR}/weblate/examples/hook-unwrap-po",)'

You can check the effective settings Weblate is using by running:

rhc -aweblate ssh settings

This will also print syntax errors in your expressions.
To reset a setting to its preconfigured value, just delete the corresponding environment variable:

rhc -aweblate env unset WEBLATE_ADMINS

See also

Configuration

Updating

It is recommended that you try updates on a clone of your Weblate installation before running the actual update.
To create such a clone, run:

rhc -aweblate2 app create --from-app weblate

Visit the newly given URL with a web browser and wait for the install/update page to disappear.

You can update your Weblate installation on OpenShift directly from Weblate’s GitHub repository by executing:

rhc -aweblate2 ssh update https://github.com/WeblateOrg/weblate.git

The identifier to the right of the # sign identifies the version of Weblate to install.
For a list of available versions see: https://github.com/WeblateOrg/weblate/tags.
Please note that the update process will not work if you modified the Git repository of you Weblate installation.
You can force an update by specifying the --force option with the update script. However any changes you made to the
Git repository of your installation will be discarded:

rhc -aweblate2 ssh update --force https://github.com/WeblateOrg/weblate.git

The --force option is also needed when downgrading to an older version.
Please note that only version 2.0 and newer can be installed on OpenShift,
as older versions don’t include the necessary configuration files.

The update script takes care of the following update steps, as described in Generic upgrade instructions.

	Install any new requirements

	manage.py migrate

	manage.py setupgroups –move

	manage.py setuplang

	manage.py rebuild_index –all

	manage.py collectstatic –noinput

Configuration instructions

Installing Weblate

Choose an installation method that best fits your environment in our Installation instructions.

Software requirements

Other services

Weblate is using other services for it’s operation. You will need at least
following services running:

	PostgreSQL database server, see Database setup for Weblate.

	Redis server for cache and tasks queue, see Background tasks using Celery.

	SMTP server for outgoing e-mail, see Configuring outgoing e-mail.

Python dependencies

Weblate is written in Python [https://www.python.org/] and supports Python
2.7, 3.4 or newer. You can install dependencies using pip or from your
distribution packages, full list of them is available in requirements.txt.

Most notable dependencies:

	Django

	https://www.djangoproject.com/

	Celery

	http://www.celeryproject.org/

	Translate Toolkit

	https://toolkit.translatehouse.org/

	translation-finder

	https://github.com/WeblateOrg/translation-finder

	Python Social Auth

	https://python-social-auth.readthedocs.io/

	Whoosh

	https://bitbucket.org/mchaput/whoosh/wiki/Home

	Django REST Framework

	https://www.django-rest-framework.org/

Optional dependecies

Following modules are necessary for some of Weblate features. You can find all
of them in requirements-optional.txt.

	Mercurial (optional for Mercurial repositories support)

	https://www.mercurial-scm.org/

	phply (optional for PHP support)

	https://github.com/viraptor/phply

	tesserocr (optional for screenshots OCR)

	https://github.com/sirfz/tesserocr

	akismet (optional for suggestion spam protection)

	https://github.com/ubernostrum/akismet

	ruamel.yaml (optional for YAML files)

	https://pypi.org/project/ruamel.yaml/

	backports.csv (needed on Python 2.7)

	https://pypi.org/project/backports.csv/

	Zeep (optional for Microsoft Terminology Service)

	https://python-zeep.readthedocs.io/

	aeidon (optional for Subtitle files)

	https://pypi.org/project/aeidon/

Database backend dependencies

Any database supported in Django will work, see Database setup for Weblate and
backends documentation for more details.

Other system requirements

The following dependencies have to be installed on the system:

	Git

	https://git-scm.com/

	Pango, Cairo and related header files and gir introspection data

	https://cairographics.org/, https://pango.gnome.org/, see Pango and Cairo

	hub (optional for sending pull requests to GitHub)

	https://hub.github.com/

	git-review (optional for Gerrit support)

	https://pypi.org/project/git-review/

	git-svn (optional for Subversion support)

	https://git-scm.com/docs/git-svn

	tesseract and it’s data (optional for screenshots OCR)

	https://github.com/tesseract-ocr/tesseract

Compile time dependencies

To compile some of the Python dependencies you might need to install their
dependencies. This depends on how you install them, so please consult
individual packages for documentation. You won’t need those if using prebuilt
Wheels while installing using pip or when you use distribution packages.

Pango and Cairo

Changed in version 3.7.

Weblate uses Pango and Cairo for rendering bitmap widgets (see
Promoting the translation) and rendering checks (see Managing fonts). To properly install
Python bindings for those you need to install system libraries first - you need
both Cairo and Pango, which in turn need Glib. All those should be installed
with development files and GObject introspection data.

Verifying release signatures

Weblate release are cryptographically signed by the releasing developer.
Currently this is Michal Čihař. Fingerprint of his PGP key is:

63CB 1DF1 EF12 CF2A C0EE 5A32 9C27 B313 42B7 511D

and you can get more identification information from <https://keybase.io/nijel>.

You should verify that the signature matches the archive you have downloaded.
This way you can be sure that you are using the same code that was released.
You should also verify the date of the signature to make sure that you
downloaded the latest version.

Each archive is accompanied with .asc files which contains the PGP signature
for it. Once you have both of them in the same folder, you can verify the signature:

$ gpg --verify Weblate-3.5.tar.xz.asc
gpg: assuming signed data in 'Weblate-3.5.tar.xz'
gpg: Signature made Ne 3. března 2019, 16:43:15 CET
gpg: using RSA key 87E673AF83F6C3A0C344C8C3F4AA229D4D58C245
gpg: Can't check signature: public key not found

As you can see gpg complains that it does not know the public key. At this
point you should do one of the following steps:

	Use wkd to download the key:

$ gpg --auto-key-locate wkd --locate-keys michal@cihar.com
pub rsa4096 2009-06-17 [SC]
 63CB1DF1EF12CF2AC0EE5A329C27B31342B7511D
uid [ultimate] Michal Čihař <michal@cihar.com>
uid [ultimate] Michal Čihař <nijel@debian.org>
uid [ultimate] [jpeg image of size 8848]
uid [ultimate] Michal Čihař (Braiins) <michal.cihar@braiins.cz>
sub rsa4096 2009-06-17 [E]
sub rsa4096 2015-09-09 [S]

	Download the keyring from Michal’s server [https://cihar.com/.well-known/openpgpkey/hu/wmxth3chu9jfxdxywj1skpmhsj311mzm], then import it with:

$ gpg --import wmxth3chu9jfxdxywj1skpmhsj311mzm

	Download and import the key from one of the key servers:

$ gpg --keyserver hkp://pgp.mit.edu --recv-keys 87E673AF83F6C3A0C344C8C3F4AA229D4D58C245
gpg: key 9C27B31342B7511D: "Michal Čihař <michal@cihar.com>" imported
gpg: Total number processed: 1
gpg: unchanged: 1

This will improve the situation a bit - at this point you can verify that the
signature from the given key is correct but you still can not trust the name used
in the key:

$ gpg --verify Weblate-3.5.tar.xz.asc
gpg: assuming signed data in 'Weblate-3.5.tar.xz'
gpg: Signature made Ne 3. března 2019, 16:43:15 CET
gpg: using RSA key 87E673AF83F6C3A0C344C8C3F4AA229D4D58C245
gpg: Good signature from "Michal Čihař <michal@cihar.com>" [ultimate]
gpg: aka "Michal Čihař <nijel@debian.org>" [ultimate]
gpg: aka "[jpeg image of size 8848]" [ultimate]
gpg: aka "Michal Čihař (Braiins) <michal.cihar@braiins.cz>" [ultimate]
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: 63CB 1DF1 EF12 CF2A C0EE 5A32 9C27 B313 42B7 511D

The problem here is that anybody could issue the key with this name. You need to
ensure that the key is actually owned by the mentioned person. The GNU Privacy
Handbook covers this topic in the chapter Validating other keys on your public
keyring [https://www.gnupg.org/gph/en/manual.html#AEN335]. The most reliable method is to meet the developer in person and
exchange key fingerprints, however you can also rely on the web of trust. This way
you can trust the key transitively though signatures of others, who have met
the developer in person.

Once the key is trusted, the warning will not occur:

$ gpg --verify Weblate-3.5.tar.xz.asc
gpg: assuming signed data in 'Weblate-3.5.tar.xz'
gpg: Signature made Sun Mar 3 16:43:15 2019 CET
gpg: using RSA key 87E673AF83F6C3A0C344C8C3F4AA229D4D58C245
gpg: Good signature from "Michal Čihař <michal@cihar.com>" [ultimate]
gpg: aka "Michal Čihař <nijel@debian.org>" [ultimate]
gpg: aka "[jpeg image of size 8848]" [ultimate]
gpg: aka "Michal Čihař (Braiins) <michal.cihar@braiins.cz>" [ultimate]

Should the signature be invalid (the archive has been changed), you would get a
clear error regardless of the fact that the key is trusted or not:

$ gpg --verify Weblate-3.5.tar.xz.asc
gpg: Signature made Sun Mar 3 16:43:15 2019 CET
gpg: using RSA key 87E673AF83F6C3A0C344C8C3F4AA229D4D58C245
gpg: BAD signature from "Michal Čihař <michal@cihar.com>" [ultimate]

Filesystem permissions

The Weblate process needs to be able to read and write to the directory where
it keeps data - DATA_DIR. All files within this directory should be
owned and writable by user running Weblate.

The default configuration places them in the same tree as the Weblate sources, however
you might prefer to move these to a better location such as:
/var/lib/weblate.

Weblate tries to create these directories automatically, but it will fail
when it does not have permissions to do so.

You should also take care when running Management commands, as they should be ran
under the same user as Weblate itself is running, otherwise permissions on some
files might be wrong.

See also

Serving static files

Database setup for Weblate

It is recommended to run Weblate with PostgreSQL database server. Using a
SQLite backend is really only suitable for testing purposes.

See also

Use a powerful database engine,
Databases [https://docs.djangoproject.com/en/stable/ref/databases/]

PostgreSQL

PostgreSQL is usually the best choice for Django based sites. It’s the reference
database used for implementing Django database layer.

See also

PostgreSQL notes [https://docs.djangoproject.com/en/stable/ref/databases/#postgresql-notes]

Creating a database in PostgreSQL

It is usually a good idea to run Weblate in a separate database, and separate user account:

If PostgreSQL was not installed before, set the master password
sudo -u postgres psql postgres -c "\password postgres"

Create a database user called "weblate"
sudo -u postgres createuser -D -P weblate

Create the database "weblate" owned by "weblate"
sudo -u postgres createdb -O weblate weblate

Configuring Weblate to use PostgreSQL

The settings.py snippet for PostgreSQL:

DATABASES = {
 'default': {
 # Database engine
 'ENGINE': 'django.db.backends.postgresql',
 # Database name
 'NAME': 'weblate',
 # Database user
 'USER': 'weblate',
 # Database password
 'PASSWORD': 'password',
 # Set to empty string for localhost
 'HOST': 'database.example.com',
 # Set to empty string for default
 'PORT': '',
 }
}

Migrating from other databases

If you are running Weblate on other dabatase than PostgreSQL, you should
migrate to PostgreSQL as that will be the only supported database backend in
the 4.0 release. The following steps will guide you in migrating your data
between the databases. Please remember to stop both web and Celery servers
prior to the migration, otherwise you might end up with inconsistent data.

Creating a database in PostgreSQL

It is usually a good idea to run Weblate in a separate database, and separate user account:

If PostgreSQL was not installed before, set the master password
sudo -u postgres psql postgres -c "\password postgres"

Create a database user called "weblate"
sudo -u postgres createuser -D -P weblate

Create the database "weblate" owned by "weblate"
sudo -u postgres createdb -O weblate weblate

Configuring Weblate to use PostgreSQL

Add PostgeSQL as additional database connection to the settings.py:

DATABASES = {
 'default': {
 # Database engine
 'ENGINE': 'django.db.backends.mysql',
 # Database name
 'NAME': 'weblate',
 # Database user
 'USER': 'weblate',
 # Database password
 'PASSWORD': 'password',
 # Set to empty string for localhost
 'HOST': 'database.example.com',
 # Set to empty string for default
 'PORT': '',
 # Additional database options
 'OPTIONS': {
 # In case of using an older MySQL server, which has MyISAM as a default storage
 # 'init_command': 'SET storage_engine=INNODB',
 # Uncomment for MySQL older than 5.7:
 # 'init_command': "SET sql_mode='STRICT_TRANS_TABLES'",
 # If your server supports it, see the Unicode issues above
 'charset': 'utf8mb4',
 # Change connection timeout in case you get MySQL gone away error:
 'connect_timeout': 28800,
 }
 },
 'postgresql': {
 # Database engine
 'ENGINE': 'django.db.backends.postgresql',
 # Database name
 'NAME': 'weblate',
 # Database user
 'USER': 'weblate',
 # Database password
 'PASSWORD': 'password',
 # Set to empty string for localhost
 'HOST': 'database.example.com',
 # Set to empty string for default
 'PORT': '',
 }
}

Create empty tables in the PostgreSQL

Run migrations and drop any data inserted into the tables:

python manage.py migrate --database=postgresql
python manage.py sqlflush --database=postgresql | psql

Dump legacy database and import to PostgreSQL

python manage.py dumpdata --all --output weblate.json
python manage.py loaddata weblate.json --database=postgresql

Adjust configuration

Adjust DATABASES [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DATABASES] to use just PostgreSQL database as default,
remove legacy connection.

Weblate should be now ready to run from the PostgreSQL database.

Other configurations

Configuring outgoing e-mail

Weblate sends out e-mails on various occasions - for account activation and on
various notifications configured by users. For this it needs access to a SMTP
server.

The mail server setup is configured using these settings:
EMAIL_HOST [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_HOST], EMAIL_HOST_PASSWORD [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_HOST_PASSWORD],
EMAIL_HOST_USER [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_HOST_USER] and EMAIL_PORT [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_PORT]. Their
names are quite self-explanatory, but you can find more info in the
Django documentation.

Note

You can verify whether outgoing e-mail is working correctly by using the
sendtestemail [https://docs.djangoproject.com/en/stable/ref/django-admin/#django-admin-sendtestemail] management command (see Invoking management commands
for instructions how to invoke it in different environments).

HTTP proxy

Weblate does execute VCS commands and those accept proxy configuration from
environment. The recommended approach is to define proxy settings in
settings.py:

import os
os.environ['http_proxy'] = "http://proxy.example.com:8080"
os.environ['HTTPS_PROXY'] = "http://proxy.example.com:8080"

See also

Proxy Environment Variables [https://ec.haxx.se/usingcurl-proxies.html#proxy-environment-variables]

Adjusting configuration

See also

Sample configuration

Copy weblate/settings_example.py to weblate/settings.py and
adjust it to match your setup. You will probably want to adjust the following
options:

ADMINS

List of site administrators to receive notifications when something goes
wrong, for example notifications on failed merges, or Django errors.

See also

ADMINS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-ADMINS]

ALLOWED_HOSTS

If you are running Django 1.5 or newer, you need to set this to list the
hosts your site is supposed to serve. For example:

ALLOWED_HOSTS = ['demo.weblate.org']

See also

ALLOWED_HOSTS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-ALLOWED_HOSTS]

SESSION_ENGINE

Configure how your sessions will be stored. In case you keep the default
database backend engine, you should schedule:
./manage.py clearsessions to remove stale session data from the
database.

If you are using Redis as cache (see Enable caching) it is
recommended to use it for sessions as well:

SESSION_ENGINE = 'django.contrib.sessions.backends.cache'

See also

Configuring the session engine [https://docs.djangoproject.com/en/stable/topics/http/sessions/#configuring-sessions],
SESSION_ENGINE [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SESSION_ENGINE]

DATABASES

Connectivity to database server, please check Django’s documentation for more
details.

See also

Database setup for Weblate,
DATABASES [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DATABASES],
Databases [https://docs.djangoproject.com/en/stable/ref/databases/]

DEBUG

Disable this for any production server. With debug mode enabled, Django will
show backtraces in case of error to users, when you disable it, errors will
be sent per e-mail to ADMINS (see above).

Debug mode also slows down Weblate, as Django stores much more info
internally in this case.

See also

DEBUG [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DEBUG],

DEFAULT_FROM_EMAIL

Email sender address for outgoing e-mail, for example registration e-mails.

See also

DEFAULT_FROM_EMAIL [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DEFAULT_FROM_EMAIL],

SECRET_KEY

Key used by Django to sign some info in cookies, see
Django secret key for more info.

SERVER_EMAIL

Email used as sender address for sending e-mails to the administrator, for
example notifications on failed merges.

See also

SERVER_EMAIL [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SERVER_EMAIL]

Filling up the database

After your configuration is ready, you can run
./manage.py migrate to create the database structure. Now you should be
able to create translation projects using the admin interface.

In case you want to run an installation non interactively, you can use
./manage.py migrate --noinput, and then create an admin user using
createadmin command.

You should also log in to the admin interface (on /admin/ URL) and adjust the
default sitename to match your domain by clicking on Sites and once there,
change the example.com record to match your real domain name.

Once you are done, you should also check the Performance report in the
admin interface, which will give you hints of potential non optimal configuration on your
site.

See also

Configuration, Access control, Why do links contain example.com as the domain?, Set correct sitename

Production setup

For a production setup you should carry out adjustments described in the following sections.
The most critical settings will trigger a warning, which is indicated by a red
exclamation mark in the top bar if logged in as a superuser:

[image: ../_images/admin-wrench.png]
It is also recommended to inspect checks triggered by Django (though you might not
need to fix all of them):

./manage.py check --deploy

See also

Deployment checklist [https://docs.djangoproject.com/en/stable/howto/deployment/checklist/]

Disable debug mode

Disable Django’s debug mode (DEBUG) by:

DEBUG = False

With debug mode on, Django stores all executed queries and shows users backtraces
of errors, which is not desired in a production setup.

See also

Adjusting configuration

Properly configure admins

Set the correct admin addresses to the ADMINS setting to defining who will receive
e-mails in case something goes wrong on the server, for example:

ADMINS = (
 ('Your Name', 'your_email@example.com'),
)

See also

Adjusting configuration

Set correct sitename

Adjust sitename in the admin interface, otherwise links in RSS or registration
e-mails will not work.

Please open the admin interface and edit the default sitename and domain under the
Sites › Sites (or do it directly at the
/admin/sites/site/1/ URL under your Weblate installation). You have to change
the Domain name to match your setup.

Note

This setting should only contain the domain name. For configuring protocol,
(enabling HTTPS) use ENABLE_HTTPS and for changing URL, use
URL_PREFIX.

Alternatively, you can set the site name from the commandline using
changesite. For example, when using the built-in server:

./manage.py changesite --set-name 127.0.0.1:8000

For a production site, you want something like:

./manage.py changesite --set-name weblate.example.com

See also

Why do links contain example.com as the domain?, changesite,
The “sites” framework [https://docs.djangoproject.com/en/stable/ref/contrib/sites/]

Correctly configure HTTPS

It is strongly recommended to run Weblate using the encrypted HTTPS protocol.
After enabling it, you should set ENABLE_HTTPS in the settings, which also adjusts
several other related Django settings in the example configuration.

You might want to set up HSTS as well, see
SSL/HTTPS [https://docs.djangoproject.com/en/stable/topics/security/#security-recommendation-ssl] for more details.

Use a powerful database engine

Please use PostgreSQL for a production environment, see Database setup for Weblate
for more info.

See also

Database setup for Weblate,
Migrating from other databases,
Adjusting configuration,
Databases [https://docs.djangoproject.com/en/stable/ref/databases/]

Enable caching

If possible, use Redis from Django by adjusting the CACHES configuration
variable, for example:

CACHES = {
 'default': {
 'BACKEND': 'django_redis.cache.RedisCache',
 'LOCATION': 'redis://127.0.0.1:6379/0',
 # If redis is running on same host as Weblate, you might
 # want to use unix sockets instead:
 # 'LOCATION': 'unix:///var/run/redis/redis.sock?db=0',
 'OPTIONS': {
 'CLIENT_CLASS': 'django_redis.client.DefaultClient',
 'PARSER_CLASS': 'redis.connection.HiredisParser',
 }
 }
}

See also

Avatar caching,
Django’s cache framework [https://docs.djangoproject.com/en/stable/topics/cache/]

Avatar caching

In addition to caching of Django, Weblate performs caching of avatars. It is
recommended to use a separate, file-backed cache for this purpose:

CACHES = {
 'default': {
 # Default caching backend setup, see above
 'BACKEND': 'django_redis.cache.RedisCache',
 'LOCATION': 'unix:///var/run/redis/redis.sock?db=0',
 'OPTIONS': {
 'CLIENT_CLASS': 'django_redis.client.DefaultClient',
 'PARSER_CLASS': 'redis.connection.HiredisParser',
 }
 },
 'avatar': {
 'BACKEND': 'django.core.cache.backends.filebased.FileBasedCache',
 'LOCATION': os.path.join(DATA_DIR, 'avatar-cache'),
 'TIMEOUT': 604800,
 'OPTIONS': {
 'MAX_ENTRIES': 1000,
 },
 }

See also

ENABLE_AVATARS,
AVATAR_URL_PREFIX,
Avatars,
Enable caching,
Django’s cache framework [https://docs.djangoproject.com/en/stable/topics/cache/]

Configure e-mail addresses

Weblate needs to send out e-mails on several occasions, and these e-mails should
have a correct sender address, please configure SERVER_EMAIL and
DEFAULT_FROM_EMAIL to match your environment, for example:

SERVER_EMAIL = 'admin@example.org'
DEFAULT_FROM_EMAIL = 'weblate@example.org'

See also

Adjusting configuration,
Configuring outgoing e-mail,
DEFAULT_FROM_EMAIL [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DEFAULT_FROM_EMAIL],
SERVER_EMAIL [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SERVER_EMAIL]

Allowed hosts setup

Django 1.5 and newer require ALLOWED_HOSTS to hold a list of domain names
your site is allowed to serve, leaving it empty will block any requests.

See also

ALLOWED_HOSTS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-ALLOWED_HOSTS]

Django secret key

The SECRET_KEY setting is used by Django to sign cookies, and you should
really generate your own value rather than using the one from the example setup.

You can generate a new key using weblate/examples/generate-secret-key shipped
with Weblate.

See also

SECRET_KEY [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECRET_KEY]

Home directory

Changed in version 2.1: This is no longer required, Weblate now stores all its data in
DATA_DIR.

The home directory for the user running Weblate should exist and be
writable by this user. This is especially needed if you want to use SSH to
access private repositories, but Git might need to access this directory as
well (depending on the Git version you use).

You can change the directory used by Weblate in settings.py, for
example to set it to configuration directory under the Weblate tree:

os.environ['HOME'] = os.path.join(BASE_DIR, 'configuration')

Note

On Linux, and other UNIX like systems, the path to user’s home directory is
defined in /etc/passwd. Many distributions default to a non-writable
directory for users used for serving web content (such as apache,
www-data or wwwrun, so you either have to run Weblate under
a different user, or change this setting.

See also

Accessing repositories

Template loading

It is recommended to use a cached template loader for Django. It caches parsed
templates and avoids the need to do parsing with every single request. You can
configure it using the following snippet (the loaders setting is important here):

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': [
 os.path.join(BASE_DIR, 'templates'),
],
 'OPTIONS': {
 'context_processors': [
 'django.contrib.auth.context_processors.auth',
 'django.template.context_processors.debug',
 'django.template.context_processors.i18n',
 'django.template.context_processors.request',
 'django.template.context_processors.csrf',
 'django.contrib.messages.context_processors.messages',
 'weblate.trans.context_processors.weblate_context',
],
 'loaders': [
 ('django.template.loaders.cached.Loader', [
 'django.template.loaders.filesystem.Loader',
 'django.template.loaders.app_directories.Loader',
]),
],
 },
 },
]

See also

django.template.loaders.cached.Loader [https://docs.djangoproject.com/en/stable/ref/templates/api/#django.template.loaders.cached.Loader]

Running maintenance tasks

For optimal performance, it is good idea to run some maintenance tasks in the
background. This is now automatically done by Background tasks using Celery and covers following tasks:

	Configuration health check (hourly).

	Committing pending changes (hourly), see Lazy commits and commit_pending.

	Updating component alerts (daily).

	Update remote branches (nightly), see AUTO_UPDATE.

	Translation memory backup to JSON (daily), see dump_memory.

	Fulltext and database maintenance tasks (daily and weekly taks), see cleanuptrans.

Changed in version 3.2: Since version 3.2, the default way of executing these tasks is using Celery
and Weblate already comes with proper configuration, see Background tasks using Celery.

Running server

You will need several services to run Weblate, the recommended setup consists of:

	Database server (see Database setup for Weblate)

	Cache server (see Enable caching)

	Frontend web server for static files and SSL termination (see Serving static files)

	Wsgi server for dynamic content (see Sample configuration for NGINX and uWSGI)

	Celery for executing background tasks (see Background tasks using Celery)

Note

There are some dependencies between the services, for example cache and
database should be running when starting up Celery or uwsgi processes.

In most cases, you will run all services on single (virtual) server, but in
case your installation is heavy loaded, you can split up the services. The only
limitation on this is that Celery and Wsgi servers need access to
DATA_DIR.

Running web server

Running Weblate is not different from running any other Django based
program. Django is usually executed as uWSGI or fcgi (see examples for
different webservers below).

For testing purposes, you can use the built-in web server in Django:

./manage.py runserver

Warning

Do not use this in production, as this has severe performance limitations.

Serving static files

Changed in version 2.4: Prior to version 2.4, Weblate didn’t properly use the Django static files
framework and the setup was more complex.

Django needs to collect its static files in a single directory. To do so,
execute ./manage.py collectstatic --noinput. This will copy the static
files into a directory specified by the STATIC_ROOT [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-STATIC_ROOT] setting (this defaults to
a static directory inside DATA_DIR).

It is recommended to serve static files directly from your web server, you should
use that for the following paths:

	/static/

	Serves static files for Weblate and the admin interface
(from defined by STATIC_ROOT).

	/media/

	Used for user media uploads (e.g. screenshots).

	/favicon.ico

	Should be rewritten to rewrite a rule to serve /static/favicon.ico

	/robots.txt

	Should be rewritten to rewrite a rule to serve /static/robots.txt

See also

Deploying Django [https://docs.djangoproject.com/en/stable/howto/deployment/],
Deploying static files [https://docs.djangoproject.com/en/stable/howto/static-files/deployment/]

Content security policy

The default Weblate configuration enables weblate.middleware.SecurityMiddleware
middleware which sets security related HTTP headers like Content-Security-Policy
or X-XSS-Protection. These are by default set up to work with Weblate and it’s
configuration, but this might clash with your customization. If that is the
case, it is recommended to disable this middleware and set these headers
manually.

Sample configuration for Apache

The following configuration runs Weblate as WSGI, you need to have enabled
mod_wsgi (available as weblate/examples/apache.conf):

#
VirtualHost for weblate
#
This example assumes Weblate is installed in /usr/share/weblate
#
If using virtualenv, you need to add it to search path as well:
WSGIPythonPath /usr/share/weblate:/path/to/your/venv/lib/python3.7/site-packages
#
<VirtualHost *:80>
 ServerAdmin admin@weblate.example.org
 ServerName weblate.example.org

 # DATA_DIR/static/robots.txt
 Alias /robots.txt /var/lib/weblate/static/robots.txt
 # DATA_DIR/static/favicon.ico
 Alias /favicon.ico /var/lib/weblate/static/favicon.ico

 # DATA_DIR/static/
 Alias /static/ /var/lib/weblate/static/
 <Directory /var/lib/weblate/static/>
 Require all granted
 </Directory>

 # DATA_DIR/media/
 Alias /media/ /var/lib/weblate/media/
 <Directory /var/lib/weblate/media/>
 Require all granted
 </Directory>

 WSGIDaemonProcess weblate.example.org python-path=/usr/share/weblate
 WSGIProcessGroup weblate.example.org
 WSGIApplicationGroup %{GLOBAL}

 WSGIScriptAlias / /usr/share/weblate/weblate/wsgi.py process-group=weblate.example.org
 WSGIPassAuthorization On

 <Directory /usr/share/weblate/weblate>
 <Files wsgi.py>
 Require all granted
 </Files>
 </Directory>

</VirtualHost>

This configuration is for Apache 2.4 and later. For earlier versions of Apache,
replace Require all granted with Allow from all.

See also

How to use Django with Apache and mod_wsgi [https://docs.djangoproject.com/en/stable/howto/deployment/wsgi/modwsgi/]

Sample configuration for Apache and Gunicorn

The following configuration runs Weblate in Gunicorn and Apache 2.4
(available as weblate/examples/apache.gunicorn.conf):

#
VirtualHost for weblate using gunicorn on localhost:8000
#
This example assumes Weblate is installed in /usr/share/weblate
#
#

<VirtualHost *:443>
 ServerAdmin admin@weblate.example.org
 ServerName weblate.example.org

 # DATA_DIR/static/robots.txt
 Alias /robots.txt /var/lib/weblate/static/robots.txt
 # DATA_DIR/static/favicon.ico
 Alias /favicon.ico /var/lib/weblate/static/favicon.ico

 # DATA_DIR/static/
 Alias /static/ /var/lib/weblate/static/
 <Directory /var/lib/weblate/static/>
 Require all granted
 </Directory>

 # DATA_DIR/media/
 Alias /media/ /var/lib/weblate/media/
 <Directory /var/lib/weblate/media/>
 Require all granted
 </Directory>

 SSLEngine on
 SSLCertificateFile /etc/apache2/ssl/https_cert.cert
 SSLCertificateKeyFile /etc/apache2/ssl/https_key.pem
 SSLProxyEngine On

 ProxyPass /robots.txt !
 ProxyPass /favicon.ico !
 ProxyPass /static/ !
 ProxyPass /media/ !

 ProxyPass / http://localhost:8000/
 ProxyPassReverse / http://localhost:8000/
 ProxyPreserveHost On
</VirtualHost>

See also

How to use Django with Gunicorn [https://docs.djangoproject.com/en/stable/howto/deployment/wsgi/gunicorn/]

Sample configuration for NGINX and uWSGI

To run production webserver, use the wsgi wrapper installed with Weblate (in
virtual env case it is installed as
~/weblate-env/lib/python3.7/site-packages/weblate/wsgi.py). Don’t
forget to set the Python search path to your virtualenv as well (for example
using virtualenv = /home/user/weblate-env in uWSGI).

The following configuration runs Weblate as uWSGI under the NGINX webserver.

Configuration for NGINX (also available as weblate/examples/weblate.nginx.conf):

server {
 listen 80;
 server_name weblate;
 root /usr/share/weblate;

 location ~ ^/favicon.ico$ {
 # DATA_DIR/static/favicon.ico
 alias /var/lib/weblate/static/favicon.ico;
 expires 30d;
 }

 location ~ ^/robots.txt$ {
 # DATA_DIR/static/robots.txt
 alias /var/lib/weblate/static/robots.txt;
 expires 30d;
 }

 location /static/ {
 # DATA_DIR/static/
 alias /var/lib/weblate/static/;
 expires 30d;
 }

 location /media/ {
 # DATA_DIR/media/
 alias /var/lib/weblate/media/;
 expires 30d;
 }

 location / {
 include uwsgi_params;
 # Needed for long running operations in admin interface
 uwsgi_read_timeout 3600;
 # Adjust based to uwsgi configuration:
 uwsgi_pass unix:///run/uwsgi/app/weblate/socket;
 # uwsgi_pass 127.0.0.1:8080;
 }
}

Configuration for uWSGI (also available as weblate/examples/weblate.uwsgi.ini):

[uwsgi]
plugins = python3
master = true
protocol = uwsgi
socket = 127.0.0.1:8080
wsgi-file = /home/weblate/weblate-env/lib/python3.7/site-packages/weblate/wsgi.py

Add path to Weblate checkout if you did not install
Weblate by pip
python-path = /path/to/weblate

In case you're using virtualenv uncomment this:
virtualenv = /home/weblate/weblate-env

Needed for OAuth/OpenID
buffer-size = 8192

Increase number of workers for heavily loaded sites
workers = 6

Child processes do not need file descriptors
close-on-exec = true

Avoid default 0000 umask
umask = 0022

Run as weblate user
uid = weblate
gid = weblate

Enable harakiri mode (kill requests after some time)
harakiri = 3600
harakiri-verbose = true

Enable uWSGI stats server
stats = :1717
stats-http = true

Do not log some errors caused by client disconnects
ignore-sigpipe = true
ignore-write-errors = true
disable-write-exception = true

See also

How to use Django with uWSGI [https://docs.djangoproject.com/en/stable/howto/deployment/wsgi/uwsgi/]

Running Weblate under path

Changed in version 1.3: This is supported since Weblate 1.3.

A sample Apache configuration to serve Weblate under /weblate. Again using
mod_wsgi (also available as weblate/examples/apache-path.conf):

Example Apache configuration for running Weblate under /weblate path

WSGIPythonPath /usr/share/weblate
If using virtualenv, you need to add it to search path as well:
WSGIPythonPath /usr/share/weblate:/path/to/your/venv/lib/python3.7/site-packages
<VirtualHost *:80>
 ServerAdmin admin@image.weblate.org
 ServerName image.weblate.org

 # DATA_DIR/static/robots.txt
 Alias /weblate/robots.txt /var/lib/weblate/static/robots.txt
 # DATA_DIR/static/favicon.ico
 Alias /weblate/favicon.ico /var/lib/weblate/static/favicon.ico

 # DATA_DIR/static/
 Alias /weblate/static/ /var/lib/weblate/static/
 <Directory /var/lib/weblate/static/>
 Require all granted
 </Directory>

 # DATA_DIR/media/
 Alias /weblate/media/ /var/lib/weblate/media/
 <Directory /var/lib/weblate/media/>
 Require all granted
 </Directory>

 WSGIScriptAlias /weblate /usr/share/weblate/weblate/wsgi.py/weblate
 WSGIPassAuthorization On

 <Directory /usr/share/weblate/weblate>
 <Files wsgi.py>
 Require all granted
 </Files>
 </Directory>

</VirtualHost>

Additionally, you will have to adjust weblate/settings.py:

URL_PREFIX = '/weblate'

Background tasks using Celery

New in version 3.2.

Weblate uses Celery to process background tasks. The example settings come with
eager configuration, which does process all tasks in place, but you want to
change this to something more reasonable for a production setup.

A typical setup using Redis as a backend looks like this:

CELERY_TASK_ALWAYS_EAGER = False
CELERY_BROKER_URL = 'redis://localhost:6379'
CELERY_RESULT_BACKEND = CELERY_BROKER_URL

You should also start the Celery worker to process the tasks and start
scheduled tasks, this can be done directly on the command line (which is mostly
useful when debugging or developing):

./weblate/examples/celery start
./weblate/examples/celery stop

Most likely you will want to run Celery as a daemon and that is covered by
Daemonization [https://docs.celeryproject.org/en/latest/userguide/daemonizing.html]. For the most common Linux setup using
systemd, you can use the example files shipped in the examples folder
listed below.

Systemd unit to be placed as /etc/systemd/system/celery-weblate.service:

[Unit]
Description=Celery Service (Weblate)
After=network.target

[Service]
Type=forking
User=weblate
Group=weblate
EnvironmentFile=/etc/default/celery-weblate
WorkingDirectory=/home/weblate
RuntimeDirectory=celery
RuntimeDirectoryPreserve=restart
LogsDirectory=celery
ExecStart=/bin/sh -c '${CELERY_BIN} multi start ${CELERYD_NODES} \
 -A ${CELERY_APP} --pidfile=${CELERYD_PID_FILE} \
 --logfile=${CELERYD_LOG_FILE} --loglevel=${CELERYD_LOG_LEVEL} ${CELERYD_OPTS}'
ExecStop=/bin/sh -c '${CELERY_BIN} multi stopwait ${CELERYD_NODES} \
 --pidfile=${CELERYD_PID_FILE}'
ExecReload=/bin/sh -c '${CELERY_BIN} multi restart ${CELERYD_NODES} \
 -A ${CELERY_APP} --pidfile=${CELERYD_PID_FILE} \
 --logfile=${CELERYD_LOG_FILE} --loglevel=${CELERYD_LOG_LEVEL} ${CELERYD_OPTS}'

[Install]
WantedBy=multi-user.target

Environment configuration to be placed as /etc/default/celery-weblate:

Name of nodes to start
CELERYD_NODES="celery notify search memory backup"

Absolute or relative path to the 'celery' command:
CELERY_BIN="/home/weblate/weblate-env/bin/celery"

App instance to use
comment out this line if you don't use an app
CELERY_APP="weblate"

Extra command-line arguments to the worker,
increase concurency if you get weblate.E019
CELERYD_OPTS="--beat:celery --concurrency:celery=4 --queues:celery=celery --prefetch-multiplier:celery=4 \
--concurrency:notify=4 --queues:notify=notify --prefetch-multiplier:notify=4 \
--concurrency:search=1 --queues:search=search --prefetch-multiplier:search=2000 \
--concurrency:memory=1 --queues:memory=memory --prefetch-multiplier:memory=2000 \
--concurrency:backup=1 --queues:backup=backup"

Logging configuration
- %n will be replaced with the first part of the nodename.
- %I will be replaced with the current child process index
and is important when using the prefork pool to avoid race conditions.
CELERYD_PID_FILE="/var/run/celery/weblate-%n.pid"
CELERYD_LOG_FILE="/var/log/celery/weblate-%n%I.log"
CELERYD_LOG_LEVEL="INFO"

Internal Weblate variable to indicate we're running inside Celery
CELERY_WORKER_RUNNING="1"

Logrotate configuration to be placed as /etc/logrotate.d/celery:

/var/log/celery/*.log {
 weekly
 missingok
 rotate 12
 compress
 notifempty
}

Weblate comes with built-in setup for scheduled tasks. You can however define
additional tasks in settings.py, for example see Lazy commits.

You can use celery_queues to see current length of Celery task
queues. In case the queue will get too long, you will also get configuration
error in the admin interface.

Note

The Celery process has to be executed under the same user as Weblate and the WSGI
process, otherwise files in the DATA_DIR will be stored with
mixed ownership, leading to runtime issues.

Warning

The Celery errors are by default only logged into Celery log and are not
visible to user. In case you want to have overview on such failures, it is
recommended to configure Collecting error reports.

See also

Configuration and defaults [https://docs.celeryproject.org/en/latest/userguide/configuration.html],
Workers Guide [https://docs.celeryproject.org/en/latest/userguide/workers.html],
Daemonization [https://docs.celeryproject.org/en/latest/userguide/daemonizing.html],
Monitoring and Management Guide [https://docs.celeryproject.org/en/latest/userguide/monitoring.html],
celery_queues

Monitoring Weblate

Weblate provides the /healthz/ URL to be used in simple health checks, for example
using Kubernetes.

Collecting error reports

Weblate, as any other software, can fail. In order to collect useful failure
states we recommend to use third party services to collect such information.
This is especially useful in case of failing Celery tasks, which would
otherwise only report error to the logs and you won’t get notified on them.
Weblate has support for the following services:

Sentry

Weblate has built in support for Sentry [https://sentry.io/]. To use
it, it’s enough to set SENTRY_DSN in the settings.py:

SENTRY_DSN = "https://id@your.sentry.example.com/"

Rollbar

Weblate has built-in support for Rollbar [https://rollbar.com/]. To use
it, it’s enough to follow instructions for Rollbar notifier for Python [https://docs.rollbar.com/docs/python/].

In short, you need to adjust settings.py:

Add rollbar as last middleware:
MIDDLEWARE = [
 # … other middleware classes …
 'rollbar.contrib.django.middleware.RollbarNotifierMiddleware',
]

Configure client access
ROLLBAR = {
 'access_token': 'POST_SERVER_ITEM_ACCESS_TOKEN',
 'client_token': 'POST_CLIENT_ITEM_ACCESS_TOKEN',
 'environment': 'development' if DEBUG else 'production',
 'branch': 'master',
 'root': '/absolute/path/to/code/root',
}

Everything else is integrated automatically, you will now collect both server
and client side errors.

Migrating Weblate to another server

Migrating Weblate to another server should be pretty easy, however it stores
data in few locations which you should migrate carefully. The best approach is
to stop Weblate for the migration.

Migrating database

Depending on your database backend, you might have several options to migrate
the database. The most straightforward one is to dump the database on one
server and import it on the new one. Alternatively you can use replication in
case your database supports it.

The best approach is to use database native tools, as they are usually the most
effective (e.g. mysqldump or pg_dump). If you want to
migrate between different databases, the only option might be to use Django
management to dump and import the database:

Export current data
./manage.py dumpdata > /tmp/weblate.dump
Import dump
./manage.py loaddata /tmp/weblate.dump

Migrating VCS repositories

The VCS repositories stored under DATA_DIR need to be migrated as
well. You can simply copy them or use rsync to do the migration
more effectively.

Migrating fulltext index

For the fulltext index, (stored in DATA_DIR) it is better not to
migrate it, but rather generate a fresh one using rebuild_index.

Other notes

Don’t forget to move other services Weblate might have been using like
Redis, Cron jobs or custom authentication backends.

Weblate deployments

Weblate can be easily installed in your cloud. Please find detailed guide for your platform:

	Installing using Docker

	Installing on OpenShift 2

Bitnami Weblate stack

Bitnami provides a Weblate stack for many platforms at
<https://bitnami.com/stack/weblate>. The setup will be adjusted during
installation, see <https://bitnami.com/stack/weblate/README.txt> for more
documentation.

Weblate in YunoHost

The self-hosting project YunoHost [https://yunohost.org/] provides a package
for Weblate. Once you have your YunoHost installation, you may install Weblate
as any other application. It will provide you with a fully working stack with backup
and restoration, but you may still have to edit your settings file for specific
usages.

You may use your administration interface, or this button (it will bring you to your server):

[image: Install Weblate with YunoHost]
 [https://install-app.yunohost.org/?app=weblate]It also is possible to use the commandline interface:

yunohost app install https://github.com/YunoHost-Apps/weblate_ynh

Upgrading Weblate

Generic upgrade instructions

Before upgrading, please check the current Software requirements as they might have
changed. Once all requirements are installed or updated, please adjust your
settings.py to match changes in the configuration (consult
settings_example.py for correct values).

Always check Version specific instructions before upgrade. In case you
are skipping some versions, please follow instructions for all versions you are
skipping in the upgrade. Sometimes it’s better to upgrade to some intermediate
version to ensure a smooth migration. Upgrading across multiple releases should
work, but is not as well tested as single version upgrades.

Note

It is recommended to perform a full database backup prior to upgrade so that you
can roll back the database in case upgrade fails, see Backing up and moving Weblate.

	Upgrade configuration file, refer to settings_example.py or
Version specific instructions for needed steps.

	Upgrade database structure:

./manage.py migrate --noinput

	Collect updated static files (mostly javascript and CSS):

./manage.py collectstatic --noinput

	Update language definitions (this is not necessary, but heavily recommended):

./manage.py setuplang

	Optionally upgrade default set of privileges definitions (you might want to
add new permissions manually if you have heavily tweaked access control):

./manage.py setupgroups

	If you are running version from Git, you should also regenerate locale files
every time you are upgrading. You can do this by invoking:

./manage.py compilemessages

	Verify that your setup is sane (see also Production setup):

./manage.py check --deploy

	Restart celery worker (see Background tasks using Celery).

Version specific instructions

Upgrade from 2.x

If you are upgrading from 2.x release, always first upgrade to 3.0.1 and the
continue upgrading in the 3.x series. Upgrades skipping this step are not
supported and will break.

See also

Upgrade from 2.20 to 3.0 in Weblate 3.0 documentation [https://docs.weblate.org/en/weblate-3.0.1/admin/upgrade.html#upgrade-3]

Upgrade from 3.0.1 to 3.1

Please follow Generic upgrade instructions in order to perform update.

Notable configuration or dependencies changes:

	Several no longer needed applications have been removed from INSTALLED_APPS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS].

	The settings now recommend using several Django security features, see SSL/HTTPS [https://docs.djangoproject.com/en/stable/topics/security/#security-recommendation-ssl].

	There is new dependency on the jellyfish module.

See also

Generic upgrade instructions

Upgrade from 3.1 to 3.2

Please follow Generic upgrade instructions in order to perform update.

Notable configuration or dependencies changes:

	Rate limiting configuration has been changed, please see Rate limiting.

	Microsoft Terminology machine translation was moved to separate module and now requires zeep module.

	Weblate now uses Celery for several background tasks. There are new dependencies and settings because of this. You should also run Celery worker as standalone process. See Background tasks using Celery for more information.

	There are several changes in settings_example.py, most notable Celery configuration and middleware changes, please adjust your settings accordingly.

See also

Generic upgrade instructions

Upgrade from 3.2 to 3.3

Please follow Generic upgrade instructions in order to perform update.

Notable configuration or dependencies changes:

	The DEFAULT_CUSTOM_ACL settings was replaced by DEFAULT_ACCESS_CONTROL. If you were using that please update your settings.py.

	Increase required translate-toolkit version to 2.3.1.

	Increase required social auth module versions (2.0.0 for social-auth-core and 3.0.0 for social-auth-app-django).

	The CELERY_RESULT_BACKEND should be now configured unless you are using eager mode, see Configuration and defaults [https://docs.celeryproject.org/en/latest/userguide/configuration.html].

	There is new weblate.middleware.ProxyMiddleware middleware needed if you use IP_BEHIND_REVERSE_PROXY.

See also

Generic upgrade instructions

Upgrade from 3.3 to 3.4

Please follow Generic upgrade instructions in order to perform update.

Notable configuration or dependencies changes:

	The Celery now uses multiple queues, it is recommended to update to new worker setup which utilizes this, see Background tasks using Celery.

	There is new depedency on diff-match-patch and translation-finder.

See also

Generic upgrade instructions

Upgrade from 3.4 to 3.5

Please follow Generic upgrade instructions in order to perform update.

Notable configuration or dependencies changes:

	There are several new checks included in the CHECK_LIST.

See also

Generic upgrade instructions

Upgrade from 3.5 to 3.6

Please follow Generic upgrade instructions in order to perform update.

Notable configuration or dependencies changes:

	The automatic detection of file format has been removed. Please adjust your
translation components configuration prior to upgrade. The upgrade should be
able to gracefully handle most of situations, but can fail in some corner
cases.

	If you have manually changed WEBLATE_FORMATS, you will have to remove
AutoFormat from it.

	During the upgrade, the notifications settings need to be converted. This can
be lengthty operation in case you have lot of users.

See also

Generic upgrade instructions

Upgrade from 3.6 to 3.7

Please follow Generic upgrade instructions in order to perform update.

Notable configuration or dependencies changes:

	The Celery now uses separate queue for notifications, it is recommended to update to new worker setup which utilizes this, see Background tasks using Celery.

	There are new (bleach, gobject, pycairo) and updated (translation-finder) dependencies, you will now need Pango and Cairo system libraries as well, see Pango and Cairo.

	There are new addons, you might want to include them in case you modified the WEBLATE_ADDONS.

	There are new file formats, you might want to include them in case you modified the WEBLATE_FORMATS.

	There is change in the CSRF_FAILURE_VIEW [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-CSRF_FAILURE_VIEW].

	There is new app weblate.fonts to be included in INSTALLED_APPS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS].

See also

Generic upgrade instructions

Upgrade from 3.7 to 3.8

Please follow Generic upgrade instructions in order to perform update.

Notable configuration or dependencies changes:

	There is new app django.contrib.humanize to be included in INSTALLED_APPS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS].

See also

Generic upgrade instructions

Upgrade from 3.8 to 3.9

Please follow Generic upgrade instructions in order to perform update.

Notable configuration or dependencies changes:

	There are several new checks included in the CHECK_LIST.

	There are several updated and new dependencies.

	Sentry is now supported through modern Sentry SDK instead of Raven, please adjust your configuration to use new SENTRY_DSN.

	There are new addons, you might want to include them in case you modified the WEBLATE_ADDONS.

	The Celery now uses separate queue for backups, it is recommended to update to new worker setup which utilizes this, see Background tasks using Celery.

See also

Generic upgrade instructions

Upgrading from Python 2 to Python 3

Note

Weblate will support Python 2 util 4.0 release currently scheduled on April
2020. This is in line with Django dropping support for Python 2.

Weblate currently supports both Python 2.7 and 3.x. Upgrading existing
installations is supported, but you should pay attention to some data stored on
the disk as it might be incompatible between these two.

Things which might be problematic include Whoosh indices and file based caches.
Fortunately these are easy to handle. Recommended upgrade steps:

	Backup your Translation Memory using dump_memory:

./manage.py dump_memory > memory.json

	Upgrade your installation to Python 3.

	Delete Translation Memory database delete_memory:

./manage.py delete_memory --all

	Restore your Translation Memory using import_memory.

./manage.py import_memory memory.json

	Recreate fulltext index using rebuild_index:

./manage.py rebuild_index --clean --all

	Cleanup avatar cache (if using file based) using cleanup_avatar_cache.

./manage.py cleanup_avatar_cache

	It is recommended to throw away your caches.

Migrating from Pootle

As Weblate was originally written as replacement from Pootle, it is supported
to migrate user accounts from Pootle. You can dump the users from Pootle and
import them using importusers.

Backing up and moving Weblate

Automated backup

New in version 3.9.

Weblate has built in support for creating service backups using Borg backup [https://www.borgbackup.org/].
Borg creates space effective encrypted backups which can be safely stored in
the cloud. The backups can be controlled in the management interface on the
Backups tab.

Warning

Only PostgreSQL database is included in the automated backups. Other
database engines have to be backed up manually. You are recommended to
migrate to PostgreSQL as that will be the only supported database in the
4.0 release.

[image: ../_images/backups.png]

Using Weblate provisioned backup storage

The easiest approach to backup your Weblate instance is to purchase backup
service at weblate.org [https://weblate.org/support/#backup]. The process of
activating can be performed in few steps:

	Purchase backup service on https://weblate.org/support/#backup.

	Enter obtained key in the management interface, see Activating support.

	Weblate will connect to the cloud service and obtain access information for the backups.

	Turn on the new backup configuration on the Backups tab.

	Backup Borg credentials in order to be able to restore the backups, see Borg encryption key.

Hint

The manual step of turning on is there for your safety. Without your consent
no data is sent to the backup repository obtained through the registration
process.

Using custom backup storage

You can also use own storage for the backups. SSH can be used to store backups
on the remote destination, the target server needs to have Borg backup [https://www.borgbackup.org/]
installed.

See also

General [https://borgbackup.readthedocs.io/en/stable/usage/general.html] in the Borg documentation

Borg encryption key

Borg backup [https://www.borgbackup.org/] creates encrypted backups and without a passphrase you will not
be able to restore the backup. The passphrase is generated when adding new
backup service and you should copy it and keep it in a secure place.

In case you are using Using Weblate provisioned backup storage, please backup your private SSH key as
well - it is used to access your backups.

See also

borg init [https://borgbackup.readthedocs.io/en/stable/usage/init.html]

Restoring from Borg backup

	Restore access to your backup repository and prepare your backup passphrase.

	List backup existing on the server using borg list REPOSITORY.

	Restore the desired backup to current directory using borg extract REPOSITORY::ARCHIVE.

	Restore the database from the SQL dump placed in the backup directory in the Weblate data dir (see Dumped data for backups).

	Copy Weblate configuration and data dir to correct location.

The borg session might look like:

$ borg list /tmp/xxx
Enter passphrase for key /tmp/xxx:
2019-09-26T14:56:08 Thu, 2019-09-26 14:56:08 [de0e0f13643635d5090e9896bdaceb92a023050749ad3f3350e788f1a65576a5]
$ borg extract /tmp/xxx::2019-09-26T14:56:08
Enter passphrase for key /tmp/xxx:

See also

borg list [https://borgbackup.readthedocs.io/en/stable/usage/list.html],
borg extract [https://borgbackup.readthedocs.io/en/stable/usage/extract.html]

Manual backup

Depending on what you want to save, back up the type data Weblate stores in each respective place.

Hint

In case you are doing manual backups, you might want to silent Weblate
warning about lack of backups by adding weblate.I028 to
SILENCED_SYSTEM_CHECKS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SILENCED_SYSTEM_CHECKS] in settings.py:

SILENCED_SYSTEM_CHECKS.append("weblate.I028")

Database

Where this is located depends on your database setup.

The database is the most important storage. Set up regular
backups of your database, without it all your translation setup will be gone.

Native database backup

The recommended approach is to do dump of the database using database native
tools such as pg_dump or mysqldump. It usually performs
better than Django backup and restores complete tables with all data.

You can restore this backup in newer Weblate release, it will perform any
necessary migrations when running in migrate [https://docs.djangoproject.com/en/stable/ref/django-admin/#django-admin-migrate]. Please consult
Upgrading Weblate on more detailed information how to peform upgrade between
versions.

Django database backup

Alternatively you can backup database using Django’s dumpdata [https://docs.djangoproject.com/en/stable/ref/django-admin/#django-admin-dumpdata]
command. That way the backup is database agnostic and can be used in case you
want to change database backend.

Prior to restoring you need to be running exactly same Weblate version as was
used when doing backups. This is necessary as the database structure does
change between releases and you would end up corrupting the data in some way.
After installing the same version, run all database migrations using
migrate [https://docs.djangoproject.com/en/stable/ref/django-admin/#django-admin-migrate].

Once this is done, some entries will be already created in the database and you
will have them in the database backup as well. The recommended approach is to
delete such entries manually using management shell (see Invoking management commands):

./manage.py shell
>>> from weblate.auth.models import User
>>> User.objects.get(username='anonymous').delete()

Files

If you have enough backup space, simply backup the whole DATA_DIR. This
is safe bet even if it includes some files you don’t want.
The following sections describe in detail what you should back up and what you
can skip.

Dumped data for backups

Stored in DATA_DIR /backups.

Weblate dumps various data here, and you can include these files for more complete
backups. The files are updated daily (requires a running Celery beats server, see
Background tasks using Celery). Currently this includes:

	Translation memory dump, in JSON format.

	Weblate settings as settings.py.

	PostgreSQL database backup as database.sql.

Version control repositories

Stored in DATA_DIR /vcs.

The version control repositories contain a copy of your upstream repositories
with Weblate changes. If you have push on commit enabled for all your
translation components, all Weblate changes are included upstream and you
do not have to backup the repositories on the Weblate side. They can be cloned
again from the upstream locations with no data loss.

SSH and GPG keys

Stored in DATA_DIR /ssh and DATA_DIR /home.

If you are using SSH or GPG keys generated by Weblate, you should back up these
locations, otherwise you will lose the private keys and you will have to
regenerate new ones.

User uploaded files

Stored in DATA_DIR /media.

You should back up user uploaded files (e.g. Visual context for strings).

Translation memory

Stored in DATA_DIR /memory.

It is recommended to back up this content using
dump_memory in JSON-, instead of binary format, as that
might eventually change (and is also incompatible going from Python 2 to Python 3).
Weblate prepares this dump daily, see Dumped data for backups.

Fulltext index

Stored in DATA_DIR /whoosh.

It is recommended to not backup this and regenerate it from scratch on restore.

Celery tasks

The Celery tasks queue might contain some info, but is usually not needed
for a backup. At most your will lose updates that have not yet ben processed to translation
memory. It is recommended to perform the fulltext or repository updates upon
restoring anyhow, so there is no problem in losing these.

See also

Background tasks using Celery

Restoring manual backup

	Restore all data you have backed up.

	Recreate a fulltext index using rebuild_index:

./manage.py rebuild_index --clean --all

	Restore your Translation Memory using import_memory.

./manage.py import_memory memory.json

	Update all repositories using updategit.

./manage.py updategit --all

Moving a Weblate installation

Relocatable your installation to a different system
by following the backup and restore instructions above.

See also

Upgrading from Python 2 to Python 3

Authentication

User registration

The default setup for Weblate is to use python-social-auth, a form on the website
to handle registration of new users. After confirming their e-mail a new user can
contribute or authenticate by using one of the third party services.

You can also turn off registration of new users using
REGISTRATION_OPEN.

The authentication attempts are subject to Rate limiting.

Authentication backends

The inbuilt solution of Django is used for authentication,
including various social options to do so.
Using it means you can import the user database of other Django based projects (see
Migrating from Pootle).

Django can additionally be set up to authenticate against other means too.

Social authentication

Thanks to Welcome to Python Social Auth’s documentation! [https://python-social-auth.readthedocs.io/en/latest/index.html], Weblate support authentication using many third
party services such as GitLab, Ubuntu, Fedora, etc.

Please check their documentation for generic configuration instructions
in Django Framework [https://python-social-auth.readthedocs.io/en/latest/configuration/django.html].

Note

By default, Weblate relies on third-party authentication services to
provide a validated e-mail address. If some of the services you want to use
don’t support this, please enforce e-mail validation on the Weblate side
by configuring FORCE_EMAIL_VALIDATION for them. For example:

SOCIAL_AUTH_OPENSUSE_FORCE_EMAIL_VALIDATION = True

See also

Pipeline [https://python-social-auth.readthedocs.io/en/latest/pipeline.html]

Enabling individual backends is quite easy, it’s just a matter of adding an entry to
the AUTHENTICATION_BACKENDS setting and possibly adding keys needed for a given
authentication method. Please note that some backends do not provide user e-mail by
default, you have to request it explicitly, otherwise Weblate will not be able
to properly credit contributions users make.

See also

Python Social Auth backend [https://python-social-auth.readthedocs.io/en/latest/backends/index.html]

OpenID authentication

For OpenID based services it’s usually just a matter of enabling them. The following
section enables OpenID authentication for OpenSUSE, Fedora and Ubuntu:

Authentication configuration
AUTHENTICATION_BACKENDS = (
 'social_core.backends.email.EmailAuth',
 'social_core.backends.suse.OpenSUSEOpenId',
 'social_core.backends.ubuntu.UbuntuOpenId',
 'social_core.backends.fedora.FedoraOpenId',
 'weblate.accounts.auth.WeblateUserBackend',
)

See also

OpenId [https://python-social-auth.readthedocs.io/en/latest/backends/openid.html]

GitHub authentication

You need to register an application on GitHub and then tell Weblate all its secrets:

Authentication configuration
AUTHENTICATION_BACKENDS = (
 'social_core.backends.github.GithubOAuth2',
 'social_core.backends.email.EmailAuth',
 'weblate.accounts.auth.WeblateUserBackend',
)

Social auth backends setup
SOCIAL_AUTH_GITHUB_KEY = 'GitHub Client ID'
SOCIAL_AUTH_GITHUB_SECRET = 'GitHub Client Secret'
SOCIAL_AUTH_GITHUB_SCOPE = ['user:email']

The GitHub should be configured to have callback URL as
https://example.com/accounts/complete/github/.

See also

GitHub [https://python-social-auth.readthedocs.io/en/latest/backends/github.html]

Bitbucket authentication

You need to register an application on Bitbucket and then tell Weblate all its secrets:

Authentication configuration
AUTHENTICATION_BACKENDS = (
 'social_core.backends.bitbucket.BitbucketOAuth',
 'social_core.backends.email.EmailAuth',
 'weblate.accounts.auth.WeblateUserBackend',
)

Social auth backends setup
SOCIAL_AUTH_BITBUCKET_KEY = 'Bitbucket Client ID'
SOCIAL_AUTH_BITBUCKET_SECRET = 'Bitbucket Client Secret'
SOCIAL_AUTH_BITBUCKET_VERIFIED_EMAILS_ONLY = True

See also

Bitbucket [https://python-social-auth.readthedocs.io/en/latest/backends/bitbucket.html]

Google OAuth 2

To use Google OAuth 2, you need to register an application on
<https://console.developers.google.com/> and enable the Google+ API.

The redirect URL is https://WEBLATE SERVER/accounts/complete/google-oauth2/

Authentication configuration
AUTHENTICATION_BACKENDS = (
 'social_core.backends.google.GoogleOAuth2',
 'social_core.backends.email.EmailAuth',
 'weblate.accounts.auth.WeblateUserBackend',
)

Social auth backends setup
SOCIAL_AUTH_GOOGLE_OAUTH2_KEY = 'Client ID'
SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET = 'Client secret'

See also

Google [https://python-social-auth.readthedocs.io/en/latest/backends/google.html]

Facebook OAuth 2

As per usual with OAuth 2 services, you need to register your application with
Facebook. Once this is done, you can set up Weblate to use it:

Authentication configuration
AUTHENTICATION_BACKENDS = (
 'social_core.backends.facebook.FacebookOAuth2',
 'social_core.backends.email.EmailAuth',
 'weblate.accounts.auth.WeblateUserBackend',
)

Social auth backends setup
SOCIAL_AUTH_FACEBOOK_KEY = 'key'
SOCIAL_AUTH_FACEBOOK_SECRET = 'secret'
SOCIAL_AUTH_FACEBOOK_SCOPE = ['email', 'public_profile']

See also

Facebook [https://python-social-auth.readthedocs.io/en/latest/backends/facebook.html]

GitLab OAuth 2

For using GitLab OAuth 2, you need to register an application on
<https://gitlab.com/profile/applications>.

The redirect URL is https://WEBLATE SERVER/accounts/complete/gitlab/ and
ensure you mark the read_user scope.

Authentication configuration
AUTHENTICATION_BACKENDS = (
 'social_core.backends.gitlab.GitLabOAuth2',
 'social_core.backends.email.EmailAuth',
 'weblate.accounts.auth.WeblateUserBackend',
)

Social auth backends setup
SOCIAL_AUTH_GITLAB_KEY = 'Application ID'
SOCIAL_AUTH_GITLAB_SECRET = 'Secret'
SOCIAL_AUTH_GITLAB_SCOPE = ['read_user']

If you are using your own GitLab
SOCIAL_AUTH_GITLAB_API_URL = 'https://gitlab.example.com/'

See also

GitLab [https://python-social-auth.readthedocs.io/en/latest/backends/gitlab.html]

Turning off password authentication

Email and password authentication can be disabled by removing
social_core.backends.email.EmailAuth from
AUTHENTICATION_BACKENDS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-AUTHENTICATION_BACKENDS]. Always keep
weblate.accounts.auth.WeblateUserBackend there, it is needed for core
Weblate functionality.

Tip

You can still use password authentication for the admin interface, for users you
manually create there. Just navigate to /admin/.

For example authentication using only the openSUSE Open ID provider can be achieved
using the following:

Authentication configuration
AUTHENTICATION_BACKENDS = (
 'social_core.backends.suse.OpenSUSEOpenId',
 'weblate.accounts.auth.WeblateUserBackend',
)

Password authentication

The default settings.py comes with a reasonable set of
AUTH_PASSWORD_VALIDATORS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-AUTH_PASSWORD_VALIDATORS]:

	Passwords can’t be too similar to your other personal info.

	Passwords must contain at least 6 characters.

	Passwords can’t be a commonly used password.

	Passwords can’t be entirely numeric.

	Passwords can’t consist of a single character or only whitespace.

	Passwords can’t match a password you have used in the past.

You can customize this setting to match your password policy.

Additionally you can also install
django-zxcvbn-password [https://pypi.org/project/django-zxcvbn-password/]
which gives quite realistic estimates of password difficulty and allows rejecting
passwords below a certain threshold.

LDAP authentication

LDAP authentication can be best achieved using the django-auth-ldap package. You
can install it via usual means:

Using PyPI
pip install django-auth-ldap>=1.3.0

Using apt-get
apt-get install python-django-auth-ldap

Warning

With django-auth-ldap older than 1.3.0 the Automatic group assignments will not work
properly for newly created users.

Note

There are some incompatibilities in the Python LDAP 3.1.0 module, which might
prevent you from using that version. If you get error AttributeError:
‘module’ object has no attribute ‘_trace_level’ [https://github.com/python-ldap/python-ldap/issues/226], downgrading
python-ldap to 3.0.0 might help.

Once you have the package installed, you can hook it into the Django authentication:

Add LDAP backed, keep Django one if you want to be able to login
even without LDAP for admin account
AUTHENTICATION_BACKENDS = (
 'django_auth_ldap.backend.LDAPBackend',
 'weblate.accounts.auth.WeblateUserBackend',
)

LDAP server address
AUTH_LDAP_SERVER_URI = 'ldaps://ldap.example.net'

DN to use for authentication
AUTH_LDAP_USER_DN_TEMPLATE = 'cn=%(user)s,o=Example'
Depending on your LDAP server, you might use a different DN
like:
AUTH_LDAP_USER_DN_TEMPLATE = 'ou=users,dc=example,dc=com'

List of attributes to import from LDAP upon login
Weblate stores full name of the user in the full_name attribute
AUTH_LDAP_USER_ATTR_MAP = {
 'full_name': 'name',
 # Use the following if your LDAP server does not have full name
 # Weblate will merge them later
 # 'first_name': 'givenName',
 # 'last_name': 'sn',
 # Email is required for Weblate (used in VCS commits)
 'email': 'mail',
}

If you can not use direct bind for authentication, you will need to use search,
and provide a user to bind for the search. For example:

import ldap
from django_auth_ldap.config import LDAPSearch

AUTH_LDAP_BIND_DN = ""
AUTH_LDAP_BIND_PASSWORD = ""
AUTH_LDAP_USER_SEARCH = LDAPSearch("ou=users,dc=example,dc=com",
 ldap.SCOPE_SUBTREE, "(uid=%(user)s)")

Note

You should remove 'social_core.backends.email.EmailAuth' from the
AUTHENTICATION_BACKENDS setting, otherwise users will be able to set
their password in Weblate, and authenticate using that. Keeping
'weblate.accounts.auth.WeblateUserBackend' is still needed in order to
make permissions and facilitate anonymous users. It will also allow you
to log in using a local admin account, if you have created it (e.g. by using
createadmin).

See also

Django Authentication Using LDAP [https://django-auth-ldap.readthedocs.io/en/latest/index.html], Authentication [https://django-auth-ldap.readthedocs.io/en/latest/authentication.html]

CAS authentication

CAS authentication can be achieved using a package such as django-cas-ng.

Step one is disclosing the e-mail field of the user via CAS. This has to be
configured on the CAS server itself, and requires you run at least CAS v2 since
CAS v1 doesn’t support attributes at all.

Step two is updating Weblate to use your CAS server and attributes.

To install django-cas-ng:

pip install django-cas-ng

Once you have the package installed you can hook it up to the Django
authentication system by modifying the settings.py file:

Add CAS backed, keep the Django one if you want to be able to log in
even without LDAP for the admin account
AUTHENTICATION_BACKENDS = (
 'django_cas_ng.backends.CASBackend',
 'weblate.accounts.auth.WeblateUserBackend',
)

CAS server address
CAS_SERVER_URL = 'https://cas.example.net/cas/'

Add django_cas_ng somewhere in the list of INSTALLED_APPS
INSTALLED_APPS = (
 ...,
 'django_cas_ng'
)

Finally, a signal can be used to map the e-mail field to the user object. For
this to work you have to import the signal from the django-cas-ng package and
connect your code with this signal. Doing this in settings file can
cause problems, therefore it’s suggested to put it:

	In your app config’s django.apps.AppConfig.ready() [https://docs.djangoproject.com/en/stable/ref/applications/#django.apps.AppConfig.ready] method (Django 1.7 and above)

	At the end of your models.py file (Django 1.6 and below)

	In the project’s urls.py file (when no models exist)

from django_cas_ng.signals import cas_user_authenticated
from django.dispatch import receiver
@receiver(cas_user_authenticated)
def update_user_email_address(sender, user=None, attributes=None, **kwargs):
 # If your CAS server does not always include the email attribute
 # you can wrap the next two lines of code in a try/catch block.
 user.email = attributes['email']
 user.save()

See also

Django CAS NG [https://github.com/mingchen/django-cas-ng]

Configuring third party Django authentication

Generally any Django authentication plugin should work with Weblate. Just
follow the instructions for the plugin, just remember to keep the Weblate user backend
installed.

See also

LDAP authentication,
CAS authentication

Typically the installation will consist of adding an authentication backend to
AUTHENTICATION_BACKENDS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-AUTHENTICATION_BACKENDS] and installing an authentication app (if
there is any) into INSTALLED_APPS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS]:

AUTHENTICATION_BACKENDS = (
 # Add authentication backend here
 'weblate.accounts.auth.WeblateUserBackend',
)

INSTALLED_APPS = (
 ...
 'weblate',
 # Install authentication app here
)

Access control

Changed in version 3.0: Before Weblate 3.0, the privilege system was based on Django, but is now
specifically built for Weblate. If you are using an older version, please
the consult documentation for that version, the information here will not apply.

Weblate comes with a fine grained privilege system to assign user permissions
for the whole instance, or in a limited scope.

The permission system based on groups and roles, where roles define a set of
permissions, and groups assign them to users and translations, see
Users, roles, groups and permissions for more details.

After installation a default set of groups is created, and you can use those
to assign users roles for the whole instance (see Default groups and roles). Additionally when
Per project access control is turned on, you can assign users to specific translation projects.
More fine-grained configuration can be achieved using Custom access control

Common setups

Locking down Weblate

To completely lock down your Weblate installation, you can use
LOGIN_REQUIRED_URLS to force users to log in and
REGISTRATION_OPEN to prevent new registrations.

Site wide permissions

To manage permissions for a whole instance, just add users to Users (this is done
by default using the Automatic group assignments), Reviewers and Managers groups. Keep
all projects configured as Public (see Per project access control).

Per project permissions

Set your projects to Protected or Private, and manage users per
project in the Weblate interface.

Adding permissions to languages, projects or component sets

You can additionally grant permissions to any user based on project, language
or a component set. To achieve this, create a new group (e.g. Czech
translators) and configure it for a given resource. Any assigned permissions will
be granted to members of that group for selected resources.

This will work just fine without additional setup, if using per project
permissions. For permissions on the whole instance, you will probably also want to remove
these permissions from the Users group, or change automatic assignment of all
users to that group (see Automatic group assignments).

Per project access control

Note

By enabling ACL, all users are prohibited from accessing anything within a given
project, unless you add the permissions for them to do just that.

You can limit user’s access to individual projects. This feature is turned on by
Access control in the configuration of each respective project.
This automatically creates several groups for this project, see Predefined groups.

The following choices exist for Access control:

	Public

	Publicly visible and translatable

	Protected

	Publicly visible, but translatable only for selected users

	Private

	Visible and translatable only for selected users

	Custom

	Weblate does not manage users, see Custom access control.

[image: ../_images/project-access.png]
To allow access to this project, you have to add the privilege either
directly to the given user, or group of users in the Django admin interface,
or by using user management on the project page, as described in Managing per project access control.

Note

Even with ACL turned on, some summary info will be available about your project:

	Statistics for the whole instance, including counts for all projects.

	Language summary for the whole instance, including counts for all projects.

Automatic group assignments

You can set up Weblate to automatically add users to groups based on their
e-mail addresses. This automatic assignment happens only at the time of account creation.

This can be set up in the Django admin interface (in the
Accounts section).

Note

The automatic group assignment for the Users and Viewers groups will
always be created by Weblate upon migrations, in case you want to turn it
off, simply set the regular expression to ^$, which will never match.

Users, roles, groups and permissions

The authentication models consist of several objects:

	Permission

	Individual permissions defined by Weblate. You can not assign individual
permissions, this can only be done through assignment of roles.

	Role

	Role defines a set of permissions. This allows reuse of these sets in
several places, and makes the administration easier.

	User

	Users can be members of several groups.

	Group

	Groups connect roles, users and authentication objects (projects,
languages and component lists).

graph auth {

 "User" -- "Group";
 "Group" -- "Role";
 "Role" -- "Permission";
 "Group" -- "Project";
 "Group" -- "Language";
 "Group" -- "Component list";
}

Permission checking

Whenever a permission is checked to decide whether one is able to perform a given action,
the check is carried out according to scope, and the following checks are performed:

	Project

	Compared against the scope of the project, if not set, this matches no project.

You can use Project selection to automate inclusion of all
projects.

	Component list

	The scope component is matched against this list, if not set, this is ignored.

Obviously this has no effect when checking access of the project scope,
so you will have to grant access to view all projects in a component list
by other means. By default this is achieved through the use of the Viewers group,
see Default groups and roles).

	Language

	Compared against scope of translations, if not set, this matches no
language.

You can use Language selection to automate inclusion of all
languages.

Checking access to a project

A user has to be a member of a group linked to the project. Only membership is
enough, no specific permissions are needed to access a project (this is used
in the default Viewers group, see Default groups and roles).

Managing users and groups

All users and groups can be managed using the Django admin interface,
available under /admin/ URL.

Managing per project access control

Note

This feature only works for ACL controlled projects, see Per project access control.

Users with the Can manage ACL rules for a project privilege (see
Access control) can also manage users in projects with access control
turned on through the project page. You can add users, or remove them from a project, or make
them owners of it.

The user management is available in the Manage menu of a project:

[image: ../_images/manage-users.png]

See also

Per project access control

Predefined groups

Weblate comes with a predefined set of groups for a project, wherefrom you can assign
users.

	
Administration

	Has all permissions available in the project.

	
Glossary

	Can manage glossary (add or remove entries, or upload).

	
Languages

	Can manage translated languages - add or remove translations.

	
Screenshots

	Can manage screenshots - add or remove them, and associate them to source
strings.

	
Template

	Can edit translation templates in Monolingual components and source string
info.

	
Translate

	Can translate the project, and upload translations made offline.

	
VCS

	Can manage VCS and access the exported repository.

	
Review

	Can approve translations during review.

	
Billing

	Can access billing info (see Billing).

Custom access control

By choosing Custom as Access control, Weblate will stop
managing access for a given project, and you can set up custom rules in the Django
admin interface. This can be used to define more complex access control, or
set up a shared access policy for all projects in a single Weblate instance. If you
want to enable this for all projects by default, please configure the
DEFAULT_ACCESS_CONTROL.

Warning

By turning this on, Weblate will remove all Per project access control it has created for
this project. If you are doing this without admin permission from the instance, you
will instantly lose your access to manage the project.

Default groups and roles

List of privileges

	Billing (see Billing)

	View billing info [Administration, Billing]

	Changes

	Download changes [Administration]

	Comments

	Post comment [Administration, Edit source, Power user, Review strings, Translate]
Delete comment [Administration]

	Component

	Edit component settings [Administration]
Lock component, preventing it from being translated [Administration]

	Glossary

	Add glossary entry [Administration, Manage glossary, Power user]
Edit glossary entry [Administration, Manage glossary, Power user]
Delete glossary entry [Administration, Manage glossary, Power user]
Upload glossary entries [Administration, Manage glossary, Power user]

	Machinery

	Use machine translation services [Administration, Power user]

	Projects

	Edit project settings [Administration]
Manage project access [Administration]

	Reports

	Download reports [Administration]

	Screenshots

	Add screenshot [Administration, Manage screenshots]
Edit screenshot [Administration, Manage screenshots]
Delete screenshot [Administration, Manage screenshots]

	Source strings

	Edit source string info [Administration, Edit source]

	Strings

	Add new strings [Administration]
Ignore failing checks [Administration, Edit source, Power user, Review strings, Translate]
Edit strings [Administration, Edit source, Power user, Review strings, Translate]
Review strings [Administration, Review strings]
Edit string when suggestions are enforced [Administration, Review strings]
Edit source strings [Administration, Edit source, Power user]

	Suggestions

	Accept suggestions [Administration, Edit source, Power user, Review strings, Translate]
Add suggestions [Add suggestion, Administration, Edit source, Power user, Review strings, Translate]
Delete suggestions [Administration]
Vote on suggestions [Administration, Edit source, Power user, Review strings, Translate]

	Translations

	Start new translation [Administration, Manage languages, Power user]
Perform automatic translation [Administration, Manage languages]
Delete existing translations [Administration, Manage languages]
Start translation into a new language [Administration, Manage languages]

	Uploads

	Define author of translation upload [Administration]
Overwrite existing strings with an upload [Administration, Edit source, Power user, Review strings, Translate]
Upload translation strings [Administration, Edit source, Power user, Review strings, Translate]

	VCS

	Access the internal repository [Access repository, Administration, Manage repository, Power user]
Commit changes to the internal repository [Administration, Manage repository]
Push change from the internal repository [Administration, Manage repository]
Reset changes in the internal repository [Administration, Manage repository]
View upstream repository location [Access repository, Administration, Manage repository, Power user]
Update the internal repository [Administration, Manage repository]

	Global privileges

	Use management interface (global)
Add language definitions (global)
Manage language definitions (global)
Add groups (global)
Manage groups (global)
Add users (global)
Manage users (global)
Manage whiteboard (global)
Manage translation memory (global)

Note

The global privileges are not granted to any default role. These are
powerful and they are quite close to the superuser status - most of them can
affect all projects on your Weblate installation.

List of groups

The following groups are created upon installation (or after executing
setupgroups):

	Guests

	Defines permissions for non authenticated users.

This group contains only anonymous users (see ANONYMOUS_USER_NAME).

You can remove roles from this group to limit permissions for non
authenticated users.

Default roles: Add suggestion, Access repository

	Viewers

	This role ensures visibility of public projects for all users. By default
all users are members of this group.

By default all users are members of this group, using Automatic group assignments.

Default roles: none

	Users

	Default group for all users.

By default all users are members of this group using Automatic group assignments.

Default roles: Power user

	Reviewers

	Group for reviewers (see Translation workflows).

Default roles: Review strings

	Managers

	Group for administrators.

Default roles: Administration

Warning

Never remove the predefined Weblate groups and users, this can lead to
unexpected problems. If you do not want to use these features, just remove
all privileges from them.

Translation projects

Translation organization

Weblate organizes translatable content into a tree-like structure. The bottom level
object is Project configuration, which should hold all translations belonging
together (for example translation of an application in several versions
and/or accompanying documentation). On the level above, Component configuration, which is
actually the component to translate. Here you define the VCS repository to use, and
the mask of files to translate. Above Component configuration there are individual
translations, handled automatically by Weblate as translation
files (which match the mask defined in Component configuration) appear in the VCS repository.

All translation components need to be available as VCS repositories, and are
organized in a project/component structure.

Weblate supports a wide range of translation formats (both bilingual and
monolingual ones) supported by Translate Toolkit, see Supported file formats for more
info.

Note

You can share cloned VCS repositories using Weblate internal URLs. Using
this feature is highly recommended when you have many
components sharing the same VCS. It improves performance and decreases
the required disk space.

Adding translation projects and components

Changed in version 3.2: Since the 3.2 release the interface for adding projects and components is
included in Weblate, and no longer requires you to use
Django admin interface.

Changed in version 3.4: As of 3.4, the process of adding components is multi staged, with
automated discovery of most parameters.

Based on your permissions, you can create new translation projects
and components in Weblate. It is always permitted for superusers, and if your
instance uses billing (e.g. like https://hosted.weblate.org/ see
Billing), you can also create those based on your plans allowance.

You can view your current billing plan on a separate page:

[image: ../_images/user-billing.png]
The project creation can be initiated from there, or using the menu in the navigation
bar, filling in basic info about the translation project to complete addition of it:

[image: ../_images/user-add-project.png]
After creating the project, you are taken directly to the project page:

[image: ../_images/user-add-project-done.png]
Creating a new translation component can be initiated via a single click there.
The process of creating a component is multi-staged and automatically detects most
translation parameters.

Once you have existing translation components, you can also easily add new ones
for additional files or branches using same repository.

First you need to fill in name and repository location:

[image: ../_images/user-add-component-init.png]
On the next page, you are presented with a list of discovered translatable resources:

[image: ../_images/user-add-component-discovery.png]
As a last step, you review the translation component info and fill
in optional details:

[image: ../_images/user-add-component.png]

See also

Django admin interface,
Project configuration,
Component configuration

Project configuration

To add a new component for translation, you need to create a translation project first.
The project is like a shelf, in which real translations are stacked. All
components in the same project share suggestions and their dictionary; the
translations are also automatically propagated through all components in a single
project (unless turned off in the component configuration).

The project has only a few attributes that informs translators of it:

	Project website

	URL where translators can find more info about the project.

	Mailing list

	Mailing list where translators can discuss or comment translations.

	Translation instructions

	URL to more site with more detailed instructions for translators.

	Set Language-Team header

	Whether Weblate should manage the Language-Team header (this is a
GNU Gettext only feature right now).

	Use shared translation memory

	Whether to use shared translation memory, see Shared translation memory for more details.

	Access control

	Configure per project access control, see Per project access control for more details.

	Enable reviews

	Enable review workflow, see Dedicated reviewers.

	Enable hooks

	Whether unauthenticated Notification hooks are to be used for this repository.

	Source language

	Language used for source strings in all components. Change this if you are
translating from something else than English.

Note

Most of the fields can be edited by project owners or managers, in the
Weblate interface.

Adjusting interaction

There are also additional features which you can control, like automatic
pushing of changes (see also Pushing changes) or maintainership of the
Language-Team header.

Component configuration

A component is a grouping of something for translation. You enter a VCS repository location
and file mask for which files you want translated, and Weblate automatically fetches from this VCS,
and finds all matching translatable files.

You can find some examples of typical configurations in the Supported file formats.

Note

It is recommended to keep translation components to a reasonable size - split
the translation by anything that makes sense in your case (individual
apps or addons, book chapters or websites).

Weblate easily handles translations with 10000s of strings, but it is harder
to split work and coordinate among translators with such large translation components.

Should the language definition for a translation be missing, an empty definition is
created and named as “cs_CZ (generated)”. You should adjust the definition and
report this back to the Weblate authors, so that the missing languages can be included in
next release.

The component contains all important parameters for working with the VCS, and
for getting translations out of it:

	Version control system

	VCS to use, see Version control integration for details.

	Source code repository

	VCS repository used to pull changes, see Accessing repositories for more details.

This can either be a real VCS URL or weblate://project/component
indicating that the repository should be shared with another component.
See Weblate internal URLs for more details.

	Repository push URL

	Repository URL used for pushing. This is completely optional and push
support is turned off when this is empty. See Accessing repositories for more
details on how to specify a repository URL.

	Repository browser

	URL of repository browser used to display source files (location of used messages).
When empty, no such links will be generated. You can use Template markup.

For example on GitHub, use something like
https://github.com/WeblateOrg/hello/blob/{{branch}}/{{filename}}#L{{line}}.

	Exported repository URL

	URL where changes made by Weblate are exported. This is important when
Continuous localization is not used, or when there is a need to manually
merge changes. You can use Git exporter to automate this for Git
repositories.

	Repository branch

	Which branch to checkout from the VCS, and where to look for translations.

	File mask

	Mask of files to translate, including path. It should include one “*”
replacing language code (see Language definitions for info on how this is
processed). In case your repository contains more than one translation
file (e.g. more Gettext domains), you need to create a component for
each of them.

For example po/*.po or locale/*/LC_MESSAGES/django.po.

In case your filename contains special characters such as [,], these need
to be escaped as [[] or []].

	Monolingual base language file

	Base file containing string definitions for Monolingual components.

	Edit base file

	Whether to allow editing the base file for Monolingual components.

	Template for new translations

	Base file used to generate new translations, e.g. .pot file with Gettext,
see Adding new translations for more info.

	File format

	Translation file format, see also Supported file formats.

	Source string bug report address

	Email address used for reporting upstream bugs. This address will also receive
notification about any source string comments made in Weblate.

	Locked

	You can lock the translation to prevent updates by users.

	Allow translation propagation

	You can turn off propagation of translations to this component from other
components within same project. This really depends on what you are
translating, sometimes it’s desirable to have make use of a translation more than once.

It’s usually a good idea to turn this off for monolingual translations, unless
you are using the same IDs across the whole project.

	Save translation history

	Whether to store a history of translation changes in the database.

	Enable suggestions

	Whether translation suggestions are accepted for this component.

	Suggestion voting

	Turns on votecasting for suggestions, see Suggestion voting.

	Autoaccept suggestions

	Automatically accept voted suggestions, see Suggestion voting.

	Translation flags

	Customization of quality checks and other Weblate behavior, see Customizing behavior.

	Translation license

	License of the translation, (does not need to be the same as the source code license).

	License URL

	URL where users can find the actual text of a license in full.

	New translation

	How to handle requests for creation of new languages. See Adding new translations.

	Language code style

	Customize language code used to generate the filename for translations
created by Weblate, see Adding new translations for more details.

	Merge style

	You can configure how updates from the upstream repository are handled.
This might not be supported for some VCSs. See Merge or rebase for
more details.

	Commit message

	Message used when committing a translation, see Template markup, default can be
changed by DEFAULT_COMMIT_MESSAGE.

	Committer name

	Name of the committer used for Weblate commits, the author will always be the
real translator. On some VCSs this might be not supported. Default value
can be changed by DEFAULT_COMMITER_NAME.

	Committer e-mail

	Email of committer used for Weblate commits, the author will always be the
real translator. On some VCSs this might be not supported. Default value
can be changed by DEFAULT_COMMITER_EMAIL.

	Push on commit

	Whether committed changes should be automatically pushed to the upstream
repository. When enabled, the push is initiated once Weblate commits
changes to its internal repository (see Lazy commits). To actually
enable pushing Repository push URL has to be configured as
well.

	Age of changes to commit

	Sets how old changes (in hours) are to get before they are committed by
background task or commit_pending management command. All
changes in a component are committed once there is at least one older than
this period. The Default value can be changed by
COMMIT_PENDING_HOURS.

	Language filter

	Regular expression used to filter the translation when scanning for
file mask. This can be used to limit the list of languages managed by Weblate
(e.g. ^(cs|de|es)$ will include only these languages. Please note
that you need to list language codes as they appear in the filename.

Note

Most of the fields can be edited by project owners or managers, in the
Weblate interface.

See also

Does Weblate support other VCS than Git and Mercurial?, Translation component alerts

Template markup

Weblate uses simple markup language in several places where text rendering is
needed. It is based on The Django template language [https://docs.djangoproject.com/en/stable/ref/templates/language/], so it can be quite
powerful.

Currently it is used in:

	Commit message formatting, see Component configuration

	
	Several addons

	
	Component discovery

	Statistics generator

	Executing scripts from addon

There following variables are available in the component templates:

	{{ language_code }}

	Language code

	{{ language_name }}

	Language name

	{{ component_name }}

	Component name

	{{ component_slug }}

	Component slug

	{{ project_name }}

	Project name

	{{ project_slug }}

	Project slug

	{{ url }}

	Translation URL

	{{ filename }}

	Transaltion filename

	{{ stats }}

	Translation stats, this has further attributes, examples below.

	{{ stats.all }}

	Total strings count

	{{ stats.fuzzy }}

	Count of strings needing review

	{{ stats.fuzzy_percent }}

	Percent of strings needing review

	{{ stats.translated }}

	Translated strings count

	{{ stats.translated_percent }}

	Translated strings percent

	{{ stats.allchecks }}

	Number of strings with failing checks

	{{ stats.allchecks_percent }}

	Percent of strings with failing checks

	{{ author }}

	Author of current commit, available only in the commit scope.

	{{ addon_name }}

	Name of currently executed addon, available only in the addon commit message.

The following variables are available in the repository browser or editor templates:

	{{branch}}

	current branch

	{{line}}

	line in file

	{{filename}}

	filename, you can also strip leading parts using the parentdir filter, for example {{filename|parentdir}}

You can combine them with filters:

{{ component|title }}

You can use conditions:

{% if stats.translated_percent > 80 %}Well translated!{% endif %}

There is additional tag available for replacing characters:

{% replace component "-" " " %}

You can combine it with filters:

{% replace component|capfirst "-" " " %}

There are also additional filter to manipulate with filenames:

Directory of a file: {{ filename|dirname }}
File without extension: {{ filename|stripext }}
File in parent dir: {{ filename|parentdir }}
It can be used multiple times: {{ filename|parentdir|parentdir }}

…and other Django template features.

Importing speed

Fetching VCS repository and importing translations to Weblate can be a lengthy
process, depending on size of your translations. Here are some tips:

Optimize configuration

The default configuration is useful for testing and debugging Weblate, while
for a production setup, you should do some adjustments. Many of them have quite
a big impact on performance. Please check Production setup for more details,
especially:

	Configure Celery for executing background tasks (see Background tasks using Celery)

	Enable caching

	Use a powerful database engine

	Disable debug mode

Check resource limits

If you are importing huge translations or repositories, you might be hit by
resource limitations of your server.

	Check the amount of free memory, having translation files cached by the operating system will greatly improve performance.

	Disk operations might be bottleneck if there is a lot of strings to process - the disk is pushed by both Weblate and the database.

	Additional CPU cores might help improve performance of background tasks (see Background tasks using Celery).

Disable unneeded checks

Some quality checks can be quite expensive, and if not needed,
can save you some time during import if omitted. See CHECK_LIST for more
info on how to configure this.

Automatic creation of components

In case your project has dozen of translation files (e.g. for different
Gettext domains, or parts of Android apps), you might want to import them
automatically. This can either be achieved from the command line by using
import_project or import_json, or by installing the
Component discovery addon.

To use the addon, you first need to create a component for one translation
file (choose the one that is the least likely to be renamed or removed in future),
and install the addon on this component.

For the management commands, you need to create a project which will contain all
components and then run import_project or
import_json.

See also

Management commands,
Component discovery

Fulltext search

Fulltext search is based on Whoosh. It is processed in the background if Celery is
set up. This leads to faster site response, and a less fragmented
index with the added cost that it might be slightly outdated.

See also

Fulltext search is too slow, I get “Lock Error” quite often while translating, Rebuilding index has failed with “No space left on device”

Language definitions

To properly present different translations, Weblate needs some
info about languages used. Currently definitions for
about 350 languages are included, and the definition includes
language name, text direction, plural definitions and language code.

Parsing language codes

While parsing translations, Weblate attempts to map language code
(usually the ISO 639-1 one) to any existing language object.
If no exact match can be found, an attempt will be made
to best fit into an existing language (e.g. ignoring default country code
for a given language - choosing cs instead of cs_CZ).
Should also fail, a new language definition will be created using the defaults (left
to right text direction, one plural) and naming of the language :guilabel:xx_XX (generated).
You might want to change this in the admin interface (see Changing language definitions)
and report it to the issue tracker (see Contributing).

Changing language definitions

You can change language definitions in the admin interface (see
Django admin interface). The Weblate languages section
allows changing or adding language definitions. While editing, make sure
all fields are correct (especially plurals and text direction), otherwise
translators be unable to properly edit those translations.

Continuous localization

There is infrastructure in place so that your translation closely follows
development. This way translators can work on translations the entire time,
instead of working through huge amount of new text just prior to release.

This is the process:

	Developers make changes and push them to the VCS repository.

	Optionally the translation files are updated (this depends on the file format, see Why does Weblate still show old translation strings when I’ve updated the template?).

	Weblate pulls changes from the VCS repository, see Updating repositories.

	Once Weblate detects changes in translations, translators are notified based on their subscription settings.

	Translators submit translations using the Weblate web interface, or upload offline changes.

	Once the translators are finished, Weblate commits the changes to the local repository (see Lazy commits) and pushes them back if it has permissions to do so (see Pushing changes).

digraph translations {
 graph [fontname = "sans-serif"];
 node [fontname = "sans-serif"];
 edge [fontname = "sans-serif"];

 "Developers" [shape=box, fillcolor=seagreen, fontcolor=white, style=filled];
 "Translators" [shape=box, fillcolor=seagreen, fontcolor=white, style=filled];

 "Developers" -> "VCS repository" [label=" 1. Push "];

 "VCS repository" -> "VCS repository" [label=" 2. Updating translations ", style=dotted];

 "VCS repository" -> "Weblate" [label=" 3. Pull "];

 "Weblate" -> "Translators" [label=" 4. Notification "];

 "Translators" -> "Weblate" [label=" 5. Translate "];

 "Weblate" -> "VCS repository" [label=" 6. Push "];
}

Updating repositories

You should set up some way of updating backend repositories from their
source.

	Use Notification hooks to integrate with most of common code hosting services

	Manually trigger update either in the repository management or using Weblate’s Web API or Weblate Client

	Enable AUTO_UPDATE to automatically update all components on your Weblate instance

	Exectute updategit (with selection of project or –all to update all)

Whenever Weblate updates the repository, the post update addons will be
triggered, see Addons.

Avoiding merge conflicts

The merge conflicts from Weblate arise when same file was changed both in
Weblate and outside it. There are two appraoches how to deal with that - avoid
edits outside Weblate or integrate Weblate into your updating process, so that
it flushes changes prior to updating the files outside Weblate.

The first approach is easy with monoligual files - you can add new strings
within Weblate and leave whole editing of the files there. For bilingual files,
there is usually some kind of message extraction process to generate
translatable files from the source code. In some cases this can be split into
two parts - one for the extraction generates template (for example gettext POT
is generated using xgettext) and then further process merges it into
actual translations (the gettext PO files are updated using
msgmerge). You can perform the second step within Weblate and it
will make sure that all pending changes are included prior this operation.

The second approach can be achieved by using Weblate’s Web API to force Weblate to
push all pending changes and lock the translation while you are doing changes
on your side.

The script for doing updates can look like this:

Lock Weblate translation
wlc lock
Push changes from Weblate to upstream repository
wlc push
Pull changes from upstream repository to your local copy
git pull
Update translation files, this example is for Django
./manage.py makemessages --keep-pot -a
git commit -m 'Locale updates' -- locale
Push changes to upstream repository
git push
Tell Weblate to pull changes (not needed if Weblate follows your repo
automatically)
wlc pull
Unlock translations
wlc unlock

If you have multiple components sharing same repository, you need to lock them
all separately:

wlc lock foo/bar
wlc lock foo/baz
wlc lock foo/baj

Note

The example uses Weblate Client, which needs configuration (API keys) to be
able to control Weblate remotely. You can also achieve this using any HTTP
client instead of wlc, e.g. curl, see Weblate’s Web API.

Automatically receiving changes from GitHub

Weblate comes with native support for GitHub.

If you are using Hosted Weblate, the recommended approach is to install the
Weblate app [https://github.com/apps/weblate], that way you will get the
correct setup without having to set much up. It can also be used for pushing
changes back.

To receive notifications on every push to a GitHub repository,
add the Weblate Webhook in the repository settings (Webhooks)
as shown on the image below:

[image: ../_images/github-settings.png]
For the payload URL, append /hooks/github/ to your Weblate URL, for example
for the Hosted Weblate service, this is https://hosted.weblate.org/hooks/github/.

You can leave other values at default settings (Weblate can handle both
content types and consumes just the push event).

See also

POST /hooks/github/, Pushing changes from Hosted Weblate

Automatically receiving changes from Bitbucket

Weblate has support for Bitbucket webhooks, add a webhook
which triggers upon repository push, with destination to /hooks/bitbucket/ URL
on your Weblate installation (for example
https://hosted.weblate.org/hooks/bitbucket/).

[image: ../_images/bitbucket-settings.png]

See also

POST /hooks/bitbucket/, Pushing changes from Hosted Weblate

Automatically receiving changes from GitLab

Weblate has support for GitLab hooks, add a project webhook
with destination to /hooks/gitlab/ URL on your Weblate installation
(for example https://hosted.weblate.org/hooks/gitlab/).

See also

POST /hooks/gitlab/, Pushing changes from Hosted Weblate

Automatically receiving changes from Pagure

New in version 3.3.

Weblate has support for Pagure hooks, add a webhook
with destination to /hooks/pagure/ URL on your Weblate installation (for
example https://hosted.weblate.org/hooks/pagure/). This can be done in
Activate Web-hooks under Project options:

[image: ../_images/pagure-webhook.png]

See also

POST /hooks/pagure/, Pushing changes from Hosted Weblate

Automatically receiving changes from Azure Repos

New in version 3.8.

Weblate has support for Azure Repos web hooks, add a webhook for
Code pushed event with destination to /hooks/azure/ URL on your
Weblate installation (for example https://hosted.weblate.org/hooks/azure/).
This can be done in Service hooks under Project
settings.

See also

Web hooks in Azure DevOps manual [https://docs.microsoft.com/azure/devops/service-hooks/services/webhooks],
POST /hooks/azure/, Pushing changes from Hosted Weblate

Automatically receiving changes from Gitea Repos

New in version 3.9.

Weblate has support for Gitea webhooks, add a Gitea Webhook for
Push events event with destination to /hooks/gitea/ URL on your
Weblate installation (for example https://hosted.weblate.org/hooks/gitea/).
This can be done in Webhooks under repository Settings.

See also

Webhooks in Gitea manual [https://docs.gitea.io/en-us/webhooks/],
POST /hooks/gitea/, Pushing changes from Hosted Weblate

Automatically receiving changes from Gitee Repos

New in version 3.9.

Weblate has support for Gitee webhooks, add a WebHook for
Push event with destination to /hooks/gitee/ URL on your
Weblate installation (for example https://hosted.weblate.org/hooks/gitee/).
This can be done in WebHooks under repository Management.

See also

Webhooks in Gitee manual [https://gitee.com/help/categories/40],
POST /hooks/gitee/, Pushing changes from Hosted Weblate

Automatically updating repositories nightly

Weblate automatically fetches remote repositories nightly to improve
performance when merging changes later. You can optionally turn this into doing
nightly merges as well, by enabling AUTO_UPDATE.

Pushing changes

Each translation component can have a push URL set up (see Component configuration),
and in that case Weblate will be able to push change to the remote repository.
Weblate can be also be configured to automatically push changes on every commit
(this is default, see Component configuration). If you do not want changes to be
pushed automatically, you can do that manually under Repository
maintenance or using API via wlc push.

If you are using SSH to push, you will need to have a key without a passphrase
(or use ssh-agent for Django), and the remote server needs to be verified by you
via the admin interface first, otherwise pushing will fail.

The push options differ based on the Version control integration used, more details are found in that chapter.

Note

You can also enable automatic pushing of changes on commits, this can be done in
Component configuration.

See also

See Accessing repositories for setting up SSH keys, and Lazy commits for
info about when Weblate decides to commit changes.

Pushing changes from Hosted Weblate

For Hosted Weblate there is a dedicated push user registered on GitHub, Bitbucket
and GitLab (with username weblate named
Weblate push user). You need to add this user as a collaborator and
give it permission to push to your repository.

The user is added to the repository (in some cases this happens immediately, on
GitHub it typically happens after accepting invitations what happens
automatically every hour), you can configure your component push URL to a ssh
URL of your repository (see Component configuration) and enjoy Weblate automatically
pushing changes to your repository.

In case you do not want direct pushes by Weblate, there is support for GitHub
pull requests or Gerrit reviews, you can activate these by choosing GitHub or
Gerrit as VCS in Component configuration.

Protected branches

If you are using Weblate on protected branch, you can configure it to use pull
requests and perform actual review on the translations (what might be
problematic for languages you do not know). Alternative approach is to to waive
this limitation for the Weblate push user.

For example on GitHub this can be done in the repository configuration:

[image: ../_images/github-protected.png]

Merge or rebase

By default, Weblate merges the upstream repository into its own. This is the safest way
in case you also access the underlying repository by other means. In case you don’t
need this, you can enable rebasing of changes on upstream, which will produce
history with fewer merge commits.

Note

Rebasing can cause you trouble in case of complicated merges, so carefully
consider whether or not you want to enable them.

Interacting with others

Weblate makes it easy to interact with others using its API.

See also

Weblate’s Web API

Lazy commits

The behaviour of Weblate is to group commits from the same author into one
commit if possible. This greatly reduces the number of commits, however you
might need to explicitly tell it to do the commits in case you want to get the
VCS repository in sync, e.g. for merge (this is by default allowed for the Managers
group, see Access control).

The changes in this mode are committed once any of the following conditions are
fulfilled:

	Somebody else changes an already changed string.

	A merge from upstream occurs.

	An explicit commit is requested.

	Change is older than period defined as Age of changes to commit on Component configuration.

Hint

Commits are created for every component. So in case you have many components
you will still see lot of commits. You might utilize
Squash Git commits addon in that case.

If you want to commit changes more frequently and without checking of age, you
can schedule a regular task to perform a commit:

CELERY_BEAT_SCHEDULE = {
 # Unconditionally commit all changes every 2 minutes
 "commit": {
 "task": "weblate.trans.tasks.commit_pending",
 # Ommiting hours will honor per component settings,
 # otherwise components with no changes older than this
 # won't be committed
 "kwargs": {"hours": 0},
 # How frequently to execute the job in seconds
 "schedule": 120,
 }
}

Processing repository with scripts

The way to customize how Weblate interacts with the repository is
Addons. Consult Executing scripts from addon for info on how to execute
external scripts through addons.

Licensing translations

Weblate allows you to specify under which license the translations are
contributed. This is especially important to specify if the translations are
open to the public to raise proper expectations what can be done with the
translations.

There are two things you specify on the Component configuration - license information
and the contributor agreement.

License information

Upon specifying license information (license name and URL), this information is
shown in the translation information, but it is not enforced in any way.

Usually this is best location to place information on licensing where no
explicit consent is required.

Contributor agreement

Once you specify contributor agreement, only users who have agreed to it will
be able to contribute. This is clearly visible when accessing the translation:

[image: ../_images/contributor-agreement.png]
The entered text is formatted into paragraphs and external links are possible.
HTML markup can not be used.

Signed off by

Should your project require Signed-off-by header in the commits, you should
enable contributor agreement with the DCO text and add the header to the commit
message (see Template markup for more details). The full commit message can look like:

Translated using Weblate ({{ language_name }})

Currently translated at {{ stats.translated_percent }}% ({{ stats.translated }} of {{ stats.all }} strings)

Translation: {{ project_name }}/{{ component_name }}
Translate-URL: {{ url }}
Signed-off-by: {{ author }}

User licenses

User can review licenses on projects he is contributing to in the profile:

[image: ../_images/profile-licenses.png]

Translation process

Suggestion voting

New in version 1.6: This feature is available since Weblate 1.6.

By default, everyone can add suggestions, which logged in users can
accept. Requiring more then one person for acceptance can be achieved by suggestion voting.
You can enable this on Component configuration configuration by
Suggestion voting and Autoaccept suggestions. The first
one enables the voting feature, while the latter sets the threshold a suggestion
is automatically is accepted (this includes a vote from
the user making the suggestion).

Note

Once automatic acceptance is set up, normal users lose the privilege to
directly save translations or accept suggestions. This can be overridden
by Can override suggestion state privilege
(see Access control).

You can combine these with Access control into one of the following setups:

	Users suggest and vote for suggestions, a limited group controls what is
accepted - turn on voting, but automatic acceptance off, and
don’t let users save translations.

	Users suggest and vote for suggestions with automatical acceptance
once the defined number of them agree - turn on voting and set the desired
number of votes for automatic acceptance.

	Optional voting for suggestions - you can also turn on voting only, and in
this case it can optionally be used by users when they are unsure about
a translation by making multiple suggestions.

Additional info on source strings

Enhance the translation process with info available in the translation files.
This includes string prioritization, check flags, or providing visual context.
All these features can be set on the
Reviewing source strings:

[image: ../_images/source-review-edit.png]
Access this directly from the translating interface by clicking the
“Edit” icon next to Screenshot context or Flags.

[image: ../_images/source-information.png]

Strings prioritization

New in version 2.0.

You can change string priority, strings with higher priority are offered first
for translation. This can be useful for prioritizing translation of strings
which are seen first by users or are otherwise important. This can be achieved
using priority flag.

See also

Quality checks

Translation flags

New in version 2.4.

Changed in version 3.3: Previously this was called Quality checks flags, but as it no
longer configures only checks, the name was changed to be more generic.

The default set of translation flags is determined by the translation
Component configuration and the translation file. However, you might want to use it
to customize this per source string.

See also

Quality checks

Visual context for strings

New in version 2.9.

You can upload a screenshot showing a given source string in use within your
program. This helps translators understand where it is used, and how
it should be translated.

The uploaded screenshot is shown in the translation context sidebar:

[image: ../_images/screenshot-context.png]
In addition to Reviewing source strings, screenshots have a separate management
interface under Tools menu.
Upload screenshots, assign them to source strings manually or with the use of OCR.

Once a screenshot is uploaded, this interface handles
management and assigning it to source strings:

[image: ../_images/screenshot-ocr.png]

Checks and fixups

Custom automatic fixups

You can also implement your own automatic fixup in addition to the standard ones and
include them in AUTOFIX_LIST.

The automatic fixes are powerful, but can also cause damage; be careful when
writing one.

For example, the following automatic fixup would replace every occurrence of string
foo in translation with bar:

-*- coding: utf-8 -*-
#
Copyright © 2012 - 2019 Michal Čihař <michal@cihar.com>
#
This file is part of Weblate <https://weblate.org/>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
#

from django.utils.translation import ugettext_lazy as _

from weblate.trans.autofixes.base import AutoFix

class ReplaceFooWithBar(AutoFix):
 """Replace foo with bar."""

 name = _("Foobar")

 def fix_single_target(self, target, source, unit):
 if "foo" in target:
 return target.replace("foo", "bar"), True
 return target, False

To install custom checks, you need to provide a fully-qualified path to the Python class
in the AUTOFIX_LIST, see Custom quality checks and auto fixes.

Customizing behavior

You can fine tune Weblate behavior (mostly checks) for each source string (in
source strings review, see Additional info on source strings) or in the Component configuration
(Translation flags). Some file formats also allow to specify flags
directly in the format.

Here is a list of flags currently accepted:

	rst-text

	Treat text as RST document, effects Unchanged translation.

	md-text

	Treat text as Markdown document.

	dos-eol

	Use DOS end of line markers instead of Unix ones (\r\n instead of \n).

	url

	The string should consist of URL only.

	safe-html

	The string should be HTML safe, see Unsafe HTML.

	priority:N

	Priority of the string. Higher priority strings are presented first to translate.
The default priority is 100, the higher priority string has, the earlier is
offered to translate.

	max-length:N

	Limit maximal length for string to N characters, see Maximum Length

	xml-text

	Treat text as XML document, affects XML syntax and XML markup.

	font-family:NAME

	Define font family for rendering checks, see Managing fonts.

	font-weight:WEIGHT

	Define font weight for rendering checks, see Managing fonts.

	font-size:SIZE

	Define font size for rendering checks, see Managing fonts.

	font-spacing:SPACING

	Define font spacing for rendering checks, see Managing fonts.

	placeholders:NAME

	Placeholder strings expected in the translation, see Placeholders.

	regex:REGEX

	Regular expresion to match translation, see Regular expression.

	python-format, c-format, php-format, python-brace-format, javascript-format, c-sharp-format, java-format, java-messageformat, auto-java-messageformat, qt-format, qt-plural-format, ruby-format

	Treats all strings like format strings, affects Formatted strings,
Formatted strings, Formatted strings,
Formatted strings, Formatted strings, Formatted strings,
Formatted strings, Formatted strings,
Formatted strings, Formatted strings,
Formatted strings, Unchanged translation.

	ignore-end-space

	Skip the “Trailing space” quality check.

	ignore-inconsistent

	Skip the “Inconsistent” quality check.

	ignore-translated

	Skip the “Has been translated” quality check.

	ignore-begin-newline

	Skip the “Starting newline” quality check.

	ignore-zero-width-space

	Skip the “Zero-width space” quality check.

	ignore-escaped-newline

	Skip the “Mismatched n” quality check.

	ignore-same

	Skip the “Unchanged translation” quality check.

	ignore-end-question

	Skip the “Trailing question” quality check.

	ignore-end-ellipsis

	Skip the “Trailing ellipsis” quality check.

	ignore-ellipsis

	Skip the “Ellipsis” quality check.

	ignore-python-brace-format

	Skip the “Python brace format” quality check.

	ignore-end-newline

	Skip the “Trailing newline” quality check.

	ignore-c-format

	Skip the “C format” quality check.

	ignore-javascript-format

	Skip the “JavaScript format” quality check.

	ignore-optional-plural

	Skip the “Unpluralized” quality check.

	ignore-end-exclamation

	Skip the “Trailing exclamation” quality check.

	ignore-end-colon

	Skip the “Trailing colon” quality check.

	ignore-xml-invalid

	Skip the “XML syntax” quality check.

	ignore-xml-tags

	Skip the “XML markup” quality check.

	ignore-python-format

	Skip the “Python format” quality check.

	ignore-plurals

	Skip the “Missing plurals” quality check.

	ignore-begin-space

	Skip the “Starting spaces” quality check.

	ignore-bbcode

	Skip the “BBcode markup” quality check.

	ignore-multiple-failures

	Skip the “Multiple failing checks” quality check.

	ignore-php-format

	Skip the “PHP format” quality check.

	ignore-end-stop

	Skip the “Trailing stop” quality check.

	ignore-angularjs-format

	Skip the “AngularJS interpolation string” quality check.

	ignore-c-sharp-format

	Skip the “C# format” quality check.

	ignore-java-format

	Skip the “Java format” quality check.

	ignore-qt-format

	Skip the “Qt format” quality check.

	ignore-qt-plural-format

	Skip the “Qt plural format” quality check.

	ignore-ruby-format

	Skip the “Ruby format” quality check.

	ignore-punctuation-spacing

	Skip the “Punctuation spacing” quality check.

Note

Generally the rule is named ignore-* for any check, using its
identifier, so you can use this even for your custom checks.

These flags are understood both in Component configuration settings, per source string
settings and in translation file itself (eg. in GNU Gettext).

Managing fonts

New in version 3.7.

The Maximum size of translation check needs fonts to properly calculate dimensions
of rendered text. The fonts can be managed in Weblate in the font management
tool which you can find as Fonts under Manage menu of
your translation project.

You can upload TrueType or OpenType fonts, configure font groups and use those
in the the check.

The font groups allow you to define different fonts for different languages,
what is typically needed for non latin languages:

[image: ../_images/font-group-edit.png]
The font groups are identified by name, which can not contain whitespace or
special characters to be easy to use in check definition:

[image: ../_images/font-group-list.png]
After upload the font family and style is automatically recognized:

[image: ../_images/font-edit.png]
You can have number of fonts loaded into Weblate:

[image: ../_images/font-list.png]
To use the fonts for checking the string length, you need to pass appropriate
flags (see Customizing behavior). You will probably need following:

	max-size:500

	Defines maximal width.

	font-family:ubuntu

	Defines font group to use by specifying its identifier.

	font-size:22

	Defines font size.

Writing own checks

Weblate comes with wide range of quality checks (see Quality checks), though
they might not 100% cover all you want to check. The list of performed checks
can be adjusted using CHECK_LIST and you can also add custom checks.
All you need to do is to subclass weblate.checks.Check, set few
attributes and implement either check or check_single methods (first
one if you want to deal with plurals in your code, the latter one does this for
you). You will find below some examples.

To install custom checks, you need to provide a fully-qualified path to the Python class
in the CHECK_LIST, see Custom quality checks and auto fixes.

Checking translation text does not contain “foo”

This is a pretty simple check which just checks whether translation does not
contain string “foo”.

-*- coding: utf-8 -*-
#
Copyright © 2012 - 2019 Michal Čihař <michal@cihar.com>
#
This file is part of Weblate <https://weblate.org/>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
#
"""Simple quality check example."""

from django.utils.translation import ugettext_lazy as _

from weblate.checks.base import TargetCheck

class FooCheck(TargetCheck):

 # Used as identifier for check, should be unique
 # Has to be shorter than 50 characters
 check_id = "foo"

 # Short name used to display failing check
 name = _("Foo check")

 # Description for failing check
 description = _("Your translation is foo")

 # Real check code
 def check_single(self, source, target, unit):
 return "foo" in target

Checking Czech translation text plurals differ

Check using language information to verify that two plural forms in Czech
language are not same.

-*- coding: utf-8 -*-
#
Copyright © 2012 - 2019 Michal Čihař <michal@cihar.com>
#
This file is part of Weblate <https://weblate.org/>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
#
"""Quality check example for Czech plurals."""

from django.utils.translation import ugettext_lazy as _

from weblate.checks.base import TargetCheck

class PluralCzechCheck(TargetCheck):

 # Used as identifier for check, should be unique
 # Has to be shorter than 50 characters
 check_id = "foo"

 # Short name used to display failing check
 name = _("Foo check")

 # Description for failing check
 description = _("Your translation is foo")

 # Real check code
 def check_target_unit(self, sources, targets, unit):
 if self.is_language(unit, ("cs",)):
 return targets[1] == targets[2]
 return False

 def check_single(self, source, target, unit):
 """We don't check target strings here."""
 return False

Machine translation

Weblate has built in support for several machine translation services and it’s
up to the administrator to enable them. The services have different terms of use, so
please check whether you are allowed to use them before enabling them in Weblate.
The individual services are enabled using MT_SERVICES.

The source language can be configured at Project configuration.

Amagama

Special installation of tmserver run by Virtaal authors.

To enable this service, add weblate.machinery.tmserver.AmagamaTranslation to
MT_SERVICES.

See also

Amagama [https://virtaal.readthedocs.io/en/latest/amagama.html],
Amagama Translation Memory [https://amagama.translatehouse.org/]

Apertium

A free/open-source machine translation platform providing translation to
a limited set of languages.

The recommended way to use Apertium is to run your own Apertium APy server.

To enable this service, add weblate.machinery.apertium.ApertiumAPYTranslation to
MT_SERVICES and set MT_APERTIUM_APY.

See also

MT_APERTIUM_APY, Apertium website [https://www.apertium.org/],
Apertium APy documentation [http://wiki.apertium.org/wiki/Apertium-apy]

AWS

New in version 3.1.

Amazon Translate is a neural machine translation service for translating text
to and from English across a breadth of supported languages.

To enable this service, add weblate.machinery.aws.AWSTranslation to
MT_SERVICES, install the boto3 module and set the settings.

See also

MT_AWS_REGION, MT_AWS_ACCESS_KEY_ID, MT_AWS_SECRET_ACCESS_KEY
Amazon Translate Documentation [https://docs.aws.amazon.com/translate/]

Baidu API machine translation

New in version 3.2.

Machine translation service provided by Baidu.

This service uses an API and you need to obtain ID and API key from Baidu.

To enable this service, add weblate.machinery.baidu.BaiduTranslation to
MT_SERVICES and set MT_BAIDU_ID and
MT_BAIDU_SECRET.

See also

MT_BAIDU_ID,
MT_BAIDU_SECRET
Baidu Translate API [https://api.fanyi.baidu.com/api/trans/product/index]

DeepL

New in version 2.20.

DeepL is paid service providing good machine translation for few languages.
According to some benchmark it’s currently best available service.

To enable this service, add weblate.machinery.deepl.DeepLTranslation to
MT_SERVICES and set MT_DEEPL_KEY.

See also

MT_DEEPL_KEY, DeepL website [https://www.deepl.com/],
DeepL API documentation [https://www.deepl.com/api.html]

Glosbe

Free dictionary and translation memory for almost every living language.

API is free to use, but subject to the used data source license. There is a limit
of calls that may be done from one IP in fixed period of time, to prevent
abuse.

To enable this service, add weblate.machinery.glosbe.GlosbeTranslation to
MT_SERVICES.

See also

Glosbe website [https://glosbe.com/]

Google Translate

Machine translation service provided by Google.

This service uses Translation API and you need to obtain an API key and enable
billing on Google API console.

To enable this service, add weblate.machinery.google.GoogleTranslation to
MT_SERVICES and set MT_GOOGLE_KEY.

See also

MT_GOOGLE_KEY,
Google translate documentation [https://cloud.google.com/translate/docs]

Microsoft Cognitive Services Translator

New in version 2.10.

Machine translation service provided by Microsoft in Azure portal as a one of
Cognitive Services.

You need to register at Azure portal and use the key you obtain there.

To enable this service, add weblate.machinery.microsoft.MicrosoftCognitiveTranslation to
MT_SERVICES and set MT_MICROSOFT_COGNITIVE_KEY.

See also

MT_MICROSOFT_COGNITIVE_KEY,
Cognitive Services - Text Translation API [https://azure.microsoft.com/services/cognitive-services/translator-text-api/],
Microsoft Azure Portal [https://portal.azure.com/]

Microsoft Terminology Service

New in version 2.19.

The Microsoft Terminology Service API allows you to programmatically access the
terminology, definitions and user interface (UI) strings available on the
Language Portal through a web service.

To enable this service, add weblate.machinery.microsoftterminology.MicrosoftTerminologyService to
MT_SERVICES.

See also

Microsoft Terminology Service API [https://www.microsoft.com/en-us/language/Microsoft-Terminology-API]

MyMemory

Huge translation memory with machine translation.

Free, anonymous usage is currently limited to 100 requests/day, or to 1000
requests/day when you provide contact e-mail in MT_MYMEMORY_EMAIL.
You can also ask them for more.

To enable this service, add weblate.machinery.mymemory.MyMemoryTranslation to
MT_SERVICES and set MT_MYMEMORY_EMAIL.

See also

MT_MYMEMORY_EMAIL,
MT_MYMEMORY_USER,
MT_MYMEMORY_KEY,
MyMemory website [https://mymemory.translated.net/]

Netease Sight API machine translation

New in version 3.3.

Machine translation service provided by Netease.

This service uses an API and you need to obtain key and secret from Netease.

To enable this service, add weblate.machinery.youdao.NeteaseSightTranslation to
MT_SERVICES and set MT_NETEASE_KEY and
MT_NETEASE_SECRET.

See also

MT_NETEASE_KEY,
MT_NETEASE_SECRET
Netease Sight Translation Platform [https://sight.netease.com/]

tmserver

You can run your own translation memory server which is bundled with
Translate-toolkit and let Weblate talk to it. You can also use it with
amaGama server, which is an enhanced version of tmserver.

First you will want to import some data to the translation memory:

To enable this service, add weblate.machinery.tmserver.TMServerTranslation to
MT_SERVICES.

build_tmdb -d /var/lib/tm/db -s en -t cs locale/cs/LC_MESSAGES/django.po
build_tmdb -d /var/lib/tm/db -s en -t de locale/de/LC_MESSAGES/django.po
build_tmdb -d /var/lib/tm/db -s en -t fr locale/fr/LC_MESSAGES/django.po

Now you can start tmserver to listen to your requests:

tmserver -d /var/lib/tm/db

And configure Weblate to talk to it:

MT_TMSERVER = 'http://localhost:8888/tmserver/'

See also

MT_TMSERVER,
tmserver [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/tmserver.html]
Amagama [https://virtaal.readthedocs.io/en/latest/amagama.html],
Amagama Translation Memory [https://amagama.translatehouse.org/]

Yandex Translate

Machine translation service provided by Yandex.

This service uses Translation API and you need to obtain API key from Yandex.

To enable this service, add weblate.machinery.yandex.YandexTranslation to
MT_SERVICES and set MT_YANDEX_KEY.

See also

MT_YANDEX_KEY,
Yandex Translate API [https://tech.yandex.com/translate/],
Powered by Yandex.Translate [https://translate.yandex.com/]

Youdao Zhiyun API machine translation

New in version 3.2.

Machine translation service provided by Youdao.

This service uses an API and you need to obtain ID and API key from Youdao.

To enable this service, add weblate.machinery.youdao.YoudaoTranslation to
MT_SERVICES and set MT_YOUDAO_ID and
MT_YOUDAO_SECRET.

See also

MT_YOUDAO_ID,
MT_YOUDAO_SECRET
Youdao Zhiyun Natural Language Translation Service [https://ai.youdao.com/product-fanyi.s]

Weblate

Weblate can be source of machine translation as well. It is based on the fulltext
engine Whoosh and provides both exact and inexact matches.

To enable these services, add
weblate.machinery.weblatetm.WeblateTranslation to
MT_SERVICES.

Weblate Translation Memory

New in version 2.20.

The Translation Memory can be used as source for machine translation
suggestions as well.

To enable these services, add weblate.memory.machine.WeblateMemory to
the MT_SERVICES. This service is enabled by
default.

SAP Translation Hub

Machine translation service provided by SAP.

You need to have a SAP account (and enabled the SAP Translation Hub in the SAP Cloud
Platform) to use this service.

To enable this service, add
weblate.machinery.saptranslationhub.SAPTranslationHub to
MT_SERVICES and set appropriate access to either
sandbox or productive API.

Note

To access the Sandbox API, you need to set MT_SAP_BASE_URL
and MT_SAP_SANDBOX_APIKEY.

To access the productive API, you need to set MT_SAP_BASE_URL,
MT_SAP_USERNAME and MT_SAP_PASSWORD.

See also

MT_SAP_BASE_URL,
MT_SAP_SANDBOX_APIKEY,
MT_SAP_USERNAME,
MT_SAP_PASSWORD,
MT_SAP_USE_MT
SAP Translation Hub API [https://api.sap.com/shell/discover/contentpackage/SAPTranslationHub/api/translationhub]

Custom machine translation

You can also implement your own machine translation services using a few lines of
Python code. This example implements translation to a fixed list of
languages using dictionary Python module:

-*- coding: utf-8 -*-
#
Copyright © 2012 - 2019 Michal Čihař <michal@cihar.com>
#
This file is part of Weblate <https://weblate.org/>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
#
"""Machine translation example."""

import dictionary
from weblate.machinery.base import MachineTranslation

class SampleTranslation(MachineTranslation):
 """Sample machine translation interface."""

 name = "Sample"

 def download_languages(self):
 """Return list of languages your machine translation supports."""
 return {"cs"}

 def download_translations(self, source, language, text, unit, user):
 """Return tuple with translations."""
 return [
 {'text': t, 'quality': 100, 'service': self.name, 'source': text}
 for t in dictionary.translate(text)
]

You can list own class in MT_SERVICES and Weblate
will start using that.

Addons

New in version 2.19.

Addons provide ways to customize translation workflow. You can install addons
to your translation component and they will work behind the scenes. The addon
management can be found under Manage menu of a translation
component.

[image: ../_images/addons.png]

Built in addons

Automatic translation

New in version 3.9.

This addon automatically translates strings using machine translation or other
components.

See also

Automatic translation

Cleanup translation files

Update all translation files to match the monolingual base file. For most file
formats, this means removing stale translation keys no longer present in the
base file.

Language consistency

Ensure that all components within one project have translation to same
languages. It will create empty translations for languages which are not
present.

Unlike most others, this addon operates on whole project.

Hint

If you want to translate the strings as well, please look into
Automatic translation.

Component discovery

This addon automatically adds or removes components to the project based on
file changes in the version control system.

It is similar to the import_project management command, but the
major difference is that it is triggered on every VCS update. This way you can
easily track multiple translation components within one VCS.

To use component discovery, you first need to create one component which will
act as master and others will use Weblate internal URLs to it as a VCS
configuration. You should choose the one which is less likely to disappear in
the future here.

Once you have one component from the target VCS, you can configure the
discovery addon to find all translation components in the VCS. The matching is
done using regular expression so it can be quite powerful, but it can be complex
to configure. You can use examples in the addon help for some common use cases.

Once you hit save, you will be presented with a preview of matched components,
so you can check whether the configuration actually matches your needs:

[image: ../_images/addon-discovery.png]

See also

Template markup

Flag unchanged translations as “Needs editing”

New in version 3.1.

Whenever a new translatable string is imported from the VCS and it matches
source strings, it is flagged as needing editing in Weblate. This is especially
useful for file formats that include all strings even if they are not
translated.

Flag new source strings as “Needs editing”

Whenever a new source string is imported from the VCS, it is flagged as needing
editing in Weblate. This way you can easily filter and edit source strings
written by the developers.

Flag new translations as “Needs editing”

Whenever a new translatable string is imported from the VCS, it is flagged as
needing editing in Weblate. This way you can easily filter and edit
translations created by the developers.

Statistics generator

This addon generates a file containing detailed information about the
translation. You can use Django template in both filename and content, see
Template markup for detailed markup description.

For example generating summary file for each translations:

	Name of generated file

	locale/{{ language_code }}.json

	Content

	{
 "language": "{{ language_code }}",
 "strings": "{{ stats.all }}",
 "translated": "{{ stats.translated }}",
 "last_changed": "{{ stats.last_changed }}",
 "last_author": "{{ stats.last_author }}",
}

See also

Template markup

Contributors in comment

Update comment in the PO file header to include contributor name and years of
contributions.

Update ALL_LINGUAS variable in the “configure” file

Updates the ALL_LINGUAS variable in configure, configure.in or
configure.ac files, when a new translation is added.

Customize gettext output

Allows customization of gettext output behavior, for example line wrapping.

It offers following options:

	Wrap lines at 77 characters and at newlines

	Only wrap lines at newlines

	No line wrapping

Note

By default gettext wraps lines at 77 characters and newlines. With
--no-wrap parameter, it wraps only at newlines.

Update LINGUAS file

Updates the LINGUAS file when a new translation is added.

Generate MO files

Automatically generates MO file for every changed PO file.

Update PO files to match POT (msgmerge)

Update all PO files to match the POT file using msgmerge. This is triggered
whenever new changes are pulled from the upstream repository.

Squash Git commits

Squash Git commits prior to pushing changes. You can choose one of following modes:

	All commits into one

	Per language

	Per file

	Per author

Original commit messages are kept, but authorship is lost unless “Per author” is selected or the commit message is customized to include it.

Customize JSON output

Allows to customize JSON output behavior, for example indentation or sorting.

Formats the Java properties file

This addon sorts the Java properties file.

Stale comment removal

New in version 3.7.

Set timeframe for removal of comments. This can be useful to remove old
comments which might have become outdated. Use with care as comment being old
does not mean it has lost it’s importation.

Stale suggestion removal

New in version 3.7.

Set timeframe for removal of suggestions. This can be very useful in connection
with suggestion voting (see Peer review) to remove suggestions which
don’t receive enough positive votes until certain deadline.

Update RESX files

New in version 3.9.

Update all translation files to match the monolingual upstream base file.
Unused strings are removed, and new ones are added as copies of the source
string.

Hint

Use Cleanup translation files if you only want to remove stale
translation keys.

Customizing list of addons

List of addons is configured by WEBLATE_ADDONS, to add another addon
simply include class absolute name in this setting.

Writing addon

You can write own addons as well, all you need to do is subclass BaseAddon,
define addon metadata and implement callback which will do the processing.

You can look at example addon for more information:

-*- coding: utf-8 -*-
#
Copyright © 2012 - 2019 Michal Čihař <michal@cihar.com>
#
This file is part of Weblate <https://weblate.org/>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
#

from __future__ import unicode_literals

from django.utils.translation import ugettext_lazy as _

from weblate.addons.base import BaseAddon
from weblate.addons.events import EVENT_PRE_COMMIT

class ExampleAddon(BaseAddon):
 # Filter for compatible components, every key is
 # matched against property of component
 compat = {
 'file_format': frozenset((
 'po', 'po-mono',
)),
 }
 # List of events addon should receive
 events = (EVENT_PRE_COMMIT,)
 # Addon unique identifier
 name = 'weblate.example.example'
 # Verbose name shown in the user interface
 verbose = _('Example addon')
 # Detailed addon description
 description = _('This addon does nothing it is just an example.')

 # Callback to implement custom behavior
 def pre_commit(self, translation, author):
 return

Executing scripts from addon

You can also use addons to execute external scripts. This used to be
integrated in Weblate, but now you have to write little code to wrap your
script with an addon.

-*- coding: utf-8 -*-
#
Copyright © 2012 - 2019 Michal Čihař <michal@cihar.com>
#
This file is part of Weblate <https://weblate.org/>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
#
"""
Example pre commit script
"""

from __future__ import unicode_literals

from django.utils.translation import ugettext_lazy as _

from weblate.addons.events import EVENT_PRE_COMMIT
from weblate.addons.scripts import BaseScriptAddon

class ExamplePreAddon(BaseScriptAddon):
 # Event used to trigger the script
 events = (EVENT_PRE_COMMIT,)
 # Name of the addon, has to be unique
 name = 'weblate.example.pre'
 # Verbose name and long descrption
 verbose = _('Execute script before commit')
 description = _('This addon executes a script.')

 # Script to execute
 script = '/bin/true'
 # File to add in commit (for pre commit event)
 # does not have to be set
 add_file = 'po/{{ language_code }}.po'

For installing instructions see Custom addons.

The script is executed with the current directory set to the root of the VCS repository
for given component.

Additionally, the following environment variables are available:

	
WL_VCS

	Version control system used.

	
WL_REPO

	Upstream repository URL.

	
WL_PATH

	Absolute path to VCS repository.

	
WL_BRANCH

	
New in version 2.11.

Repository branch configured in the current component.

	
WL_FILEMASK

	File mask for current component.

	
WL_TEMPLATE

	File name of template for monolingual translations (can be empty).

	
WL_NEW_BASE

	
New in version 2.14.

File name of the file which is used for creating new translations (can be
empty).

	
WL_FILE_FORMAT

	File format used in current component.

	
WL_LANGUAGE

	Language of currently processed translation (not available for component
level hooks).

	
WL_PREVIOUS_HEAD

	Previous HEAD on update (available only available when running post update hook).

	
WL_COMPONENT_SLUG

	
New in version 3.9.

Component slug used to contruct URL.

	
WL_PROJECT_SLUG

	
New in version 3.9.

Project slug used to contruct URL.

	
WL_COMPONENT_NAME

	
New in version 3.9.

Component name.

	
WL_PROJECT_NAME

	
New in version 3.9.

Project name.

	
WL_COMPONENT_URL

	
New in version 3.9.

Component URL

	
WL_ENGAGE_URL

	
New in version 3.9.

Project engage URL

See also

Component configuration

Post update repository processing

Post update repository processing can be used to update translation files on
the source change. To achieve this, please remember that Weblate only sees
files which are committed to the VCS, so you need to commit changes as a part
of the script.

For example with gulp you can do it using following code:

#! /bin/sh
gulp --gulpfile gulp-i18n-extract.js
git commit -m 'Update source strings' src/languages/en.lang.json

Pre commit processing of translations

In many cases you might want to automatically do some changes to the translation
before it is committed to the repository. The pre commit script is exactly the
place to achieve this.

It is passed a single parameter consisting of filename of current translation.

Translation Memory

New in version 2.20.

Weblate comes with a built-in translation memory.

The translation memory consists of following content:

	Manually imported translation memory (see User interface).

	Automatically stored translations performed in Weblate (depending on Translation memory scopes).

The translation memory can be used to get matches:

	In the Machine translation view while translating.

	Automatically translate strings using Automatic translation.

For installation tips, see Weblate Translation Memory, however this
service is enabled by default.

Translation memory scopes

New in version 3.2: The different translation memory scopes are available since Weblate 3.2,
prior to this release translation memory could be only loaded from file
corresponding to the current imported translation memory scope.

The translation memory scopes are there to allow both privacy and sharing of
translations, depending on the actual desired behavior.

Imported translation memory

You can import arbitrary translation memory data using import_memory
command. The memory content will be available for all users and projects.

Per user translation memory

All user translations are automatically stored in personal translation memory.
This memory is available only for this user.

Per project translation memory

All translations within a project are automatically stored in a project
translation memory. This memory is available only for this project.

Shared translation memory

All translation within projects which have enabled shared translation memory
are stored in shared translation memory. This shared memory is available for
all projects then.

Please consider carefully when enabling this feature on shared Weblate
installations as this might have severe implications:

	The translations can be used by anybody else.

	This might lead to disclosing secret information.

Managing translation memory

User interface

New in version 3.2.

There is basic user interface to manage per user and per project translation
memories. It can be used to download, wipe or import it.

The downloads in JSON are useful for Weblate, TMX is provided for
interoperability with other tools.

[image: ../_images/memory.png]

Management interface

There are several management commands to manipulate with the translation memory
content, these operate on memory as whole not filtered by scopes (unless
requested by parameters):

	dump_memory

	Exporting the memory into JSON

	import_memory

	Importing TMX or JSON files into the memory

	list_memory

	Listing memory content

	delete_memory

	Deleting content from the memory

Configuration

All settings are stored in settings.py (as usual for Django).

Note

After changing any of these settings, you need to restart Weblate. In case
it is run as mod_wsgi, you need to restart Apache to reload the
configuration.

See also

Please also check Django’s documentation [https://docs.djangoproject.com/en/stable/ref/settings/] for
parameters which configure Django itself.

AKISMET_API_KEY

Weblate can use Akismet to check incoming anonymous suggestions for spam.
Visit akismet.com [https://akismet.com/] to purchase an API key
and associate it with a site.

ANONYMOUS_USER_NAME

User name of user for defining privileges of not logged in user.

See also

Access control

AUDITLOG_EXPIRY

New in version 3.6.

How long (in days) Weblate should keep audit log containing information about account
activity.

Defaults to 180 days.

AUTH_LOCK_ATTEMPTS

New in version 2.14.

Maximum number of failed authentication attempts before rate limiting is applied.

This is currently applied in the following locations:

	On login, the account password is reset. User will not be able to log in
after that using password until he asks for password reset.

	On password reset, the reset mails are no longer sent. This avoids spamming
user with too many password reset attempts.

Defaults to 10.

See also

Rate limiting,

AUTO_UPDATE

New in version 3.2.

Automatically update all repositories on daily basis. This can be useful if you
do not use Notification hooks to update Weblate repositories automatically.

Note

This requires Background tasks using Celery working and you will have to restart celery for
this setting to take effect.

AVATAR_URL_PREFIX

Prefix for constructing avatar URLs. The URL will be constructed like:
${AVATAR_URL_PREFIX}/avatar/${MAIL_HASH}?${PARAMS}. Following services are
known to work:

	Gravatar (default), see https://gravatar.com/

	AVATAR_URL_PREFIX = 'https://www.gravatar.com/'

	Libravatar, see https://www.libravatar.org/

	AVATAR_URL_PREFIX = 'https://seccdn.libravatar.org/'

See also

Avatar caching,
ENABLE_AVATARS,
Avatars

RATELIMIT_ATTEMPTS

New in version 3.2.

Maximum number of authentication attempts before rate limiting applies.

Defaults to 5.

See also

Rate limiting,
RATELIMIT_WINDOW,
RATELIMIT_LOCKOUT

RATELIMIT_WINDOW

New in version 3.2.

Length of authentication window for rate limiting in seconds.

Defaults to 300 (5 minutes).

See also

Rate limiting,
RATELIMIT_ATTEMPTS,
RATELIMIT_LOCKOUT

RATELIMIT_LOCKOUT

New in version 3.2.

Length of authentication lockout window after rate limit is applied.

Defaults to 600 (10 minutes).

See also

Rate limiting,
RATELIMIT_ATTEMPTS,
RATELIMIT_WINDOW

AUTH_TOKEN_VALID

New in version 2.14.

Validity of token in activation and password reset mails in seconds.

Defaults to 3600 (1 hour).

AUTH_PASSWORD_DAYS

New in version 2.15.

Define (in days) how long in past Weblate should reject reusing same password.

Note

Password changes done prior to Weblate 2.15 will not be accounted for this
policy, it is valid only

Defaults to 180 days.

AUTOFIX_LIST

List of automatic fixups to apply when saving the message.

You need to provide a fully-qualified path to the Python class implementing the
autofixer interface.

Available fixes:

	weblate.trans.autofixes.whitespace.SameBookendingWhitespace

	Fixes up whitespace in beginning and end of the string to match source.

	weblate.trans.autofixes.chars.ReplaceTrailingDotsWithEllipsis

	Replaces trailing dots with ellipsis if source string has it.

	weblate.trans.autofixes.chars.RemoveZeroSpace

	Removes zero width space char if source does not contain it.

	weblate.trans.autofixes.chars.RemoveControlChars

	Removes control characters if source does not contain it.

	weblate.trans.autofixes.html.BleachHTML

	Removes unsafe HTML markup from string with flag safe-html (see Unsafe HTML).

For example you can enable only few of them:

AUTOFIX_LIST = (
 'weblate.trans.autofixes.whitespace.SameBookendingWhitespace',
 'weblate.trans.autofixes.chars.ReplaceTrailingDotsWithEllipsis',
)

See also

Automatic fixups, Custom automatic fixups

BASE_DIR

Base directory where Weblate sources are located. This is used to derive
several other paths by default:

	DATA_DIR

Default value: Top level directory of Weblate sources.

CHECK_LIST

List of quality checks to perform on translation.

You need to provide a fully-qualified path to the Python class implementing the check
interface.

Some of the checks are not useful for all projects, so you are welcome to
adjust the list list of checks to be performed on your installation.

By default all built in quality checks (see Quality checks) are enabled, you can
use this setting to change this. Also the Sample configuration comes
with this setting commented out to use default value. This enables you to get
new checks automatically enabled on upgrade.

You can disable all checks:

CHECK_LIST = ()

You can enable only few of them:

CHECK_LIST = (
 'weblate.checks.chars.BeginNewlineCheck',
 'weblate.checks.chars.EndNewlineCheck',
 'weblate.checks.chars.MaxLengthCheck',
)

Note

Once you change this setting the existing checks will still be stored in
the database, only newly changed translations will be affected by the
change. To apply the change to the stored translations, you need to run
updatechecks.

See also

Quality checks, Customizing behavior

COMMENT_CLEANUP_DAYS

New in version 3.6.

Automatically delete comments after given number of days. Defaults to
None what means no deletion at all.

COMMIT_PENDING_HOURS

New in version 2.10.

Default interval for committing pending changes using commit_pending.

See also

Running maintenance tasks,
commit_pending

DATA_DIR

Directory where Weblate stores all data. This consists of VCS repositories,
fulltext index and various configuration files for external tools.

The following subdirectories usually exist:

	home

	Home directory used for invoking scripts.

	ssh

	SSH keys and configuration.

	static

	Default location for Django static files, specified by STATIC_ROOT.

	media

	Default location for Django media files, specified by MEDIA_ROOT.

	memory

	Translation memory data using Whoosh engine (see Translation Memory).

	vcs

	Version control repositories.

	whoosh

	Fulltext search index using Whoosh engine.

	backups

	Dump of data in daily backups, see Dumped data for backups.

Note

This directory has to be writable by Weblate. If you are running Weblate as
uwsgi this means that it should be writable by the www-data user.

The easiest way to achieve is to make the user own the directory:

sudo chown www-data:www-data -R $DATA_DIR

Defaults to $BASE_DIR/data.

See also

BASE_DIR,
Backing up and moving Weblate

DEFAULT_ACCESS_CONTROL

New in version 3.3.

Choose default access control when creating new project, possible values are currently:

	0

	Public

	1

	Protected

	100

	Private

	200

	Custom

Use Custom if you are going to manage ACL manually and do not want
to rely on Weblate internal management.

See also

Per project access control,
Access control

DEFAULT_ADD_MESSAGE, DEFAULT_ADDON_MESSAGE, DEFAULT_COMMIT_MESSAGE, DEFAULT_DELETE_MESSAGE, DEFAULT_MERGE_MESSAGE

Default commit messages for different operations, see Component configuration for detailed description.

See also

Template markup, Component configuration

DEFAULT_COMMITER_EMAIL

New in version 2.4.

Default committer e-mail when creating translation component (see
Component configuration), defaults to noreply@weblate.org.

See also

DEFAULT_COMMITER_NAME, Component configuration

DEFAULT_COMMITER_NAME

New in version 2.4.

Default committer name when creating translation component (see
Component configuration), defaults to Weblate.

See also

DEFAULT_COMMITER_EMAIL, Component configuration

DEFAULT_MERGE_STYLE

New in version 3.4.

Default merge style for new components (see Component configuration), choose one of:

	rebase - default

	merge

DEFAULT_TRANSLATION_PROPAGATION

New in version 2.5.

Default setting for translation propagation (see Component configuration),
defaults to True.

See also

Component configuration

DEFAULT_PULL_MESSAGE

Default pull request title,
defaults to 'Update from Weblate'.

ENABLE_AVATARS

Whether to enable Gravatar based avatars for users. By default this is enabled.

The avatars are fetched and cached on the server, so there is no risk in
leaking private information or slowing down the user experiences with enabling
this.

See also

Avatar caching,
AVATAR_URL_PREFIX,
Avatars

ENABLE_HOOKS

Whether to enable anonymous remote hooks.

See also

Notification hooks

ENABLE_HTTPS

Whether to send links to Weblate as https or http. This setting
affects sent mails and generated absolute URLs.

See also

Set correct sitename

ENABLE_SHARING

Whether to show links to share translation progress on social networks.

GITHUB_USERNAME

GitHub username that will be used to send pull requests for translation
updates.

See also

Pushing changes to GitHub as pull request,
Setting up hub

GITLAB_USERNAME

GitLab username that will be used to send merge requests for translation
updates.

See also

Pushing changes to GitLab as merge request,
Setting up lab

GOOGLE_ANALYTICS_ID

Google Analytics ID to enable monitoring of Weblate using Google Analytics.

HIDE_REPO_CREDENTIALS

Hide repository credentials in the web interface. In case you have repository
URL with user and password, Weblate will hide it when showing it to the users.

For example instead of https://user:password@git.example.com/repo.git it
will show just https://git.example.com/repo.git. It tries to cleanup VCS
error messages as well in similar manner.

This is enabled by default.

IP_BEHIND_REVERSE_PROXY

New in version 2.14.

Indicates whether Weblate is running behind a reverse proxy.

If set to True, Weblate gets IP address from header defined by
IP_BEHIND_REVERSE_PROXY. Ensure that you are actually using reverse
proxy and that it sets this header, otherwise users will be able to fake the IP
address.

Defaults to False.

See also

Rate limiting,
IP address for rate limiting

IP_PROXY_HEADER

New in version 2.14.

Indicates from which header Weblate should obtain the IP address when
IP_BEHIND_REVERSE_PROXY is enabled.

Defaults to HTTP_X_FORWARDED_FOR.

See also

Rate limiting,
IP address for rate limiting

IP_PROXY_OFFSET

New in version 2.14.

Indicates which part of IP_BEHIND_REVERSE_PROXY is used as client IP
address.

Depending on your setup, this header might consist of several IP addresses,
(for example X-Forwarded-For: a, b, client-ip) and you can configure here
which address from the header is client IP address.

Warning

Setting this affects security of your installation, you should only
configure to use trusted proxies for determining IP address.

Defaults to 0.

See also

Rate limiting,
IP address for rate limiting

LEGAL_URL

New in version 3.5.

URL where your Weblate instance shows it’s legal documents. This is useful if
you host your legal documents outside Weblate for embedding inside Weblate
please see Legal.

LIMIT_TRANSLATION_LENGTH_BY_SOURCE_LENGTH

By default the length of a given translation is limited to the length of the
source string * 10 characters. Set this option to False to allow longer
translations (up to 10.000 characters) irrespective of the source length.

Defaults to True.

LOGIN_REQUIRED_URLS

List of URLs which require login (besides standard rules built into Weblate).
This allows you to password protect whole installation using:

LOGIN_REQUIRED_URLS = (
 r'/(.*)$',
)

LOGIN_REQUIRED_URLS_EXCEPTIONS

List of exceptions for LOGIN_REQUIRED_URLS. If you don’t
specify this list, the default value will be used, which allows users to access
the login page.

Some of exceptions you might want to include:

LOGIN_REQUIRED_URLS_EXCEPTIONS = (
 r'/accounts/(.*)$', # Required for login
 r'/static/(.*)$', # Required for development mode
 r'/widgets/(.*)$', # Allowing public access to widgets
 r'/data/(.*)$', # Allowing public access to data exports
 r'/hooks/(.*)$', # Allowing public access to notification hooks
 r'/api/(.*)$', # Allowing access to API
 r'/js/i18n/$', # JavaScript localization
)

MT_SERVICES

Changed in version 3.0: The setting was renamed from MACHINE_TRANSLATION_SERVICES to
MT_SERVICES to be consistent with other machine translation settings.

List of enabled machine translation services to use.

Note

Many of services need additional configuration like API keys, please check
their documentation for more details.

MT_SERVICES = (
 'weblate.machinery.apertium.ApertiumAPYTranslation',
 'weblate.machinery.deepl.DeepLTranslation',
 'weblate.machinery.glosbe.GlosbeTranslation',
 'weblate.machinery.google.GoogleTranslation',
 'weblate.machinery.microsoft.MicrosoftCognitiveTranslation',
 'weblate.machinery.microsoftterminology.MicrosoftTerminologyService',
 'weblate.machinery.mymemory.MyMemoryTranslation',
 'weblate.machinery.tmserver.AmagamaTranslation',
 'weblate.machinery.tmserver.TMServerTranslation',
 'weblate.machinery.yandex.YandexTranslation',
 'weblate.machinery.weblatetm.WeblateTranslation',
 'weblate.machinery.saptranslationhub.SAPTranslationHub',
 'weblate.memory.machine.WeblateMemory',
)

See also

Machine translation, Machine translation

MT_APERTIUM_APY

URL of the Apertium APy server, see http://wiki.apertium.org/wiki/Apertium-apy

See also

Apertium, Machine translation, Machine translation

MT_AWS_ACCESS_KEY_ID

Access key ID for Amazon Translate.

See also

AWS, Machine translation, Machine translation

MT_AWS_SECRET_ACCESS_KEY

API secret key for Amazon Translate.

See also

AWS, Machine translation, Machine translation

MT_AWS_REGION

Region name to use for Amazon Translate.

See also

AWS, Machine translation, Machine translation

MT_BAIDU_ID

Client ID for Baidu Zhiyun API, you can register at https://api.fanyi.baidu.com/api/trans/product/index

See also

Baidu API machine translation, Machine translation, Machine translation

MT_BAIDU_SECRET

Client secret for Baidu Zhiyun API, you can register at https://api.fanyi.baidu.com/api/trans/product/index

See also

Baidu API machine translation, Machine translation, Machine translation

MT_DEEPL_KEY

API key for DeepL API, you can register at https://www.deepl.com/pro.html.

See also

DeepL, Machine translation, Machine translation

MT_GOOGLE_KEY

API key for Google Translate API, you can register at https://cloud.google.com/translate/docs

See also

Google Translate, Machine translation, Machine translation

MT_MICROSOFT_COGNITIVE_KEY

Client key for Microsoft Cognitive Services Translator API.

See also

Microsoft Cognitive Services Translator, Machine translation, Machine translation,
Cognitive Services - Text Translation API [https://azure.microsoft.com/services/cognitive-services/translator-text-api/],
Microsoft Azure Portal [https://portal.azure.com/]

MT_MYMEMORY_EMAIL

MyMemory identification e-mail, you can get 1000 requests per day with this.

See also

MyMemory, Machine translation, Machine translation,
MyMemory: API technical specifications [https://mymemory.translated.net/doc/spec.php]

MT_MYMEMORY_KEY

MyMemory access key for private translation memory, use together with MT_MYMEMORY_USER.

See also

MyMemory, Machine translation, Machine translation,
MyMemory: API key generator [https://mymemory.translated.net/doc/keygen.php]

MT_MYMEMORY_USER

MyMemory user id for private translation memory, use together with MT_MYMEMORY_KEY.

See also

MyMemory, Machine translation, Machine translation,
MyMemory: API key generator [https://mymemory.translated.net/doc/keygen.php]

MT_NETEASE_KEY

App key for Netease Sight API, you can register at https://sight.netease.com/

See also

Netease Sight API machine translation, Machine translation, Machine translation

MT_NETEASE_SECRET

App secret for Netease Sight API, you can register at https://sight.netease.com/

See also

Netease Sight API machine translation, Machine translation, Machine translation

MT_TMSERVER

URL where tmserver is running.

See also

tmserver, Machine translation, Machine translation,
tmserver [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/tmserver.html]

MT_YANDEX_KEY

API key for Yandex Translate API, you can register at https://tech.yandex.com/translate/

See also

Yandex Translate, Machine translation, Machine translation

MT_YOUDAO_ID

Client ID for Youdao Zhiyun API, you can register at https://ai.youdao.com/product-fanyi.s

See also

Youdao Zhiyun API machine translation, Machine translation, Machine translation

MT_YOUDAO_SECRET

Client secret for Youdao Zhiyun API, you can register at https://ai.youdao.com/product-fanyi.s

See also

Youdao Zhiyun API machine translation, Machine translation, Machine translation

MT_SAP_BASE_URL

API URL to the SAP Translation Hub service.

See also

SAP Translation Hub, Machine translation, Machine translation

MT_SAP_SANDBOX_APIKEY

API key for sandbox API usage

See also

SAP Translation Hub, Machine translation, Machine translation

MT_SAP_USERNAME

Your SAP username

See also

SAP Translation Hub, Machine translation, Machine translation

MT_SAP_PASSWORD

Your SAP password

See also

SAP Translation Hub, Machine translation, Machine translation

MT_SAP_USE_MT

Should the machine translation service also be used? (in addition to the term database).
Possible values: True / False

See also

SAP Translation Hub, Machine translation, Machine translation

NEARBY_MESSAGES

How many messages around current one to show during translating.

PIWIK_SITE_ID

ID of a site in Matomo you want to track.

See also

PIWIK_URL

PIWIK_URL

URL of a Matomo installation you want to use to track Weblate users. For more
information about Matomo see <https://matomo.org/>.

See also

PIWIK_SITE_ID

REGISTRATION_CAPTCHA

A boolean (either True or False) indicating whether registration of new
accounts is protected by captcha. This setting is optional, and a default of
True will be assumed if it is not supplied.

If enabled the captcha is added to all pages where users enter e-mail address:

	New account registration.

	Password recovery.

	Adding e-mail to an account.

	Contact form for users who are not logged in.

REGISTRATION_EMAIL_MATCH

New in version 2.17.

Allows you to filter e-mail addresses which can register.

Defaults to .* which allows any address to register.

You can use it to restrict registration to a single e-mail domain:

REGISTRATION_EMAIL_MATCH = r'^.*@weblate\.org$'

REGISTRATION_OPEN

A boolean (either True or False) indicating whether registration of new
accounts is currently permitted. This setting is optional, and a default of
True will be assumed if it is not supplied.

SENTRY_DSN

New in version 3.9.

Sentry DSN to use for Collecting error reports.

See also

Django integration for Sentry [https://docs.sentry.io/platforms/python/django/]

SIMPLIFY_LANGUAGES

Use simple language codes for default language/country combinations. For
example fr_FR translation will use fr language code. This is usually
desired behavior as it simplifies listing of the languages for these default
combinations.

Disable this if you are having different translations for both variants.

SITE_TITLE

Site title to be used in website and e-mails as well.

SPECIAL_CHARS

Additional characters to show in the visual keyboard, see Visual keyboard.

The default value is:

SPECIAL_CHARS = ('\t', '\n', '…')

SINGLE_PROJECT

New in version 3.8.

Redirect user directly to single project or component instead of showing dashboard.

STATUS_URL

URL where your Weblate instance reports it’s status.

SUGGESTION_CLEANUP_DAYS

New in version 3.2.1.

Automatically delete suggestions after given number of days. Defaults to
None what means no deletion at all.

URL_PREFIX

This settings allows you to run Weblate under some path (otherwise it relies on
being executed from webserver root). To use this setting, you also need to
configure your server to strip this prefix. For example with WSGI, this can be
achieved by setting WSGIScriptAlias. The prefix should start with a /.

Example:

URL_PREFIX = '/translations'

Note

This setting does not work with Django’s builtin server, you would have to
adjust urls.py to contain this prefix.

VCS_BACKENDS

Configuration of available VCS backends. Weblate tries to use all supported
backends for which you have tools available. You can limit choices or add
custom VCS backends using this.

VCS_BACKENDS = (
 'weblate.vcs.git.GitRepository',
)

See also

Version control integration

WEBLATE_ADDONS

List of addons available for use. To use them, they have to be enabled for
given translation component. By default this includes all built in addons, when
extending the list you will probably want to keep existing ones enabled, for
example:

WEBLATE_ADDONS = (
 # Built in addons
 'weblate.addons.gettext.GenerateMoAddon',
 'weblate.addons.gettext.UpdateLinguasAddon',
 'weblate.addons.gettext.UpdateConfigureAddon',
 'weblate.addons.gettext.MsgmergeAddon',
 'weblate.addons.gettext.GettextCustomizeAddon',
 'weblate.addons.gettext.GettextAuthorComments',
 'weblate.addons.cleanup.CleanupAddon',
 'weblate.addons.consistency.LangaugeConsistencyAddon',
 'weblate.addons.discovery.DiscoveryAddon',
 'weblate.addons.flags.SourceEditAddon',
 'weblate.addons.flags.TargetEditAddon',
 'weblate.addons.flags.SameEditAddon',
 'weblate.addons.generate.GenerateFileAddon',
 'weblate.addons.json.JSONCustomizeAddon',
 'weblate.addons.properties.PropertiesSortAddon',
 'weblate.addons.git.GitSquashAddon',
 'weblate.addons.removal.RemoveComments',
 'weblate.addons.removal.RemoveSuggestions',
 'weblate.addons.resx.ResxUpdateAddon',
 'weblate.addons.autotranslate.AutoTranslateAddon',

 # Addon you want to include
 'weblate.addons.example.ExampleAddon',
)

See also

Addons

WEBLATE_FORMATS

New in version 3.0.

List of file formats available for use, you can usually keep this on default value.

See also

Supported file formats

WEBLATE_GPG_IDENTITY

New in version 3.1.

Identity which should be used by Weblate to sign Git commits, for example:

WEBLATE_GPG_IDENTITY = 'Weblate <weblate@example.com>'

Warning

If you are going to change value of setting, it is advisable to clean the
cache as the key information is cached for seven days. This is not
necessary for initial setup as nothing is cached if this feature is not
configured.

See also

Signing Git commits by GnuPG

Sample configuration

The following example is shipped as weblate/settings_example.py with Weblate:

-*- coding: utf-8 -*-
#
Copyright © 2012 - 2019 Michal Čihař <michal@cihar.com>
#
This file is part of Weblate <https://weblate.org/>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
#

from __future__ import unicode_literals

import os
import platform
from logging.handlers import SysLogHandler

#
Django settings for Weblate project.
#

DEBUG = True

ADMINS = (
 # ('Your Name', 'your_email@example.com'),
)

MANAGERS = ADMINS

DATABASES = {
 "default": {
 # Use 'postgresql', 'mysql', 'sqlite3' or 'oracle'.
 "ENGINE": "django.db.backends.postgresql",
 # Database name or path to database file if using sqlite3.
 "NAME": "weblate",
 # Database user, not used with sqlite3.
 "USER": "weblate",
 # Database password, not used with sqlite3.
 "PASSWORD": "",
 # Set to empty string for localhost. Not used with sqlite3.
 "HOST": "127.0.0.1",
 # Set to empty string for default. Not used with sqlite3.
 "PORT": "",
 # Customizations for databases
 "OPTIONS": {
 # In case of using an older MySQL server,
 # which has MyISAM as a default storage
 # 'init_command': 'SET storage_engine=INNODB',
 # Uncomment for MySQL older than 5.7:
 # 'init_command': "SET sql_mode='STRICT_TRANS_TABLES'",
 # Set emoji capable charset for MySQL:
 # 'charset': 'utf8mb4',
 # Change connection timeout in case you get MySQL gone away error:
 # 'connect_timeout': 28800,
 },
 }
}

BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

Data directory
DATA_DIR = os.path.join(BASE_DIR, "data")

Local time zone for this installation. Choices can be found here:
http://en.wikipedia.org/wiki/List_of_tz_zones_by_name
although not all choices may be available on all operating systems.
In a Windows environment this must be set to your system time zone.
TIME_ZONE = "UTC"

Language code for this installation. All choices can be found here:
http://www.i18nguy.com/unicode/language-identifiers.html
LANGUAGE_CODE = "en-us"

LANGUAGES = (
 ("ar", "العربية"),
 ("az", "Azərbaycan"),
 ("be", "Беларуская"),
 ("be@latin", "Biełaruskaja"),
 ("bg", "Български"),
 ("br", "Brezhoneg"),
 ("ca", "Català"),
 ("cs", "Čeština"),
 ("da", "Dansk"),
 ("de", "Deutsch"),
 ("en", "English"),
 ("el", "Ελληνικά"),
 ("en-gb", "English (United Kingdom)"),
 ("es", "Español"),
 ("fi", "Suomi"),
 ("fr", "Français"),
 ("gl", "Galego"),
 ("he", "עברית"),
 ("hu", "Magyar"),
 ("id", "Indonesia"),
 ("it", "Italiano"),
 ("ja", "日本語"),
 ("kk", "Қазақ тілі"),
 ("ko", "한국어"),
 ("nb", "Norsk bokmål"),
 ("nl", "Nederlands"),
 ("pl", "Polski"),
 ("pt", "Português"),
 ("pt-br", "Português brasileiro"),
 ("ru", "Русский"),
 ("sk", "Slovenčina"),
 ("sl", "Slovenščina"),
 ("sr", "Српски"),
 ("sv", "Svenska"),
 ("tr", "Türkçe"),
 ("uk", "Українська"),
 ("zh-hans", "简体字"),
 ("zh-hant", "正體字"),
)

SITE_ID = 1

If you set this to False, Django will make some optimizations so as not
to load the internationalization machinery.
USE_I18N = True

If you set this to False, Django will not format dates, numbers and
calendars according to the current locale.
USE_L10N = True

If you set this to False, Django will not use timezone-aware datetimes.
USE_TZ = True

URL prefix to use, please see documentation for more details
URL_PREFIX = ""

Absolute filesystem path to the directory that will hold user-uploaded files.
MEDIA_ROOT = os.path.join(DATA_DIR, "media")

URL that handles the media served from MEDIA_ROOT. Make sure to use a
trailing slash.
MEDIA_URL = "{0}/media/".format(URL_PREFIX)

Absolute path to the directory static files should be collected to.
Don't put anything in this directory yourself; store your static files
in apps' "static/" subdirectories and in STATICFILES_DIRS.
STATIC_ROOT = os.path.join(DATA_DIR, "static")

URL prefix for static files.
STATIC_URL = "{0}/static/".format(URL_PREFIX)

Additional locations of static files
STATICFILES_DIRS = (
 # Put strings here, like "/home/html/static" or "C:/www/django/static".
 # Always use forward slashes, even on Windows.
 # Don't forget to use absolute paths, not relative paths.
)

List of finder classes that know how to find static files in
various locations.
STATICFILES_FINDERS = (
 "django.contrib.staticfiles.finders.FileSystemFinder",
 "django.contrib.staticfiles.finders.AppDirectoriesFinder",
 "compressor.finders.CompressorFinder",
)

Make this unique, and don't share it with anybody.
You can generate it using weblate/examples/generate-secret-key
SECRET_KEY = "jm8fqjlg+5!#xu%e-oh#7!$aa7!6avf7ud*_v=chdrb9qdco6(" # noqa

_TEMPLATE_LOADERS = [
 "django.template.loaders.filesystem.Loader",
 "django.template.loaders.app_directories.Loader",
]
if not DEBUG:
 _TEMPLATE_LOADERS = [("django.template.loaders.cached.Loader", _TEMPLATE_LOADERS)]
TEMPLATES = [
 {
 "BACKEND": "django.template.backends.django.DjangoTemplates",
 "DIRS": [os.path.join(BASE_DIR, "weblate", "templates")],
 "OPTIONS": {
 "context_processors": [
 "django.contrib.auth.context_processors.auth",
 "django.template.context_processors.debug",
 "django.template.context_processors.i18n",
 "django.template.context_processors.request",
 "django.template.context_processors.csrf",
 "django.contrib.messages.context_processors.messages",
 "weblate.trans.context_processors.weblate_context",
],
 "loaders": _TEMPLATE_LOADERS,
 },
 }
]

GitHub username for sending pull requests.
Please see the documentation for more details.
GITHUB_USERNAME = None

GitLab username for sending merge requests.
Please see the documentation for more details.
GITLAB_USERNAME = None

Authentication configuration
AUTHENTICATION_BACKENDS = (
 "social_core.backends.email.EmailAuth",
 # 'social_core.backends.google.GoogleOAuth2',
 # 'social_core.backends.github.GithubOAuth2',
 # 'social_core.backends.bitbucket.BitbucketOAuth',
 # 'social_core.backends.suse.OpenSUSEOpenId',
 # 'social_core.backends.ubuntu.UbuntuOpenId',
 # 'social_core.backends.fedora.FedoraOpenId',
 # 'social_core.backends.facebook.FacebookOAuth2',
 "weblate.accounts.auth.WeblateUserBackend",
)

Custom user model
AUTH_USER_MODEL = "weblate_auth.User"

Social auth backends setup
SOCIAL_AUTH_GITHUB_KEY = ""
SOCIAL_AUTH_GITHUB_SECRET = ""
SOCIAL_AUTH_GITHUB_SCOPE = ["user:email"]

SOCIAL_AUTH_BITBUCKET_KEY = ""
SOCIAL_AUTH_BITBUCKET_SECRET = ""
SOCIAL_AUTH_BITBUCKET_VERIFIED_EMAILS_ONLY = True

SOCIAL_AUTH_FACEBOOK_KEY = ""
SOCIAL_AUTH_FACEBOOK_SECRET = ""
SOCIAL_AUTH_FACEBOOK_SCOPE = ["email", "public_profile"]
SOCIAL_AUTH_FACEBOOK_PROFILE_EXTRA_PARAMS = {"fields": "id,name,email"}
SOCIAL_AUTH_FACEBOOK_API_VERSION = "3.1"

SOCIAL_AUTH_GOOGLE_OAUTH2_KEY = ""
SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET = ""

Social auth settings
SOCIAL_AUTH_PIPELINE = (
 "social_core.pipeline.social_auth.social_details",
 "social_core.pipeline.social_auth.social_uid",
 "social_core.pipeline.social_auth.auth_allowed",
 "social_core.pipeline.social_auth.social_user",
 "weblate.accounts.pipeline.store_params",
 "weblate.accounts.pipeline.verify_open",
 "social_core.pipeline.user.get_username",
 "weblate.accounts.pipeline.require_email",
 "social_core.pipeline.mail.mail_validation",
 "weblate.accounts.pipeline.revoke_mail_code",
 "weblate.accounts.pipeline.ensure_valid",
 "weblate.accounts.pipeline.remove_account",
 "social_core.pipeline.social_auth.associate_by_email",
 "weblate.accounts.pipeline.reauthenticate",
 "weblate.accounts.pipeline.verify_username",
 "social_core.pipeline.user.create_user",
 "social_core.pipeline.social_auth.associate_user",
 "social_core.pipeline.social_auth.load_extra_data",
 "weblate.accounts.pipeline.cleanup_next",
 "weblate.accounts.pipeline.user_full_name",
 "weblate.accounts.pipeline.store_email",
 "weblate.accounts.pipeline.notify_connect",
 "weblate.accounts.pipeline.password_reset",
)
SOCIAL_AUTH_DISCONNECT_PIPELINE = (
 "social_core.pipeline.disconnect.allowed_to_disconnect",
 "social_core.pipeline.disconnect.get_entries",
 "social_core.pipeline.disconnect.revoke_tokens",
 "weblate.accounts.pipeline.cycle_session",
 "weblate.accounts.pipeline.adjust_primary_mail",
 "weblate.accounts.pipeline.notify_disconnect",
 "social_core.pipeline.disconnect.disconnect",
 "weblate.accounts.pipeline.cleanup_next",
)

Custom authentication strategy
SOCIAL_AUTH_STRATEGY = "weblate.accounts.strategy.WeblateStrategy"

Raise exceptions so that we can handle them later
SOCIAL_AUTH_RAISE_EXCEPTIONS = True

SOCIAL_AUTH_EMAIL_VALIDATION_FUNCTION = "weblate.accounts.pipeline.send_validation"
SOCIAL_AUTH_EMAIL_VALIDATION_URL = "{0}/accounts/email-sent/".format(URL_PREFIX)
SOCIAL_AUTH_LOGIN_ERROR_URL = "{0}/accounts/login/".format(URL_PREFIX)
SOCIAL_AUTH_EMAIL_FORM_URL = "{0}/accounts/email/".format(URL_PREFIX)
SOCIAL_AUTH_NEW_ASSOCIATION_REDIRECT_URL = "{0}/accounts/profile/#account".format(
 URL_PREFIX
)
SOCIAL_AUTH_PROTECTED_USER_FIELDS = ("email",)
SOCIAL_AUTH_SLUGIFY_USERNAMES = True
SOCIAL_AUTH_SLUGIFY_FUNCTION = "weblate.accounts.pipeline.slugify_username"

Password validation configuration
AUTH_PASSWORD_VALIDATORS = [
 {
 "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator" # noqa: E501, pylint: disable=line-too-long
 },
 {
 "NAME": "django.contrib.auth.password_validation.MinimumLengthValidator",
 "OPTIONS": {"min_length": 6},
 },
 {"NAME": "django.contrib.auth.password_validation.CommonPasswordValidator"},
 {"NAME": "django.contrib.auth.password_validation.NumericPasswordValidator"},
 {"NAME": "weblate.accounts.password_validation.CharsPasswordValidator"},
 {"NAME": "weblate.accounts.password_validation.PastPasswordsValidator"},
 # Optional password strength validation by django-zxcvbn-password
 # {
 # 'NAME': 'zxcvbn_password.ZXCVBNValidator',
 # 'OPTIONS': {
 # 'min_score': 3,
 # 'user_attributes': ('username', 'email', 'full_name')
 # }
 # },
]

Allow new user registrations
REGISTRATION_OPEN = True

Middleware
MIDDLEWARE = [
 "weblate.middleware.ProxyMiddleware",
 "dogslow.WatchdogMiddleware",
 "django.middleware.security.SecurityMiddleware",
 "django.contrib.sessions.middleware.SessionMiddleware",
 "django.middleware.common.CommonMiddleware",
 "django.middleware.locale.LocaleMiddleware",
 "django.middleware.csrf.CsrfViewMiddleware",
 "weblate.accounts.middleware.AuthenticationMiddleware",
 "django.contrib.messages.middleware.MessageMiddleware",
 "django.middleware.clickjacking.XFrameOptionsMiddleware",
 "social_django.middleware.SocialAuthExceptionMiddleware",
 "weblate.accounts.middleware.RequireLoginMiddleware",
 "weblate.middleware.SecurityMiddleware",
]

ROOT_URLCONF = "weblate.urls"

Django and Weblate apps
INSTALLED_APPS = (
 "django.contrib.auth",
 "django.contrib.contenttypes",
 "django.contrib.sessions",
 "django.contrib.sites",
 "django.contrib.messages",
 "django.contrib.staticfiles",
 "django.contrib.admin.apps.SimpleAdminConfig",
 "django.contrib.admindocs",
 "django.contrib.sitemaps",
 "django.contrib.humanize",
 "social_django",
 "crispy_forms",
 "compressor",
 "rest_framework",
 "rest_framework.authtoken",
 "weblate.addons",
 "weblate.auth",
 "weblate.checks",
 "weblate.formats",
 "weblate.machinery",
 "weblate.trans",
 "weblate.lang",
 "weblate.langdata",
 "weblate.memory",
 "weblate.screenshots",
 "weblate.fonts",
 "weblate.accounts",
 "weblate.utils",
 "weblate.vcs",
 "weblate.wladmin",
 "weblate",
 # Optional: Git exporter
 "weblate.gitexport",
)

Path to locales
LOCALE_PATHS = (os.path.join(BASE_DIR, "weblate", "locale"),)

Custom exception reporter to include some details
DEFAULT_EXCEPTION_REPORTER_FILTER = "weblate.trans.debug.WeblateExceptionReporterFilter"

Default logging of Weblate messages
- to syslog in production (if available)
- otherwise to console
- you can also choose 'logfile' to log into separate file
after configuring it below

Detect if we can connect to syslog
HAVE_SYSLOG = False
if platform.system() != "Windows":
 try:
 handler = SysLogHandler(address="/dev/log", facility=SysLogHandler.LOG_LOCAL2)
 handler.close()
 HAVE_SYSLOG = True
 except IOError:
 HAVE_SYSLOG = False

if DEBUG or not HAVE_SYSLOG:
 DEFAULT_LOG = "console"
else:
 DEFAULT_LOG = "syslog"

A sample logging configuration. The only tangible logging
performed by this configuration is to send an email to
the site admins on every HTTP 500 error when DEBUG=False.
See http://docs.djangoproject.com/en/stable/topics/logging for
more details on how to customize your logging configuration.
LOGGING = {
 "version": 1,
 "disable_existing_loggers": True,
 "filters": {"require_debug_false": {"()": "django.utils.log.RequireDebugFalse"}},
 "formatters": {
 "syslog": {"format": "weblate[%(process)d]: %(levelname)s %(message)s"},
 "simple": {"format": "%(levelname)s %(message)s"},
 "logfile": {"format": "%(asctime)s %(levelname)s %(message)s"},
 "django.server": {
 "()": "django.utils.log.ServerFormatter",
 "format": "[%(server_time)s] %(message)s",
 },
 },
 "handlers": {
 "mail_admins": {
 "level": "ERROR",
 "filters": ["require_debug_false"],
 "class": "django.utils.log.AdminEmailHandler",
 "include_html": True,
 },
 "console": {
 "level": "DEBUG",
 "class": "logging.StreamHandler",
 "formatter": "simple",
 },
 "django.server": {
 "level": "INFO",
 "class": "logging.StreamHandler",
 "formatter": "django.server",
 },
 "dogslow": {
 "level": "WARNING",
 "class": "sentry_sdk.integrations.logging.EventHandler",
 },
 "syslog": {
 "level": "DEBUG",
 "class": "logging.handlers.SysLogHandler",
 "formatter": "syslog",
 "address": "/dev/log",
 "facility": SysLogHandler.LOG_LOCAL2,
 },
 # Logging to a file
 # 'logfile': {
 # 'level':'DEBUG',
 # 'class':'logging.handlers.RotatingFileHandler',
 # 'filename': "/var/log/weblate/weblate.log",
 # 'maxBytes': 100000,
 # 'backupCount': 3,
 # 'formatter': 'logfile',
 # },
 },
 "loggers": {
 "django.request": {
 "handlers": ["mail_admins", DEFAULT_LOG],
 "level": "ERROR",
 "propagate": True,
 },
 "django.server": {
 "handlers": ["django.server"],
 "level": "INFO",
 "propagate": False,
 },
 # Logging database queries
 # 'django.db.backends': {
 # 'handlers': [DEFAULT_LOG],
 # 'level': 'DEBUG',
 # },
 "dogslow": {"level": "WARNING", "handlers": ["dogslow"]},
 "weblate": {"handlers": [DEFAULT_LOG], "level": "DEBUG"},
 # Logging search operations
 "weblate.search": {"handlers": [DEFAULT_LOG], "level": "INFO"},
 # Logging VCS operations
 "weblate.vcs": {"handlers": [DEFAULT_LOG], "level": "WARNING"},
 # Python Social Auth logging
 # 'social': {
 # 'handlers': [DEFAULT_LOG],
 # 'level': 'DEBUG',
 # },
 },
}

Logging of management commands to console
if (
 os.environ.get("DJANGO_IS_MANAGEMENT_COMMAND", False)
 and "console" not in LOGGING["loggers"]["weblate"]["handlers"]
):
 LOGGING["loggers"]["weblate"]["handlers"].append("console")

Remove syslog setup if it's not present
if not HAVE_SYSLOG:
 del LOGGING["handlers"]["syslog"]

List of machine translations
MT_SERVICES = (
'weblate.machinery.apertium.ApertiumAPYTranslation',
'weblate.machinery.baidu.BaiduTranslation',
'weblate.machinery.deepl.DeepLTranslation',
'weblate.machinery.glosbe.GlosbeTranslation',
'weblate.machinery.google.GoogleTranslation',
'weblate.machinery.microsoft.MicrosoftCognitiveTranslation',
'weblate.machinery.microsoftterminology.MicrosoftTerminologyService',
'weblate.machinery.mymemory.MyMemoryTranslation',
'weblate.machinery.netease.NeteaseSightTranslation',
'weblate.machinery.tmserver.AmagamaTranslation',
'weblate.machinery.tmserver.TMServerTranslation',
'weblate.machinery.yandex.YandexTranslation',
'weblate.machinery.weblatetm.WeblateTranslation',
'weblate.machinery.saptranslationhub.SAPTranslationHub',
'weblate.machinery.youdao.YoudaoTranslation',
'weblate.memory.machine.WeblateMemory',
)

Machine translation API keys

URL of the Apertium APy server
MT_APERTIUM_APY = None

DeepL API key
MT_DEEPL_KEY = None

Microsoft Cognitive Services Translator API, register at
https://portal.azure.com/
MT_MICROSOFT_COGNITIVE_KEY = None

MyMemory identification email, see
https://mymemory.translated.net/doc/spec.php
MT_MYMEMORY_EMAIL = None

Optional MyMemory credentials to access private translation memory
MT_MYMEMORY_USER = None
MT_MYMEMORY_KEY = None

Google API key for Google Translate API
MT_GOOGLE_KEY = None

Baidu app key and secret
MT_BAIDU_ID = None
MT_BAIDU_SECRET = None

Youdao Zhiyun app key and secret
MT_YOUDAO_ID = None
MT_YOUDAO_SECRET = None

Netease Sight (Jianwai) app key and secret
MT_NETEASE_KEY = None
MT_NETEASE_SECRET = None

API key for Yandex Translate API
MT_YANDEX_KEY = None

tmserver URL
MT_TMSERVER = None

SAP Translation Hub
MT_SAP_BASE_URL = None
MT_SAP_SANDBOX_APIKEY = None
MT_SAP_USERNAME = None
MT_SAP_PASSWORD = None
MT_SAP_USE_MT = True

Title of site to use
SITE_TITLE = "Weblate"

Whether site uses https
ENABLE_HTTPS = False

Use HTTPS when creating redirect URLs for social authentication, see
documentation for more details:
https://python-social-auth-docs.readthedocs.io/en/latest/configuration/settings.html#processing-redirects-and-urlopen
SOCIAL_AUTH_REDIRECT_IS_HTTPS = ENABLE_HTTPS

Make CSRF cookie HttpOnly, see documentation for more details:
https://docs.djangoproject.com/en/1.11/ref/settings/#csrf-cookie-httponly
CSRF_COOKIE_HTTPONLY = True
CSRF_COOKIE_SECURE = ENABLE_HTTPS
Store CSRF token in session
CSRF_USE_SESSIONS = True
Customize CSRF failure view
CSRF_FAILURE_VIEW = "weblate.trans.views.error.csrf_failure"
SESSION_COOKIE_SECURE = ENABLE_HTTPS
SSL redirect
SECURE_SSL_REDIRECT = ENABLE_HTTPS
SSL redirect URL exemption list
SECURE_REDIRECT_EXEMPT = (r"healthz/$",) # Allowing HTTP access to health check
Session cookie age (in seconds)
SESSION_COOKIE_AGE = 1209600

Some security headers
SECURE_BROWSER_XSS_FILTER = True
X_FRAME_OPTIONS = "DENY"
SECURE_CONTENT_TYPE_NOSNIFF = True

Optionally enable HSTS
SECURE_HSTS_SECONDS = 0
SECURE_HSTS_PRELOAD = False
SECURE_HSTS_INCLUDE_SUBDOMAINS = False

URL of login
LOGIN_URL = "{0}/accounts/login/".format(URL_PREFIX)

URL of logout
LOGOUT_URL = "{0}/accounts/logout/".format(URL_PREFIX)

Default location for login
LOGIN_REDIRECT_URL = "{0}/".format(URL_PREFIX)

Anonymous user name
ANONYMOUS_USER_NAME = "anonymous"

Reverse proxy settings
IP_PROXY_HEADER = "HTTP_X_FORWARDED_FOR"
IP_BEHIND_REVERSE_PROXY = False
IP_PROXY_OFFSET = 0

Sending HTML in mails
EMAIL_SEND_HTML = True

Subject of emails includes site title
EMAIL_SUBJECT_PREFIX = "[{0}] ".format(SITE_TITLE)

Enable remote hooks
ENABLE_HOOKS = True

Number of nearby messages to show in each direction
NEARBY_MESSAGES = 5

By default the length of a given translation is limited to the length of
the source string * 10 characters. Set this option to False to allow longer
translations (up to 10.000 characters)
LIMIT_TRANSLATION_LENGTH_BY_SOURCE_LENGTH = True

Use simple language codes for default language/country combinations
SIMPLIFY_LANGUAGES = True

Render forms using bootstrap
CRISPY_TEMPLATE_PACK = "bootstrap3"

List of quality checks
CHECK_LIST = (
'weblate.checks.same.SameCheck',
'weblate.checks.chars.BeginNewlineCheck',
'weblate.checks.chars.EndNewlineCheck',
'weblate.checks.chars.BeginSpaceCheck',
'weblate.checks.chars.EndSpaceCheck',
'weblate.checks.chars.EndStopCheck',
'weblate.checks.chars.EndColonCheck',
'weblate.checks.chars.EndQuestionCheck',
'weblate.checks.chars.EndExclamationCheck',
'weblate.checks.chars.EndEllipsisCheck',
'weblate.checks.chars.EndSemicolonCheck',
'weblate.checks.chars.MaxLengthCheck',
'weblate.checks.chars.KashidaCheck',
'weblate.checks.chars.PuctuationSpacingCheck',
'weblate.checks.format.PythonFormatCheck',
'weblate.checks.format.PythonBraceFormatCheck',
'weblate.checks.format.PHPFormatCheck',
'weblate.checks.format.CFormatCheck',
'weblate.checks.format.PerlFormatCheck',
'weblate.checks.format.JavaScriptFormatCheck',
'weblate.checks.format.CSharpFormatCheck',
'weblate.checks.format.JavaFormatCheck',
'weblate.checks.format.JavaMessageFormatCheck',
'weblate.checks.angularjs.AngularJSInterpolationCheck',
'weblate.checks.qt.QtFormatCheck',
'weblate.checks.qt.QtPluralCheck',
'weblate.checks.ruby.RubyFormatCheck',
'weblate.checks.consistency.PluralsCheck',
'weblate.checks.consistency.SamePluralsCheck',
'weblate.checks.consistency.ConsistencyCheck',
'weblate.checks.consistency.TranslatedCheck',
'weblate.checks.chars.NewlineCountingCheck',
'weblate.checks.markup.BBCodeCheck',
'weblate.checks.chars.ZeroWidthSpaceCheck',
'weblate.checks.render.MaxSizeCheck',
'weblate.checks.markup.XMLValidityCheck',
'weblate.checks.markup.XMLTagsCheck',
'weblate.checks.markup.MarkdownRefLinkCheck',
'weblate.checks.markup.MarkdownLinkCheck',
'weblate.checks.markup.MarkdownSyntaxCheck',
'weblate.checks.markup.URLCheck',
'weblate.checks.markup.SafeHTMLCheck',
'weblate.checks.placeholders.PlaceholderCheck',
'weblate.checks.placeholders.RegexCheck',
'weblate.checks.source.OptionalPluralCheck',
'weblate.checks.source.EllipsisCheck',
'weblate.checks.source.MultipleFailingCheck',
)

List of automatic fixups
AUTOFIX_LIST = (
'weblate.trans.autofixes.whitespace.SameBookendingWhitespace',
'weblate.trans.autofixes.chars.ReplaceTrailingDotsWithEllipsis',
'weblate.trans.autofixes.chars.RemoveZeroSpace',
'weblate.trans.autofixes.chars.RemoveControlChars',
)

List of enabled addons
WEBLATE_ADDONS = (
'weblate.addons.gettext.GenerateMoAddon',
'weblate.addons.gettext.UpdateLinguasAddon',
'weblate.addons.gettext.UpdateConfigureAddon',
'weblate.addons.gettext.MsgmergeAddon',
'weblate.addons.gettext.GettextCustomizeAddon',
'weblate.addons.gettext.GettextAuthorComments',
'weblate.addons.cleanup.CleanupAddon',
'weblate.addons.consistency.LangaugeConsistencyAddon',
'weblate.addons.discovery.DiscoveryAddon',
'weblate.addons.flags.SourceEditAddon',
'weblate.addons.flags.TargetEditAddon',
'weblate.addons.flags.SameEditAddon',
'weblate.addons.generate.GenerateFileAddon',
'weblate.addons.json.JSONCustomizeAddon',
'weblate.addons.properties.PropertiesSortAddon',
'weblate.addons.git.GitSquashAddon',
'weblate.addons.removal.RemoveComments',
'weblate.addons.removal.RemoveSuggestions',
'weblate.addons.resx.ResxUpdateAddon',
'weblate.addons.autotranslate.AutoTranslateAddon',
)

E-mail address that error messages come from.
SERVER_EMAIL = "noreply@example.com"

Default email address to use for various automated correspondence from
the site managers. Used for registration emails.
DEFAULT_FROM_EMAIL = "noreply@example.com"

List of URLs your site is supposed to serve
ALLOWED_HOSTS = []

Configuration for caching
CACHES = {
 "default": {
 "BACKEND": "django_redis.cache.RedisCache",
 "LOCATION": "redis://127.0.0.1:6379/1",
 # If redis is running on same host as Weblate, you might
 # want to use unix sockets instead:
 # 'LOCATION': 'unix:///var/run/redis/redis.sock?db=1',
 "OPTIONS": {
 "CLIENT_CLASS": "django_redis.client.DefaultClient",
 "PARSER_CLASS": "redis.connection.HiredisParser",
 "PASSWORD": None,
 "CONNECTION_POOL_KWARGS": {},
 },
 "KEY_PREFIX": "weblate",
 },
 "avatar": {
 "BACKEND": "django.core.cache.backends.filebased.FileBasedCache",
 "LOCATION": os.path.join(DATA_DIR, "avatar-cache"),
 "TIMEOUT": 86400,
 "OPTIONS": {"MAX_ENTRIES": 1000},
 },
}

Store sessions in cache
SESSION_ENGINE = "django.contrib.sessions.backends.cache"

REST framework settings for API
REST_FRAMEWORK = {
 # Use Django's standard `django.contrib.auth` permissions,
 # or allow read-only access for unauthenticated users.
 "DEFAULT_PERMISSION_CLASSES": [
 "rest_framework.permissions.IsAuthenticatedOrReadOnly"
],
 "DEFAULT_AUTHENTICATION_CLASSES": (
 "rest_framework.authentication.TokenAuthentication",
 "weblate.api.authentication.BearerAuthentication",
 "rest_framework.authentication.SessionAuthentication",
),
 "DEFAULT_THROTTLE_CLASSES": (
 "rest_framework.throttling.AnonRateThrottle",
 "rest_framework.throttling.UserRateThrottle",
),
 "DEFAULT_THROTTLE_RATES": {"anon": "100/day", "user": "1000/day"},
 "DEFAULT_PAGINATION_CLASS": ("rest_framework.pagination.PageNumberPagination"),
 "PAGE_SIZE": 20,
 "VIEW_DESCRIPTION_FUNCTION": "weblate.api.views.get_view_description",
 "UNAUTHENTICATED_USER": "weblate.auth.models.get_anonymous",
}

Example for restricting access to logged in users
LOGIN_REQUIRED_URLS = (
r'/(.*)$',
)

In such case you will want to include some of the exceptions
LOGIN_REQUIRED_URLS_EXCEPTIONS = (
r'/accounts/(.*)$', # Required for login
r'/admin/login/(.*)$', # Required for admin login
r'/static/(.*)$', # Required for development mode
r'/widgets/(.*)$', # Allowing public access to widgets
r'/data/(.*)$', # Allowing public access to data exports
r'/hooks/(.*)$', # Allowing public access to notification hooks
r'/healthz/$', # Allowing public access to health check
r'/api/(.*)$', # Allowing access to API
r'/js/i18n/$', # JavaScript localization
r'/contact/$', # Optional for contact form
r'/legal/(.*)$', # Optional for legal app
)

Silence some of the Django system checks
SILENCED_SYSTEM_CHECKS = [
 # We have modified django.contrib.auth.middleware.AuthenticationMiddleware
 # as weblate.accounts.middleware.AuthenticationMiddleware
 "admin.E408"
]

Celery worker configuration for testing
CELERY_TASK_ALWAYS_EAGER = True
CELERY_BROKER_URL = 'memory://'
CELERY_TASK_EAGER_PROPAGATES = True
Celery worker configuration for production
CELERY_TASK_ALWAYS_EAGER = False
CELERY_BROKER_URL = "redis://localhost:6379"
CELERY_RESULT_BACKEND = CELERY_BROKER_URL

Celery settings, it is not recommended to change these
CELERY_WORKER_PREFETCH_MULTIPLIER = 0
CELERY_WORKER_MAX_MEMORY_PER_CHILD = 200000
CELERY_BEAT_SCHEDULE_FILENAME = os.path.join(DATA_DIR, "celery", "beat-schedule")
CELERY_TASK_ROUTES = {
 "weblate.trans.search.*": {"queue": "search"},
 "weblate.trans.tasks.optimize_fulltext": {"queue": "search"},
 "weblate.trans.tasks.cleanup_fulltext": {"queue": "search"},
 "weblate.memory.tasks.*": {"queue": "memory"},
 "weblate.accounts.tasks.notify_change": {"queue": "notify"},
 "weblate.accounts.tasks.send_mails": {"queue": "notify"},
 "weblate.memory.tasks.memory_backup": {"queue": "backup"},
 "weblate.utils.tasks.settings_backup": {"queue": "backup"},
 "weblate.utils.tasks.database_backup": {"queue": "backup"},
 "weblate.wladmin.tasks.backup": {"queue": "backup"},
 "weblate.wladmin.tasks.backup_service": {"queue": "backup"},
}

Enable auto updating
AUTO_UPDATE = False

PGP commits signing
WEBLATE_GPG_IDENTITY = None

Third party services integration
PIWIK_SITE_ID = None
PIWIK_URL = None
GOOGLE_ANALYTICS_ID = None
SENTRY_DSN = None
AKISMET_API_KEY = None

Logging slow requests
DOGSLOW_LOG_TO_SENTRY = bool(SENTRY_DSN)
DOGSLOW_LOGGER = "dogslow"
DOGSLOW_TIMER = 60

Management commands

Note

Running management commands under a different user than is running your
webserver can cause wrong permissions on some files, please check
Filesystem permissions for more details.

Django comes with a management script (available as ./manage.py in
sources or installed as weblate when Weblate is installed). It
provides various management commands and Weblate extends it with several
additional commands.

Invoking management commands

As mentioned before, invocation depends on how you have installed Weblate.

If you are using virtualenv for Weblate, you can either specify full path to
weblate or activate the virtualenv prior invoking it:

Direct invocation
~/weblate-env/bin/weblate

Activating virtualenv adds it to search path
. ~/weblate-env/bin/activate
weblate

If you are using source code directly (either tarball or Git checkout), the
management script is ./manage.py in Weblate sources. Execution can be
done as:

python ./manage.py list_versions

If you’ve installed Weblate using PIP installer or by ./setup.py
script, the weblate is installed to your path (or virtualenv path)
and you can use it to control Weblate:

weblate list_versions

For Docker image, the script is installed same as above, you can execute it
using docker exec:

docker exec --user weblate <container> weblate list_versions

With docker-compose this is quite similar, you just have to use
docker-compose exec:

docker-compose exec --user weblate weblate weblate list_versions

In case you need to pass some file, you can temporary add a volume:

docker-compose exec --user weblate /tmp:/tmp weblate weblate importusers /tmp/users.json

See also

Installing using Docker,
Installing on Debian and Ubuntu,
Installing on SUSE and openSUSE,
Installing on RedHat, Fedora and CentOS

	Installing from sources, recommended for development.

add_suggestions

	
manage.py add_suggestions <project> <component> <language> <file>

	

New in version 2.5.

Imports translation from the file as a suggestion to given translation. It
skips translations which are the same as existing ones, only different ones are
added.

	
--author USER@EXAMPLE.COM

	Email of author for the suggestions. This user has to exist prior importing
(you can create one in the admin interface if needed).

Example:

./manage.py --author michal@cihar.com add_suggestions weblate master cs /tmp/suggestions-cs.po

auto_translate

	
manage.py auto_translate <project> <component> <language>

	

New in version 2.5.

Performs automatic translation based on other component translations.

	
--source PROJECT/COMPONENT

	Specifies component to use as source for translation. If not specified
all components in the project are used.

	
--user USERNAME

	Specify username who will be author of the translations. Anonymous user
is used if not specified.

	
--overwrite

	Whether to overwrite existing translations.

	
--inconsistent

	Whether to overwrite existing translations which are inconsistent (see
Inconsistent).

	
--add

	Automatically add language if given translation does not exist.

	
--mt MT

	Use machine translation instead of other components.

	
--threshold THRESHOLD

	Similarity threshold for machine translation, defaults to 80.

Example:

./manage.py --user nijel --inconsistent --source phpmyadmin/master phpmyadmin 4-5 cs

See also

Automatic translation

celery_queues

	
manage.py celery_queues

	

New in version 3.7.

Displays length of Celery task queues.

changesite

	
manage.py changesite

	

New in version 2.4.

You can use this to change or display site name from command line without using
admin interface.

	
--set-name NAME

	Sets name for the site.

	
--get-name

	Prints currently configured site name.

See also

Set correct sitename

checkgit

	
manage.py checkgit <project|project/component>

	

Prints current state of the backend git repository.

You can either define which project or component to update (eg.
weblate/master) or use --all to update all existing components.

commitgit

	
manage.py commitgit <project|project/component>

	

Commits any possible pending changes to backend git repository.

You can either define which project or component to update (eg.
weblate/master) or use --all to update all existing components.

commit_pending

	
manage.py commit_pending <project|project/component>

	

Commits pending changes older than given age.

You can either define which project or component to update (eg.
weblate/master) or use --all to update all existing components.

	
--age HOURS

	Age in hours for committing. If not specified value configured in
Component configuration is used.

Note

This is automatically perfomed in the background by Weblate, so there is not
much reason to invoke this manually besides forcing earlier commit than
specified by Component configuration.

See also

Running maintenance tasks,
COMMIT_PENDING_HOURS

cleanup_avatar_cache

New in version 3.1.

	
manage.py cleanup_avatar_cache

	

Removes invalid items in avatar cache. This can be useful when switching
between Python 2 and 3 as the cache files might be not compatible.

cleanuptrans

	
manage.py cleanuptrans

	

Cleanups orphaned checks and translation suggestions. This is normally not
needed to execute manually, the cleanups happen automatically in the
background.

See also

Running maintenance tasks

createadmin

	
manage.py createadmin

	

Creates admin account with random password unless it is specified.

	
--password PASSWORD

	Provide password on the command line and skip generating random one.

	
--no-password

	Do not set password, this can be useful with –update.

	
--username USERNAME

	Use given name instead of admin.

	
--email USER@EXAMPLE.COM

	Specify admin e-mail.

	
--name

	Specify admin name (visible).

	
--update

	Update existing user (you can use this to change password).

Changed in version 2.9: Added parameters --username, --email, --name and --update.

delete_memory

	
manage.py delete_memory

	

New in version 2.20.

Deletes entries in the Weblate Translation Memory.

	
--origin ORIGIN

	Origin to delete, for imported files the origin is filename without path.

	
--all

	Delete complete memory content and recreate the database.

See also

Translation Memory

dump_memory

	
manage.py dump_memory

	

New in version 2.20.

Export a JSON file with the Weblate Translation Memory content.

See also

Translation Memory

dumpuserdata

	
manage.py dumpuserdata <file.json>

	

Dumps userdata to file for later use by importuserdata

This is useful when migrating or merging Weblate instances.

import_json

	
manage.py import_json <json-file>

	

New in version 2.7.

Batch import of components based on JSON data.

The imported JSON file structure pretty much corresponds to the component
object (see GET /api/components/(string:project)/(string:component)/).
You always have to include fields name and filemask.

	
--project PROJECT

	Specifies where the components will be imported.

	
--main-component COMPONENT

	Use VCS repository from this component for all.

	
--ignore

	Skip already imported components.

	
--update

	Update already imported components.

Changed in version 2.9: Added parameters --ignore and --update to deal with already
imported components.

Example of JSON file:

[
 {
 "slug": "po",
 "name": "Gettext PO",
 "file_format": "po",
 "filemask": "po/*.po",
 "new_lang": "none"
 },
 {
 "name": "Android",
 "filemask": "android/values-*/strings.xml",
 "template": "android/values/strings.xml",
 "repo": "weblate://test/test",
 "file_format": "aresource"
 }
]

See also

import_memory

import_memory

	
manage.py import_memory <file>

	

New in version 2.20.

Imports a TMX or JSON file into the Weblate Translation Memory.

	
--language-map LANGMAP

	Allows to map languages in the TMX to Weblate one. The language codes are
mapped after normalization usually done by Weblate.

For example --language-map en_US:en will import all en_US strings
as en ones.

This can be useful in case your TMX file locales does not match what you
use in Weblate.

See also

Translation Memory

import_project

	
manage.py import_project <project> <gitrepo> <branch> <filemask>

	

Changed in version 3.0: The import_project command is now based on the
Component discovery addon and that has lead to some
changes in behavior and accepted parameters.

Batch imports components into project based on file mask.

<project> names an existing project, into which the components should
be imported.

The <gitrepo> defines URL of Git repository to use, and <branch> the
git branch.
To import additional translation components, from an existing Weblate component,
use a weblate://<project>/<component> URL for the <gitrepo>.

The <filemask> defines files discovery in the repository. It can be either
simple using wildcards or it can use full power of regular expressions.

The simple matching uses ** for component name and * for language, for
example: **/*.po

The regular expression has to contain named groups component and language.
For example: (?P<language>[^/]*)/(?P<component>[^-/]*)\.po

The import matches existing components based on files and adds the ones which
do not exist. It does no changes to the already existing ones.

	
--name-template TEMPLATE

	Customize the component’s name, using Django template syntax.

For example: Documentation: {{ component }}

	
--base-file-template TEMPLATE

	Customize base file for monolingual translations.

For example: {{ component }}/res/values/string.xml

	
--new-base-template TEMPLATE

	Customize base file for adding new translations.

For example: {{ component }}/ts/en.ts

	
--file-format FORMAT

	You can also specify file format to use (see Supported file formats), the default
is autodetection.

	
--language-regex REGEX

	You can specify language filtering (see Component configuration) by this
parameter. It has to be valid regular expression.

	
--main-component

	You can specify which component will be chosen as main - the one actually
containing VCS repository.

	
--license NAME

	Specify translation license.

	
--license-url URL

	Specify translation license URL.

	
--vcs NAME

	In case you need to specify version control system to use, you can do it
here. The default version control is Git.

To give you some examples, let’s try importing two projects.

As first we import The Debian Handbook translations, where each language has
separate folder with translations of each chapter:

./manage.py import_project \
 debian-handbook \
 git://anonscm.debian.org/debian-handbook/debian-handbook.git \
 squeeze/master \
 '*/**.po'

Another example can be Tanaguru tool, where we need to specify file format,
base file template and has all components and translations located in single
folder:

./manage.py import_project \
 --file-format=properties \
 --base-file-template=web-app/tgol-web-app/src/main/resources/i18n/%s-I18N.properties \
 tanaguru \
 https://github.com/Tanaguru/Tanaguru \
 master \
 web-app/tgol-web-app/src/main/resources/i18n/**-I18N_*.properties

Example of more complex parsing of filenames to get correct component and
language out of filename like
src/security/Numerous_security_holes_in_0.10.1.de.po:

./manage.py import_project \
 tails \
 git://git.tails.boum.org/tails master \
 'wiki/src/security/(?P<component>.*)\.(?P<language>[^.]*)\.po$'

Filtering only translations in chosen language:

./manage import_project \
 --language-regex '^(cs|sk)$' \
 weblate \
 https://github.com/WeblateOrg/weblate.git \
 'weblate/locale/*/LC_MESSAGES/**.po'

See also

More detailed examples can be found in the Starting with internationalization chapter,
alternatively you might want to use import_json.

importuserdata

	
manage.py importuserdata <file.json>

	

Imports userdata from file created by dumpuserdata

importusers

	
manage.py importusers --check <file.json>

	

Imports users from JSON dump of Django auth_users database.

	
--check

	With this option it will just check whether given file can be imported and
report possible conflicts on usernames or e-mails.

You can dump users from existing Django installation using:

./manage.py dumpdata auth.User > users.json

install_addon

New in version 3.2.

	
manage.py install_addon --addon ADDON <project|project/component>

	

Installs addon to set of components.

	
--addon ADDON

	Name of addon to install. For example weblate.gettext.customize.

	
--configuration CONFIG

	JSON encoded configuration of an addon.

	
--update

	Update existing addon configuration.

You can either define on which project or component to install addon (eg.
weblate/master) or use --all to include all existing components.

For example installing Customize gettext output to all components:

./manage.py install_addon --addon weblate.gettext.customize --config '{"width": -1}' --update --all

See also

Addons

list_ignored_checks

	
manage.py list_ignored_checks

	

Lists most frequently ignored checks. This can be useful for tuning your setup,
if users have to ignore too many of consistency checks.

list_languages

	
manage.py list_languages <locale>

	

Lists supported language in MediaWiki markup - language codes, English names
and localized names.

This is used to generate <https://wiki.l10n.cz/Jazyky>.

list_memory

	
manage.py list_memory

	

New in version 2.20.

Lists contents of the Weblate Translation Memory.

	
--type {origin}

	Type of information to list, defaults to listing used origins.

See also

Translation Memory

list_translators

	
manage.py list_translators <project|project/component>

	

Renders the list of translators by language for the given project:

[French]
Jean Dupont <jean.dupont@example.com>
[English]
John Doe <jd@exemple.com>

	
--language-code

	Use language code instead of language name in output.

You can either define which project or component to use (eg.
weblate/master) or use --all to list translators from all existing
components.

list_versions

	
manage.py list_versions

	

Lists versions of Weblate dependencies.

loadpo

	
manage.py loadpo <project|project/component>

	

Reloads translations from disk (eg. in case you did some updates in VCS
repository).

	
--force

	Force update even if the files should be up to date.

	
--lang LANGUAGE

	Limit processing to single language.

You can either define which project or component to update (eg.
weblate/master) or use --all to update all existing components.

Note

You seldom need to invoke this, Weblate will automatically load changed
files on VCS update. This is needed in case you manually change underlying
Weblate VCS repository or in some special cases after upgrade.

lock_translation

	
manage.py lock_translation <project|project/component>

	

Locks given component for translating. This is useful in case you want to do
some maintenance on underlying repository.

You can either define which project or component to update (eg.
weblate/master) or use --all to update all existing components.

See also

unlock_translation

move_language

	
manage.py move_language source target

	

New in version 3.0.

Allows you to merge language content. This is useful when updating to new
version which contains aliases for previously unknown languages which were
created with the (generated) suffix. It moves all content from the source
language to target one.

Example:

./manage.py move_language cze cs

After moving the content, you should review if there is nothing left (this is
subject to race conditions when somebody updates the repository meanwhile) and
remove the (generated) language.

optimize_memory

	
manage.py optimize_memory

	

New in version 3.2.

Optimizes translation memory storage.

	
--rebuild

	The index will be completely rebuilt by dumping all content and creating it again.
It is recommended to backup it prior to this operation.

See also

Translation Memory,
Backing up and moving Weblate,
dump_memory

pushgit

	
manage.py pushgit <project|project/component>

	

Pushes committed changes to upstream VCS repository.

	
--force-commit

	Force committing any pending changes prior to push.

You can either define which project or component to update (eg.
weblate/master) or use --all to update all existing components.

Note

Weblate does push changes automatically if Push on commit in
Component configuration is enabled, what is default.

rebuild_index

	
manage.py rebuild_index <project|project/component>

	

Rebuilds index for fulltext search. This might be lengthy operation if you
have a huge set of translation strings.

	
--clean

	Removes all words from database prior updating, this is implicit when
called with --all.

	
--optimize

	The index will not be processed again, only its content will be optimized
(removing stale entries and merging possibly split index files).

See also

Fulltext search

unlock_translation

	
manage.py unlock_translation <project|project/component>

	

Unlocks a given component for translating. This is useful in case you want to do
some maintenance on the underlying repository.

You can either define which project or component to update (eg.
weblate/master) or use --all to update all existing components.

See also

lock_translation

setupgroups

	
manage.py setupgroups

	

Configures default groups and optionally assigns all users to default group.

	
--no-privs-update

	Disables update of existing groups (only adds new ones).

	
--no-projects-update

	Prevents updates of groups for existing projects. This allows to add newly
added groups to existing projects, see Per project access control.

See also

Access control

setuplang

	
manage.py setuplang

	

Setups list of languages (it has own list and all defined in
translate-toolkit).

	
--no-update

	Disables update of existing languages (only adds new ones).

updatechecks

	
manage.py updatechecks <project|project/component>

	

Updates all check for all strings. This could be useful only on upgrades
which do major changes to checks.

You can either define which project or component to update (eg.
weblate/master) or use --all to update all existing components.

updategit

	
manage.py updategit <project|project/component>

	

Fetches remote VCS repositories and updates internal cache.

You can either define which project or component to update (eg.
weblate/master) or use --all to update all existing components.

Note

Usually it is better to configure hooks in the repository to trigger
Notification hooks instead of regular polling by updategit.

Whiteboard messages

You can use whiteboard messages to give some information to your translators.
The message can be site-wide or targeted to a translation component or language.

This can be useful for various things from announcing the purpose of the website to
specifying targets for translations.

The whiteboard can currently be specified only in the admin interface:

[image: ../_images/whiteboard.png]
The whiteboard messages are then shown based on specified context:

No context specified

Shown on dashboard (landing page).

Project specified

Shown on project, all its components and translations.

Component specified

Shown on component and all its translations.

Language specified

Shown on language overview and all translations in this language.

You can see how it looks on the language overview page:

[image: ../_images/whiteboard-language.png]
And on the project page:

[image: ../_images/whiteboard-project.png]

Component Lists

Weblate allows you to specify multiple lists of components. These will then
appear as options on the user dashboard, and users can pick a list to be their
default view when they log in. See Dashboard to learn more about this
feature.

Changed in version 2.20: The overview of all component lists status is also available on the
dashboard.

The names and contents of component lists can be specified in the admin
interface, in Component lists section. Each component list must
have a name that is displayed to the user, and a slug that represents it in the
URL.

Note

Since version 2.13 you can also change the dashboard settings for the
anonymous user in the admin interface, this will change what dashboard is
visible to unauthenticated users.

Automatic component lists

New in version 2.13.

Additionally you can create Automatic component list assignment
rules to automatically add components to the list based on their slug. This can
be useful for maintaining component lists for large installations or in case
you want to have component list with all components on your Weblate
installation.

To create component list containing all components, you can simply define
Automatic component list assignment with ^.*$ regular expression
on both project and component as shown on following image:

[image: ../_images/componentlist-add.png]

Optional Weblate modules

Weblate comes with several optional modules which might be useful for your
setup.

Git exporter

New in version 2.10.

The Git exporter provides you read only access to the underlying Git repository
using HTTP.

Installation

To install, simply add weblate.gitexport to installed applications in
settings.py:

INSTALLED_APPS += (
 'weblate.gitexport',
)

After installing, you need to migrate your database so that existing
repositories are properly exported:

./manage.py migrate

Usage

The module automatically hooks into Weblate and sets exported repository URL in
the Component configuration.
The repositories are accessible under /git/ path of the Weblate, for example
https://example.org/git/weblate/master/:

git clone 'https://example.org/git/weblate/master/'

Repositories are available anonymously unless Per project access control is enabled. In that
case you need to authenticate using your API token (you can obtain it in your
User profile):

git clone 'https://user:KEY@example.org/git/weblate/master/'

Billing

New in version 2.4.

Billing module is used on Hosted Weblate [https://weblate.org/hosting/]
and is used to define billing plans, track invoices and usage limits.

Installation

To install, simply add weblate.billing to installed applications in
settings.py:

INSTALLED_APPS += (
 'weblate.billing',
)

This module includes additional database structures, to have them installed you
should run the database migration:

./manage.py migrate

Usage

After installation you can control billing in the admin interface. Users with
billing enabled will get new Billing tab in their
User profile.

The billing module additionally allows project admins to create new projects
and components without being superusers (see Adding translation projects and components). This is
possible when following conditions are met:

	The billing is in it’s configured limits (any overusage results in blocking
of project/component creation) and paid (if it’s price is non zero)

	The user is admin of existing project with billing or user is owner of
billing (the latter is necessary when creating new billing for users to be
able to import new projects).

Upon project creation user is able to choose which billing should be charged
for the project in case he has access to more of them.

Legal

New in version 2.15.

Legal module is used on Hosted Weblate [https://weblate.org/hosting/]
and is used to provide required legal documents. It comes with blank documents
and you are expected to provide following templates with the documents:

	legal/documents/tos.html

	Terms of service document

	legal/documents/privacy.html

	Privacy policy document

	legal/documents/summary.html

	Short overview of terms of service and privacy policy

Note

You can find legal documents for the Hosted Weblate service in separate Git repository
<https://github.com/WeblateOrg/hosted/tree/master/wlhosted/legal/templates/legal/documents>.

Most likely these will not be directly usable for you, but you might want
to use them as a starting point and adjust them to match your use case.

Installation

To install, simply add weblate.legal to installed applications in
settings.py:

INSTALLED_APPS += (
 'weblate.legal',
)

Optionals:

Social auth pipeline to confirm TOS on registration/login
SOCIAL_AUTH_PIPELINE += (
 'weblate.legal.pipeline.tos_confirm',
)

Middleware to enforce TOS confirmation of logged in users
MIDDLEWARE += [
 'weblate.legal.middleware.RequireTOSMiddleware',
]

This module includes additional database structures, to have them installed you
should run the database migration:

./manage.py migrate

Now you should edit the legal documents to match your service. You can
find them in the weblate/legal/templates/legal/ folder.

Usage

After installation the legal documents are shown in Weblate UI.

Avatars

Weblate comes with built in support for showing user avatars based on e-mails.
This can be disabled using ENABLE_AVATARS. The avatars are
downloaded and cached server side to reduce information leaks to the sites
serving them.

Weblate currently supports single backend:

	Gravatar [https://gravatar.com/]

See also

Avatar caching,
AVATAR_URL_PREFIX,
ENABLE_AVATARS

Spam protection

Optionally Weblate can be protected against suggestion spamming by
unauthenticated users through akismet.com [https://akismet.com/]
service.

To enable this, you need to install akismet Python module and configure
Akismet API key.

See also

AKISMET_API_KEY

Signing Git commits by GnuPG

New in version 3.1.

Weblate allows you to sign all commits by it’s GnuPG key. To configure this,
you need to enable WEBLATE_GPG_IDENTITY. Weblate will generate GnuPG
key when needed and will use it to sign all translation commits.

This feature needs GnuPG 2.1 or newer installed.

You can find the key in the DATA_DIR and the public key is shown on
the about page:

[image: ../_images/about-gpg.png]
Alternatively you can also import existing keys into Weblate, just set
HOME=$DATA_DIR/home when invoking gpg.

See also

WEBLATE_GPG_IDENTITY

Rate limiting

Changed in version 3.2: The rate limiting now accepts more fine grained configuration.

Several operations in Weblate are rate limited. At most
RATELIMIT_ATTEMPTS attempts are allowed within
RATELIMIT_WINDOW seconds. The user is then blocked
for RATELIMIT_LOCKOUT. There are also per scope variants of those
settings, eg. RATELIMIT_CONTACT_ATTEMPTS or
RATELIMIT_TRANSLATE_ATTEMPTS, see table below for full list of available
scopes.

Following operations are subject to rate limiting:

	Name

	Scope

	Allowed attempts

	Ratelimit window

	Lockout period

	Registration

	REGISTRATION

	5

	300

	600

	Sending message to admins

	MESSAGE

	5

	300

	600

	Password authentication on login

	LOGIN

	5

	300

	600

	Sitewide search

	SEARCH

	6

	60

	60

	Translating

	TRANSLATE

	30

	60

	600

	Adding to glossary

	GLOSSARY

	30

	60

	600

Additionally if there are more than AUTH_LOCK_ATTEMPTS failed
authentication attempts on one account, this account password authentication is
disabled and it’s not possible to login until user asks for password reset.

See also

Rate limiting

IP address for rate limiting

The rate limiting is based on client IP address. This is obtained from HTTP
headers and you will have to change configuration in the event Weblate is
running behind reverse proxy to work it properly.

See also

IP_BEHIND_REVERSE_PROXY,
IP_PROXY_HEADER,
IP_PROXY_OFFSET

Customizing Weblate

Weblate can be extended or customized using standard Django and Python ways.
Always please consider contributing changes upstream so that everybody can
benefit from your additions. Including your changes in Weblate itself will also
reduce your maintenance costs - code in Weblate is taken care of when changing
internal interfaces or refactoring the code.

Warning

Neither internal interfaces or templates are considered as stable API.
Please review your customizations on every upgrade, the interface or their
semantics might change without notice.

See also

Contributing

Creating Python module

If you are not familiar with Python, you might want to look into Python For
Beginners [https://www.python.org/about/gettingstarted/] which explains the
basics and will point you to further tutorials.

We’re about to write some custom Python code (called a module) and we need a
place to store it - either in the system path (usually something like
/usr/lib/python3.7/site-packages/) or in the Weblate directory, which
is also added to the interpreter search path.

The best approach is to create a proper Python package out of your customization:

	Create a folder for your package (we will use weblate_customization).

	Inside, create a setup.py file to describe the package:

from setuptools import setup

setup(
 name = "weblate_customization",
 version = "0.0.1",
 author = "Michal Cihar",
 author_email = "michal@cihar.com",
 description = "Sample Custom check for Weblate.",
 license = "BSD",
 keywords = "weblate check example",
 packages=['weblate_customization'],
)

	Create a folder for the Python module (also called weblate_customization).

	To make sure Python can import the module, add an __init__.py file
inside the module folder. Put the rest of the customization code in this
folder.

	Now it’s possible to install this package using pip install -e .

	Once installed, the module can be used in the Weblate configuration
(for example weblate_customization.checks.FooCheck).

Overall your module structure should look like:

weblate_customization
├── setup.py
└── weblate_customization
 ├── __init__.py
 ├── addons.py
 └── checks.py

You can find example application for custimizing Weblate at
<https://github.com/WeblateOrg/customize-example>, it covers all topics
described below.

Changing logo

To change logo you need to create simple Django app which will contain static
files which you want to overwrite (see Creating Python module). Then you add it
into INSTALLED_APPS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS]:

INSTALLED_APPS = (
 # Add your customization as first
 'weblate_customization',

 # Weblate apps are here...
)

And then execute ./manage.py collectstatic --noinput, this will collect
static files served to clients.

See also

Managing static files (e.g. images, JavaScript, CSS) [https://docs.djangoproject.com/en/stable/howto/static-files/],
Serving static files

Custom quality checks and auto fixes

You have implemented code for Custom automatic fixups or Customizing behavior and
now it’s time to install it into Weblate. First place them into your Python
module with Weblate customization (see Creating Python module). Then enabled it
is just matter of adding its fully-qualified path to Python class to
appropriate settings (CHECK_LIST or AUTOFIX_LIST):

CHECK_LIST = (
 'weblate_customization.checks.FooCheck',
)

See also

Writing own checks

Custom addons

First place them into your Python module with Weblate customization (see
Creating Python module). Then enabled it is just matter of adding its
fully-qualified path to Python class to appropriate settings
(WEBLATE_ADDONS):

WEBLATE_ADDONS = (
 'weblate_customization.addons.ExamplePreAddon',
)

See also

Writing addon, Executing scripts from addon

Django admin interface

Administration of Weblate is done through standard Django admin interface,
which is available under /admin/ URL. Once logged in as user with
proper privileges, you can access it using the wrench icon in top navigation:

[image: ../_images/admin-wrench.png]
Here you can manage objects stored in the database, such as users, translations
and other settings:

[image: ../_images/admin.png]
In the Reports section you can check the status of your site, tweak
it for Production setup or manage SSH keys to access Accessing repositories.

With all sections below you can manage database objects. The most interesting one is
probably Weblate translations, where you can manage translatable
projects, see Project configuration and Component configuration.

Another section, Weblate languages holds language definitions, see
Language definitions for more details.

Adding project

First you have to add project, which will serve as container for all
components. Usually you create one project for one piece of software or book
(see Project configuration for information on individual parameters):

[image: ../_images/add-project.png]

See also

Project configuration

Bilingual components

Once you have added a project, you can add translation components to it
(see Component configuration for information on individual parameters):

[image: ../_images/add-component.png]

See also

Component configuration,
Bilingual and monolingual formats

Monolingual components

For easier translating of monolingual formats, you should provide a template
file, which contains mapping of message IDs to source language (usually
English) (see Component configuration for information on individual parameters):

[image: ../_images/add-component-mono.png]

See also

Component configuration,
Bilingual and monolingual formats

Getting support for Weblate

Weblate is a copylefted libre software with community support. Subscribers
receive priority support at no extra charge. Prepaid help packages are
available for everyone. You can find more information about current support
offerings at <https://weblate.org/support/>.

Activating support

Since Weblate 3.8 the purchased support packages can be activated in a Weblate
management interface. The activation will enable peridic registration on
Weblate servers. This allows you to directly navigate to your Weblate
installation from subscription management and sends basic telemetry to Weblate
servers.

[image: ../_images/support.png]

Data submitted to the server

The submitted data include:

	URL where Weblate is configured

	Site title

	Weblate version

	Counts of some objects in Weblate database (projects, components, languages, source strings and users)

	Public SSH key

No other data is submitted.

Hint

The activation is fully optional, you can still use support services without it.

Changes

weblate 3.9

Released on October 15th 2019.

	Include Weblate metadata in downloaded files.

	Improved UI for failing checks.

	Indicate missing strings in format checks.

	Separate check for French punctuation spacing.

	Add support for fixing some of quality checks errors.

	Add separate permission to create new projects.

	Extend stats for char counts.

	Improve support for Java style language codes.

	Added new generic check for placeholders.

	Added support for WebExtension JSON placeholders.

	Added support for flat XML format.

	Exteded API with project, component and translation removal and creation.

	Added support for Gitea and Gitee webhooks.

	Added new custom regex based check.

	Allow to configure contributing to shared translation memory.

	Added ZIP download for more translation files.

	Make Xliff standard compliant parsing of maxwidth and font.

	Added new check and fixer for safe HTML markup for translating web applications.

	Add component alert on unsupported configuration.

	Added automatic translation addon to bootstrap translations.

	Extend automatic translation to add suggestions.

	Display addon parameters on overview.

	Sentry is now supported through modern Sentry SDK instead of Raven.

	Changed example settings to be better fit for production environment.

	Added automated backups using Borg backup.

	Split cleanup addon for RESX to avoid unwanted file updates.

	Added advanced search capabilities.

	Allow users to download their own reports.

	Added localization guide to help configuring components.

	Added suport for GitLab merge requests.

	Improved display of repository status.

	Perform automated translation in the background.

weblate 3.8

Released on August 15th 2019.

	Added support for simplified creating of similar components.

	Added support for parsing translation flags from the XML based file formats.

	Log exceptions into Celery log.

	Improve performance of repository scoped addons.

	Improved look of notification e-mails.

	Fixed password reset behavior.

	Improved performance on most of translation pages.

	Fixed listing of languages not known to Weblate.

	Add support for cloning addons to discovered components.

	Add support for replacing file content with uploaded.

	Add support for translating non VCS based content.

	Added OpenGraph widget image to use on social networks.

	Added support for animated screenshots.

	Improved handling of monolingual Xliff files.

	Avoid sending multiple notifications for single event.

	Add support for filtering changes.

	Extended predefined periods for reporting.

	Added support for Azure Repos webhooks.

	New opt-in notifications on pending suggestions or untranslated strings.

	Add one click unsubscribe link to notification e-mails.

	Fixed false positives with Has been translated check.

	New management interface for admins.

	String priority can now be specified using flags.

	Added language management views.

	Add checks for Qt library and Ruby format strings.

	Added configuration to better fit single project installations.

	Notify about new string on source string change on monolingual translations.

	Added separate view for translation memory with search capability.

weblate 3.7.1

Released on June 28th 2019.

	Documentation updates.

	Fixed some requirements constraints.

	Updated language database.

	Localization updates.

	Various user interface tweaks.

	Improved handling of unsupported but discovered translation files.

	More verbosely report missing file format requirements.

weblate 3.7

Released on June 21st 2019.

	Added separate Celery queue for notifications.

	Use consistent look with application for API browsing.

	Include approved stats in the reports.

	Report progress when updating translation component.

	Allow to abort running background component update.

	Extend template language for filename manipulations.

	Use templates for editor link and repository browser URL.

	Indicate max length and current characters count when editing translation.

	Improved handling of abbreviations in unchanged translation check.

	Refreshed landing page for new contributors.

	Add support for configuring msgmerge addon.

	Delay opening SMTP connection when sending notifications.

	Improved error logging.

	Allow custom location in MO generating addon.

	Added addons to cleanup old suggestions or comments.

	Added option to enable horizontal mode in the zen editor.

	Improved import perfomance with many linked components.

	Fixed examples installation in some cases.

	Improved rendering of alerts in changes.

	Added new horizontal stats widget.

	Improved format strings check on plurals.

	Added font management tool.

	New check for rendered text dimensions.

	Added support for subtitle formats.

	Include overall completion stats for languages.

	Added reporting at project and global scope.

	Improved user interface when showing translation status.

	New Weblate logo and color scheme.

	New look of bitmap badges.

weblate 3.6.1

Released on April 26th 2019.

	Improved handling of monolingual Xliff files.

	Fixed digest notifications in some corner cases.

	Fixed addon script error alert.

	Fixed generating MO file for monolingual PO files.

	Fixed display of uninstalled checks.

	Indicate administered projects on project listing.

	Allow update to recover from missing VCS repository.

weblate 3.6

Released on April 20th 2019.

	Add support for downloading user data.

	Addons are now automatically triggered upon installation.

	Improved instructions for resolving merge conflicts.

	Cleanup addon is now compatible with app store metadata translations.

	Configurable language code syntax when adding new translations.

	Warn about using Python 2 with planned termination of support in April 2020.

	Extract special characters from the source string for visual keyboard.

	Extended contributor stats to reflect both source and target counts.

	Admins and consistency addons can now add translations even if disabled for users.

	Fixed description of toggle disabling Language-Team header manipulation.

	Notify users mentioned in comments.

	Removed file format autodetection from component setup.

	Fixed generating MO file for monolingual PO files.

	Added digest notifications.

	Added support for muting component notifications.

	Added notifications for new alerts, whiteboard messages or components.

	Notifications for administered projects can now be configured.

	Improved handling of three letter language codes.

weblate 3.5.1

Released on March 10th 2019.

	Fixed Celery systemd unit example.

	Fixed notifications from http repositories with login.

	Fixed race condition in editing source string for monolingual translations.

	Include output of failed addon execution in the logs.

	Improved validation of choices for adding new language.

	Allow to edit file format in component settings.

	Update installation instructions to prefer Python 3.

	Performance and consistency improvements for loading translations.

	Make Microsoft Terminology service compatible with current zeep releases.

	Localization updates.

weblate 3.5

Released on March 3rd 2019.

	Improved performance of built in translation memory.

	Added interface to manage global translation memory.

	Improved alerting on bad component state.

	Added user interface to manage whiteboard messages.

	Addon commit message now can be configured.

	Reduce number of commits when updating upstream repository.

	Fixed possible metadata loss when moving component between projects.

	Improved navigation in the zen mode.

	Added several new quality checks (Markdown related and URL).

	Added support for app store metadata files.

	Added support for toggling GitHub or Gerrit integration.

	Added check for Kashida letters.

	Added option to squash commits based on authors.

	Improved support for xlsx file format.

	Compatibility with tesseract 4.0.

	Billing addon now removes projects for unpaid billings after 45 days.

weblate 3.4

Released on January 22nd 2019.

	Added support for XLIFF placeholders.

	Celery can now utilize multiple task queues.

	Added support for renaming and moving projects and components.

	Include characters counts in reports.

	Added guided adding of translation components with automatic detection of translation files.

	Customizable merge commit messages for Git.

	Added visual indication of component alerts in navigation.

	Improved performance of loading translation files.

	New addon to squash commits prior to push.

	Improved displaying of translation changes.

	Changed default merge style to rebase and made that configurable.

	Better handle private use subtags in language code.

	Improved performance of fulltext index updates.

	Extended file upload API to support more parameters.

weblate 3.3

Released on November 30th 2018.

	Added support for component and project removal.

	Improved performance for some monolingual translations.

	Added translation component alerts to highlight problems with a translation.

	Expose XLIFF string resname as context when available.

	Added support for XLIFF states.

	Added check for non writable files in DATA_DIR.

	Improved CSV export for changes.

weblate 3.2.2

Released on October 20th 2018.

	Remove no longer needed Babel dependency.

	Updated language definitions.

	Improve documentation for addons, LDAP and Celery.

	Fixed enabling new dos-eol and auto-java-messageformat flags.

	Fixed running setup.py test from PyPI package.

	Improved plurals handling.

	Fixed translation upload API failure in some corner cases.

	Fixed updating Git configuration in case it was changed manually.

weblate 3.2.1

Released on October 10th 2018.

	Document dependency on backports.csv on Python 2.7.

	Fix running tests under root.

	Improved error handling in gitexport module.

	Fixed progress reporting for newly added languages.

	Correctly report Celery worker errors to Sentry.

	Fixed creating new translations with Qt Linguist.

	Fixed occasional fulltext index update failures.

	Improved validation when creating new components.

	Added support for cleanup of old suggestions.

weblate 3.2

Released on October 6th 2018.

	Add install_addon management command for automated addon installation.

	Allow more fine grained ratelimit settings.

	Added support for export and import of Excel files.

	Improve component cleanup in case of multiple component discovery addons.

	Rewritten Microsoft Terminology machine translation backend.

	Weblate now uses Celery to offload some processing.

	Improved search capabilities and added regular expression search.

	Added support for Youdao Zhiyun API machine translation.

	Added support for Baidu API machine translation.

	Integrated maintenance and cleanup tasks using Celery.

	Improved performance of loading translations by almost 25%.

	Removed support for merging headers on upload.

	Removed support for custom commit messages.

	Configurable editing mode (zen/full).

	Added support for error reporting to Sentry.

	Added support for automated daily update of repositories.

	Added support for creating projects and components by users.

	Built in translation memory now automatically stores translations done.

	Users and projects can import their existing translation memories.

	Better management of related strings for screenshots.

	Added support for checking Java MessageFormat.

See 3.2 milestone on GitHub [https://github.com/WeblateOrg/weblate/milestone/36?closed=1]
for detailed list of addressed issues.

weblate 3.1.1

Released on July 27th 2018.

	Fix testsuite failure on some setup.

weblate 3.1

Released on July 27th 2018.

	Upgrades from older version than 3.0.1 are not supported.

	Allow to override default commit messages from settings.

	Improve webhooks compatibility with self hosted environments.

	Added support for Amazon Translate.

	Compatibility with Django 2.1.

	Django system checks are now used to diagnose problems with installation.

	Removed support for soon shutdown libravatar service.

	New addon to mark unchanged translations as needing edit.

	Add support for jumping to specific location while translating.

	Downloaded translations can now be customized.

	Improved calculation of string similarity in translation memory matches.

	Added support by signing Git commits by GnuPG.

weblate 3.0.1

Released on June 10th 2018.

	Fixed possible migration issue from 2.20.

	Localization updates.

	Removed obsolete hook examples.

	Improved caching documentation.

	Fixed displaying of admin documentation.

	Improved handling of long language names.

weblate 3.0

Released on June 1st 2018.

	Rewritten access control.

	Several code cleanups that lead to moved and renamed modules.

	New addon for automatic component discovery.

	The import_project management command has now slightly different parameters.

	Added basic support for Windows RC files.

	New addon to store contributor names in PO file headers.

	The per component hook scripts are removed, use addons instead.

	Add support for collecting contributor agreements.

	Access control changes are now tracked in history.

	New addon to ensure all components in a project have same translations.

	Support for more variables in commit message templates.

	Add support for providing additional textual context.

weblate 2.20

Released on April 4th 2018.

	Improved speed of cloning subversion repositories.

	Changed repository locking to use third party library.

	Added support for downloading only strings needing action.

	Added support for searching in several languages at once.

	New addon to configure Gettext output wrapping.

	New addon to configure JSON formatting.

	Added support for authentication in API using RFC 6750 compatible Bearer authentication.

	Added support for automatic translation using machine translation services.

	Added support for HTML markup in whiteboard messages.

	Added support for mass changing state of strings.

	Translate-toolkit at least 2.3.0 is now required, older versions are no longer supported.

	Added built in translation memory.

	Added componentlists overview to dashboard and per component list overview pages.

	Added support for DeepL machine translation service.

	Machine translation results are now cached inside Weblate.

	Added support for reordering commited changes.

weblate 2.19.1

Released on February 20th 2018.

	Fixed migration issue on upgrade from 2.18.

	Improved file upload API validation.

weblate 2.19

Released on February 15th 2018.

	Fixed imports across some file formats.

	Display human friendly browser information in audit log.

	Added TMX exporter for files.

	Various performance improvements for loading translation files.

	Added option to disable access management in Weblate in favor of Django one.

	Improved glossary lookup speed for large strings.

	Compatibility with django_auth_ldap 1.3.0.

	Configuration errors are now stored and reported persistently.

	Honor ignore flags in whitespace autofixer.

	Improved compatibility with some Subversion setups.

	Improved built in machine translation service.

	Added support for SAP Translation Hub service.

	Added support for Microsoft Terminology service.

	Removed support for advertisement in notification mails.

	Improved translation progress reporting at language level.

	Improved support for different plural formulas.

	Added support for Subversion repositories not using stdlayout.

	Added addons to customize translation workflows.

weblate 2.18

Released on December 15th 2017.

	Extended contributor stats.

	Improved configuration of special characters virtual keyboard.

	Added support for DTD file format.

	Changed keyboard shortcuts to less likely collide with browser/system ones.

	Improved support for approved flag in XLIFF files.

	Added support for not wrapping long strings in Gettext po files.

	Added button to copy permalink for current translation.

	Dropped support for Django 1.10 and added support for Django 2.0.

	Removed locking of translations while translating.

	Added support for adding new strings to monolingual translations.

	Added support for translation workflows with dedicated reviewers.

weblate 2.17.1

Released on October 13th 2017.

	Fixed running testsuite in some specific situations.

	Locales updates.

weblate 2.17

Released on October 13th 2017.

	Weblate by default does shallow Git clones now.

	Improved performance when updating large translation files.

	Added support for blocking certain e-mails from registration.

	Users can now delete their own comments.

	Added preview step to search and replace feature.

	Client side persistence of settings in search and upload forms.

	Extended search capabilities.

	More fine grained per project ACL configuration.

	Default value of BASE_DIR has been changed.

	Added two step account removal to prevent accidental removal.

	Project access control settings is now editable.

	Added optional spam protection for suggestions using Akismet.

weblate 2.16

Released on August 11th 2017.

	Various performance improvements.

	Added support for nested JSON format.

	Added support for WebExtension JSON format.

	Fixed git exporter authentication.

	Improved CSV import in certain situations.

	Improved look of Other translations widget.

	The max-length checks is now enforcing length of text in form.

	Make the commit_pending age configurable per component.

	Various user interface cleanups.

	Fixed component/project/sitewide search for translations.

weblate 2.15

Released on June 30th 2017.

	Show more related translations in other translations.

	Add option to see translations of current string to other languages.

	Use 4 plural forms for Lithuanian by default.

	Fixed upload for monolingual files of different format.

	Improved error messages on failed authentication.

	Keep page state when removing word from glossary.

	Added direct link to edit secondary language translation.

	Added Perl format quality check.

	Added support for rejecting reused passwords.

	Extended toolbar for editing RTL languages.

weblate 2.14.1

Released on May 24th 2017.

	Fixed possible error when paginating search results.

	Fixed migrations from older versions in some corner cases.

	Fixed possible CSRF on project watch and unwatch.

	The password reset no longer authenticates user.

	Fixed possible captcha bypass on forgotten password.

weblate 2.14

Released on May 17th 2017.

	Add glossary entries using AJAX.

	The logout now uses POST to avoid CSRF.

	The API key token reset now uses POST to avoid CSRF.

	Weblate sets Content-Security-Policy by default.

	The local editor URL is validated to avoid self-XSS.

	The password is now validated against common flaws by default.

	Notify users about important activity with their account such as password change.

	The CSV exports now escape potential formulas.

	Various minor improvements in security.

	The authentication attempts are now rate limited.

	Suggestion content is stored in the history.

	Store important account activity in audit log.

	Ask for password confirmation when removing account or adding new associations.

	Show time when suggestion has been made.

	There is new quality check for trailing semicolon.

	Ensure that search links can be shared.

	Included source string information and screenshots in the API.

	Allow to overwrite translations through API upload.

weblate 2.13.1

Released on Apr 12th 2017.

	Fixed listing of managed projects in profile.

	Fixed migration issue where some permissions were missing.

	Fixed listing of current file format in translation download.

	Return HTTP 404 when trying to access project where user lacks privileges.

weblate 2.13

Released on Apr 12th 2017.

	Fixed quality checks on translation templates.

	Added quality check to trigger on losing translation.

	Add option to view pending suggestions from user.

	Add option to automatically build component lists.

	Default dashboard for unauthenticated users can be configured.

	Add option to browse 25 random strings for review.

	History now indicates string change.

	Better error reporting when adding new translation.

	Added per language search within project.

	Group ACLs can now be limited to certain permissions.

	The per project ALCs are now implemented using Group ACL.

	Added more fine grained privileges control.

	Various minor UI improvements.

weblate 2.12

Released on Mar 3rd 2017.

	Improved admin interface for groups.

	Added support for Yandex Translate API.

	Improved speed of sitewide search.

	Added project and component wide search.

	Added project and component wide search and replace.

	Improved rendering of inconsistent translations.

	Added support for opening source files in local editor.

	Added support for configuring visual keyboard with special characters.

	Improved screenshot management with OCR support for matching source strings.

	Default commit message now includes translation information and URL.

	Added support for Joomla translation format.

	Improved reliability of import across file formats.

weblate 2.11

Released on Jan 31st 2017.

	Include language detailed information on language page.

	Mercurial backend improvements.

	Added option to specify translation component priority.

	More consistent usage of Group ACL even with less used permissions.

	Added WL_BRANCH variable to hook scripts.

	Improved developer documentation.

	Better compatibility with various Git versions in Git exporter addon.

	Included per project and component stats.

	Added language code mapping for better support of Microsoft Translate API.

	Moved fulltext cleanup to background job to make translation removal faster.

	Fixed displaying of plural source for languages with single plural form.

	Improved error handling in import_project.

	Various performance improvements.

weblate 2.10.1

Released on Jan 20th 2017.

	Do not leak account existence on password reset form (CVE-2017-5537).

weblate 2.10

Released on Dec 15th 2016.

	Added quality check to check whether plurals are translated differently.

	Fixed GitHub hooks for repositories with authentication.

	Added optional Git exporter module.

	Support for Microsoft Cognitive Services Translator API.

	Simplified project and component user interface.

	Added automatic fix to remove control characters.

	Added per language overview to project.

	Added support for CSV export.

	Added CSV download for stats.

	Added matrix view for quick overview of all translations

	Added basic API for changes and strings.

	Added support for Apertium APy server for machine translations.

weblate 2.9

Released on Nov 4th 2016.

	Extended parameters for createadmin management command.

	Extended import_json to be able to handle with existing components.

	Added support for YAML files.

	Project owners can now configure translation component and project details.

	Use “Watched” instead of “Subscribed” projects.

	Projects can be watched directly from project page.

	Added multi language status widget.

	Highlight secondary language if not showing source.

	Record suggestion deletion in history.

	Improved UX of languages selection in profile.

	Fixed showing whiteboard messages for component.

	Keep preferences tab selected after saving.

	Show source string comment more prominently.

	Automatically install Gettext PO merge driver for Git repositories.

	Added search and replace feature.

	Added support for uploading visual context (screenshots) for translations.

weblate 2.8

Released on Aug 31st 2016.

	Documentation improvements.

	Translations.

	Updated bundled javascript libraries.

	Added list_translators management command.

	Django 1.8 is no longer supported.

	Fixed compatibility with Django 1.10.

	Added Subversion support.

	Separated XML validity check from XML mismatched tags.

	Fixed API to honor HIDE_REPO_CREDENTIALS settings.

	Show source change in zen mode.

	Alt+PageUp/PageDown/Home/End now works in zen mode as well.

	Add tooltip showing exact time of changes.

	Add option to select filters and search from translation page.

	Added UI for translation removal.

	Improved behavior when inserting placeables.

	Fixed auto locking issues in zen mode.

weblate 2.7

Released on Jul 10th 2016.

	Removed Google web translate machine translation.

	Improved commit message when adding translation.

	Fixed Google Translate API for Hebrew language.

	Compatibility with Mercurial 3.8.

	Added import_json management command.

	Correct ordering of listed translations.

	Show full suggestion text, not only a diff.

	Extend API (detailed repository status, statistics, …).

	Testsuite no longer requires network access to test repositories.

weblate 2.6

Released on Apr 28th 2016.

	Fixed validation of components with language filter.

	Improved support for XLIFF files.

	Fixed machine translation for non English sources.

	Added REST API.

	Django 1.10 compatibility.

	Added categories to whiteboard messages.

weblate 2.5

Released on Mar 10th 2016.

	Fixed automatic translation for project owners.

	Improved performance of commit and push operations.

	New management command to add suggestions from command line.

	Added support for merging comments on file upload.

	Added support for some GNU extensions to C printf format.

	Documentation improvements.

	Added support for generating translator credits.

	Added support for generating contributor stats.

	Site wide search can search only in one language.

	Improve quality checks for Armenian.

	Support for starting translation components without existing translations.

	Support for adding new translations in Qt TS.

	Improved support for translating PHP files.

	Performance improvements for quality checks.

	Fixed sitewide search for failing checks.

	Added option to specify source language.

	Improved support for XLIFF files.

	Extended list of options for import_project.

	Improved targeting for whiteboard messages.

	Support for automatic translation across projects.

	Optimized fulltext search index.

	Added management command for auto translation.

	Added placeables highlighting.

	Added keyboard shortcuts for placeables, checks and machine translations.

	Improved translation locking.

	Added quality check for AngularJS interpolation.

	Added extensive group based ACLs.

	Clarified terminology on strings needing review (formerly fuzzy).

	Clarified terminology on strings needing action and not translated strings.

	Support for Python 3.

	Dropped support for Django 1.7.

	Dropped dependency on msginit for creating new Gettext po files.

	Added configurable dashboard views.

	Improved notifications on parse errors.

	Added option to import components with duplicate name to import_project.

	Improved support for translating PHP files

	Added XLIFF export for dictionary.

	Added XLIFF and Gettext PO export for all translations.

	Documentation improvements.

	Added support for configurable automatic group assignments.

	Improved adding of new translations.

weblate 2.4

Released on Sep 20th 2015.

	Improved support for PHP files.

	Ability to add ACL to anonymous user.

	Improved configurability of import_project command.

	Added CSV dump of history.

	Avoid copy/paste errors with whitespace characters.

	Added support for Bitbucket webhooks.

	Tigher control on fuzzy strings on translation upload.

	Several URLs have changed, you might have to update your bookmarks.

	Hook scripts are executed with VCS root as current directory.

	Hook scripts are executed with environment variables describing current component.

	Add management command to optimize fulltext index.

	Added support for error reporting to Rollbar.

	Projects now can have multiple owners.

	Project owners can manage themselves.

	Added support for javascript-format used in Gettext PO.

	Support for adding new translations in XLIFF.

	Improved file format autodetection.

	Extended keyboard shortcuts.

	Improved dictionary matching for several languages.

	Improved layout of most of pages.

	Support for adding words to dictionary while translating.

	Added support for filtering languages to be managed by Weblate.

	Added support for translating and importing CSV files.

	Rewritten handling of static files.

	Direct login/registration links to third party service if that’s the only one.

	Commit pending changes on account removal.

	Add management command to change site name.

	Add option to configure default committer.

	Add hook after adding new translation.

	Add option to specify multiple files to add to commit.

weblate 2.3

Released on May 22nd 2015.

	Dropped support for Django 1.6 and South migrations.

	Support for adding new translations when using Java Property files

	Allow to accept suggestion without editing.

	Improved support for Google OAuth2.

	Added support for Microsoft .resx files.

	Tuned default robots.txt to disallow big crawling of translations.

	Simplified workflow for accepting suggestions.

	Added project owners who always receive important notifications.

	Allow to disable editing of monolingual template.

	More detailed repository status view.

	Direct link for editing template when changing translation.

	Allow to add more permissions to project owners.

	Allow to show secondary language in zen mode.

	Support for hiding source string in favor of secondary language.

weblate 2.2

Released on Feb 19th 2015.

	Performance improvements.

	Fulltext search on location and comments fields.

	New SVG/javascript based activity charts.

	Support for Django 1.8.

	Support for deleting comments.

	Added own SVG badge.

	Added support for Google Analytics.

	Improved handling of translation filenames.

	Added support for monolingual JSON translations.

	Record component locking in a history.

	Support for editing source (template) language for monolingual translations.

	Added basic support for Gerrit.

weblate 2.1

Released on Dec 5th 2014.

	Added support for Mercurial repositories.

	Replaced Glyphicon font by Awesome.

	Added icons for social authentication services.

	Better consistency of button colors and icons.

	Documentation improvements.

	Various bugfixes.

	Automatic hiding of columns in translation listing for small screens.

	Changed configuration of filesystem paths.

	Improved SSH keys handling and storage.

	Improved repository locking.

	Customizable quality checks per source string.

	Allow to hide completed translations from dashboard.

weblate 2.0

Released on Nov 6th 2014.

	New responsive UI using Bootstrap.

	Rewritten VCS backend.

	Documentation improvements.

	Added whiteboard for site wide messages.

	Configurable strings priority.

	Added support for JSON file format.

	Fixed generating mo files in certain cases.

	Added support for GitLab notifications.

	Added support for disabling translation suggestions.

	Django 1.7 support.

	ACL projects now have user management.

	Extended search possibilities.

	Give more hints to translators about plurals.

	Fixed Git repository locking.

	Compatibility with older Git versions.

	Improved ACL support.

	Added buttons for per language quotes and other special characters.

	Support for exporting stats as JSONP.

weblate 1.9

Released on May 6th 2014.

	Django 1.6 compatibility.

	No longer maintained compatibility with Django 1.4.

	Management commands for locking/unlocking translations.

	Improved support for Qt TS files.

	Users can now delete their account.

	Avatars can be disabled.

	Merged first and last name attributes.

	Avatars are now fetched and cached server side.

	Added support for shields.io badge.

weblate 1.8

Released on November 7th 2013.

	Please check manual for upgrade instructions.

	Nicer listing of project summary.

	Better visible options for sharing.

	More control over anonymous users privileges.

	Supports login using third party services, check manual for more details.

	Users can login by e-mail instead of username.

	Documentation improvements.

	Improved source strings review.

	Searching across all strings.

	Better tracking of source strings.

	Captcha protection for registration.

weblate 1.7

Released on October 7th 2013.

	Please check manual for upgrade instructions.

	Support for checking Python brace format string.

	Per component customization of quality checks.

	Detailed per translation stats.

	Changed way of linking suggestions, checks and comments to strings.

	Users can now add text to commit message.

	Support for subscribing on new language requests.

	Support for adding new translations.

	Widgets and charts are now rendered using Pillow instead of Pango + Cairo.

	Add status badge widget.

	Dropped invalid text direction check.

	Changes in dictionary are now logged in history.

	Performance improvements for translating view.

weblate 1.6

Released on July 25th 2013.

	Nicer error handling on registration.

	Browsing of changes.

	Fixed sorting of machine translation suggestions.

	Improved support for MyMemory machine translation.

	Added support for Amagama machine translation.

	Various optimizations on frequently used pages.

	Highlights searched phrase in search results.

	Support for automatic fixups while saving the message.

	Tracking of translation history and option to revert it.

	Added support for Google Translate API.

	Added support for managing SSH host keys.

	Various form validation improvements.

	Various quality checks improvements.

	Performance improvements for import.

	Added support for voting on suggestions.

	Cleanup of admin interface.

weblate 1.5

Released on April 16th 2013.

	Please check manual for upgrade instructions.

	Added public user pages.

	Better naming of plural forms.

	Added support for TBX export of glossary.

	Added support for Bitbucket notifications.

	Activity charts are now available for each translation, language or user.

	Extended options of import_project admin command.

	Compatible with Django 1.5.

	Avatars are now shown using libravatar.

	Added possibility to pretty print JSON export.

	Various performance improvements.

	Indicate failing checks or fuzzy strings in progress bars for projects or languages as well.

	Added support for custom pre-commit hooks and committing additional files.

	Rewritten search for better performance and user experience.

	New interface for machine translations.

	Added support for monolingual po files.

	Extend amount of cached metadata to improve speed of various searches.

	Now shows word counts as well.

weblate 1.4

Released on January 23rd 2013.

	Fixed deleting of checks/comments on string deletion.

	Added option to disable automatic propagation of translations.

	Added option to subscribe for merge failures.

	Correctly import on projects which needs custom ttkit loader.

	Added sitemaps to allow easier access by crawlers.

	Provide direct links to string in notification e-mails or feeds.

	Various improvements to admin interface.

	Provide hints for production setup in admin interface.

	Added per language widgets and engage page.

	Improved translation locking handling.

	Show code snippets for widgets in more variants.

	Indicate failing checks or fuzzy strings in progress bars.

	More options for formatting commit message.

	Fixed error handling with machine translation services.

	Improved automatic translation locking behaviour.

	Support for showing changes from previous source string.

	Added support for substring search.

	Various quality checks improvements.

	Support for per project ACL.

	Basic string tests coverage.

weblate 1.3

Released on November 16th 2012.

	Compatibility with PostgreSQL database backend.

	Removes languages removed in upstream git repository.

	Improved quality checks processing.

	Added new checks (BB code, XML markup and newlines).

	Support for optional rebasing instead of merge.

	Possibility to relocate Weblate (eg. to run it under /weblate path).

	Support for manually choosing file type in case autodetection fails.

	Better support for Android resources.

	Support for generating SSH key from web interface.

	More visible data exports.

	New buttons to enter some special characters.

	Support for exporting dictionary.

	Support for locking down whole Weblate installation.

	Checks for source strings and support for source strings review.

	Support for user comments for both translations and source strings.

	Better changes log tracking.

	Changes can now be monitored using RSS.

	Improved support for RTL languages.

weblate 1.2

Released on August 14th 2012.

	Weblate now uses South for database migration, please check upgrade instructions if you are upgrading.

	Fixed minor issues with linked git repos.

	New introduction page for engaging people with translating using Weblate.

	Added widgets which can be used for promoting translation projects.

	Added option to reset repository to origin (for privileged users).

	Project or component can now be locked for translations.

	Possibility to disable some translations.

	Configurable options for adding new translations.

	Configuration of git commits per project.

	Simple antispam protection.

	Better layout of main page.

	Support for automatically pushing changes on every commit.

	Support for e-mail notifications of translators.

	List only used languages in preferences.

	Improved handling of not known languages when importing project.

	Support for locking translation by translator.

	Optionally maintain Language-Team header in po file.

	Include some statistics in about page.

	Supports (and requires) django-registration 0.8.

	Caching of counted strings with failing checks.

	Checking of requirements during setup.

	Documentation improvements.

weblate 1.1

Released on July 4th 2012.

	Improved several translations.

	Better validation while creating component.

	Added support for shared git repositories across components.

	Do not necessary commit on every attempt to pull remote repo.

	Added support for offloading indexing.

weblate 1.0

Released on May 10th 2012.

	Improved validation while adding/saving component.

	Experimental support for Android component files (needs patched ttkit).

	Updates from hooks are run in background.

	Improved installation instructions.

	Improved navigation in dictionary.

weblate 0.9

Released on April 18th 2012.

	Fixed import of unknown languages.

	Improved listing of nearby messages.

	Improved several checks.

	Documentation updates.

	Added definition for several more languages.

	Various code cleanups.

	Documentation improvements.

	Changed file layout.

	Update helper scripts to Django 1.4.

	Improved navigation while translating.

	Better handling of po file renames.

	Better validation while creating component.

	Integrated full setup into syncdb.

	Added list of recent changes to all translation pages.

	Check for not translated strings ignores format string only messages.

weblate 0.8

Released on April 3rd 2012.

	Replaced own full text search with Whoosh.

	Various fixes and improvements to checks.

	New command updatechecks.

	Lot of translation updates.

	Added dictionary for storing most frequently used terms.

	Added /admin/report/ for overview of repositories status.

	Machine translation services no longer block page loading.

	Management interface now contains also useful actions to update data.

	Records log of changes made by users.

	Ability to postpone commit to Git to generate less commits from single user.

	Possibility to browse failing checks.

	Automatic translation using already translated strings.

	New about page showing used versions.

	Django 1.4 compatibility.

	Ability to push changes to remote repo from web interface.

	Added review of translations done by others.

weblate 0.7

Released on February 16th 2012.

	Direct support for GitHub notifications.

	Added support for cleaning up orphaned checks and translations.

	Displays nearby strings while translating.

	Displays similar strings while translating.

	Improved searching for string.

weblate 0.6

Released on February 14th 2012.

	Added various checks for translated messages.

	Tunable access control.

	Improved handling of translations with new lines.

	Added client side sorting of tables.

	Please check upgrading instructions in case you are upgrading.

weblate 0.5

Released on February 12th 2012.

	
	Support for machine translation using following online services:

	
	Apertium

	Microsoft Translator

	MyMemory

	Several new translations.

	Improved merging of upstream changes.

	Better handle concurrent git pull and translation.

	Propagating works for fuzzy changes as well.

	Propagating works also for file upload.

	Fixed file downloads while using FastCGI (and possibly others).

weblate 0.4

Released on February 8th 2012.

	Added usage guide to documentation.

	Fixed API hooks not to require CSRF protection.

weblate 0.3

Released on February 8th 2012.

	Better display of source for plural translations.

	New documentation in Sphinx format.

	Displays secondary languages while translating.

	Improved error page to give list of existing projects.

	New per language stats.

weblate 0.2

Released on February 7th 2012.

	Improved validation of several forms.

	Warn users on profile upgrade.

	Remember URL for login.

	Naming of text areas while entering plural forms.

	Automatic expanding of translation area.

weblate 0.1

Released on February 6th 2012.

	Initial release.

About Weblate

Project goals

Web-based continuous localization tool with tight Version control integration supporting a wide range of
Supported file formats, making it easy for translators to contribute.

Project name

“Weblate” is a portmanteau of the words “web” and “translate”.

Project website

The landing page is <https://weblate.org/> and a cloud hosted service at
<https://hosted.weblate.org/>. This documentation can be found on
<https://docs.weblate.org/>.

Leadership

This project is maintained by Michal Čihař <michal@cihar.com>.

Authors

Weblate was started by Michal Čihař <michal@cihar.com>. Since its inception in
2012, thousands of people have contributed.

Contributing

There are dozens of ways to contribute in Weblate. Any help is welcomed, be it
coding, graphics design, documentation or sponsorship.

Code and development

Weblate is developed on GitHub [https://github.com/WeblateOrg/weblate]. You
are welcome to fork the code and open pull requests. Patches in any other form
are welcome too.

See also

Check out Internals to see how Weblate looks from inside.

Coding standard

The code should follow PEP-8 coding guidelines. It is recommended to format new
code using black code formatter (though existing code is yet formatted).

To check the code quality, you can use flake8, the recommended
plugins are listed in requirements-test.txt.

You can execute all coding style checks with the script ci/run-lint.

Security by Design Principles

Any code for Weblate should be writted with Security by Design Principles [https://www.owasp.org/index.php/Security_by_Design_Principles] in
mind.

Testsuite

Testsuites exist for most of the current code, increase coverage by adding testcases for any new
functionality, and verify that it works. Current test results can be found on
Travis [https://travis-ci.org/WeblateOrg/weblate] and coverage is reported on Codecov [https://codecov.io/github/WeblateOrg/weblate].

To run a testsuite locally, use:

DJANGO_SETTINGS_MODULE=weblate.settings_test ./manage.py test

You can also specify individual tests to run:

DJANGO_SETTINGS_MODULE=weblate.settings_test ./manage.py test weblate.gitexport

Hint

The tests can also be executed inside developer docker container, see Running Weblate locally in Docker.

See also

See Testing in Django [https://docs.djangoproject.com/en/stable/topics/testing/] for more info on running and
writing tests for Django.

Reporting issues

Our issue tracker [https://github.com/WeblateOrg/weblate/issues] is hosted at GitHub:

Feel welcome to report any issues with, or suggest improvement of Weblate there.
If what you have found is a security issue in Weblate, please consult the “Security
issues” section below.

Security issues

In order to give the community time to respond and upgrade your are strongly urged to
report all security issues privately. HackerOne is used to handle
security issues, and can be reported directly at HackerOne [https://hackerone.com/weblate].

Alternatively, report to security@weblate.org, which ends up on
HackerOne as well.

If you don’t want to use HackerOne, for whatever reason, you can send the report
by e-mail to michal@cihar.com. You can choose to encrypt it using this PGP key
3CB 1DF1 EF12 CF2A C0EE 5A32 9C27 B313 42B7 511D.

Note

Weblate depends on third party components for many things. In case
you find a vulnerability affecting one of those components in general,
please report it directly to the respective project.

Some of these are:

	Django [https://docs.djangoproject.com/en/stable/internals/security/]

	Django REST framework [https://www.django-rest-framework.org/#security]

	Python Social Auth [https://github.com/python-social-auth]

Starting with our codebase

If looking for some bugs to familiarize yourself with the Weblate
codebase, look for ones labelled good first issue [https://github.com/WeblateOrg/weblate/labels/good%20first%20issue].

Directory structure

Quick overview of directory structure of Weblate main repository:

	doc

	Source code for this documentation, built using Sphinx [https://www.sphinx-doc.org/].

	dev-docker

	Docker code to run development server, see Running Weblate locally in Docker.

	weblate

	Source code of Weblate as a Django [https://www.djangoproject.com/] application, see Internals.

	weblate/static

	Client files (CSS, Javascript and images).

Running Weblate locally in Docker

If you have Docker and docker-compose installed, you can spin up the development
environment simply by running:

./rundev.sh

It will create development Docker image and start it. Weblate is running on
<http://127.0.0.1:8080/> and you can login with admin user and admin
password. The new installation is empty, so you might want to continue with
Adding translation projects and components.

The Dockerfile and docker-compose.yml for this are located in
dev-docker directory.

The script also accepts some parameters, to execute tests run it with test
parameter and then specify any test [https://docs.djangoproject.com/en/stable/ref/django-admin/#django-admin-test] parameters, for example:

./rundev.sh test --failfast weblate.trans

To stop the background containers run:

./rundev.sh stop

Running the script without args will recreate Docker container and restart it.

Note

This is not suitable setup for production, it includes several hacks which
are insecure, but make development easier.

Translating

Weblate is being translated [https://hosted.weblate.org/] using Weblate itself, feel
free to take part in the effort of making Weblate available in as many human languages
as possible.

Funding Weblate development

You can fund further Weblate development on the donate page [https://weblate.org/donate/]. Funds collected
there are used to fund gratis hosting for libre software projects, and further
development of Weblate. Please check the the donate page for details, such
as funding goals and rewards you can get by being a funder.

Backers who have funded Weblate

List of Weblate supporters:

	Yashiro Ccs

	Cheng-Chia Tseng

	Timon Reinhard

	Cassidy James [https://cassidyjames.com/]

	Loic Dachary

	Marozed

Do you want to be in the list? Please see options on the Donate to Weblate [https://weblate.org/donate/].

Releasing Weblate

Release checklist:

	Set final version by ./scripts/prepare-release.

	Make sure screenshots are up to date make -C docs update-screenshots

	Create a release ./scripts/create-release --tag

	Enable building version docs on Read the Docs

	Update Docker image

	Close GitHub milestone

	Once the Docker image is tested, add a tag and push it

Developer’s Certificate of Origin

In contributing to the Weblate project, please
certify to the following:

Weblate Developer’s Certificate of Origin. Version 1.0

By making a contribution to this project, I certify that:

	The contribution was created in whole or in part by me and I have the
right to submit it under the license of “GNU General Public License or
any later version” (“GPLv3-or-later”); or

	The contribution is based upon previous work that, to the best of my
knowledge, is covered under an appropriate open source license and I have
the right under that license to submit that work with modifications,
whether created in whole or in part by me, under GPLv3-or-later; or

	The contribution was provided directly to me by some other person who
certified (a) or (b) and I have not modified it.

	I understand and agree that this project and the contribution are public
and that a record of the contribution (including all metadata and
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
Weblate’s policies and the requirements of the GPLv2-or-later where
they are relevant.

	I am granting this work to this project under the terms of the
GPLv3-or-later.

https://www.gnu.org/licenses/gpl-3.0.html

Please confirm your affirmation of the above by adding the following
line to your patch:

Signed-off-by: Jane Developer <jane@example.org>

using your real name (sorry, no pseudonyms or anonymous contributions).

If you are a developer authorized to contribute to Weblate on
behalf of your employer, please use your corporate e-mail address in the
“Signed-off-by” tag. If not, please use a personal e-mail address.

Debugging Weblate

Weblate is just a software and it can contain bugs. The bugs can behave as
application crashes or as a misbehavior. You are welcome to collect information
on the issue and submit it to our issue tracker [https://github.com/WeblateOrg/weblate/issues].

Analyzing application crashes

In case application crashes, it is useful to collect as much information about
the crash as possible. The easiest way to achieve this is by using third party
services which can collect such information automatically. You can find
information how to set this up in Collecting error reports.

Silent failures

Lot of tasks are offloaded to Celery for background processing. In case of
failure those are not shown in the user interface, but appear in the Celery
logs. Configuring Collecting error reports will help you to notice such
failures easier.

Performance issues

In case Weblate preforms badly in some situation, please collect relevant logs
showing the issue and which might help figuring out where our code might be
improved.

In case some requests are taking too long without any indication, you might
want to install dogslow <https://pypi.org/project/dogslow/> together with
Collecting error reports and get detailed traceback of problematic places in
the error collection tool.

Internals

Note

This chapter will give you basic overview of Weblate internals.

Weblate derives most of its code structure from, and is based on Django [https://www.djangoproject.com/].
Familiarize yourself with
Django at a glance [https://docs.djangoproject.com/en/stable/intro/overview/] to get a basic understanding of its file structure.

Modules

Weblate consists of several Django applications (some optional, see
Optional Weblate modules):

accounts

User account, profiles and notifications.

addons

Addons to tweak Weblate behavior, see Addons.

api

API based on Django REST framework [https://www.django-rest-framework.org/].

auth

Authentication and permissions.

billing

The optional Billing module.

formats

File format abstraction layer based on translate-toolkit.

gitexport

The optional Git exporter module.

lang

Module defining language and plural models.

langdata

Language data definitions.

legal

The optional Legal module.

machinery

Integration of machine translation services.

memory

Built in translation memory, see Translation Memory.

permissions

Obsolete.

screenshots

Screenshots management and OCR module.

trans

Main module handling translations.

utils

Various helper utilities.

vcs

Version control system abstraction.

wladmin

Django admin interface customization.

License

Copyright (C) 2012 - 2019 Michal Čihař <michal@cihar.com>

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program. If not, see <https://www.gnu.org/licenses/>.

Legal documents

Note

Herein you will find various legal information you might need to
operate Weblate in certain legal jurisdictions. It is provided as a means of guidance,
without any warranty of accuracy or correctness. It is ultimately your
responsibility to ensure that your use of Weblate complies with all applicable
laws and regulations.

ITAR and other export controls

Weblate can be run within your own datacenter or virtual private cloud. As
such, it can be used to store ITAR or other export-controlled information,
however, end users are responsible for ensuring such compliance.

The Hosted Weblate service has not been audited for compliance with ITAR or
other export controls, and does not currently offer the ability to restrict
translations access by country.

US encryption controls

Weblate does not contain any cryptographic code, but might be subject
export controls as it uses third party components utilizing cryptography
for authentication, data-integrity and -confidentiality.

Most likely Weblate would be classified as ECCN 5D002 or 5D992 and, as
publicly available libre software, it should not be subject to EAR (see
Encryption items NOT Subject to the EAR [https://www.bis.doc.gov/index.php/policy-guidance/encryption/1-encryption-items-not-subject-to-the-ear].

Software components used by Weblate (listing only components related to
cryptographic function):

	Python [https://www.python.org/]

	See https://wiki.python.org/moin/PythonSoftwareFoundationLicenseFaq#Is_Python_subject_to_export_laws.3F

	GnuPG [https://www.gnupg.org/]

	Optionally used by Weblate

	Git [https://git-scm.com/]

	Optionally used by Weblate

	curl [https://curl.haxx.se/]

	Used by Git

	OpenSSL [https://www.openssl.org/]

	Used by Python and cURL

The strength of encryption keys depend on the configuration of Weblate and
the third party components it interacts with, but in any decent setup it will
include all export restricted cryptographic functions:

	In excess of 56 bits for a symmetric algorithm

	Factorisation of integers in excess of 512 bits for an asymmetric algorithm

	Computation of discrete logarithms in a multiplicative group of a finite field of size greater than 512 bits for an asymmetric algorithm

	Discrete logarithms in a group different than above in excess of 112 bits for an asymmetric algorithm

Weblate doesn’t have any cryptographic activation feature, but it can be
configured in a way where no cryptography code would be involved. The
cryptographic features include:

	Accessing remote servers using secure protocols (HTTPS)

	Generating signatures for code commits (PGP)

See also

Export Controls (EAR) on Open Source Software [https://www.magicsplat.com/blog/ear/]

 HTTP Routing Table

 / |
 /api |
 /exports |
 /hooks

 		 	

 		
 /	

 	
 	
 ANY /	

 		 	

 		
 /api	

 	
 	
 GET /api/	

 	
 	
 GET /api/changes/	

 	
 	
 GET /api/changes/(int:pk)/	

 	
 	
 GET /api/components/	

 	
 	
 GET /api/components/(string:project)/(string:component)/	

 	
 	
 GET /api/components/(string:project)/(string:component)/changes/	

 	
 	
 GET /api/components/(string:project)/(string:component)/lock/	

 	
 	
 GET /api/components/(string:project)/(string:component)/monolingual_base/	

 	
 	
 GET /api/components/(string:project)/(string:component)/new_template/	

 	
 	
 GET /api/components/(string:project)/(string:component)/repository/	

 	
 	
 GET /api/components/(string:project)/(string:component)/statistics/	

 	
 	
 GET /api/components/(string:project)/(string:component)/translations/	

 	
 	
 GET /api/languages/	

 	
 	
 GET /api/languages/(string:language)/	

 	
 	
 GET /api/projects/	

 	
 	
 GET /api/projects/(string:project)/	

 	
 	
 GET /api/projects/(string:project)/changes/	

 	
 	
 GET /api/projects/(string:project)/components/	

 	
 	
 GET /api/projects/(string:project)/languages/	

 	
 	
 GET /api/projects/(string:project)/repository/	

 	
 	
 GET /api/projects/(string:project)/statistics/	

 	
 	
 GET /api/screenshots/	

 	
 	
 GET /api/screenshots/(int:pk)/	

 	
 	
 GET /api/screenshots/(int:pk)/file/	

 	
 	
 GET /api/sources/	

 	
 	
 GET /api/sources/(int:pk)/	

 	
 	
 GET /api/translations/	

 	
 	
 GET /api/translations/(string:project)/(string:component)/(string:language)/	

 	
 	
 GET /api/translations/(string:project)/(string:component)/(string:language)/changes/	

 	
 	
 GET /api/translations/(string:project)/(string:component)/(string:language)/file/	

 	
 	
 GET /api/translations/(string:project)/(string:component)/(string:language)/repository/	

 	
 	
 GET /api/translations/(string:project)/(string:component)/(string:language)/statistics/	

 	
 	
 GET /api/translations/(string:project)/(string:component)/(string:language)/units/	

 	
 	
 GET /api/units/	

 	
 	
 GET /api/units/(int:pk)/	

 	
 	
 POST /api/components/(string:project)/(string:component)/lock/	

 	
 	
 POST /api/components/(string:project)/(string:component)/repository/	

 	
 	
 POST /api/projects/	

 	
 	
 POST /api/projects/(string:project)/components/	

 	
 	
 POST /api/projects/(string:project)/repository/	

 	
 	
 POST /api/screenshots/(int:pk)/file/	

 	
 	
 POST /api/translations/(string:project)/(string:component)/(string:language)/file/	

 	
 	
 POST /api/translations/(string:project)/(string:component)/(string:language)/repository/	

 	
 	
 DELETE /api/components/(string:project)/(string:component)/	

 	
 	
 DELETE /api/projects/(string:project)/	

 	
 	
 DELETE /api/translations/(string:project)/(string:component)/(string:language)/	

 		 	

 		
 /exports	

 	
 	
 GET /exports/rss/	

 	
 	
 GET /exports/rss/(string:project)/	

 	
 	
 GET /exports/rss/(string:project)/(string:component)/	

 	
 	
 GET /exports/rss/(string:project)/(string:component)/(string:language)/	

 	
 	
 GET /exports/rss/language/(string:language)/	

 	
 	
 GET /exports/stats/(string:project)/(string:component)/	

 		 	

 		
 /hooks	

 	
 	
 GET /hooks/update/(string:project)/	

 	
 	
 GET /hooks/update/(string:project)/(string:component)/	

 	
 	
 POST /hooks/azure/	

 	
 	
 POST /hooks/bitbucket/	

 	
 	
 POST /hooks/gitea/	

 	
 	
 POST /hooks/gitee/	

 	
 	
 POST /hooks/github/	

 	
 	
 POST /hooks/gitlab/	

 	
 	
 POST /hooks/pagure/	

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 wlc	
 Weblate API

 	
 	
 wlc.config	
 Configuration parsing

 	
 	
 wlc.main	
 Command line interface

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

Symbols

 	
 	
 --add

 	auto_translate command line option

 	
 --addon ADDON

 	install_addon command line option

 	
 --age HOURS

 	commit_pending command line option

 	
 --all

 	delete_memory command line option

 	
 --author USER@EXAMPLE.COM

 	add_suggestions command line option

 	
 --base-file-template TEMPLATE

 	import_project command line option

 	
 --check

 	importusers command line option

 	
 --clean

 	rebuild_index command line option

 	
 --config PATH

 	wlc command line option

 	
 --config-section SECTION

 	wlc command line option

 	
 --configuration CONFIG

 	install_addon command line option

 	
 --convert

 	wlc command line option

 	
 --email USER@EXAMPLE.COM

 	createadmin command line option

 	
 --file-format FORMAT

 	import_project command line option

 	
 --force

 	loadpo command line option

 	
 --force-commit

 	pushgit command line option

 	
 --format {csv,json,text,html}

 	wlc command line option

 	
 --get-name

 	changesite command line option

 	
 --ignore

 	import_json command line option

 	
 --inconsistent

 	auto_translate command line option

 	
 --input

 	wlc command line option

 	
 --key KEY

 	wlc command line option

 	
 --lang LANGUAGE

 	loadpo command line option

 	
 --language-code

 	list_translators command line option

 	
 --language-map LANGMAP

 	import_memory command line option

 	
 --language-regex REGEX

 	import_project command line option

 	
 --license NAME

 	import_project command line option

 	
 --license-url URL

 	import_project command line option

 	
 	
 --main-component

 	import_project command line option

 	
 --main-component COMPONENT

 	import_json command line option

 	
 --mt MT

 	auto_translate command line option

 	
 --name

 	createadmin command line option

 	
 --name-template TEMPLATE

 	import_project command line option

 	
 --new-base-template TEMPLATE

 	import_project command line option

 	
 --no-password

 	createadmin command line option

 	
 --no-privs-update

 	setupgroups command line option

 	
 --no-projects-update

 	setupgroups command line option

 	
 --no-update

 	setuplang command line option

 	
 --optimize

 	rebuild_index command line option

 	
 --origin ORIGIN

 	delete_memory command line option

 	
 --output

 	wlc command line option

 	
 --overwrite

 	auto_translate command line option

 	wlc command line option

 	
 --password PASSWORD

 	createadmin command line option

 	
 --project PROJECT

 	import_json command line option

 	
 --rebuild

 	optimize_memory command line option

 	
 --set-name NAME

 	changesite command line option

 	
 --source PROJECT/COMPONENT

 	auto_translate command line option

 	
 --threshold THRESHOLD

 	auto_translate command line option

 	
 --type {origin}

 	list_memory command line option

 	
 --update

 	createadmin command line option

 	import_json command line option

 	install_addon command line option

 	
 --url URL

 	wlc command line option

 	
 --user USERNAME

 	auto_translate command line option

 	
 --username USERNAME

 	createadmin command line option

 	
 --vcs NAME

 	import_project command line option

 	
 .NET Resource

 	file format

A

 	
 	
 add_suggestions

 	django-admin command

 	
 add_suggestions command line option

 	--author USER@EXAMPLE.COM

 	
 ADMINS

 	setting

 	
 AKISMET_API_KEY

 	setting

 	
 ALLOWED_HOSTS

 	setting

 	
 Android

 	file format

 	
 ANONYMOUS_USER_NAME

 	setting

 	API, [1], [2]

 	
 Apple strings

 	file format

 	
 AUDITLOG_EXPIRY

 	setting

 	
 	
 AUTH_LOCK_ATTEMPTS

 	setting

 	
 AUTH_TOKEN_VALID

 	setting

 	
 auto_translate

 	django-admin command

 	
 auto_translate command line option

 	--add

 	--inconsistent

 	--mt MT

 	--overwrite

 	--source PROJECT/COMPONENT

 	--threshold THRESHOLD

 	--user USERNAME

 	
 AUTO_UPDATE

 	setting

 	
 AUTOFIX_LIST

 	setting

 	
 AVATAR_URL_PREFIX

 	setting

B

 	
 	
 BASE_DIR

 	setting

 	
 	
 bilingual

 	translation

C

 	
 	
 celery_queues

 	django-admin command

 	
 changes

 	wlc command line option

 	
 changesite

 	django-admin command

 	
 changesite command line option

 	--get-name

 	--set-name NAME

 	
 CHECK_LIST

 	setting

 	
 checkgit

 	django-admin command

 	
 cleanup

 	wlc command line option

 	
 cleanup_avatar_cache

 	django-admin command

 	
 cleanuptrans

 	django-admin command

 	
 Comma separated values

 	file format

 	Command (class in wlc.main)

 	
 	
 COMMENT_CLEANUP_DAYS

 	setting

 	
 commit

 	wlc command line option

 	
 commit_pending

 	django-admin command

 	
 commit_pending command line option

 	--age HOURS

 	
 COMMIT_PENDING_HOURS

 	setting

 	
 commitgit

 	django-admin command

 	
 createadmin

 	django-admin command

 	
 createadmin command line option

 	--email USER@EXAMPLE.COM

 	--name

 	--no-password

 	--password PASSWORD

 	--update

 	--username USERNAME

 	
 CSV

 	file format

D

 	
 	
 DATA_DIR

 	setting

 	
 DATABASES

 	setting

 	
 DEBUG

 	setting

 	
 DEFAULT_ACCESS_CONTROL

 	setting

 	
 DEFAULT_ADD_MESSAGE

 	setting

 	
 DEFAULT_ADDON_MESSAGE

 	setting

 	
 DEFAULT_COMMIT_MESSAGE

 	setting

 	
 DEFAULT_COMMITER_EMAIL

 	setting

 	
 DEFAULT_COMMITER_NAME

 	setting

 	
 DEFAULT_DELETE_MESSAGE

 	setting

 	
 DEFAULT_FROM_EMAIL

 	setting

 	
 DEFAULT_MERGE_MESSAGE

 	setting

 	
 DEFAULT_MERGE_STYLE

 	setting

 	
 DEFAULT_PULL_MESSAGE

 	setting

 	
 DEFAULT_TRANSLATION_PROPAGATION

 	setting

 	
 delete_memory

 	django-admin command

 	
 delete_memory command line option

 	--all

 	--origin ORIGIN

 	
 django-admin command

 	add_suggestions

 	auto_translate

 	celery_queues

 	changesite

 	checkgit

 	cleanup_avatar_cache

 	cleanuptrans

 	commit_pending

 	commitgit

 	createadmin

 	delete_memory

 	dump_memory

 	dumpuserdata

 	import_json

 	import_memory

 	import_project

 	importuserdata

 	importusers

 	install_addon

 	list_ignored_checks

 	list_languages

 	list_memory

 	list_translators

 	list_versions

 	loadpo

 	lock_translation

 	move_language

 	optimize_memory

 	pushgit

 	rebuild_index

 	setupgroups

 	setuplang

 	unlock_translation

 	updatechecks

 	updategit

 	
 	
 download

 	wlc command line option

 	
 DTD

 	file format

 	
 dump_memory

 	django-admin command

 	
 dumpuserdata

 	django-admin command

E

 	
 	
 ENABLE_AVATARS

 	setting

 	
 ENABLE_HOOKS

 	setting

 	
 ENABLE_HTTPS

 	setting

 	
 ENABLE_SHARING

 	setting

 	
 environment variable

 	POSTGRES_DATABASE

 	POSTGRES_HOST

 	POSTGRES_PASSWORD

 	POSTGRES_PORT

 	POSTGRES_SSL_MODE

 	POSTGRES_USER

 	REDIS_DB

 	REDIS_HOST

 	REDIS_PASSWORD

 	REDIS_PORT

 	REDIS_TLS

 	REDIS_VERIFY_SSL

 	ROLLBAR_ENVIRONMENT

 	ROLLBAR_KEY

 	SENTRY_DSN

 	WEBLATE_ADD_ADDONS

 	WEBLATE_ADD_APPS

 	WEBLATE_ADD_AUTOFIX

 	WEBLATE_ADD_CHECK

 	WEBLATE_ADMIN_EMAIL, [1], [2]

 	WEBLATE_ADMIN_NAME, [1]

 	WEBLATE_ADMIN_PASSWORD, [1], [2]

 	WEBLATE_AKISMET_API_KEY

 	WEBLATE_ALLOWED_HOSTS, [1]

 	WEBLATE_AUTH_LDAP_BIND_DN

 	WEBLATE_AUTH_LDAP_BIND_PASSWORD

 	WEBLATE_AUTH_LDAP_SERVER_URI

 	WEBLATE_AUTH_LDAP_USER_ATTR_MAP

 	WEBLATE_AUTH_LDAP_USER_DN_TEMPLATE

 	WEBLATE_DEBUG

 	WEBLATE_DEFAULT_FROM_EMAIL

 	WEBLATE_EMAIL_HOST

 	WEBLATE_EMAIL_HOST_PASSWORD

 	WEBLATE_EMAIL_HOST_USER

 	WEBLATE_EMAIL_PORT

 	WEBLATE_EMAIL_USE_SSL, [1]

 	WEBLATE_EMAIL_USE_TLS, [1]

 	WEBLATE_ENABLE_HTTPS

 	WEBLATE_GITHUB_USERNAME, [1]

 	WEBLATE_GITLAB_USERNAME, [1]

 	WEBLATE_GOOGLE_ANALYTICS_ID

 	WEBLATE_GPG_IDENTITY

 	WEBLATE_IP_PROXY_HEADER

 	WEBLATE_LOGIN_REQUIRED_URLS_EXCEPTIONS

 	WEBLATE_LOGLEVEL

 	WEBLATE_MT_DEEPL_KEY

 	WEBLATE_MT_GLOSBE_ENABLED

 	WEBLATE_MT_GOOGLE_KEY

 	WEBLATE_MT_MICROSOFT_COGNITIVE_KEY

 	WEBLATE_MT_MYMEMORY_ENABLED

 	WEBLATE_NO_EMAIL_AUTH

 	WEBLATE_REGISTRATION_OPEN

 	WEBLATE_REMOVE_ADDONS

 	WEBLATE_REMOVE_APPS

 	WEBLATE_REMOVE_AUTOFIX

 	WEBLATE_REMOVE_CHECK

 	WEBLATE_REQUIRE_LOGIN

 	WEBLATE_SECRET_KEY

 	WEBLATE_SERVER_EMAIL

 	WEBLATE_SIMPLIFY_LANGUAGES

 	WEBLATE_SITE_TITLE

 	WEBLATE_SOCIAL_AUTH_AZUREAD_OAUTH2_KEY

 	WEBLATE_SOCIAL_AUTH_AZUREAD_OAUTH2_SECRET

 	WEBLATE_SOCIAL_AUTH_AZUREAD_TENANT_OAUTH2_KEY

 	WEBLATE_SOCIAL_AUTH_AZUREAD_TENANT_OAUTH2_SECRET

 	WEBLATE_SOCIAL_AUTH_AZUREAD_TENANT_OAUTH2_TENANT_ID

 	WEBLATE_SOCIAL_AUTH_BITBUCKET_KEY

 	WEBLATE_SOCIAL_AUTH_BITBUCKET_SECRET

 	WEBLATE_SOCIAL_AUTH_FACEBOOK_KEY

 	WEBLATE_SOCIAL_AUTH_FACEBOOK_SECRET

 	WEBLATE_SOCIAL_AUTH_FEDORA

 	WEBLATE_SOCIAL_AUTH_GITHUB_KEY

 	WEBLATE_SOCIAL_AUTH_GITHUB_SECRET

 	WEBLATE_SOCIAL_AUTH_GITLAB_API_URL

 	WEBLATE_SOCIAL_AUTH_GITLAB_KEY

 	WEBLATE_SOCIAL_AUTH_GITLAB_SECRET

 	WEBLATE_SOCIAL_AUTH_GOOGLE_OAUTH2_KEY

 	WEBLATE_SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET

 	WEBLATE_SOCIAL_AUTH_OPENSUSE

 	WEBLATE_SOCIAL_AUTH_UBUNTU

 	WEBLATE_TIME_ZONE

 	WEBLATE_URL_PREFIX

 	WL_BRANCH

 	WL_COMPONENT_NAME

 	WL_COMPONENT_SLUG

 	WL_COMPONENT_URL

 	WL_ENGAGE_URL

 	WL_FILEMASK

 	WL_FILE_FORMAT

 	WL_LANGUAGE

 	WL_NEW_BASE

 	WL_PATH

 	WL_PREVIOUS_HEAD

 	WL_PROJECT_NAME

 	WL_PROJECT_SLUG

 	WL_REPO

 	WL_TEMPLATE

 	WL_VCS

F

 	
 	
 file format

 	.NET Resource

 	Android

 	Apple strings

 	CSV

 	Comma separated values

 	DTD

 	Gettext

 	JSON

 	Java properties

 	Joomla translations

 	PHP strings

 	PO

 	Qt

 	RC

 	RESX

 	Ruby YAML

 	Ruby YAML Ain't Markup Language

 	TS

 	XLIFF

 	XML

 	YAML

 	YAML Ain't Markup Language

 	i18next

 	string resources

G

 	
 	get() (wlc.Weblate method)

 	
 Gettext

 	file format

 	
 GITHUB_USERNAME

 	setting

 	
 	
 GITLAB_USERNAME

 	setting

 	
 GOOGLE_ANALYTICS_ID

 	setting

H

 	
 	
 HIDE_REPO_CREDENTIALS

 	setting

I

 	
 	
 i18next

 	file format

 	
 import_json

 	django-admin command

 	
 import_json command line option

 	--ignore

 	--main-component COMPONENT

 	--project PROJECT

 	--update

 	
 import_memory

 	django-admin command

 	
 import_memory command line option

 	--language-map LANGMAP

 	
 import_project

 	django-admin command

 	
 import_project command line option

 	--base-file-template TEMPLATE

 	--file-format FORMAT

 	--language-regex REGEX

 	--license NAME

 	--license-url URL

 	--main-component

 	--name-template TEMPLATE

 	--new-base-template TEMPLATE

 	--vcs NAME

 	
 	
 importuserdata

 	django-admin command

 	
 importusers

 	django-admin command

 	
 importusers command line option

 	--check

 	
 install_addon

 	django-admin command

 	
 install_addon command line option

 	--addon ADDON

 	--configuration CONFIG

 	--update

 	
 IP_BEHIND_REVERSE_PROXY

 	setting

 	
 IP_PROXY_HEADER

 	setting

 	
 IP_PROXY_OFFSET

 	setting

 	
 iPad

 	translation

 	
 iPhone

 	translation

J

 	
 	
 Java properties

 	file format

 	
 Joomla translations

 	file format

 	
 	
 JSON

 	file format

L

 	
 	
 LEGAL_URL

 	setting

 	
 LIMIT_TRANSLATION_LENGTH_BY_SOURCE_LENGTH

 	setting

 	
 list-components

 	wlc command line option

 	
 list-languages

 	wlc command line option

 	
 list-projects

 	wlc command line option

 	
 list-translations

 	wlc command line option

 	
 list_ignored_checks

 	django-admin command

 	
 list_languages

 	django-admin command

 	
 list_memory

 	django-admin command

 	
 list_memory command line option

 	--type {origin}

 	
 list_translators

 	django-admin command

 	
 	
 list_translators command line option

 	--language-code

 	
 list_versions

 	django-admin command

 	load() (wlc.config.WeblateConfig method)

 	
 loadpo

 	django-admin command

 	
 loadpo command line option

 	--force

 	--lang LANGUAGE

 	
 lock

 	wlc command line option

 	
 lock-status

 	wlc command line option

 	
 lock_translation

 	django-admin command

 	
 LOGIN_REQUIRED_URLS

 	setting

 	
 LOGIN_REQUIRED_URLS_EXCEPTIONS

 	setting

 	
 ls

 	wlc command line option

M

 	
 	
 MACHINE_TRANSLATION_SERVICES

 	setting

 	main() (in module wlc.main)

 	
 monolingual

 	translation

 	
 move_language

 	django-admin command

 	
 MT_APERTIUM_APY

 	setting

 	
 MT_AWS_ACCESS_KEY_ID

 	setting

 	
 MT_AWS_REGION

 	setting

 	
 MT_AWS_SECRET_ACCESS_KEY

 	setting

 	
 MT_BAIDU_ID

 	setting

 	
 MT_BAIDU_SECRET

 	setting

 	
 MT_DEEPL_KEY

 	setting

 	
 MT_GOOGLE_KEY

 	setting

 	
 MT_MICROSOFT_COGNITIVE_KEY

 	setting

 	
 MT_MYMEMORY_EMAIL

 	setting

 	
 	
 MT_MYMEMORY_KEY

 	setting

 	
 MT_MYMEMORY_USER

 	setting

 	
 MT_NETEASE_KEY

 	setting

 	
 MT_NETEASE_SECRET

 	setting

 	
 MT_SAP_BASE_URL

 	setting

 	
 MT_SAP_PASSWORD

 	setting

 	
 MT_SAP_SANDBOX_APIKEY

 	setting

 	
 MT_SAP_USE_MT

 	setting

 	
 MT_SAP_USERNAME

 	setting

 	
 MT_SERVICES

 	setting

 	
 MT_TMSERVER

 	setting

 	
 MT_YANDEX_KEY

 	setting

 	
 MT_YOUDAO_ID

 	setting

 	
 MT_YOUDAO_SECRET

 	setting

N

 	
 	
 NEARBY_MESSAGES

 	setting

O

 	
 	
 optimize_memory

 	django-admin command

 	
 	
 optimize_memory command line option

 	--rebuild

P

 	
 	
 PHP strings

 	file format

 	
 PIWIK_SITE_ID

 	setting

 	
 PIWIK_URL

 	setting

 	
 PO

 	file format

 	post() (wlc.Weblate method)

 	
 	
 pull

 	wlc command line option

 	
 push

 	wlc command line option

 	
 pushgit

 	django-admin command

 	
 pushgit command line option

 	--force-commit

 	Python

Q

 	
 	
 Qt

 	file format

R

 	
 	
 RATELIMIT_ATTEMPTS

 	setting

 	
 RATELIMIT_LOCKOUT

 	setting

 	
 RATELIMIT_WINDOW

 	setting

 	
 RC

 	file format

 	
 rebuild_index

 	django-admin command

 	
 rebuild_index command line option

 	--clean

 	--optimize

 	register_command() (in module wlc.main)

 	
 REGISTRATION_CAPTCHA

 	setting

 	
 	
 REGISTRATION_EMAIL_MATCH

 	setting

 	
 REGISTRATION_OPEN

 	setting

 	
 repo

 	wlc command line option

 	
 reset

 	wlc command line option

 	REST

 	
 RESX

 	file format

 	
 RFC

 	RFC 4646

 	
 Ruby YAML

 	file format

 	
 Ruby YAML Ain't Markup Language

 	file format

S

 	
 	
 SECRET_KEY

 	setting

 	
 SENTRY_DSN

 	setting

 	
 SERVER_EMAIL

 	setting

 	
 SESSION_ENGINE

 	setting

 	
 setting

 	ADMINS

 	AKISMET_API_KEY

 	ALLOWED_HOSTS

 	ANONYMOUS_USER_NAME

 	AUDITLOG_EXPIRY

 	AUTH_LOCK_ATTEMPTS

 	AUTH_TOKEN_VALID

 	AUTOFIX_LIST

 	AUTO_UPDATE

 	AVATAR_URL_PREFIX

 	BASE_DIR

 	CHECK_LIST

 	COMMENT_CLEANUP_DAYS

 	COMMIT_PENDING_HOURS

 	DATABASES

 	DATA_DIR

 	DEBUG

 	DEFAULT_ACCESS_CONTROL

 	DEFAULT_ADDON_MESSAGE

 	DEFAULT_ADD_MESSAGE

 	DEFAULT_COMMITER_EMAIL

 	DEFAULT_COMMITER_NAME

 	DEFAULT_COMMIT_MESSAGE

 	DEFAULT_DELETE_MESSAGE

 	DEFAULT_FROM_EMAIL

 	DEFAULT_MERGE_MESSAGE

 	DEFAULT_MERGE_STYLE

 	DEFAULT_PULL_MESSAGE

 	DEFAULT_TRANSLATION_PROPAGATION

 	ENABLE_AVATARS

 	ENABLE_HOOKS

 	ENABLE_HTTPS

 	ENABLE_SHARING

 	GITHUB_USERNAME

 	GITLAB_USERNAME

 	GOOGLE_ANALYTICS_ID

 	HIDE_REPO_CREDENTIALS

 	IP_BEHIND_REVERSE_PROXY

 	IP_PROXY_HEADER

 	IP_PROXY_OFFSET

 	LEGAL_URL

 	LIMIT_TRANSLATION_LENGTH_BY_SOURCE_LENGTH

 	LOGIN_REQUIRED_URLS

 	LOGIN_REQUIRED_URLS_EXCEPTIONS

 	MACHINE_TRANSLATION_SERVICES

 	MT_APERTIUM_APY

 	MT_AWS_ACCESS_KEY_ID

 	MT_AWS_REGION

 	MT_AWS_SECRET_ACCESS_KEY

 	MT_BAIDU_ID

 	MT_BAIDU_SECRET

 	MT_DEEPL_KEY

 	MT_GOOGLE_KEY

 	MT_MICROSOFT_COGNITIVE_KEY

 	MT_MYMEMORY_EMAIL

 	MT_MYMEMORY_KEY

 	MT_MYMEMORY_USER

 	MT_NETEASE_KEY

 	MT_NETEASE_SECRET

 	MT_SAP_BASE_URL

 	MT_SAP_PASSWORD

 	MT_SAP_SANDBOX_APIKEY

 	MT_SAP_USERNAME

 	MT_SAP_USE_MT

 	MT_SERVICES

 	MT_TMSERVER

 	MT_YANDEX_KEY

 	MT_YOUDAO_ID

 	MT_YOUDAO_SECRET

 	NEARBY_MESSAGES

 	PIWIK_SITE_ID

 	PIWIK_URL

 	RATELIMIT_ATTEMPTS

 	RATELIMIT_LOCKOUT

 	RATELIMIT_WINDOW

 	REGISTRATION_CAPTCHA

 	REGISTRATION_EMAIL_MATCH

 	REGISTRATION_OPEN

 	SECRET_KEY

 	SENTRY_DSN

 	SERVER_EMAIL

 	SESSION_ENGINE

 	SIMPLIFY_LANGUAGES

 	SINGLE_PROJECT

 	SITE_TITLE

 	SPECIAL_CHARS

 	STATUS_URL

 	SUGGESTION_CLEANUP_DAYS

 	URL_PREFIX

 	VCS_BACKENDS

 	WEBLATE_ADDONS

 	WEBLATE_FORMATS

 	WEBLATE_GPG_IDENTITY

 	
 	
 setupgroups

 	django-admin command

 	
 setupgroups command line option

 	--no-privs-update

 	--no-projects-update

 	
 setuplang

 	django-admin command

 	
 setuplang command line option

 	--no-update

 	
 show

 	wlc command line option

 	
 SIMPLIFY_LANGUAGES

 	setting

 	
 SINGLE_PROJECT

 	setting

 	
 SITE_TITLE

 	setting

 	
 SPECIAL_CHARS

 	setting

 	
 statistics

 	wlc command line option

 	
 STATUS_URL

 	setting

 	
 string resources

 	file format

 	
 SUGGESTION_CLEANUP_DAYS

 	setting

T

 	
 	
 translation

 	bilingual

 	iPad

 	iPhone

 	monolingual

 	
 	
 TS

 	file format

U

 	
 	
 unlock

 	wlc command line option

 	
 unlock_translation

 	django-admin command

 	
 updatechecks

 	django-admin command

 	
 	
 updategit

 	django-admin command

 	
 upload

 	wlc command line option

 	
 URL_PREFIX

 	setting

V

 	
 	
 VCS_BACKENDS

 	setting

 	
 	
 version

 	wlc command line option

W

 	
 	Weblate (class in wlc)

 	
 WEBLATE_ADDONS

 	setting

 	WEBLATE_ADMIN_EMAIL, [1]

 	WEBLATE_ADMIN_NAME

 	WEBLATE_ADMIN_PASSWORD, [1]

 	WEBLATE_ALLOWED_HOSTS

 	WEBLATE_EMAIL_USE_SSL

 	WEBLATE_EMAIL_USE_TLS

 	
 WEBLATE_FORMATS

 	setting

 	WEBLATE_GITHUB_USERNAME

 	WEBLATE_GITLAB_USERNAME

 	
 WEBLATE_GPG_IDENTITY

 	setting

 	WeblateConfig (class in wlc.config)

 	WeblateException

 	wlc

 	(module)

 	
 wlc command line option

 	--config PATH

 	--config-section SECTION

 	--convert

 	--format {csv,json,text,html}

 	--input

 	--key KEY

 	--output

 	--overwrite

 	--url URL

 	changes

 	cleanup

 	commit

 	download

 	list-components

 	list-languages

 	list-projects

 	list-translations

 	lock

 	lock-status

 	ls

 	pull

 	push

 	repo

 	reset

 	show

 	statistics

 	unlock

 	upload

 	version

 	
 	wlc.config (module)

 	wlc.main (module)

X

 	
 	
 XLIFF

 	file format

 	
 	
 XML

 	file format

Y

 	
 	
 YAML

 	file format

 	
 	
 YAML Ain't Markup Language

 	file format

	Name

	Email

	Count total

	Source words total

	Source chars total

	Target words total

	Target chars total

	Count new

	Source words new

	Source chars new

	Target words new

	Target chars new

	Count approved

	Source words approved

	Source chars approved

	Target words approved

	Target chars approved

	Count edited

	Source words edited

	Source chars edited

	Target words edited

	Target chars edited

	Michal Čihař

	michal@cihar.com

	1

	3

	24

	3

	21

	1

	3

	24

	3

	21

	0

	0

	0

	0

	0

	0

	0

	0

	0

	0

	Allan Nordhøy

	allan@example.com

	2

	5

	25

	4

	28

	2

	3

	24

	3

	21

	0

	0

	0

	0

	0

	0

	0

	0

	0

	0

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/btn_auth0_badge.png

_static/ajax-loader.gif

_images/install-with-yunohost.png

_images/manage-users.png
Weblate Dashboard Projects~

WeblateOrg / Manage users

Users
2
1 I
o 3 B 3
= ¢ % § 3 %1 §
g £ & H &
Username Fullname Em: Lastlogin s 5 3 §5 & &® %
testuser Weblate Test weblate@example.org 2minutes ago 0O oo oo oo @
The userwil b remoed from the project once all user permissions are removed.
Add new user
Usertoadd
Please provide username or e-mal. User needs to already have an active account in Weblate.
Invite new user
E-mail
Project access control
Access control
Protected E‘
How to resrict access to this project is detailed in the documentation.
ible and translatable
le, only translatable for chosen users
Visible and translatable only for chosen users
Custom
Only use this if you know what you are doing, enabling it might revoke your access to this project. Permissions are not managed in Weblate.
[Enable reviews
Requires dedicated reviewers to approve translations.
You do not have permission tochangeproject access control

Powered by Weblate 33 AboutWeblate Legal Contact Documentation Donateto Weblate

_images/guide.png
Weblate Dashboard Projects~ Languages~

WeblateOrg / Duplicates & / Localization guide

izatio
Here you can find guidance to make your localization project attractive to the community.

Version control integration ©

% Configure repository hooks for automated flow of updates to Weblate. @

% Configure push URL for automated flow of translations from Weblate. ©

Building community ©

% Define translation instructions t

ive translators a guideline. @
% Makeyour translations available under a libre license. ©
Provide context to the translators ©

% Add screenshots to show where strings are being used. @

% Useflags toindicate special strings in your translation. @

Workflow customization @

X Updatesthe ALL_LINGUAS variable in "configure", “configure.in” or “configure.ac* fles, when a new translation is added. @

transl

Powered by Weblate 39 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/plurals.png
Weblate Dashboard Projects~ Languages~

WeblateOrg / Djangoty / Czech / translate

M« Q%count)sword v 1/1~ W M

Translate %= Glossary @
Source Translation
Source.
No relste srings found inthe glos
Singular e glossary.
“(count)s word @ Add word to glossary
Plural Source
Shlcount)s words @
Transiation
one® G CINSNEREEE
Y%(count)s slove Source inform:
Screenshot context ’
Few® = .
= - [re——————
Sblcount)s slova — Z
Nocontext curently sssociated:
other © G EESBEREEE o .
Shlcountjs slov python format
Sourcestring location
Plural equation: (n==1) 20 (n>=2 8&n<=4) 7 1:2@ J
weblatetemplates/transision 149
[Needs editing @
Sourcestring age
aminuteago
Translation e
webiateocalecs/LC_MESSAGES jango.po, sting S

Nearby strings @) Machinetranslation Translation memory Other languages History

mment

Comment on this string for fellow translators and developers to read.

Scope

Translation comment, discussions with other translators E‘

s your comment specific to this translation or generic for all of them?

You can include external links or mention other users by @username.

Powered by Weblate 33 AboutWeblate Legal Contact Documentation DonatetoWeblate

_images/profile-licenses.png
Weblate Dashboard Projects~ Languages~ .

Your profile

languages Preferences Notifications Account Profile [T

Licenses

Please pay atter

Au

g APlaccess

nto the licensing info, as this specifies how translations can be used.

By registering you agree to use your name and e-mail in the commits, and provide your contribution under the license defined by each locali

You have agreed to the following as a contributor:

© WeblateOrg/Language names

Licenses for individual translations

Project License
WeblateOrg/Android T

WeblateOrg/Django GPL3.0+
WeblateOrg/Djangojs GPL3.0+
WeblateOrg/Language names GPL3.0+

Fowered by Weblate 33 AboutWeblate Legal Contact Documentation DonatetoWeblate

_images/memory.png
Weblate Dashboard Projects~ Languages~ .

testuser / Translation memory

Translation memory status (]

Number of your entries 0

Total number of entries 0

oadas JSON | Download as TMX
Import translation memory

File

Browse... | Nofile selected.

You can upload a TMX or JSON file.

Wipe translation memory

[Confirm deleting all translation memory entries

Powered by Weblate 39 AboutWeblate Legal Contact Documentation Donate toWeblate

_images/pagure-webhook.png
fedora

PAGURE

1] nijel-test

<»Source @ lIssues @ © PullRequests @ L~ Stats o Settings

Project Settings
Project Detalls
Default Branch
Private Web Hook Key
API Keys

Project Options
Public Notifications
Users & Groups
Deploy Keys

Hooks

Priorities

Roadmap

Close Status
Custom Issue Fields
Reports

Tags

Quick Replies
Regenerate Repos
Give Project

Delete Project

Project Options

(O Activate always merge

(D Activate disable non fast-forward merges

(D Activate Enforce signed-off commits in pull-request
[¥ Activate fedmsg notifications

(¥ Activate issue tracker

(O Activate issue tracker read only

(O Activate issues default to private

Activate Minimum score to merge pull-request ;
(O Activate notify on commit flag.

(O Activate notify on pull-request flag

(D Activate Only assignee can merge pull-request
(D Activate open metadata access to all

(O Activate project documentation

(D Activate pull request access only

[¥ Activate pull requests

[¥ Activate stomp notifications

https://hosted.weblate.org

Activate Web-hooks : /hooks/pagure/

Learn more about
* Flags
« Tracker read-only
« Pull-request access only
« Roadmap on Issue page
 fedmsg notifications

Browse

create - B -

© New ssue

© Open PR -

¥ Fork

B Clone -

_images/profile-subscriptions.png
Weblate Dashboard Projects~
Your profile
Languages Preferences.

Watched projects (-]

Watched projects

Search...

Available:

Languages~

Account Profile

Licenses Auditlog

You can receive notifications for watched projects and they are shown on the dashboard by default.

Add all projects you want to translate to see them as watched projects on the dashboard.

APl access

Chosen:

WeblateOrg

Administered projects

Component wide notifications

Youwill receive a notification for every such ever

Merge failure

Comment on own translation

Mentioned in comment

New translation component

New whiteboard message

Newalert

Translation notifications

Youwill only re

New string.

New contributor
New suggestion
New comment
Changed string
Pending suggestions

Strings needing action

Do not notify

Do not notify

Instant notification

Instant notification

Do not notify

Do not notify

Instant notification

Do not notify

Do not notify

Do not notify

Do not notify

Do not notify

Do not notify

Do not notify

Do not notify

your watched projects.

 these notifications for your translated languages in your watched projects.

Notification settings e

Powered by Weblate 33 AboutWeblate Legal

Contact Documentation

Donateto Weblate

_images/project-access.png
Weblate Dashboard Projects~

WeblateOrg / Manage users

Users
2
1 I
o 3 B 3
= ¢ % § 3 %1 §
g £ & H &
Username Fullname Em: Lastlogin s 5 3 §5 & &® %
testuser Weblate Test weblate@example.org 2minutes ago 0O oo oo oo @
The userwil b remoed from the project once all user permissions are removed.
Add new user
Usertoadd
Please provide username or e-mal. User needs to already have an active account in Weblate.
Invite new user
E-mail
Project access control
Access control
Protected E‘
How to resrict access to this project is detailed in the documentation.
ible and translatable
le, only translatable for chosen users
Visible and translatable only for chosen users
Custom
Only use this if you know what you are doing, enabling it might revoke your access to this project. Permissions are not managed in Weblate.
[Enable reviews
Requires dedicated reviewers to approve translations.
You do not have permission tochangeproject access control

Powered by Weblate 33 AboutWeblate Legal Contact Documentation Donateto Weblate

_static/up-pressed.png

_static/weblate-128.png

_static/up.png

_static/logo-16.png

_static/logo-128.png

_static/minus.png

_static/logo-32.png

_static/plus.png

_images/reporting.png
Weblate Dashboard Projects~ Languages~

WeblateOrg / Language names)

Tnsiations nfo Search Glossries Fles~ Tools~ Manage- Share- @atching -
m Contribuforsiats

Lists alltranslators contributing to this component in Husionin Reports the number of strings and words translated by each translator.
documentation or the app itself,to thank translators

Report format
Report format
restructuredText E‘
restructuredText E‘
Choose file format for the report

Choose file format for the report

Report period D

As specified E‘

Starting date
Starting date
ne mm /dd /yyyy

mm /dd /yyyy Ending date
Ending date -

mm /dd /yyyy

Powered by Weblate 39 AboutWeblate Legal Contact Documentation Donate toWeblate

_images/screenshot-context.png
Weblate Dashboard Projects~ Languages~
WeblateOrg / Django / Czech / translate
K« Qalstings~ 11/26~ B M
Translate %=

Additional context
Help text for automatic translation tool

Source

Automatic translation via macl
them in this project.

Translation GZ)

Automaticky preklad prostfednictvim strojového prekladu pouZivd aktivni enginy strojového prekladu pro ziskdni nejlepich moznich
prekladii a pouZije je na tento projekt.

[Needs editing @

e translation uses active machine translation engines to get the best possible translations and applies &)

Nearbystrings @) Comments M

Translationmemory Otherlanguages History

Translation Source Service Quality
Automaticky preklad prostiednictvim [B
strojového prekladu pouziv aktivni translation uses active machine
enginy strojového prekladu proziskni translation engines to get the best
nejlepsich moznjch prekladi a poutijeje possible translations and applies
na tento projekt.

Automatic translation viamachine Weblate
(WeblateOrg/Django)

themin this project.

Powered by Weblate 39 AboutWeblate Legal Contact Documentation Donate to Weblate

u

Glossary @
Source Transtation
machine translation srojouypiekiad
project projelt

‘Add word to glossary Add

Source

Transiation

Context ’
Help textfor automatic translation tool

Flags ’
No flags currently set!

Source string location
‘weblate/templates/transiation htmi:212

Source string age

aminuteago

Translation file

‘weblate/locale/cs/LC_MESSAGES/django.po, string

_images/project-overview.png
Weblate Dashboard Projects~ Languages~

WeblateOrg

Longuoges o Seorch Glossoes Insights+ Fles= Tools= Managew Share - @utch
Component Strings Words Needs editing Checks Suggestions Comments e m
Android () @ 1w000% 100.0% 0.0% 27% 0.0% 0.0%

93.9% 93.3% a5% 0.0% 0.0% 0.0%

Powered by Weblate 39 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/promote.png
Weblate Dashboard Projects~ Languages~

WeblateOrg / Widgets
Promoting translation projects
You can point newcomers to the introduction page at http://localhost:9090/engage/weblateorg/.

Promoting specific translations

Besides promoting the whole translation project, you can also choose a specific language or component to promote: [All languages |[All components

Image widgets

You can use the following widgets to promote translation of your project. They can increase the visi

= n Bl e

Status ba Vertical multi language status widget Horizontal multi language status widget Big status badge ‘Small status badge

ity of your translation projects and bring in new contributors.

Project Weblateorg

Open Graph image

Color variants:

HTML code E‘

 .

Powered by Weblate 39 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/secondary-language.png
Weblate Dashboard Projects~ Languages~

WeblateOrg / Django«y / Czech / translate trans

K« Qulstings~ 1/~ » M

Translate % = @
Hebrews Source Transtation
Norelated strings found nthe gossary.
oy
Add word o glossary
Source
Source
Files @
Trewsiation C = — [Fransiaton

Soubory

Needs edi
[Needs editing © Sereenshot context ’

No screenshot currently associated!

= ,

No context urrently asociated!
Nearby strings @) Comments Machine translation Translation memory Other langu: Flags. s

Noflags currently sett

Language status Translation Edit Source tring location
‘weblate/templates/transiation htmk:45 (2

Hobrn ° won e

) Source sti

p— . st -
2minutes ago
Transtation fle

weblateflocale/cs/LC_MESSAGES/django.po, string 1

Powered by Weblate 39 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/source-information.png
Weblate Dashboard Projects~ Languages~
WeblateOrg / Django / Czech / translate
M« Qalstings~ 11/26~ B M

Translate

Additional context

Help text for automati translation tool

Source

Automatic translation via macl
them in this project.

Translation CGZ)

Automaticky pfeklad prostfednictvim strojového prekladu pouzivd aktivni enginy strojového prekladu pro ziskdni nejlepich moznich
prekladii a pouZije je na tento projekt.

[Needs editing @

e translation uses active machine translation engines to get the best possible translations and applies.

@

Machinetranslation Translation memory ~ Other languages History

Source Translation
6 Other components Dal3i souéisti

7 Translation file ‘Soubor s prekladem

& | Download Stahnout

9 Browseall translation changes Prochézet viechny zmény v prekladu.
10

ing translations in this project and
‘applies them to the current component. It can be used to push

translations to a different branch, to fix inconsistent transl
totranslate a new component using translation memory.

Automatickj preklad pouije stévajici preklady v projektu na
tuto soucést. MiiZe byt usitecnj pro slouceni prekladi zjiné
Vétve, opravu nekonzistentnich pekladi nebo preklad nové
soucsti pomoci prekladové paméti.

11 Automatic translation via machine translation uses active machine
translation engines to get the best possible translations and applies

Automatickj preklad prostiednictvim strojového prekladu
pousivé aktivni enginy strojového prekladu pro ziskéni

themin this project. nejlepsich moznjch prekladd a poutije je na tento projekt.
12 you can add new translation string here, it will automatically appear | Zde milZete piidat novy etézec k prekladu, automaticky se
alltranslations, objevi ve véech jazycich.
13| The uploaded file will be merged with the current translation. In Nahranj soubor bude sloucen se stévajicimi preklady. Pokud
case you want to overwrite already translated strings, don't forget chete prepsat i preloZené fetézce, nezapomefite to povolit.
toenableit
14 The uploaded file will be merged with the current translation. Nahranj soubor bude sloucen se stévajicimi preklady.
15 | The fulltext search might not work properly as the fulltext indexfor | | Fulltextové vyhledévani nemusf fungovat sprévé, protoze
translation is not yet up to date. fulltextov index pro tento preklad jeté nen piné zpracovn.
16 Review Kontrola
Powered by Weblate 39 AboutMWeblate Legal Contact Documentation Donate to Weblate

u

Glossary @
Source
machine trandation

projct
Add word to glossary

Source

Transiation

Source infc

‘mation

‘Screenshot context
No screenshot currently assaciated!
Context ’
Help textfor automatic translation tool

Flags ’
No flags currently set!

‘Source string location
‘weblate/templates/transiation html:212

‘Source string age

15seconds ago

Translation file

‘weblate/local/cs/LC_MESSAGES/Gjangopo, strng

_images/screenshot-ocr.png
Weblate Dashboard Projects~ Languages~

WeblateOrg / Django / Screenshots / Automatic translation

Screenshot has been uploaded, you can now assign it o source strings.

igned source strings

Source string Actions
No source strings are currently assigned!

‘Screenshot is shown to add visual context for alllisted source strings.

sign source strings

Source string Context ~Location
Files ‘weblate/templates/translation.html:45, weblate/trans/forms.py:1404
Automatic translation ‘weblate/templates/translation.html:58, weblate/templates

[translation.html:207, weblate/trans/models/change.py:205

Automatic translation via machine translation uses active machine translation engines to ‘weblate/templates/translation.html:212
getthe best possible translations and applies them in this project.

Source string search o Automatically rec

Weblate Dashboard Projects

WeblateOrg / Django3 / Czech

O Vanage - Share v ® Watching +

Overview Info Search Glossary Insights» Files +

Data exports
Automatic translation Automatic translation ©

§ y ; o i this oror . searchand replace i i o)
‘Automatic translation takes existing translations in this project and applies t . It can be used to push translations to a different branch, to fix inconsistent translations or to

translate a new component using translation memory. Bulk status change

n via machine trans;

Automatic transl uses active machine translation engines to get the best possible translations and applies them in this project.

Automatic translation mode

Add astranslation

‘Search filter

Strings needing action

Automatic translation source

O Other translation components @ Machine translation

Available: Chosen:
Weblate

Weblate Translation Memory

‘Score threshold

Powered by Weblate 19dev AboutWeblate Legal Contact Documentation Donateto Weblate

Edit screenshot

Screenshot name

Automatic translation

Image
Currently: screenshots/automatic-translation_Im7bTs6.png
Change:

Browse... | Nofile selected.

Upload JPEG or PNG images up to 2000x2000 pixels.

Screenshot details

Created on now

Uploaded by @ testuser

Delete screenshot

Deleting screenshot wil remove it from allassociated source strngs.

Powered by Weblate 33 AboutWeblate Legal Contact Documentation DonatetoWeblate

_images/search.png
Weblate Dashboard Projects~ Languages~ .

Dashboard

Watched transiations @) Suggested translations @) Insights ~

Query
Advanced query builder

Source strings~ | Search for. Add || Stringchangedafter> | mm/dd /yyyy Add
Query examples

Review strings changed by other users changed:>=2019-69-14 AND NOT changed_by: testuser add
Translated strings state:>=translated add
Strings with comments has_comment:1 add
Strings with any failing checks has_failing check:1 add
Strings with suggestions has_suggestion:1 add
Approved strings with suggestions state:approved AND has_suggestion:1 add
Searchfilter

Allstrings. E‘

Powered by Weblate 33 AboutWeblate Legal Contact Documentation DonatetoWeblate

_images/source-review-detail.png
Weblate Dashboard Projects~ Languages~

WeblateOrg / Django / source strings / review

Source Context
v Files
Language status Checks
Czech °
Hebrew °
Hungarian °

Powered by Weblate 39 AboutWeblate legal Contact Documentation

g
H

Edit

Edit

Edit

Donateto Weblate

Failing checks

Translation flags

Please enter a comma separated

Additional context

of translation flags, see documentation for more details.

Sav
Screenshot context

No screenshot currently associatet

Screenshot name

Browse.

Nofile selected.

Upload JPEG or PNG images up to 2000x2000 pixels.

Source string location

‘weblate/templates/translation.html:45 (Z weblate/trans/forms. py:1404

Source

g age
2minutes ago
Translation file

weblate/locale/cs/LC_MESSAGES/django.po, string 1

_static/email-logo.png
WEBLATE

_static/down.png

_static/file.png

_images/project-glossaries.png
Weblate Dashboard Projects~ Languages~

WeblateOrg / glossaries

Language Words
Catalan 0
Chinese (simplified) 0
Czech 1
Dutch 0
English 0
French 0
0
German 0
Hebrew 0
Hungarian 0
Polish 0
Rus: 0
spanish 0

Powered by Weblate 39 AboutWeblate Legal Contact Documentation Donate toWeblate

_images/strings-to-check.png
Weblate Dashboard Projects~ Languages~

WeblateOrg / Django«y / Czech

Wo Seach Glosay Iighs~ Fles- Toolse Mamage~ Share @wstching -
Translation status

Words L) — 90

Allstrings,

Tansatedtings e
Strings needing action [X 12 words }
Not translated strings oD
Strings needing action without suggestions. [Y 12 words }
Strings with any failing checks o &ad
Failed check: Unchanged translation [+] 4words]
Failed check: Trailing stop [+] 4words]
Failed check: Python format oad
Other components

Component Strings Needs editing Suggestions

Language names 100.0% 100.0% 0.0% 0.0% 0.0% 0.0%

ndroid & 100.0% 100.0% 0.0% 0.0% 0.0% 0.0%

Djangojs 100.0% 100.0% 0.0% 0.0% 0.0% 0.0%

Powered by Weblate 39 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/ssh-keys-added.png
Weblate Dashboard Projects~ Languages~

Manage / SSH keys

‘Added host key for github.com with fingerprint nThbg6kXUp JWGI7E 11GOCspRomTHACARLVIKWEESSY (ssh-rsa), please verify that it is correct.

Weblatestatus ~ Backups Translationmemory Performance report Status of repositories Tools

Public SSH key [~]

Weblate currently uses this SSH key:

[ssh-rsa AAAAB3NZaC 1yC2EARAADAQABAAABEQDUT/m3dg0BhADZVMsIMabcenZreNV/YxjxkBhzlCdOgnDYZIMd3ljy+2R2U0myKPT3jectyopM1QRhfwsh
|/2gKHKIOIISTtOYK2vIuRNHjalTAiAlKzf2pHdhK2n JUDKFQKHLKkm++wZeQO3crmp LIWBGGPY/Ja0qTDTRWANEL+RYAV01 1HZFDOOV2ZEV/CFHNZ+HAIY
[/b/FQSWCAChYYOVIyKAETEFqLSFOMSWnsL EhzeUCQ3hBBIB2/wibZ0ioUPM3CQWUMIESXVrfReH1W7Giyn3tV1 EBDbZ0Gbg4FDNKhTGNSYFItnMX67fhUwLdtFWu/3pmtDEIH

Known host key e

Hostname Key type Fingerprint

github.com sshorsa Thbg6kXUpWGITE1IGOCSpRomTXACARLVIKWEESSYS

Add host key]

To access SSH hosts, its host key needs to be verified. You can get the host key by entering a domain name or IP for the host in the form below.

Hostname github.com Port Fort 5]

Powered by Weblate 33 AboutWeblate Legal Contact Documentation DonatetoWeblate

_images/ssh-keys.png
Weblate Dashboard Projects~ Languages~

Manage / SSH keys

Weblatestatus ~ Backups Translationmemory Performance report Status of repositories Tools

Public SSH key (-]

Weblate currently uses this SSH key:

[ssh-rsa AAAAB3NZAC 1yC2EAAAADAQABAAABEQDU/m3dg0BhApZVMsIMabcenZreNV/YxjxkBhzlCdOgnDYZIMd3ljy+2R2U0myKPT3jectyopM1QRhfwsh ~
|/2EKHKIOIISTtOYK2vIuRNHjaITAiAIKzF2pHdhK2n JUDKFQKHLKkm++wZeQO3crmp LIWBGpY/Ja0qTDTRWANEL+RYAV01 1HZFDOOV2ZEV/CFHNZ+AI P
[/b/FQSWCAChYYOVIyKAETEFqLSFOMsWnsL EhzeUCQ3hBBIB2/wibZ0ioUPM3CQWUMIESXVrfReH1W7Giyn3tV 1 EBDbZ0Gbg4FDNKhTGNSFItnMX67fhUwLdtFWu/3pmtDEIH

Known host keys e
Hostname Key type Fingerprint
github.com ssh-rsa NThbg6kXUpJWGITELIGOCSpRomTXACARLVIKWEESSYS

Add host key -]

To access SSH hosts, its host key needs to be verified. You can get the host key by entering a domain name or IP for the host in the form below.

Hostname ostname Port| Fort =1

Powered by Weblate 38 AboutWeblate Legal Contact Documentation DonatetoWeblate

_images/user-add-component-discovery.png
Weblate Dashboard Projects~ Languages~

Create component

Add new translation component

Choose translation files to import

O Specify configuration manually

e format Android String Resource , Filemask app/src/main/res/values=+/strings.xnl
leformat gettext PO file, Filemask weblate/langdata/locale/+/LC_MESSAGES/django.po
e format gettext PO file, Filemask weblate/locale/s/LC_MESSAGES/django.po

0000

e format gettext PO File,

mask weblate/locale/+/LC_WESSAGES/djangojs.po

Powered by Weblate 39 AboutWeblate Legal Contact Documentation Donate toWeblate

_images/user-add-component-init.png
Weblate Dashboard Projects~ Languages~

Create component

Upload translationsfiles Start from scratch

Create a new translation component from remote version control system repository.
Component name
Language names
Display name
URLslug

language-names

URLs and filenames.

WeblateOrg E‘

Version control system
B
Version control system to use to access your repository with translations.

‘Source code repository

hitps://github.com/WeblateOrg/demo.git ‘

URL of a repository, use weblate:

/project/component for sharing with other component.

Repository branch

Repository branch to translate

Powered by Weblate 39 AboutWeblate Legal Contact Documentation Donate toWeblate

_images/support.png
Weblate Dashboard Projects~ Languages~

Manage

SO cackups Translationmemory Performancereport SSHkeys Statusof repositories Tools
Weblate support status (-]

‘Support status. Community support

te support package

‘The support packages include priority e-mail support, or cloud backups of your Weblate installation.

Activation token

ied when making the subscription.

ipport pack

Powered by Weblate 33 AboutWeblate Legal Contact Documentation DonatetoWeblate

_images/source-review-edit.png
Weblate Dashboard Projects~ Languages~

WeblateOrg / Django / source strings / review

Source Context
v Files
Language status Checks
Czech °
Hebrew °
Hungarian °

Powered by Weblate 39 AboutWeblate legal Contact Documentation

g
H

Edit

Edit

Edit

Donateto Weblate

Failing checks

Translation flags

Please enter a comma separated

Additional context

of translation flags, see documentation for more details.

Sav
Screenshot context

No screenshot currently associatet

Screenshot name

Browse.

Nofile selected.

Upload JPEG or PNG images up to 2000x2000 pixels.

Source string location

‘weblate/templates/translation.html:45 (Z weblate/trans/forms. py:1404

Source

g age
2minutes ago
Translation file

weblate/locale/cs/LC_MESSAGES/django.po, string 1

_images/source-review.png
Weblate Dashboard Projects~ Languages~

WeblateOrg / Django / source strings

Allstrings.

g source checks

Failed check: Multiple fa

g checks

Powered by Weblate 39 AboutWeblate Legal Contact Documentation Donate to Weblate

Project website
Mailing lst for translators
Instructions for translators

Translation process

Translation license
Repository

Repository branch

Last remote commit
Repository containing Weblate
translations

Filemask

https://weblate.org/
weblate@lists.cihar.com
https://weblate.org/contribute/

« Translations can be made directly.

« Translation suggestions can be made.

 Only chosen users can contribute.
« The translation uses blingual files.

GPL3.0+C)
https://github. con/WeblateOrg/demo. git @)
master

Add Android strings samples Sbeecas @
Michal CihaF authored a year ago

http://localhost:9090/git/weblateorg
/anguage-names/ @

weblate/locale/+/LC_MESSAGES/django.po

_images/whiteboard-language.png
Weblate Dashboard Projects~ Languages~ Register Logi

Languages / Czech

Czech translators rock!

Womation Wty Ay Glossares Tooks +

Project strings Strings of total Words Words of total

Checks Suggestions Comments e m

Weblateorg A 97.9% 97.9% 94.2% 94.2% 0.0% 6.2% 0.0% 0.0%

Powered by Weblate 39 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/user-billing.png
Weblate Dashboard Projects~ Languages~

Your profile / Billing

Current plan Basic plan (Active) Invoice period Invoice amount Download invoice
Monthly price 19EUR 10/14/2019- 10/16/2019 19.0EUR Not available
Yearly price 199 EUR
sngs it useao aEE——
Languages limit Usedo .
Lastinvoice 2019-10-14-2019-10-16
Projects limit Used0of 1
Projects
No projects currently assigned!

Powered by Weblate 39 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/visual-keyboard.png
Weblate Dashboard

WeblateOrg / Djangoty / Hebrew

K« QuAlstings~ 1/26~

Translate

Projects ~

Languages~

»

translate

2w | zws | LRm | R | LRe [RLE | POF | Lro | RLO | [RTL] TR

o]

[Needsediting @

Nearby strings @) Comments

Language

Cczech

Powered by Weblate39 About Weblate

Machine translation

Legal

Contact

Translation memory istory
Translation Edit

No related strings found in the glossary.

Add word to glossary
Source
[rransiation
Screenshot context s

No screenshot currently associated!

Context s
No context currently associated!

Flags s
No flags currently set!

Source string location

‘weblate/templates/transiation htmi:45 (2
‘weblatetrans/forms py:1404 2

Source stringage
2minutes ago

Transtation file

‘weblatelocale/he/LC_MESSAGES/django.po, string 1

_images/your-translations.png
Weblate Dashboard Projects~ Languages~

Dashboard

[10) suecestedtansiations @ Insights + Tools +

e T
=3

Component Strings Words Checks Suggestions Comments
Weblateorg/Android (Czech) (3 100.0% 100.0% 0.0% 0.0% 0.0% 0.0% Translat
WeblateOrg/Django (Czech) & 96.2% 93.4% 0.0% 15.4% 00% 0.0%

WeblateOrg/Django (Hebrew) & 92.3% 91.8% 0.0% 0.0% 00% 0.0%

WeblateOrg/Django (Hungarian)) 69.2% 40.4% 11.5% 3.8% 0.0% 0.0%
WeblateOrg/Djangojs (Czech)) 100.0% 100.0% 0.0% 0.0% 0.0% 0.0%
WeblateOrg/Djangojs (Hebrew) () 100.0% 100.0% 0.0% 0.0% 0.0% 0.0%
WeblateOrg/Djangojs (Hungarian) &) 96.9% 94.5% 3.1% 0.0% 0.0% 0.0%
WeblateOrg/Language names (Czech) &) 100.0% 100.0% 0.0% 0.0% 0.0% 0.0%
WeblateOrg/Language names (Hebrew) 100.0% 100.0% 0.0% 0.0% 0.0% 0.0%

WeblateOrg/Language names (Hungarian)) 8L8% 80.0% 13.6% 0.0% 0.0% 0.0%

Manage your languay

Powered by Weblate 39 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/whiteboard-project.png
Weblate Dashboard Projects~ Languages~

WeblateOrg

Translations will be used onlyif they reach 60%.

Unguages o Seoch Glosares Insghis- Fles= Toos+ Mamgew Share @

Words Needs editing Checks Suggestions Comments e m
66.5% 5.8% 38% 0.0% 0.0%
95.0% 3.4% 0.0% 0.0% 0.0%

Powered by Weblate 39 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/whiteboard.png
Home » Weblate translations > Whiteboard messages » Add White!

Add Whiteboard message

Required fields are marked in bold.

Message: Translations will be used only if they reach 60%.

[Render as HTML
‘When tumed off, URLs will be convertedto links and any markup will b escaped.

Project: Weblateorg |v| o~ +
‘Component: — M oo+
Language: — M oo+
Category: Info (light blue) |+

Category defines color used for the message.

Expiry date: | Today1 68

“The message willbe not shown after this date. Use it to announce sting freeze and translation deadiine for next release.

saveandadd another | Save and continue editing

_static/weblate-512.png

_static/weblate-32.png

_static/weblate-150.png

_static/weblate-144.png

_static/weblate-180.png

_static/weblate-16.png

_static/weblate-192.png

_images/user-add-project-done.png
Weblate Dashboard Projects~ Languages~ .

WeblateOrg translated
Longuoges o Search Glossores Insights Fles= Tools= Managew Share - @ uiatching -
‘Component Strings. Words Needs editing Checks Suggestions. Comments e m

ion compony

Powered by Weblate 39 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/user-add-project.png
Weblate ~Dashboard Projects~ Languages~

Create project

Add new transl:

Project name
WeblateOrg

Display name

URLslug
‘weblateorg

Name used in URL and filenames.

Project website
https://weblate.org/

Main website of translated project.

Mailing list

weblate@lists.cihar.com

Mailing list for translators.

Translation instructions

hitps://weblate.org/contribute/|

URL with instructions for translators.
Billing

Weblate Test (Basic plan)

Powered by Weblate 33 AboutWeblate Legal Contact Documentation

Donateto Weblate

_images/user-add-component.png
Weblate Dashboard Projects~ Languages~

Create component

WeblateOrg

Component name
Language names
Display name
URLslug
language-names
Name used in URLS and filenames.
Version control system

Git

Version control system to use to access your repository containing translations. You can also choose additional integration with third party pro

‘Source code repository
https://github.com/WeblateOrg/demo.git

URL of a repository, use weblate://project/component to share it with other component.

Repository push URL

URL of a push repository, pushing is turned offif empty.

Repository browser

hitps://github.com)/WeblateOrg/demo/blob/{{branchl}/{{filename}}#L{fline}}

Link to repository browser, use {{branchj} for branch, {ffilename}} and ({linel} as filename and line placeholders.

Repository branch

Repository branch to translate
File format

gettext PO file
Filemask

‘weblate/langdata/locale/*/LC_MESSAGES/django.po

Path of files to translate relative to repository root, use * instead of language code, for example: po/*.po or locale/*/LC_MESSAGES/django.po.

Monolingual base language file

Filename of translation base file, containing all strings and their source;

Edit base file

Whether users will be able to edit the base file for monolingual translations.
Template for new translations
‘weblate/langdata/locale/django.pot
Filename of file used for creating new translations. For gettext choose .pot file.
Translation license
GPL30+
‘Optional short summary of license used for translations.
New translation
Create new language file
How to handle requests for creating new translations.
Language code style

Default based on the file format

Customize language code used to generate the filename for translations created by Weblate.

Language filter

recommended for monolingual translation formats.

frs to submit merge requests.

Aeslhelhu)s

Regular expression used to filter translation when scanning for filemask

Youwill be able to edit more options in the component settings after creatingit.

Powered by Weblate 33 AboutWeblate Legal Contact Documentation DonatetoWeblate

_images/about-gpg.png
Weblate Dashboard Projects~ La

About Weblate / Weblate keys

R - |

SSH key not available.

Commit signing e

All commits made with Weblate are signed with the GPG key 92DCA9162D8E43F B7813621D0234839AA13A4031, for which the corresponding public key is found below.

~—BEGIN PGP PUBLIC KEY BLOCK— ~

MQGNBF21aa8BDAC2gmhPsNaOWzPWTBbGS4w06/zZNHENQGXgXQNAT+eThosVmz02
MSFQTEN+04DVHOZO1DGUSFb6{FHOHYRNGM3HASWTg/RIZn2BXEWCLK1QZBWLFA/
+0dQox8l2vHLBAINSliZPIIWVIQrCES;IKCOVZQIKTSnmKWMIS/m +k1YMST]
RshaGERNWUTIXW]v5XjOIAVIXUbXUCFROEELa1ubICpAQTCzNFq3RIF2TIONSTF
‘TDagYBngYQ2u/CBiSShFBEXABISr4RhKpCSraMpaqHdzOlmsPzgiol3rXaulu
UPOQOVCANO1LeVAG3irvzYB0etydociGXSOHi0SAMT2GysfuMbbanTqsarxWi
‘SBRJ+xH/iSJOVA00bDPDZHGTISsb2bteYj2e20MLKTIFyr2ENSV/gBdnTftNobs2
ACAIW1FIZaQW65XRqH 1uMPUTIMUQU3pAP3 Jpnz2M+3F6yBINSAICISTINUHLY
KIHCEECWIOWEECBAEQEAABQUV2VIbGFOZSABA2VibGFOZUBIEGFCGXILMNYET6)
AC4EEWEKADEWIQSSIKKWLYSD+3gTYhOCNIOZ0TpAMQUCXaVprwIbAWULCQEHAEYY
CEKICWIERgIDAQIEAQIXgAAKCRACNIOAOTpAMRZC/4gWHZAGPePLNPI2y TICo+
EkSBK]TT8epTZ5XINbMWPXCOVHLEPIGQQOFAFNZDIIZS0KsKa9TS//1pyiZEQWLA
U5g314vrBOZFAOtYWrWNmEKISKgKGagTm6eVhyETBeXPTSCi440iHXDXLINNNX
‘SX25ayVNA4SEdvW1INMRSPUCEIO]yoVLY81pGawXdDh2Y3s2BDHEDDWHCtut+L
HGOhKMYRHUYLbvhh+SjCIC2L6mfOUV22kQuxil1ULu/dCtoUH4O0a LdFmwPs3k

Powered by Weblate 33 AboutWeblate Legal Contact Documentation DonatetoWeblate

_images/activity.png
Weblate

Dashboard

s @ St © a

Activity in last 30 days

Activity in last year

Fowered by Weblate 33 AboutWeblate Legal Contact Documentation DonatetoWeblate

nav.xhtml

 Table of Contents

 		
 Weblate

 		
 Weblate basics

 		
 Project structure

 		
 Registration and user profile

 		
 Registration

 		
 Dashboard

 		
 User profile

 		
 Translated languages

 		
 Secondary languages

 		
 Default dashboard view

 		
 Avatar

 		
 Editor link

 		
 Notifications

 		
 Account

 		
 Translating using Weblate

 		
 Translation projects

 		
 Translation links

 		
 Suggestions

 		
 Comments

 		
 Translating

 		
 Plurals

 		
 Keyboard shortcuts

 		
 Visual keyboard

 		
 Translation context

 		
 Translation history

 		
 Translated string length

 		
 Glossary

 		
 Managing glossaries

 		
 Machine translation

 		
 Automatic translation

 		
 Rate limiting

 		
 Downloading and uploading translations

 		
 Downloading translations

 		
 Uploading translations

 		
 Import methods

 		
 Checks and fixups

 		
 Automatic fixups

 		
 Quality checks

 		
 Translation checks

 		
 Unchanged translation

 		
 Starting or trailing newline

 		
 Starting spaces

 		
 Trailing space

 		
 Trailing stop

 		
 Trailing colon

 		
 Trailing question mark

 		
 Trailing exclamation

 		
 Punctuation spacing

 		
 Trailing ellipsis

 		
 Trailing semicolon

 		
 Maximum Length

 		
 Formatted strings

 		
 Placeholders

 		
 Regular expression

 		
 Missing plurals

 		
 Same plurals

 		
 Inconsistent

 		
 Has been translated

 		
 Mismatched \n

 		
 BBcode markup

 		
 Zero-width space

 		
 XML syntax

 		
 XML markup

 		
 Unsafe HTML

 		
 Markdown references

 		
 Markdown links

 		
 Markdown syntax

 		
 Kashida letter used

 		
 URL

 		
 Maximum size of translation

 		
 Source checks

 		
 Unpluralised

 		
 Ellipsis

 		
 Multiple failing checks

 		
 Searching

 		
 Simple search

 		
 Fields

 		
 Boolean operators

 		
 Field operators

 		
 Regular expressions

 		
 Application developer guide

 		
 Starting with internationalization

 		
 Choosing internationalization framework

 		
 Translating software using GNU Gettext

 		
 Translating documentation using Sphinx

 		
 Integrating with Weblate

 		
 Translation component alerts

 		
 Building translators community

 		
 Localization guide

 		
 Managing translations

 		
 Adding new translations

 		
 Reviewing source strings

 		
 Activity reports

 		
 Source strings checks

 		
 Translation string checks

 		
 String comments

 		
 Promoting the translation

 		
 Translation progress reporting

 		
 Translator credits

 		
 Contributor stats

 		
 Translation workflows

 		
 Translation access

 		
 Translation states

 		
 Direct translation

 		
 Peer review

 		
 Dedicated reviewers

 		
 Enabling reviews

 		
 Frequently Asked Questions

 		
 Configuration

 		
 How to create an automated workflow?

 		
 How to access repositories over SSH?

 		
 How to fix merge conflicts in translations?

 		
 How do I translate several branches at once?

 		
 How to export the Git repository that Weblate uses?

 		
 What are the options for pushing changes back upstream?

 		
 How can I limit Weblate access to translations only without exposing source code to it?

 		
 How can I check if my Weblate is configured properly?

 		
 Why do links contain example.com as the domain?

 		
 Why are all commits committed by Weblate <noreply@weblate.org>?

 		
 Usage

 		
 How do I review others translations?

 		
 How do I provide feedback on a source string?

 		
 How can I use existing translations while translating?

 		
 Does Weblate update translation files besides translations?

 		
 Where do language definitions come from and how can I add my own?

 		
 Can Weblate highlight changes in a fuzzy string?

 		
 Why does Weblate still show old translation strings when Iâ��ve updated the template?

 		
 Troubleshooting

 		
 Requests sometimes fail with too many open files error

 		
 Fulltext search is too slow

 		
 I get â��Lock Errorâ�� quite often while translating

 		
 Rebuilding index has failed with â��No space left on deviceâ��

 		
 Database operations fail with â��too many SQL variablesâ��

 		
 When accessing the site I get Bad Request (400) error

 		
 Features

 		
 Does Weblate support other VCS than Git and Mercurial?

 		
 How does Weblate credit translators?

 		
 Why does Weblate force to show all po files in a single tree?

 		
 Why does Weblate use language codes such sr_Latn or zh_Hant?

 		
 Supported file formats

 		
 Bilingual and monolingual formats

 		
 Automatic detection

 		
 Translation types capabilities

 		
 GNU Gettext

 		
 Monolingual Gettext

 		
 XLIFF

 		
 Translations states

 		
 Whitespace and newlines in XLIFF

 		
 Specifying translation flags

 		
 Java properties

 		
 Joomla translations

 		
 Qt Linguist .ts

 		
 Android string resources

 		
 Apple iOS strings

 		
 PHP strings

 		
 JSON files

 		
 JSON i18next files

 		
 WebExtension JSON

 		
 .NET Resource files

 		
 CSV files

 		
 YAML files

 		
 Ruby YAML files

 		
 DTD files

 		
 Flat XML files

 		
 Windows RC files

 		
 App store metadata files

 		
 Subtitle files

 		
 Excel Open XML

 		
 Others

 		
 Adding new translations

 		
 Version control integration

 		
 Accessing repositories

 		
 Weblate internal URLs

 		
 SSH repositories

 		
 HTTPS repositories

 		
 Using proxy

 		
 Git

 		
 GitHub repositories

 		
 Customizing Git configuration

 		
 Git remote helpers

 		
 GitHub

 		
 Pushing changes to GitHub as pull request

 		
 Setting up hub

 		
 Gerrit

 		
 Mercurial

 		
 Subversion

 		
 Subversion Credentials

 		
 Local files

 		
 GitLab

 		
 Pushing changes to GitLab as merge request

 		
 Setting up lab

 		
 Weblateâ��s Web API

 		
 REST API

 		
 Authentication and generic parameters

 		
 API Entry Point

 		
 Languages

 		
 Projects

 		
 Components

 		
 Translations

 		
 Units

 		
 Changes

 		
 Sources

 		
 Screenshots

 		
 Notification hooks

 		
 Exports

 		
 RSS feeds

 		
 Weblate Client

 		
 Installation

 		
 Synopsis

 		
 Description

 		
 Global options

 		
 Subcommands

 		
 Files

 		
 Examples

 		
 Weblateâ��s Python API

 		
 Installation

 		
 wlc

 		
 WeblateException

 		
 Weblate

 		
 wlc.config

 		
 WeblateConfig

 		
 wlc.main

 		
 Command

 		
 Installation instructions

 		
 Configuration instructions

 		
 Installing Weblate

 		
 Software requirements

 		
 Other services

 		
 Python dependencies

 		
 Optional dependecies

 		
 Database backend dependencies

 		
 Other system requirements

 		
 Compile time dependencies

 		
 Pango and Cairo

 		
 Verifying release signatures

 		
 Filesystem permissions

 		
 Database setup for Weblate

 		
 PostgreSQL

 		
 Migrating from other databases

 		
 Other configurations

 		
 Configuring outgoing e-mail

 		
 HTTP proxy

 		
 Adjusting configuration

 		
 Filling up the database

 		
 Production setup

 		
 Disable debug mode

 		
 Properly configure admins

 		
 Set correct sitename

 		
 Correctly configure HTTPS

 		
 Use a powerful database engine

 		
 Enable caching

 		
 Avatar caching

 		
 Configure e-mail addresses

 		
 Allowed hosts setup

 		
 Django secret key

 		
 Home directory

 		
 Template loading

 		
 Running maintenance tasks

 		
 Running server

 		
 Running web server

 		
 Serving static files

 		
 Content security policy

 		
 Sample configuration for Apache

 		
 Sample configuration for Apache and Gunicorn

 		
 Sample configuration for NGINX and uWSGI

 		
 Running Weblate under path

 		
 Background tasks using Celery

 		
 Monitoring Weblate

 		
 Collecting error reports

 		
 Sentry

 		
 Rollbar

 		
 Migrating Weblate to another server

 		
 Migrating database

 		
 Migrating VCS repositories

 		
 Migrating fulltext index

 		
 Other notes

 		
 Weblate deployments

 		
 Bitnami Weblate stack

 		
 Weblate in YunoHost

 		
 Upgrading Weblate

 		
 Generic upgrade instructions

 		
 Version specific instructions

 		
 Upgrade from 2.x

 		
 Upgrade from 3.0.1 to 3.1

 		
 Upgrade from 3.1 to 3.2

 		
 Upgrade from 3.2 to 3.3

 		
 Upgrade from 3.3 to 3.4

 		
 Upgrade from 3.4 to 3.5

 		
 Upgrade from 3.5 to 3.6

 		
 Upgrade from 3.6 to 3.7

 		
 Upgrade from 3.7 to 3.8

 		
 Upgrade from 3.8 to 3.9

 		
 Upgrading from Python 2 to Python 3

 		
 Migrating from Pootle

 		
 Backing up and moving Weblate

 		
 Automated backup

 		
 Using Weblate provisioned backup storage

 		
 Using custom backup storage

 		
 Borg encryption key

 		
 Restoring from Borg backup

 		
 Manual backup

 		
 Database

 		
 Files

 		
 Celery tasks

 		
 Restoring manual backup

 		
 Moving a Weblate installation

 		
 Authentication

 		
 User registration

 		
 Authentication backends

 		
 Social authentication

 		
 OpenID authentication

 		
 GitHub authentication

 		
 Bitbucket authentication

 		
 Google OAuth 2

 		
 Facebook OAuth 2

 		
 GitLab OAuth 2

 		
 Turning off password authentication

 		
 Password authentication

 		
 LDAP authentication

 		
 CAS authentication

 		
 Configuring third party Django authentication

 		
 Access control

 		
 Common setups

 		
 Locking down Weblate

 		
 Site wide permissions

 		
 Per project permissions

 		
 Adding permissions to languages, projects or component sets

 		
 Per project access control

 		
 Automatic group assignments

 		
 Users, roles, groups and permissions

 		
 Permission checking

 		
 Checking access to a project

 		
 Managing users and groups

 		
 Managing per project access control

 		
 Predefined groups

 		
 Custom access control

 		
 Default groups and roles

 		
 List of privileges

 		
 List of groups

 		
 Translation projects

 		
 Translation organization

 		
 Adding translation projects and components

 		
 Project configuration

 		
 Adjusting interaction

 		
 Component configuration

 		
 Template markup

 		
 Importing speed

 		
 Optimize configuration

 		
 Check resource limits

 		
 Disable unneeded checks

 		
 Automatic creation of components

 		
 Fulltext search

 		
 Language definitions

 		
 Parsing language codes

 		
 Changing language definitions

 		
 Continuous localization

 		
 Updating repositories

 		
 Avoiding merge conflicts

 		
 Automatically receiving changes from GitHub

 		
 Automatically receiving changes from Bitbucket

 		
 Automatically receiving changes from GitLab

 		
 Automatically receiving changes from Pagure

 		
 Automatically receiving changes from Azure Repos

 		
 Automatically receiving changes from Gitea Repos

 		
 Automatically receiving changes from Gitee Repos

 		
 Automatically updating repositories nightly

 		
 Pushing changes

 		
 Pushing changes from Hosted Weblate

 		
 Protected branches

 		
 Merge or rebase

 		
 Interacting with others

 		
 Lazy commits

 		
 Processing repository with scripts

 		
 Licensing translations

 		
 License information

 		
 Contributor agreement

 		
 Signed off by

 		
 User licenses

 		
 Translation process

 		
 Suggestion voting

 		
 Additional info on source strings

 		
 Strings prioritization

 		
 Translation flags

 		
 Visual context for strings

 		
 Checks and fixups

 		
 Custom automatic fixups

 		
 Customizing behavior

 		
 Managing fonts

 		
 Writing own checks

 		
 Checking translation text does not contain â��fooâ��

 		
 Checking Czech translation text plurals differ

 		
 Machine translation

 		
 Amagama

 		
 Apertium

 		
 AWS

 		
 Baidu API machine translation

 		
 DeepL

 		
 Glosbe

 		
 Google Translate

 		
 Microsoft Cognitive Services Translator

 		
 Microsoft Terminology Service

 		
 MyMemory

 		
 Netease Sight API machine translation

 		
 tmserver

 		
 Yandex Translate

 		
 Youdao Zhiyun API machine translation

 		
 Weblate

 		
 Weblate Translation Memory

 		
 SAP Translation Hub

 		
 Custom machine translation

 		
 Addons

 		
 Built in addons

 		
 Automatic translation

 		
 Cleanup translation files

 		
 Language consistency

 		
 Component discovery

 		
 Flag unchanged translations as â��Needs editingâ��

 		
 Flag new source strings as â��Needs editingâ��

 		
 Flag new translations as â��Needs editingâ��

 		
 Statistics generator

 		
 Contributors in comment

 		
 Update ALL_LINGUAS variable in the â��configureâ�� file

 		
 Customize gettext output

 		
 Update LINGUAS file

 		
 Generate MO files

 		
 Update PO files to match POT (msgmerge)

 		
 Squash Git commits

 		
 Customize JSON output

 		
 Formats the Java properties file

 		
 Stale comment removal

 		
 Stale suggestion removal

 		
 Update RESX files

 		
 Customizing list of addons

 		
 Writing addon

 		
 Executing scripts from addon

 		
 Post update repository processing

 		
 Pre commit processing of translations

 		
 Translation Memory

 		
 Translation memory scopes

 		
 Imported translation memory

 		
 Per user translation memory

 		
 Per project translation memory

 		
 Shared translation memory

 		
 Managing translation memory

 		
 User interface

 		
 Management interface

 		
 Configuration

 		
 AKISMET_API_KEY

 		
 ANONYMOUS_USER_NAME

 		
 AUDITLOG_EXPIRY

 		
 AUTH_LOCK_ATTEMPTS

 		
 AUTO_UPDATE

 		
 AVATAR_URL_PREFIX

 		
 RATELIMIT_ATTEMPTS

 		
 RATELIMIT_WINDOW

 		
 RATELIMIT_LOCKOUT

 		
 AUTH_TOKEN_VALID

 		
 AUTH_PASSWORD_DAYS

 		
 AUTOFIX_LIST

 		
 BASE_DIR

 		
 CHECK_LIST

 		
 COMMENT_CLEANUP_DAYS

 		
 COMMIT_PENDING_HOURS

 		
 DATA_DIR

 		
 DEFAULT_ACCESS_CONTROL

 		
 DEFAULT_ADD_MESSAGE, DEFAULT_ADDON_MESSAGE, DEFAULT_COMMIT_MESSAGE, DEFAULT_DELETE_MESSAGE, DEFAULT_MERGE_MESSAGE

 		
 DEFAULT_COMMITER_EMAIL

 		
 DEFAULT_COMMITER_NAME

 		
 DEFAULT_MERGE_STYLE

 		
 DEFAULT_TRANSLATION_PROPAGATION

 		
 DEFAULT_PULL_MESSAGE

 		
 ENABLE_AVATARS

 		
 ENABLE_HOOKS

 		
 ENABLE_HTTPS

 		
 ENABLE_SHARING

 		
 GITHUB_USERNAME

 		
 GITLAB_USERNAME

 		
 GOOGLE_ANALYTICS_ID

 		
 HIDE_REPO_CREDENTIALS

 		
 IP_BEHIND_REVERSE_PROXY

 		
 IP_PROXY_HEADER

 		
 IP_PROXY_OFFSET

 		
 LEGAL_URL

 		
 LIMIT_TRANSLATION_LENGTH_BY_SOURCE_LENGTH

 		
 LOGIN_REQUIRED_URLS

 		
 LOGIN_REQUIRED_URLS_EXCEPTIONS

 		
 MT_SERVICES

 		
 MT_APERTIUM_APY

 		
 MT_AWS_ACCESS_KEY_ID

 		
 MT_AWS_SECRET_ACCESS_KEY

 		
 MT_AWS_REGION

 		
 MT_BAIDU_ID

 		
 MT_BAIDU_SECRET

 		
 MT_DEEPL_KEY

 		
 MT_GOOGLE_KEY

 		
 MT_MICROSOFT_COGNITIVE_KEY

 		
 MT_MYMEMORY_EMAIL

 		
 MT_MYMEMORY_KEY

 		
 MT_MYMEMORY_USER

 		
 MT_NETEASE_KEY

 		
 MT_NETEASE_SECRET

 		
 MT_TMSERVER

 		
 MT_YANDEX_KEY

 		
 MT_YOUDAO_ID

 		
 MT_YOUDAO_SECRET

 		
 MT_SAP_BASE_URL

 		
 MT_SAP_SANDBOX_APIKEY

 		
 MT_SAP_USERNAME

 		
 MT_SAP_PASSWORD

 		
 MT_SAP_USE_MT

 		
 NEARBY_MESSAGES

 		
 PIWIK_SITE_ID

 		
 PIWIK_URL

 		
 REGISTRATION_CAPTCHA

 		
 REGISTRATION_EMAIL_MATCH

 		
 REGISTRATION_OPEN

 		
 SENTRY_DSN

 		
 SIMPLIFY_LANGUAGES

 		
 SITE_TITLE

 		
 SPECIAL_CHARS

 		
 SINGLE_PROJECT

 		
 STATUS_URL

 		
 SUGGESTION_CLEANUP_DAYS

 		
 URL_PREFIX

 		
 VCS_BACKENDS

 		
 WEBLATE_ADDONS

 		
 WEBLATE_FORMATS

 		
 WEBLATE_GPG_IDENTITY

 		
 Sample configuration

 		
 Management commands

 		
 Invoking management commands

 		
 add_suggestions

 		
 auto_translate

 		
 celery_queues

 		
 changesite

 		
 checkgit

 		
 commitgit

 		
 commit_pending

 		
 cleanup_avatar_cache

 		
 cleanuptrans

 		
 createadmin

 		
 delete_memory

 		
 dump_memory

 		
 dumpuserdata

 		
 import_json

 		
 import_memory

 		
 import_project

 		
 importuserdata

 		
 importusers

 		
 install_addon

 		
 list_ignored_checks

 		
 list_languages

 		
 list_memory

 		
 list_translators

 		
 list_versions

 		
 loadpo

 		
 lock_translation

 		
 move_language

 		
 optimize_memory

 		
 pushgit

 		
 rebuild_index

 		
 unlock_translation

 		
 setupgroups

 		
 setuplang

 		
 updatechecks

 		
 updategit

 		
 Whiteboard messages

 		
 Component Lists

 		
 Automatic component lists

 		
 Optional Weblate modules

 		
 Git exporter

 		
 Installation

 		
 Usage

 		
 Billing

 		
 Installation

 		
 Usage

 		
 Legal

 		
 Installation

 		
 Usage

 		
 Avatars

 		
 Spam protection

 		
 Signing Git commits by GnuPG

 		
 Rate limiting

 		
 IP address for rate limiting

 		
 Customizing Weblate

 		
 Creating Python module

 		
 Changing logo

 		
 Custom quality checks and auto fixes

 		
 Custom addons

 		
 Django admin interface

 		
 Adding project

 		
 Bilingual components

 		
 Monolingual components

 		
 Getting support for Weblate

 		
 Activating support

 		
 Data submitted to the server

 		
 Changes

 		
 weblate 3.9

 		
 weblate 3.8

 		
 weblate 3.7.1

 		
 weblate 3.7

 		
 weblate 3.6.1

 		
 weblate 3.6

 		
 weblate 3.5.1

 		
 weblate 3.5

 		
 weblate 3.4

 		
 weblate 3.3

 		
 weblate 3.2.2

 		
 weblate 3.2.1

 		
 weblate 3.2

 		
 weblate 3.1.1

 		
 weblate 3.1

 		
 weblate 3.0.1

 		
 weblate 3.0

 		
 weblate 2.20

 		
 weblate 2.19.1

 		
 weblate 2.19

 		
 weblate 2.18

 		
 weblate 2.17.1

 		
 weblate 2.17

 		
 weblate 2.16

 		
 weblate 2.15

 		
 weblate 2.14.1

 		
 weblate 2.14

 		
 weblate 2.13.1

 		
 weblate 2.13

 		
 weblate 2.12

 		
 weblate 2.11

 		
 weblate 2.10.1

 		
 weblate 2.10

 		
 weblate 2.9

 		
 weblate 2.8

 		
 weblate 2.7

 		
 weblate 2.6

 		
 weblate 2.5

 		
 weblate 2.4

 		
 weblate 2.3

 		
 weblate 2.2

 		
 weblate 2.1

 		
 weblate 2.0

 		
 weblate 1.9

 		
 weblate 1.8

 		
 weblate 1.7

 		
 weblate 1.6

 		
 weblate 1.5

 		
 weblate 1.4

 		
 weblate 1.3

 		
 weblate 1.2

 		
 weblate 1.1

 		
 weblate 1.0

 		
 weblate 0.9

 		
 weblate 0.8

 		
 weblate 0.7

 		
 weblate 0.6

 		
 weblate 0.5

 		
 weblate 0.4

 		
 weblate 0.3

 		
 weblate 0.2

 		
 weblate 0.1

 		
 About Weblate

 		
 Project goals

 		
 Project name

 		
 Project website

 		
 Leadership

 		
 Authors

 		
 Contributing

 		
 Code and development

 		
 Coding standard

 		
 Security by Design Principles

 		
 Testsuite

 		
 Reporting issues

 		
 Security issues

 		
 Starting with our codebase

 		
 Directory structure

 		
 Running Weblate locally in Docker

 		
 Translating

 		
 Funding Weblate development

 		
 Backers who have funded Weblate

 		
 Releasing Weblate

 		
 Developerâ��s Certificate of Origin

 		
 Debugging Weblate

 		
 Analyzing application crashes

 		
 Silent failures

 		
 Performance issues

 		
 Internals

 		
 Modules

 		
 License

 		
 Legal documents

 		
 ITAR and other export controls

 		
 US encryption controls

_images/add-project.png
Home » Weblate translations » Projects » A

Add Project
Required fields are marked in bold.
Project name: | Weblateorg J
Displey name
URL slug: | weblateorg |
Name used in URLs and lenames.
Project website: | https://weblate org/
Main websie of ranslated project.
Mailing list: | weblate@lists.cihar.com

Maiing st for ranslators.

Translation instructions: | httpsy/weblate.org/contribute/

URL with instructions for ranslators.

4 Set "Language Team" header
Lets Weblate update the “LanguageTeam file header of your project.

[Use shared translation memory
Uses the pool of shared tranlations between projects.

[Contribute to shared translation memory
ontributes to the pool of shared translations between projects.

Access control: Protected |v

How 1o restrct access to this project s detailed in the documentation.

[Enable reviews
Reaquires dedicated reviewers 1o approve translations.

[Enable hooks
‘Whether 10 allow updating this repository by remote hooks.

‘Source language: English |+

Language used for source strings in ll components.

_images/addon-discovery.png
Weblate Dashboard Projects~ Languages~

WeblateOrg / Language names / Addons

Component discovery

Configure addon

« Please review and confirm the matched components.

Component Matched files

Following components would be created

Djangojs weblate/locale/hu/LC_MESSAGES/djangojs.po (hu)
weblate/locale/cs/LC_MESSAGES/djangojs.po (cs)
weblate/locale/he/LC_MESSAGES/djangojs.po (he)

Django weblate/locale/cs/LC_MESSAGES/django.po (cs)

weblate/locale/hu/LC_MESSAGES/django.po (hu)
weblate/locale/he/LC_MESSAGES/django.po (he)

[1 confirm the above matches look correct
Regular expression to match translation files against

‘weblate/locale/(2P<language=[*/]*)/LC_MESSAGES/(?P<component>[*/]*)\.po

format
gettext PO file

Customize the component name

{f componentjtitle }}

Define the monolingual base filename

Leave empty for bilingual translation files.
Define the base file for new translations

weblate/locale/{{ component J1.pot
Filename of file used for creating new translations. For gettext choose .pot file.
Language filter

Acslhefhu)s
Regular expression to filter translation against when scanning for filemask.
[Clone addons from the main component to the newly created ones

[Remove components for inexistant files

‘The regular expression to match translation files has to contain two named groups to match component and language, some examples:

Regular expression

(2P<language> [*/1#)/ (2P<component> [*/1%)\ .po

Tocale/ (?P<language> [*/1+) /LC_MESSAGES/ (2P<component>[4/1%)\..po

sre/locale/ (2P<component>[/1#)\ . (?P<language>[*.1#)\.po

Tocale/ (?P<language> [*/1+) /(?P<component>[*/1)
/(2P=1anguage)\.po

res/values-(2P<language>[*/1%) /strings-(2P<component>
[*/1)\xml

Example matched files

cs/application.po
cs/website.po
de/application.po
de/website.po

Tocale/cs/LC_MESSAGES
Japplication.po
Tocale/cs/LC_MESSAGES /website.po
Tocale/de/LC_MESSAGES
Japplication.po
Tocale/de/LC_MESSAGES /website.po

sre/locale/application.cs.po
sre/locale/uebsite.cs.po
sre/locale/application.de.po
sre/locale/uebsite.de.po

Tocale/cs/application/cs.po
Tocale/cs/website/cs.po
locale/de/application/de.po
Tocale/de/website/de.po

res/values-cs/strings-about. xml
res/values-cs/strings-help.xml
res/values-de/strings-about.xml
res/values-de/strings-help.xml

You can use Django template markup in both component name and the monolingual base filename, for example:

{{ component 1}

Component filename match

{ component|title 1}

Component filename with upper case first letter

Description

One folder per language containi
components.

gtranslation files for

Usual structure for storing gettext PO files.

Using both component and language name within filename.

Using language in both path and filename.

‘Android resource strings, split into several files.

Powered by Weblate 39 AboutWeblate legal Contact Documentation

Donateto Weblate

_images/add-component-mono.png
Home » Weblate translations > Components

Add Component ™ MENTATION
Required fields are marked in bold.
‘Component name: Android
Display name
URL slug: android

Name used in URLS and flenames.
Project: Weblateorg E‘ s+
Version control system: Git E‘

Version ontrolsystem to use 0 access yourrepository contining ranlatons. You canslso choose acdtionsl negration with i paty providers 0 Submit merge requess.

Source code repository: | Weblate:/weblateorg/languagenames

URL of arepository, use weblate://project/component to share it wth other component.

Repository push URL:
URL of a push repository, pushing is umed of i empry.
Repository browser:
Link 0 repository browser, use {{oranchi} for branch, {(ilenamel) and fine}) as filename and ine placenolders.
Exported repository URL:
URL of repository where users can fetch changes from Weblate:
Source string bug reporting
address:
E-mail adress for reports on errors in source strings. Leave empy for no exmails.
Repository branch:
Repository branch to translate
Filemask: ‘app/src/main/res/values-*/strings.xml

Path offils to ranslate relative to repository root, use *instead of anguage code, for example: po/*.po o locale/*/LC_MESSAGES/django po.

Monolingual base language app/src/main/res/values/strings xml
file:

Filename of translation base file, containing al strings and their source; it is ecommended for monolingual translaton formats.

[Edit base file
‘Whether users will be able to edit the base filefor monolingua translations.

‘Template for new.
translation:

Filename offle used for reating new ransations. For gettext choose o i
File format: Android String Resource E‘

O Locked

Locked component wil not et any ranslation pdates

[Allow translation propagation
Wihether translaion updates in ther components will ause automeatic ranslation n this one

2 Turn on suggestions
Whetner o allow ranlation suggestons at .

] Suggestion voting
Whether userscan vot forsuggestions.

Autoaccept suggestions: | 0 =]

Automatically accept suggestions with this number of votes, use 0 to tun t of.

Translation flags:

‘Additional comme-separated flags o influence quality checks. Possible values can be found in the documentation.

Translation license: T

‘Optional short summary of license used for anslations.

License URL: https://spdx.org/licenses/MIT]

‘Optional URL with icense detais.

Contributor agreement:
Useragreement which needs 1o be approved before usercan ranslte hs component.
New translation: Create new language file E‘
tow tohandlerequests for creating e ranslations.
Language code style: Default based on the file format E‘
Gustomize sngusge code used 0 generte th flename for ransltions crested by Weblae.
Merge style: Rebase E‘

Define whether Weblate should merge the upstream repository o rebase changes onto it

‘Commit message when Translated using Weblate ({{ language_name }})
translating:
Currently translated at { stats.translated_percent }}% ({ stats translated)} of { stats.all)} strings)

Translation: {{ project_name }}/{{ component_name }}
Translate-URL: {{ url }}

You can use template language for various info,please consult the documentation for more details.

Commit message when Added translation using Weblate ({language_name }))
adding translation:

You can use template language for various info,please consult the documentation for more details.

Commit message when | Deleted translation using Weblate ({{ language_name }})
removing translation:

You can use template language for various info,please consult the documentation for more details.

‘Commit message when Merge branch ‘{{ component_remote_branch }}' into Weblate.
‘merging translation

You can use template language for various info,please consult the documentation for more details.

‘Commit message when Update translation files

‘addon makes a change:
Updated by *{{ addon_name J)" hook in Weblate.
Translation: {{ project_name }}/{{ component_name }}
Translate-URL: {{url }}
You can use template language for various info please consultthe documentation for more detals.
Committer name: Weblate

noreply@weblate.org

[Push on commit
Whether the repository should be pushed upstream on every commit.

Age of changes to commit: | 24 [+

“Time in hours after which any pending changes will be commited to the VCS.

Language filter: R

Regular expression used to filer translation when scanning for flemask.

Priority: Medium E‘

‘Components with igher priorty are offered first o translators

save and add another | Save and continue editing

_images/add-component.png
Home » Weblate translations - Components » Add Component

Add Component ™ MENTATION
Required fields are marked in bold.
‘Component name: Language names
Display name
URL slug: language-names.

Nemme used i URLS and flenames
Project: Weblateorg E‘ s+
Version control system: Git E‘

Version control syt s 1086663 Yo epostony containing ranlations. You can alsochoose adiona tegraton with i party rovides 0 SubI merge requests.

Source code repository: | https://github.com/WeblateOrg/demo.git
URL of a repository, use weblate:/project/component to share it with other component.

Repository push URL:
URL of 2 push reposton, pushing s tumed of f empy.
Repository browser: jithub.com/WeblateOrg/demo/bloby({branchy}/{(flename}}#L (ine}}
Link o repository browser, use {ranch}) or branch,(flenamel) and ({inel as flenare and ine placenolders.
Exported repository URL:
URL of repostory where users can fetch changes fom Weblate
‘Source string bug reporting
address:
E-mal adress for reports on errors i source strings. Leave empty for no emais.
Repository branch:
Repositorybranch to ranslate
Filemask: flangdata/locale/*/LC_MESSAGES/django.po

Path offils to ranslate relative o repository root, use *instead of anguage code, for example: po/*.po o locale/*/LC_MESSAGES/django po.

Monolingual base language
file:

Filename of wranslation base fle, containing al strings and their source; it is ecommended for monolingual ranslaion formats.

[Edit base file
‘Whether users will be able to edit the base filefor monolingual translations.

Template for new weblate/langdata/locale/django.pot
translation:

Filename of fl used forcreating new ranslations. For gettext choose.pat il
File format: gettext PO file E‘

O Locked

Locked component will not get any translation updates.

[Allow translation propagation
Wihether translaion updates in other components will cause automtic ranslation n this one

2 Turn on suggestions
Whether o allow ranslation suggestons at .

] Suggestion voting
Whether userscan vot orsuggestions.

Autoaccept suggestions: | 0 =]

Automatically accept suggestions with this number of votes, use 0 to turn t of.

Translation flags:

‘Additional comme-separated flags o influence quality checks. Possible values can be found in the documentation.

Translation license: GPL3.O+

‘Optional short summary of license used for anslations.

License URL: htps://spdx.org/licenses/GPL-3.0+

‘Optional URL with icense detais.

Contributor agreement:
Useragreement which needs to be approved before usercan ranslte ths component.
New translation: Create new language file E‘
tHow o handlerequests for creating v ranlations.
Language code style: Default based on the file format E‘
Gustomize snguage code used 0 generate th flename for ransltions crested by Weblae.
Merge style: Rebase E‘

Define whether Weblate should merge the upstream repository o rebase changes onto it

‘Commit message when Translated using Weblate ({{ language_name }})
translating:
Currently translated at { stats.translated_percent }% ({ statstranslated)} of { stats.all)} strings)

‘Translation: {{ project_name }j/{{ component_name }}
Translate-URL: {{url }}

You can use template language for various info,please consult the documentation for more details.

Commit message when ' Added translation using Weblate ({{ language_name }})
adding translation:

You can use template language for various info,please consult the documentation for more details.

Commit message when | Deleted translation using Weblate ({{ language_name })
removing translation:

You can use template language for various info,please consult the documentation for more details.

‘Commit message when Merge branch ‘{{ component_remote_branch }}' into Weblate.
‘merging transation:

You can use template language for various info,please consult the documentation for more details.

‘Commit message when Update translation files

‘addon makes a change:
Updated by *{{addon_name })" hook in Weblate.
‘Translation: {{ project_name }j/{{ component_name }}
Translate-URL: {{url }}
You can use template language for various info, please consultthe documentation for more detals.
Committer name: Weblate

noreply@weblate.org

[Push on commit
Whether the repository should be pushed upstream on every commit.

Age of changes to commit: | 24 [+

“Time in hours after which any pending changes will be commited to the VCS.

—

Regular expression used to filer ranslation when scanning for flemask.

Priority: Medium E‘
Components with igher rot ae offre st o transltos.

save andadd another | Save and continue editing

_images/admin.png
Site administration

Weblate support status

‘Status of repositories.

SSHkeys

Performance report

Translation memory

Auditlogs +Add & Change
Profiles +Add & Change
Verified emails +Add # Change
Tokens. +Add & Change
Automatic group assignments +Add & Change
Groups. +Add & Change
Roles. +Add & Change
Users +Add & Change
Billings +Add & Change
Invoices +Add & Change
Plans. +Add & Change
Font groups. +Add & Change
Fonts. +Add & Change
Agreements +Add & Change

Associations +Add & Change
Nonces +Add & Change
User social auths +Add & Change
‘Screenshots +Add & Change
sSites +Add & Change

WEBLATE LANGUAGES

Languages +Add & Change
Component lists. +Add & Change
Components +Add & Change
Contributor agreements. +Add & Change
Projects +Add & Change

Whiteboard messages +Add & Change

Recent actions

My actions

None available

_images/alerts.png
Weblate Dashboard Projects~ Languages~

WeblateOrg / Duplicates A

Translations Info Search Glossaries Insights ~ Tools ~
Duplicated translation.
‘The component contains several translation files mapped to single language in Weblate.
‘The following occurrences were found:
Language Language codes

Czech s Czcs
Please fix this by removing one of the duplicated strings from the translation fles.

21 seconds ago

Duplicated stringfound in the file.

The component contains several duplicated translation strings.
The following occurrences were found:

Language Source

Italian Thank you for using Weblate.

Please fix this by rem ted strings with same identifier from the translation files.

21 seconds ago

License info missing.

Any publicly available project should have defined license to

21 seconds ago

Powered by Weblate 39 AboutWeblate Legal Contact Documentation Donate to Weblate

icate what terms apply to contributions.

Manage +

Share v

@®Watch

_images/addons.png
Weblate Dashboard Projects~ Languages~

WeblateOrg / Language names | Addons

Installed addons (-]

‘There are no addons currently installed.

Available addons

|

B Automatic translation @

This addon automatically translates strings using machine translation or other components.
“BLanguage consistency @

Ensure that all components within one project have translation to same languages.
Q Component discovery @

“This addon automatically adds or removes components to the project based on file changes in the version control system.

Ll Statistics generator @

“This addon generates a file containing detailed information about the translation.

£ Contributors in comment @

Update comment

the PO file header to include contributor name and years of contributions.

Allows customi

ion of gettext output behavior, for example line wrapping.

¥ Generate MO files @
Automatically generates MO file for every changed PO file.

£ Update PO files to match POT (msgmerge) ©
Update all PO files to match the POT file u:

riggered whenever new changes are pulled from the upstream repository.

Customize gettext output @

Squash Git commits @
‘Squash Git commits prior to pushing changes.
@ Stale comment removal @

Set timeframe for removal of comments.

Set timeframe for removal of suggestions.

1l Stale suggestion removal @

‘Some addons will ask for additional configuration during installation.

Powered by Weblate 33 AboutWeblate Legal Contact Documentation DonatetoWeblate

_images/admin-wrench.png
Weblate Dashboard Projects~ Languages~

Dashboard

[RENSTOPRRUSH QW Sueested translations @) Insights + Tools +

Choose what languages you want in the preferences, to see overview of available translations for those languages in your watched projects.

yourlanguages | Manage watched projects

Legal Contact Documentation DonatetoWeblate

Manay

Powered by Weblate39 About Weblate

_images/authentication.png
Weblate Dashboard Projects~ Languages~

Your profile

Languages Preferences Notifications

Account (-]

Profile Licenses Auditlog APlaccess

testuser
Username may only contain letters, numbers or the following characters: @ . +-_
Full name

Weblate Test

E-mail
weblate@example.org E‘

You can add another e-mail address below.

Your name and e-mail will appear as commit authorship.

Identity UserID Action
@ Password testuser
@ Email weblate@example.org
& Google weblate@example.org
©) GitHub 123456
B sitbucket weblate

Emai

Removal

Account removal deletes all your private data.

1 Remove my a

You can download all your private data.

nload user data

Powered by Weblate 33 AboutWeblate Legal Contact Documentation DonatetoWeblate

_images/automatic-translation.png
Weblate Dashboard Projects~ Languages~

WeblateOrg / Django«y / Czech

Overview Info Search Glossary Insights~ Files~ Bl Manage v Share v ® Watching

Data exports

y y e oroi y Search and replace. y i - N y
Automatic translation takes existing translations in this project and applies nt. It can be used to push translations to a different branch, to fix inconsistent translations or to

translate a new component using translation memory. Bulk status change

Automatic translation via machine translation uses active machine translation engines to get the best possible translations and applies them in this project.

Automatic translation mode
Add as translation E‘
Searchfilter
Strings needing action E‘
Automatic translation source

O Othertranslation components @ Machine translation

Machine translation engines

Search.
Available: Chosen:
Weblate
Weblate Translation Memory
Score threshold
80 S

Powered by Weblate 39 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/backups.png
Weblate Dashboard Projects~ Languages~

Manage / Backups

Backup has been triggered

Weblate status - Translationmemory Performancereport SSHkeys Status of repositories Tools

Backup service: /tmp/tmpilrcsliweblate

Backup service credentials

Backup repository Jtmp/tmpilrcsliiweblate €]

Passphrase PDb$MY2e07qrB3BA) FsqFAQQ3Ur) Z$EVbS) pOZQFdeTKXFvnB &)
The passphras i sed o encryptthe backups and is necssary o restore them
SSH key
The prvae ey is needed to scces the emote backup repostory.
Deleted the oldest backups
Backup performed

Oct. 15,2019

Repository initialization

oct. 15,2019

Activate support package (-]

‘The support packages include priority e-m:

upport, or cloud backups of your Webla

tallation.
Activation token

Please enter the activation token obtained when making the subscription.

AAdd backup service (-]
Backup repository

Powered by Weblate 33 AboutWeblate Legal Contact Documentation DonatetoWeblate

_images/bitbucket-settings.png
@ LN weblate-test Michal Cihaf' / weblate-test
Settings
Q B overview
+ GENERAL Webhooks
<> Source i
Repository details Edit Weblate
¢ Commits User and group access To learn more about how webhooks work, check out the documentation.
Access keys T
35 mranches Tille | Weblate]
Username aliases
T3 Pull requests Strip commits URL | hitps:/iosted.weblate.org/hooksibitb. |
© Pipelines Unpublish commits Status (W Active
B nacive webhooks don' figger requess.
B pownloads WORKFLOW
SSL/TLS (] skip certificate verification
{3 settings Branch permissions Unirusted o self-signed certficates may not be secure. Leam
Bookmark management more
SHARE YOUR THOUGHTS Defaultreviewers Triggers (®) Repository push
Give feedback Webhooks O Choose from a full st of triggers
5 o rew e Links By cancel
FEATURES
wiki
Issue tracker

_images/checks.png
Weblate Dashboard Projects~ Languages~

WeblateOrg / Djangoty / Czech / translate

The translation has been saved, however there are some newly failing checks: Missing plurals, Python format

M« Q%count)sword~ 1/1~ W M

Translate % =
Source

Singular

Sb{count)s word @
Plural

Shlcount)s words @
one® G CIOEAEE

Few 0 CZD A
nékolikslov
other 0 CZD ST
S6lcountjs slov

Plural equation: (n==1) 20 (n>=2 8&n<=4) 7 1:2@

[Needs editing @

Nearby strings @) Machinetranslation Translation memory Other languages History

mment

Comment on this string for fellow translators and developers to read.
Scope

other translators E‘

Translation comment, discussions
s your comment specific to this translation or generic for all of them?

New comment

You can include external links or mention other users by @username.

Powered by Weblate 33 AboutWeblate Legal Contact Documentation DonatetoWeblate

H

Thingsto ch

Python format @ o
Followingformat strings are wrong:%(count)s

Missing plurals @
g R

Source Translation

No related strings found i the glossary.

‘Add word to glossary. [nsa]

Source

[Transiation
Source information
‘Screenshot context ’

Noscreenshot curretly associated!
Context ’
No context currently associated!

Flags ’
python format

Source sring location
weblate/templates/transiation htm149

Source string age

2 minuteago

Translation file
‘weblate/locale/cs/LC_MESSAGES/djangopo tring 5
Failing checks

Multiple failing checks @

“The translations i several languages have
faling checks

Di

_images/dashboard-dropdown.png
Weblate Dashboard Projects~ Languages~

Your profile

Languages Notfcatons Account Profle Lienses Audtlog APlacces

[Hide completed translations on the dashboard

Translation editor mode

Full editor E‘

Zen editor mode.

Top to bottom E‘

[Show secondary translations in zen mode
[] Hide source ifa secondary translation exists.

Editor link

Enter a custom URL to be used as link to the source code. You can use {{branchl} for branch, {{filenamel} and ffline}} as filename and line placeholders.

‘Special characters

You can specify additional special visual keyboard characters to be shown while translating. It can be useful for characters you use frequently, but are hard to type on your keyboard.
Default dashboard view

® Watched translations
O Componentlists
O Component list
O Suggested translations

Default component list

Powered by Weblate 33 AboutWeblate Legal Contact Documentation DonatetoWeblate

_images/engage.png
Weblate Dashboard

Get involved in
WeblateOrg

Hello and thank you for your interest — WeblateOrg is
being translated using Weblate, a web tool designed to
ease translating for both developers and translators.

32 13 97.7%

STRINGS LANGUAGES TRANSLATED

The translation project for WeblateOrg currently contains 32 strings for
translation and is being translated into 13 languages. Overall, these
translations are 97.7% complete. If you would like to contribute to translation
of WeblateOrg, you need to register on this server. This translation is open only
toa limited group of translators, if you want to contribute please get in touch
with the project maintainers.

@ Translate 2 View project languages

Powered by Weblate 39 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/componentlist-add.png
Home » Weblate translations » Component lists » Add Com

Add Component list

Required fields are marked in bold.
Component list name: All components]
Display name
URL slug: all-components \
Name used in URLS and flenames.
[Show on dashboard
When enabled this component st will be shown s a tab on the dashiboard
Components: Available components @ *
Q | Fitter
WeblateOrg/Django ~
WeblateOrg/Language names.
°
(<)
Choose all © @ Remove all
Hold down “Contor, o “Commandr on a Mac, o select more than one
JTOMATIC COMPONENT LIST ASSIGNMENTS
"PROJECT REGULAR EXPRESSION © 'COMPONENT REGULAR EXPRESSION © eLETE?

+ Add another Automatic component ist assignment

_images/contributor-agreement.png
Weblate Dashboard Projects~ Languages~

WeblateOrg / Language namesy trans

Contribution to this translation requires you to agree with a contributor agreement.

Tra Info Search Glossaries Insights~ Files= Tools~ Manage~ Share - ® Watching
Language strings Words Needs editing Checks Suggestions Comments e m
Czech 100.0% 100.0% 0.0% 0.0% 0.0% 0.0% T
Hebrew 100.0% 100.0% 0.0% 0.0% 0.0% 0.0%
Hungarian 818% 80.0% 136% 0.0% 0.0% 0.0%

artn

Powered by Weblate 39 AboutWeblate Legal Contact Documentation Donate toWeblate

_images/font-edit.png
Weblate Dashboard Project

WeblateOrg / Fonts / Droid Sans Fallback Regular

Font family Droid sans Fallback
Font style Regular

File size 3939852
Createdon now

Uploaded by @ testuser

Used in groups

Powered by Weblate 39 AboutWeblate Legal Contact Documentation Donate toWeblate

_images/font-group-edit.png
Weblate Dashboard Projects~ Languages~

WeblateOrg / Font groups / default-font

Name default-font

Default font Source Sans Pro Bold

Japanese Droid Sans Fallback Regular
Korean Droid Sans Fallback Regular

Add language override

Langge ;

Edit font group

Font group name

default-font
Identifier you will use in checks to select this font group. Avoid whitespaces and special characters.
Default font

Source Sans Pro Bold E‘

Default font is used unless per language override matches.

Powered by Weblate 33 AboutWeblate Legal Contact Documentation DonatetoWeblate

_images/export-import.png
Weblate Dashboard Projects~ Languages~

WeblateOrg / Django«y / Czech e

Overview Info Search Glossary Insights ~ [l

Download original translation file (gettext PO file)

Download translation file as CSV

Bl Tools+ Manage v Share @ watching

Th wploscs) el rossged it the comert orstotion W gl i niton.
File Download translation file as gettext PO
Browse... | No file selected. Download translation file as TBX
Fie upload mode Download translation file as TMX
Download translation file as XLIFF with gettext extensions
Add as translati
© Addas translation Download translation file as XLIFF 1.1
Add as suggestion
o Bgest Download translation file as Excel Open XML
O Add as translation needing edit
O Replace existing translation file Download strings needing action as CSV
Processing of strings needing edit Download strings needing action as gettext MO
. Download strings needing action as gettext PO
Do notimport v

Download strings needing action as TBX
[Overwrite existing translations Download strings needing action as TMX

Whether to overwrite existing translations if the string is already Download strings needing action as XLIFF with gettext extensions
Author name Download strings needing action as XLIFF 1.1
Download strings needing action s Excel Open XML

Leave empty for using currently logged in user. Customize download

Author e-mail

Leave empty for using currently logged in user.

Upl

Powered by Weblate 39 AboutWeblate Legal Contact Documentation Donate toWeblate

_images/format-highlight.png
Weblate Dashboard Projects~

WeblateOrg / Django«y / Czech

M« Q%count)sword v 1/1~ W

Translate

Source.
singular
S(count)s word

Plural
9(count)s words

9%(count)s slovy

Feu 0 GZD

9%(count)s slova

other s D

9%(count)s slov

Plural equation: (n==1) 20 (n>=2 &&n<=4) 7 1:2@

[Needs editing @

Languages~

translate

%=

Nearbystrings @) Comments
When User Action
aminute ago ® None

Browse all component changes

Powered by Weblate 39 AboutWeblate Legal

Machine translation

New source string

Contact

Documentation

‘Translation memory

Other lnguages

Detail Object

WeblateOrg/Django - Czech

Donateto Weblate

‘weblate/locale/cs/LC_MESSAGES/djangopo trng 5

H

Glossary @
Source Transiation
No related strngs ound n the glossary.

Add word to glossary.

Source

Transiation

Sereenshot context s
No screenshot currently assaciated!

Context ’
No contet currently associated!

Flags ’
python-format

Source string location
‘weblate/templates/transiation.htmi:149 7

Source string age

aminuteago

Translation file

_images/github-protected.png
(¥ Require pull request reviews before merging
When enabled, all commits must be made to a non-protected branch and subitted via a pull request with the
required number of approving reviews and no changes requested before t can be merged into a branch that
maiches this rue.

Required approving reviews: 1~

(] Dismiss stale pull request approvals when new commits are pushed
New reviewable commits pushed to a matching branch wil dismiss pull request review approvals.

() Require review from Code Owners
Require an approved review in pull requests including files with a designated code owner.

(/ Restrict who can dismiss pull request reviews
Specify people or teams allowed to dismiss pull request reviews.

People and teams that can dismiss reviews.

n Organization and repository administrators
These members can aways dismiss.

weblate
Weblate push user

_images/font-group-list.png
Weblate Dashboard Projects~ Languages~

WeblateOrg / Fonts

Fonts.

Group name Default font Language overrides

default-font ‘Source Sans Pro Bold Japanese: Droid Sans Fallback Regular
Korean: Droid Sans Fallback Regular

Font group name

Identifier you will use in checks to select this font group. Avoid whitespaces and special characters.

Default font

Default font is used unless per language override matches.

Powered by Weblate 33 AboutWeblate Legal Contact Documentation DonatetoWeblate

_images/font-list.png
Weblate Dashboard Projects~ Languages~

WeblateOrg / Fonts

Font groups

Font family Font style
Droid Sans Fallback Regular
Source Sans Pro Bold

Font file

Nofile selected.

Browse.
OpenType and TrueType fonts are supported.

Powered by Weblate 39 AboutWeblate legal Contact Documentation

Donateto Weblate

_images/github-settings.png
[J WeblateOrg / hello
Code Pull requests 0
options

Collaborators & teams
Branches

Webhooks
Integrations & services
Deploy keys

Alerts.

©2018Gitub, Inc. Terms Privacy Security Status Help.

Pull requests Issue

Marketplace Explore

@Umatch~ 2| gUnstar 7 | gFork 20

Projects 0 Insights £ Settings.

Webhooks / Add webhook

We'll send a POST request to the URL below with details of any subscribed events. You can also specify which
data format you'd like to receive (JSON, x-ww- Forn-urlencoded, efc). More information can be found in our
developer documentation

Payload URL *
hips://hosted weblate.org/hooks/github/

Content type

application/x-www-form-urlencoded &

Secret

1By detaut, we very SSL cericates when deliverng payloads. Disabe SSL verfication

Which events would you like to trigger this webhook?
) Just the push event.

Send me everything.

Let me select individual events.

(& Active
We willdeliver event details when this hook s tiggered.

Add webhool

ContactGitHub APl Training Shop Blog About

_images/glossary-edit.png
Weblate Dashboard Projects~ Languages~

WeblateOrg / Czech / Glossary

Bro Addnewword Importglossary Exportglossary v History
Starting letter Any |~
Source Translation
language jazyk
Search
Search

Powered by Weblate 39 AboutWeblate Legal Contact Documentation Donate to Weblate

_static/widget-images/287x66-black.png

_static/widget-images/287x66-white.png

_static/widget-images/287x66-grey.png

_static/widget-images/88x31-grey.png

_static/widget-images/88x31-black.png

_static/widget-images/open-graph.png
Q) wesiare
. o

and join the community

_static/widget-images/88x31-white.png

