
Weblate Documentation
Release 1.8

Michal Čihař

November 07, 2013

Contents

i

ii

Weblate Documentation, Release 1.8

Contents:

Contents 1

Weblate Documentation, Release 1.8

2 Contents

CHAPTER 1

About Weblate

1.1 Project goals

Web based translation with tight git integration supporting wide range of file formats and makes it easy for translators
to contribute.

The translations should be kept within same repository as source code and translation process should closely follow
development.

There is no plan in heavy conflict resolution as these should be primarily handled on git side.

1.2 Project name

The project is named as mixture of words web and translate.

1.3 Project website

You can find project website at <http://weblate.org/>, there is also demonstration server at <http://demo.weblate.org/>.
This documentation can be browsed on <http://weblate.readthedocs.org/>.

1.4 Authors

This tool was written by Michal Čihař <michal@cihar.com>.

3

http://weblate.org/
http://demo.weblate.org/
http://weblate.readthedocs.org/
mailto:michal@cihar.com

Weblate Documentation, Release 1.8

4 Chapter 1. About Weblate

CHAPTER 2

Translators guide

2.1 Weblate basics

2.1.1 Projects structure

Each project can contain various subprojects. The reason for this structure is that all subprojects in a project are
expected to have a lot in common. Whenever translation is made in single subproject, it is automatically propagated
to others within same project (this is especially useful when translating more version of same project).

2.2 Registration and user profile

2.2.1 Registration

While everybody can browse projects, view translations or suggest them, only registered users are allowed to actually
save changes and are credited for every translation made.

You can register following two simple steps:

1. Fill out the registration form with your credentials

2. Activate registration by following in email you receive

3. Possibly adjust your profile to choose which languages you know

2.2.2 User profile

User profile contains your preferences, name and email. Name and email are being used in Git commits, so keep this
information accurate.

Languages

Choose here which languages you prefer to translate. These will be offered to you on main page to have easier access
to translations.

5

Weblate Documentation, Release 1.8

Secondary languages

You can define secondary languages, which will be shown you while translating together with source language. Ex-
ample can be seen on following image, where Czech language is shown as secondary:

Subscriptions

You can subscribe to various notifications on Subscriptions tab. You will receive notifications for selected events on
chosen projects for languages you have indicated for translation (see above).

6 Chapter 2. Translators guide

Weblate Documentation, Release 1.8

Authentication

On the Authentication tab you can connect various services which you can use to login into Weblate. List of services
depends on Weblate configuration, but can include popular sites such as Google, Facebook, GitHub or Bitbucket.

2.2. Registration and user profile 7

Weblate Documentation, Release 1.8

2.3 Translating using Weblate

2.3.1 Translation links

Once you navigate to a translation, you will be shown set of links which lead to translation. These are results of
various checks, like untranslated or fuzzy strings. Should no other checks fire, there will be still link to all translations.
Alternatively you can use search field to find translation you need to fix.

2.3.2 Suggestions

As an anonymous user, you have no other choice than making a suggestion. However if you are logged in you can still
decide to make only a suggestion instead of saving translation, for example in case you are unsure about the translation
and you want somebody else to review it.

Note: Permissions might vary depending on your setup, what is described is default Weblate behaviour.

2.3.3 Translating

On translate page, you are shown source string and edit area for translating. Should the translation be plural, multiple
source strings and edit areas are shown, each described with label for plural form.

Any special whitespace chars are underlined in red and indicated with grey symbols. Also more than one space is
underlined in red to allow translator to keep formatting.

There are various extra information which can be shown on this page. Most of them are coming from the project
source code (like context, comments or where the message is being used). When you configure secondary languages
in your preferences, translation to these languages will be shown.

Bellow translation can be also shown suggestions from other users, which you can accept or delete.

Translation context

Translation context part allows you to see related information about current string.

Nearby messages Displays messages which are located nearby in translation file. These usually are also used in
similar context and you might want to check them to keep translation consistent.

Similar messages Messages which are similar to currently one, which again can help you to stay consistent within
translation.

8 Chapter 2. Translators guide

Weblate Documentation, Release 1.8

All locations In case message appears in multiple places (eg. multiple subprojects), this tab shows all of them and for
inconsistent translations (see Inconsistent) you can choose which one to use.

Glossary Displays words from project glossary which are used in current message.

Recent edits List of people who have changed this message recently using Weblate.

Project Project information like instructions for translators or information about Git repository.

If translation format supports it, you can also follow links to source code which contains translated strings.

Translation history

Every change is by default (unless disabled in subproject settings) saved in the database and can be reverted. Of course
you can still also revert anything in underlaying version control system.

2.3.4 Export and import

Weblate supports both export and import of translation files. This allows you to work offline and then merge changes
back. Your changes will be merged within existing translation (even if it has been changed meanwhile).

Note: This ability might be limited by Access control.

Import method

You can choose how imported strings will be merged out of following options:

Add as translation Imported translations are added as translation. This is most usual and default behavior.

Add as a suggestion Imported translations are added as suggestions, do this when you want to review imported
strings.

Add as fuzzy translation Imported translations are added as fuzzy translations. This can be useful for review as well.

Additionally, when adding as a translation, you can choose whether to overwrite already translated strings or not.

2.3. Translating using Weblate 9

Weblate Documentation, Release 1.8

2.3.5 Glossary

Each project can have assigned glossary for any language. This could be used for storing terminology for given project,
so that translations are consistent. You can display terms from currently translated string in bottom tabs.

Managing glossaries

On project page, on Glossaries tab, you can find link Manage all glossaries, where you can start new glossaries or
edit existing ones. Once glossary is existing, it will also show up on this tab.

On further page, you can choose which glossary to manage (all languages used in current project are shown). Following
this language link will lead you to page, which can be used to edit, import or export the glossary:

10 Chapter 2. Translators guide

Weblate Documentation, Release 1.8

2.3.6 Machine translation

Based on configuration and your language, Weblate provides buttons for following machine translation tools.

All machine translations are available on single tab on translation page.

See Also:

Machine translation setup

2.4 Checks and fixups

2.4.1 Automatic fixups

In addition to Quality checks, Weblate can also automatically fix some common errors in translated strings. This can
be quite powerful feature to prevent common mistakes in translations, however use it with caution as it can cause silent
corruption as well.

See Also:

AUTOFIX_LIST

2.4.2 Quality checks

Weblate does wide range of quality checks on messages. The following section describes them in more detail. The
checks take account also special rules for different languages, so if you think the result is wrong, please report a bug.

See Also:

2.4. Checks and fixups 11

Weblate Documentation, Release 1.8

CHECK_LIST

Translation checks

These are executed on every translation change and help translators to keep good quality of translations.

Not translated

The source and translated strings are the same at least in one of the plural forms. This check ignores some strings
which are quite usually same in all languages and strips various markup, which can occur in the string, to reduce
number of false positives.

Starting newline

Source and translated do not both start with a newline.

Trailing newline

Source and translated do not both end with a newline.

Starting spaces

Source and translation do not both start with same number of spaces. Space in beginning is usually used for indentation
in the interface and thus is important.

Trailing space

Source and translated do not both end with a space.

Trailing stop

Source and translated do not both end with a full stop. Full stop is also checked in various language variants (Chinese,
Japanese, Devanagari or Urdu).

Trailing colon

Source and translated do not both end with a colon or the colon is not correctly spaced. This includes spacing rules
for French or Breton. Colon is also checked in various language variants (Chinese or Japanese).

Trailing question

Source and translated do not both end with a question mark or it is not correctly spaced. This includes spacing rules for
French or Breton. Question mark is also checked in various language variants (Armenian, Arabic, Chinese, Korean,
Japanese, Ethiopic, Vai or Coptic).

12 Chapter 2. Translators guide

Weblate Documentation, Release 1.8

Trailing exclamation

Source and translated do not both end with an exclamation mark or it is not correctly spaced. This includes spacing
rules for French or Breton. Exclamation mark is also checked in various language variants (Chinese, Japanese, Korean,
Armenian, Limbu, Myanmar or Nko).

Trailing ellipsis

Source and translation do not both end with an ellipsis. This only checks for real ellipsis (u2026) not for three commas
(...).

See Also:

https://en.wikipedia.org/wiki/Ellipsis

Python format

Python format string does not match source.

See Also:

http://docs.python.org/2.7/library/stdtypes.html#string-formatting

Python brace format

Python brace format string does not match source.

See Also:

http://docs.python.org/3.3/library/string.html#string-formatting

PHP format

PHP format string does not match source.

See Also:

http://www.php.net/manual/en/function.sprintf.php

C format

C format string does not match source.

See Also:

https://en.wikipedia.org/wiki/Printf_format_string

Missing plurals

Some plural forms are not translated. Check plural form definition to see for which counts each plural form is being
used.

2.4. Checks and fixups 13

https://en.wikipedia.org/wiki/Ellipsis
http://docs.python.org/2.7/library/stdtypes.html#string-formatting
http://docs.python.org/3.3/library/string.html#string-formatting
http://www.php.net/manual/en/function.sprintf.php
https://en.wikipedia.org/wiki/Printf_format_string

Weblate Documentation, Release 1.8

Inconsistent

More different translations of one string in a project. This can also lead to inconsistencies in displayed checks. You
can find other translations of this string on All locations tab.

Mismatched \n

Number of \n in translation does not match source. Usually escaped newlines are important for formatting program
output, so this should match to source.

Mismatched BBcode

BBcode in translation does not match source. The method for detecting BBcode is currently quite simple.

Zero-width space

Translation contains extra zero-width space (<U+200B>) character. This character is usually inserted by mistake.

See Also:

https://en.wikipedia.org/wiki/Zero-width_space

XML tags mismatch

XML tags in translation do not match source. This usually means resulting output will look different. In most cases
this is not desired result from translation, but occasionally it is desired.

Source checks

Source checks can help developers to improve quality of source strings.

Optional plural

The string is optionally used as plural, but not using plural forms. In case your translation system supports this, you
should use plural aware variant of it.

For example with Gettext in Python it could be:

from gettext import ngettext

print ngettext(’Selected %d file’, ’Selected %d files’, files) % files

Ellipsis

The string uses three dots (...) instead of an ellipsis character (. . .). Using Unicode character is in most cases better
approach and looks better.

See Also:

https://en.wikipedia.org/wiki/Ellipsis

14 Chapter 2. Translators guide

https://en.wikipedia.org/wiki/Zero-width_space
https://en.wikipedia.org/wiki/Ellipsis

Weblate Documentation, Release 1.8

Multiple failing checks

More translations of this string have some failed quality checks. This is usually indication that something could be
done about improving the source string.

This check can be quite often caused by missing full stop at the end of sentence or similar minor issues which transla-
tors tend to fix in translations.

2.4. Checks and fixups 15

Weblate Documentation, Release 1.8

16 Chapter 2. Translators guide

CHAPTER 3

Application developer guide

Using Weblate for translating your projects can bring you quite a lot of benefits. It’s only up to you how much of that
you will use.

3.1 Activity reports

You can check activity reports for translations, project or individual users.

3.2 Promotion the translation

Weblate provides you widgets to share on your website or other sources to promote translation project. It also has nice
welcome page for new contributors to give them basic information about the translation. Additionally you can share
information about translation using Facebook or Twitter. All these possibilities can be found on Share tab. Example
of status badges for Weblate itself are show below.

Small badge often used to quickly see status of a project: Big badge with status details useful for

17

http://l10n.cihar.com/engage/weblate/?utm_source=widget

Weblate Documentation, Release 1.8

inclusion on a web page: Small badge with

status useful for inclusion on a web page: All these badges come with links to simple page
which explains users how to translate using Weblate:

3.3 Reviewing source strings

3.3.1 Source strings checks

Weblate includes quite a lot of Quality checks. Some of them also focus on quality of source strings. These can give
you some hints for making strings easier to translate. You can check failing source checks on Source tab of every
subproject.

3.3.2 Failing checks on translation

On the other side, failing translation checks might also indicate problem in the source strings. Translators often tend
to fix some mistakes in translation instead of reporting it - typical example is missing full stop at the end of sentence,
but there are more such cases.

Reviewing all failing checks on your translation can bring you valuable feedback for improving source strings as well.

18 Chapter 3. Application developer guide

http://l10n.cihar.com/engage/weblate/?utm_source=widget
http://l10n.cihar.com/engage/weblate/?utm_source=widget

Weblate Documentation, Release 1.8

3.3.3 String comments

Weblate allows translators to comment on both translation and source strings. Each Subproject can be configured to
receive such comments on email address and sending this to developers mailing list is usually best approach. This way
you can monitor when translators find problems and fix them quickly.

3.3. Reviewing source strings 19

Weblate Documentation, Release 1.8

20 Chapter 3. Application developer guide

CHAPTER 4

Administrators guide

4.1 Quick setup guide

Note: This is just a quick guide for installing and starting to use Weblate for testing purposes. Please check Installa-
tion instructions for more real world setup instructions.

4.1.1 Installing from sources

1. Install all required dependencies, see Requirements.

2. Grab Weblate sources (either using Git or download a tarball) and unpack them.

3. Copy weblate/settings_example.py to weblate/settings.py and adjust it to match your setup.
You will at least need to configure database connection (possibly adding user and creating the database). Check
Configuration for Weblate specific configuration options.

4. Build Django tables and initial data:

./manage.py syncdb

./manage.py migrate

./scripts/generate-locales # If you are using Git checkout

5. Configure webserver to serve Weblate, see Running server.

4.1.2 Using prebuilt appliance

1. Download the appliance and start it. You need to choose format depending on your target environment.

2. Everything should be set up immediately after boot, though you will want to adjust some settings to improve
security, see Appliance.

4.1.3 Adding translation

1. Open admin interface (http://example.org/admin/) and create project you want to translate. See Project for more
details.

21

http://example.org/admin/

Weblate Documentation, Release 1.8

All you need to specify here is project name and it’s website.

2. Create subproject which is the real resource for translating - it points to Git repository and selects which files to
translate. See Subproject for more details.

The important fields here being subproject name, Git repository address and mask for finding translatable files.
Weblate supports wide range of formats including Gettext PO files, Android resource strings, OS X string
properties, Java properties or Qt Linguist files, see Supported formats for more details.

3. Once above is completed (it can be lengthy process depending on size of your Git repository and number of
messages to translate), you can start translating.

4.2 Installation instructions

4.2.1 Requirements

Python (2.7) http://www.python.org/

Django (>= 1.4) https://www.djangoproject.com/

Translate-toolkit (>= 1.9.0, 1.10.0 or newer strongly recommended) http://toolkit.translatehouse.org/

GitPython (>= 0.3.2) https://github.com/gitpython-developers/GitPython

Git (>= 1.7.2) http://git-scm.com/

python-social-auth (>= 0.1) http://psa.matiasaguirre.net/

Whoosh (>= 2.5, 2.5.2 is recommended) http://bitbucket.org/mchaput/whoosh/

PIL or Pillow library http://python-imaging.github.io/

south http://south.aeracode.org/

libravatar (optional for federated avatar support) https://pypi.python.org/pypi/pyLibravatar

PyICU (optional for proper sorting of strings) https://pypi.python.org/pypi/PyICU

Database backend Any database supported in Django will work, check their documentation for more details.

Requirements on Debian or Ubuntu

On Debian or Ubuntu, most of requirements are already packaged, to install them you can use apt-get:

apt-get install python-django translate-toolkit python-git \
python-whoosh python-pil python-django-south python-libravatar python-pyicu

Optional for database backend

apt-get install python-mysqldb # For MySQL
apt-get install python-psycopg2 # For PostgreSQL

There is one library not available in Debian so far, so it is recommended to install it using pip:

pip install python-social-auth

22 Chapter 4. Administrators guide

http://www.python.org/
https://www.djangoproject.com/
http://toolkit.translatehouse.org/
https://github.com/gitpython-developers/GitPython
http://git-scm.com/
http://psa.matiasaguirre.net/
http://bitbucket.org/mchaput/whoosh/
http://python-imaging.github.io/
http://south.aeracode.org/
https://pypi.python.org/pypi/pyLibravatar
https://pypi.python.org/pypi/PyICU

Weblate Documentation, Release 1.8

Requirements on openSUSE

All requirements are available either directly in openSUSE or in devel:languages:python repository:

zypper install python-django python-social-auth translate-toolkit python-GitPython \
python-whoosh python-imaging python-South

Requirements on OSX

If your python was not installed using brew, make sure you have this in your .bash_profile file or executed somehow:

export PYTHONPATH="/usr/local/lib/python2.7/site-packages:$PYTHONPATH"

This configuration make available the installed libraries to python

Requirements using pip installer

Most requirements can be also installed using pip installer:

pip install -r requirements.txt

Also you will need header files for libxml2 and libxslt to compile some of the required Python modules.

On Debian or Ubuntu you can install them using:

apt-get install libxml2-dev libxslt-dev

On openSUSE or SLES you can install them using:

zypper install libxslt-devel libxml2-devel

4.2.2 Filesystem permissions

Weblate process needs to be able to read and write to two directories where it keeps data. The GIT_ROOT is used for
storing Git repositories and WHOOSH_INDEX is used for fulltext search data.

The default configuration places them in same tree as Weblate sources, however you might prefer to move these to
better location such as /var/lib/weblate.

Weblate tries to create these directories automatically, but it will fail when it does not have permissions to do so.

You should also take care when running Management commands, as they should be run under same user as Weblate
itself is running, otherwise permissions on some files might be wrong.

4.2.3 Installation

Copy weblate/settings_example.py to weblate/settings.py and adjust it to match your setup. You
will probably want to adjust following options:

ADMINS

List of site administrators to receive notifications when something goes wrong, for example notifications
on failed merge or Django errors.

See Also:

https://docs.djangoproject.com/en/1.4/ref/settings/#admins

4.2. Installation instructions 23

https://docs.djangoproject.com/en/1.4/ref/settings/#admins

Weblate Documentation, Release 1.8

ALLOWED_HOSTS

If you are running Django 1.5 or newer, you need to set this to list of hosts your site is supposed to serve.
For example:

ALLOWED_HOSTS = [’demo.weblate.org’]

See Also:

https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-ALLOWED_HOSTS

DATABASES

Connectivity to database server, please check Django’s documentation for more details.

Note: When using MySQL, don’t forget to create database with UTF-8 encoding:

CREATE DATABASE <dbname> CHARACTER SET utf8;

See Also:

https://docs.djangoproject.com/en/1.4/ref/settings/#databases, https://docs.djangoproject.com/en/1.4/ref/databases/

DEBUG

Disable this for production server. With debug mode enabled, Django will show backtraces in case of
error to users, when you disable it, errors will go by email to ADMINS (see above).

Debug mode also slows down Weblate as Django stores much more information internally in this case.

See Also:

https://docs.djangoproject.com/en/1.4/ref/settings/#debug

DEFAULT_FROM_EMAIL

Email sender address for outgoing email, for example registration emails.

See Also:

DEFAULT_FROM_EMAIL documentation

SECRET_KEY

Key used by Django to sign some information in cookies, see Django secret key for more information.

SERVER_EMAIL

Email used as sender address for sending emails to administrator, for example notifications on failed
merge.

See Also:

SERVER_EMAIL documentation

After your configuration is ready, you can run ./manage.py syncdb and ./manage.py migrate to create
database structure. Now you should be able to create translation projects using admin interface.

In case you want to run installation non interactively, you can use ./manage.py syncdb --noinput and then
create admin user using createadmin command.

You should also login to admin interface (on /admin/ URL) and adjust default site name to match your domain.

Note: If you are running version from Git, you should also regenerate locale files every time you are upgrading. You
can do this by invoking script ./scripts/generate-locales.

24 Chapter 4. Administrators guide

https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-ALLOWED_HOSTS
https://docs.djangoproject.com/en/1.4/ref/settings/#databases
https://docs.djangoproject.com/en/1.4/ref/databases/
https://docs.djangoproject.com/en/1.4/ref/settings/#debug
https://docs.djangoproject.com/en/1.4/ref/settings/#default-from-email
https://docs.djangoproject.com/en/1.4/ref/settings/#server-email

Weblate Documentation, Release 1.8

See Also:

Configuration, Access control, Why does registration contain example.com as domain?

4.2.4 Production setup

For production setup you should do following adjustments:

Disable debug mode

Disable Django’s debug mode by:

DEBUG = False

With debug mode Django stores all executed queries and shows users backtraces of errors what is not desired in
production setup.

See Also:

Installation

Properly configure admins

Set correct admin addresses to ADMINS setting for defining who will receive mail in case something goes wrong on
the server, for example:

ADMINS = (
(’Your Name’, ’your_email@example.com’),

)

See Also:

Installation

Set correct site name

Adjust site name in admin interface, otherwise links in RSS or registration emails will not work.

See Also:

Why does registration contain example.com as domain?

Enable indexing offloading

Enable OFFLOAD_INDEXING to prevent locking issues and improve performance. Don’t forget to schedule indexing
in background job to keep the index up to date.

See Also:

Fulltext search, OFFLOAD_INDEXING

4.2. Installation instructions 25

Weblate Documentation, Release 1.8

Use powerful database engine

Use powerful database engine (SQLite is usually not good enough for production environment), for example setup for
MySQL:

DATABASES = {
’default’: {

’ENGINE’: ’django.db.backends.mysql’,
’NAME’: ’weblate’,
’USER’: ’weblate’,
’PASSWORD’: ’weblate’,
’HOST’: ’127.0.0.1’,
’PORT’: ’’,

}
}

See Also:

Installation, Django’s databases

Enable caching

If possible, use memcache from Django by adjusting CACHES configuration variable, for example:

CACHES = {
’default’: {

’BACKEND’: ’django.core.cache.backends.memcached.MemcachedCache’,
’LOCATION’: ’127.0.0.1:11211’,

}
}

See Also:

Django’s cache framework

Configure email addresses

Weblate needs to send out emails on several occasions and these emails should have correct sender address, please
configure SERVER_EMAIL and DEFAULT_FROM_EMAIL to match your environment, for example:

SERVER_EMAIL = ’admin@example.org’
DEFAULT_FROM_EMAIL = ’weblate@example.org’

See Also:

Installation, DEFAULT_FROM_EMAIL documentation, SERVER_EMAIL documentation

Allowed hosts setup

Django 1.5 and newer require ALLOWED_HOSTS to hold list of domain names your site is allowed to serve, having it
empty will block any request.

See Also:

https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-ALLOWED_HOSTS

26 Chapter 4. Administrators guide

https://docs.djangoproject.com/en/1.4/ref/databases/
https://docs.djangoproject.com/en/1.4/topics/cache/
https://docs.djangoproject.com/en/1.4/ref/settings/#default-from-email
https://docs.djangoproject.com/en/1.4/ref/settings/#server-email
https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-ALLOWED_HOSTS

Weblate Documentation, Release 1.8

Federated avatar support

By default, Weblate relies on <https://www.libravatar.org/> for avatars. When you install pyLibavatar, you will get
proper support for federated avatars.

PyICU library

PyICU library is optionally used by Weblate to sort Unicode strings. This way language names are properly sorted
even in non-ASCII languages like Japanese, Chinese or Arabic or for languages with accented letters.

Django secret key

The SECRET_KEY setting is used by Django to sign cookies and you should really use own value rather than using
the one coming from example setup.

You can generate new key using examples/generate-secret-key shipped with Weblate.

See Also:

https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-SECRET_KEY

Admin static files

If you see purely designed admin interface, the CSS files required for it are not loaded. This is usually if you are
running in non-debug mode and have not configured your web server to serve them. Recommended setup is described
in the Running server chapter.

See Also:

Running server

Home directory

The home directory for user which is running Weblate should be existing and writable by this user. This is especially
needed if you want to use SSH to access private repositories.

Note: On Linux and other UNIX like systems, the path to user’s home directory is defined in /etc/passwd. Many
distributions default to non writable directory for users used for serving web content (such as apache, www-data
or wwwrun, so you either have to run Weblate under different user or change this setting.

See Also:

Private repositories

4.2.5 Running server

Running Weblate is not different from running any other Django based application.

It is recommended to serve static files directly by your web server, you should use that for following paths:

/media Serves media directory from Weblate.

/static/admin Serves media files for Django admin interface (eg. /usr/share/pyshared/django/contrib/admin/media/).

4.2. Installation instructions 27

https://www.libravatar.org/
https://pypi.python.org/pypi/pyLibravatar
https://pypi.python.org/pypi/PyICU
https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-SECRET_KEY

Weblate Documentation, Release 1.8

Additionally you should setup rewrite rule to serve media/favicon.ico as favicon.ico.

See Also:

https://docs.djangoproject.com/en/1.4/howto/deployment/

Sample configuration for Lighttpd

The configuration for Lighttpd web server might look like following (available as examples/lighttpd.conf):

fastcgi.server = (
"/weblate.fcgi" => (

"main" => (
"socket" => "/var/run/django/weblate.socket",
"check-local" => "disable",

)
),

)
alias.url = (

"/media" => "/var/lib/django/weblate/weblate/media/",
"/static/admin" => "/usr/share/pyshared/django/contrib/admin/static/admin/",

)

url.rewrite-once = (
"^(/*media.*)$" => "$1",
"^(/*static.*)$" => "$1",
"^/*favicon\.ico$" => "/media/favicon.ico",
"^/*robots\.txt$" => "/media/robots.txt",
"^(/.*)$" => "/weblate.fcgi$1",

)

expire.url = (
"/media/" => "access 1 months",
"/static/" => "access 1 months",
"/favicon.ico" => "access 1 months",

)

Sample configuration for Apache

Following configuration runs Weblate as WSGI, you need to have enabled mod_wsgi (available as
examples/apache.conf):

#
VirtualHost for weblate
#
WSGIPythonPath /usr/share/weblate
<VirtualHost *:80>

ServerAdmin admin@image.weblate.org
ServerName image.weblate.org

DocumentRoot /usr/share/weblate/weblate/media/

Alias /robots.txt /usr/share/weblate/weblate/media/robots.txt
Alias /favicon.ico /usr/share/weblate/weblate/media/favicon.ico

Alias /media/ /usr/share/weblate/weblate/media/
Alias /doc/ /usr/share/doc/packages/weblate/html/

28 Chapter 4. Administrators guide

https://docs.djangoproject.com/en/1.4/howto/deployment/

Weblate Documentation, Release 1.8

Alias /static/admin /usr/lib/python2.7/site-packages/django/contrib/admin/static/admin/

<Directory /usr/lib/python2.7/site-packages/django/contrib/admin/static/admin/>
Order deny,allow
Allow from all

</Directory>

<Directory /usr/share/weblate/weblate/media/>
Order deny,allow
Allow from all

</Directory>

<Directory /usr/share/doc/packages/weblate/html/>
Order deny,allow
Allow from all

</Directory>

<Directory /usr/share/weblate/weblate/examples/>
Order deny,allow
Allow from all

</Directory>

WSGIScriptAlias / /usr/share/weblate/weblate/wsgi.py
WSGIPassAuthorization On

<Directory /usr/share/weblate/weblate>
<Files wsgi.py>
Order deny,allow
Allow from all
</Files>

</Directory>

</VirtualHost>

Sample configuration for nginx

Following configuration runs Weblate as uwsgi under nginx webserver.

Configuration for nginx (also available as examples/weblate.nginx.conf):

server {
listen 80;
server_name weblate;
root /path/to/weblate/weblate;

location /favicon.ico {
root /path/to/weblate/weblate/media;
expires 30d;

}

location /media/ {
root /path/to/weblate/weblate;
expires 30d;

}

location /robots.txt {
root /path/to/weblate/weblate/media;

4.2. Installation instructions 29

Weblate Documentation, Release 1.8

expires 30d;
}

location /static/admin/ {
root /usr/local/lib/python2.7/dist-packages/django/contrib/admin;
expires 30d;

}

location / {
include uwsgi_params;
uwsgi_pass 127.0.0.1:8080;

}
}

Configuration for uwsgi (also available as examples/weblate.uwsgi.ini):

[uwsgi]
plugins = python
master = true
protocol = uwsgi
socket = 127.0.0.1:8080
wsgi-file = /path/to/weblate/weblate/wsgi.py
python-path = /path/to/weblate

Running Weblate under path

Minimalistic configuration to serve Weblate under /weblate (you will need to include portions of above full config-
uration to allow access to the files). Again using mod_wsgi (also available as examples/apache-path.conf):

Example Apache configuration for running Weblate under /weblate path

Path to Weblate code
WSGIPythonPath /usr/share/weblate

Path to Weblate WSGI handler
WSGIScriptAlias /weblate "/usr/share/weblate/weblate/wsgi.py"

Aliases to serve media and static files
Alias /weblate/media/ /usr/share/weblate/weblate/media/
Alias /static/admin /usr/lib/python2.7/site-packages/django/contrib/admin/static/admin/

Additionally you will have to adjust weblate/settings.py:

URL_PREFIX = ’/weblate’

Note: This is supported since Weblate 1.3.

4.2.6 Appliance

Weblate appliance provides preconfigured Weblate running with MySQL database as backend and Apache as web
server. It is provided in many formats suitable for any form of virtualization, cloud or hardware installation.

It comes with standard set of passwords you will want to change:

30 Chapter 4. Administrators guide

Weblate Documentation, Release 1.8

Username Password Scope Description
root linux System Administrator account, use for local or SSH login
root MySQL MySQL administrator
weblate weblate MySQL Account in MySQL database for storing Weblate data
admin admin Weblate Weblate/Django admin user

The appliance is built using SUSE Studio and is based on openSUSE 12.3.

You should also adjust some settings to match your environment, namely:

• Disable debug mode

• Set correct site name

• Configure email addresses

4.2.7 Migrating Weblate to another server

Migrating Weblate to another server should be pretty easy, however it stores data in few locations which you should
migrate carefully. The best approach is to stop migrated Weblate for the migration.

Migrating database

Depending on your database backend, you might have several options to migrate the database. The most straightfor-
ward one is to dump the database on one server and import it on the new one. Alternatively you can use replication in
case your database supports it.

Migrating Git repositories

The Git repositories stored under GIT_ROOT need to be migrated as well. You can simply copy them or use rsync to
do the migration more effectively.

Migrating fulltext index

For the fulltext index (stored in WHOOSH_INDEX) it is better not to migrate it, but rather to generate fresh one using
rebuild_index.

Other notes

Don’t forget to move other services which Weblate might have been using like memcached, cron jobs or custom
authentication backends.

4.3 Upgrading Weblate

4.3.1 Upgrading

Generic upgrade instructions

Changed in version 1.2: Since version 1.2 the migration is done using South module, to upgrade to 1.2, please see
Version specific instructions. Before upgrading, please check current Requirements as they might have changed.

4.3. Upgrading Weblate 31

Weblate Documentation, Release 1.8

To upgrade database structure, you should run following commands:

./manage.py syncdb

./manage.py migrate

To upgrade default set of privileges definitions (optional), run:

./manage.py setupgroups

To upgrade default set of language definitions (optional), run:

./manage.py setuplang

Version specific instructions

Upgrade from 0.5 to 0.6

On upgrade to version 0.6 you should run ./manage.py syncdb and ./manage.py setupgroups
--move to setup access control as described in installation section.

Upgrade from 0.6 to 0.7

On upgrade to version 0.7 you should run ./manage.py syncdb to setup new tables and ./manage.py
rebuild_index to build index for fulltext search.

Upgrade from 0.7 to 0.8

On upgrade to version 0.8 you should run ./manage.py syncdb to setup new tables, ./manage.py
setupgroups to update privileges setup and ./manage.py rebuild_index to rebuild index for fulltext
search.

Upgrade from 0.8 to 0.9

On upgrade to version 0.9 file structure has changed. You need to move repos and whoosh-index to
weblate folder. Also running ./manage.py syncdb, ./manage.py setupgroups and ./manage.py
setuplang is recommended to get latest updates of privileges and language definitions.

Upgrade from 0.9 to 1.0

On upgrade to version 1.0 one field has been added to database, you need to invoke following SQL command to adjust
it:

ALTER TABLE ‘trans_subproject‘ ADD ‘template‘ VARCHAR(200);

Upgrade from 1.0 (1.1) to 1.2

On upgrade to version 1.2, the migration procedure has changed. It now uses South for migrating database. To switch
to this new migration schema, you need to run following commands:

32 Chapter 4. Administrators guide

Weblate Documentation, Release 1.8

./manage.py syncdb

./manage.py migrate trans 0001 --fake

./manage.py migrate accounts 0001 --fake

./manage.py migrate lang 0001 --fake

Also please note that there are several new requirements and version 0.8 of django-registration is now being required,
see Requirements for more details.

Once you have done this, you can use Generic upgrade instructions.

Upgrade from 1.2 to 1.3

Since 1.3, settings.py is not shipped with Weblate, but only example settings as settings_example.py it
is recommended to use it as new base for your setup.

Upgrade from 1.4 to 1.5

Several internal modules and paths have been renamed and changed, please adjust your settings.py to match that
(consult settings_example.py for correct values).

• Many modules lost their weblate. prefix.

• Checks were moved to submodules.

• Locales were moved to top level directory.

The migration of database structure to 1.5 might take quite long, it is recommended to put your site offline, while the
migration is going on.

Note: If you have update in same directory, stale *.pyc files might be left around and cause various import er-
rors. To recover from this, delete all of them in Weblate’s directory, for example by find . -name ’*.pyc’
-delete.

Upgrade from 1.6 to 1.7

The migration of database structure to 1.7 might take quite long, it is recommended to put your site offline, while the
migration is going on.

If you are translating monolingual files, it is recommended to rerun quality checks as they might have been wrongly
linked to units in previous versions.

Upgrade from 1.7 to 1.8

The migration of database structure to 1.8 might take quite long, it is recommended to put your site offline, while the
migration is going on.

Authentication setup has been changed and some internal modules have changed name, please adjust your
settings.py to match that (consult settings_example.py for correct values).

Also please note that there are several new requirements, see Requirements for more details.

4.3. Upgrading Weblate 33

Weblate Documentation, Release 1.8

4.3.2 Migrating from Pootle

As Weblate was originally written as replacement from Pootle, it is supported to migrate user accounts from Pootle.
All you need to do is to copy auth_user table from Pootle, user profiles will be automatically created for users
as they log in and they will be asked to update their settings. Alternatively you can use importusers to import
dumped user credentials.

4.4 Authentication

4.4.1 User registration

The default setup for Weblate is to use python-social-auth for handling new users. This allows them to register using
form on the website and after confirming their email they can contribute or by using some third party service to
authenticate.

You can also completely disable new users registration using REGISTRATION_OPEN.

4.4.2 Authentication backends

By default Weblate uses Django built-in authentication and includes various social authentication options. Thanks to
using Django authentication, you can also import user database from other Django based projects (see Migrating from
Pootle).

Django can be additionally configured to authenticate against other means as well.

Social authentication

Thanks to python-social-auth, Weblate support authentication using many third party services such as Facebook,
GitHub, Google or Bitbucket.

Please check their documentation for generic configuration instructions:

http://psa.matiasaguirre.net/docs/configuration/django.html

Note: By default, Weblate relies on third-party authentication services to provide validated
email address, in case some of services you want to use do not support this, please remove
social.pipeline.social_auth.associate_by_email from SOCIAL_AUTH_PIPELINE settings.

Enabling individual backends is quite easy, it’s just matter of adding entry to AUTHENTICATION_BACKENDS setting
and possibly adding keys needed for given authentication. Please note that some backends do not provide user email
by default, you have to request it explicitely, otherwise Weblate will not be able to properly credit users contributions.

For example, enabling authentication against GitHub:

Authentication configuration
AUTHENTICATION_BACKENDS = (

’social.backends.github.GithubOAuth2’,
’social.backends.email.EmailAuth’,
’accounts.auth.WeblateUserBackend’,

)

Social auth backends setup
SOCIAL_AUTH_GITHUB_KEY = ’GitHub Client ID’

34 Chapter 4. Administrators guide

http://psa.matiasaguirre.net/
http://psa.matiasaguirre.net/docs/configuration/django.html

Weblate Documentation, Release 1.8

SOCIAL_AUTH_GITHUB_SECRET = ’GitHub Client Secret’
SOCIAL_AUTH_GITHUB_SCOPE = [’user:email’]

See Also:

http://psa.matiasaguirre.net/docs/backends/index.html

LDAP authentication

LDAP authentication can be best achieved using django-auth-ldap package. You can install it by usual means:

Using PyPI
pip install django-auth-ldap

Using apt-get
apt-get install python-django-auth-ldap

Once you have the package installed, you can hook it to Django authentication:

Add LDAP backed, keep Django one if you want to be able to login
even without LDAP for admin account
AUTHENTICATION_BACKENDS = (

’django_auth_ldap.backend.LDAPBackend’,
’django.contrib.auth.backends.ModelBackend’,

)

LDAP server address
AUTH_LDAP_SERVER_URI = ’ldaps://ldap.example.net’

DN to use for authentication
AUTH_LDAP_USER_DN_TEMPLATE = ’cn=%(user)s,o=Example’
Depending on your LDAP server, you might use different DN
like:
AUTH_LDAP_USER_DN_TEMPLATE = ’ou=users,dc=example,dc=com’

List of attributes to import from LDAP on login
AUTH_LDAP_USER_ATTR_MAP = {

’first_name’: ’givenName’,
’last_name’: ’sn’,
’email’: ’mail’,

}

See Also:

http://pythonhosted.org/django-auth-ldap/

4.4.3 Access control

Weblate uses privileges system based on Django. The default setup (after you run setupgroups) consists of three
groups Guests, Users and Managers which have privileges as described above. All new users are automatically added
to Users group. The Guests groups is used for not logged in users.

Basically Users are meant as regular translators and Managers for developers who need more control over the transla-
tion - they can force committing changes to git, push changes upstream (if Weblate is configured to do so) or disable
translation (eg. when there are some major changes happening upstream).

4.4. Authentication 35

http://psa.matiasaguirre.net/docs/backends/index.html
http://pythonhosted.org/django-auth-ldap/

Weblate Documentation, Release 1.8

To customize this setup, it is recommended to remove privileges from Users group and create additional groups with
finer privileges (eg. Translators group, which will be allowed to save translations and manage suggestions) and add
selected users to this group. You can do all this from Django admin interface.

To completely lock down your Weblate installation you can use LOGIN_REQUIRED_URLS for forcing users to login
and REGISTRATION_OPEN for disallowing new registrations.

Extra privileges

Weblate defines following extra privileges:

Can upload translation [Users, Managers] Uploading of translation files.

Can overwrite with translation upload [Users, Managers] Overwriting existing translations by uploading transla-
tion file.

Can define author of translation upload [Managers] Allows to define custom authorship when uploading transla-
tion file.

Can force committing of translation [Managers] Can force Git commit in the web interface.

Can see git repository URL [Users, Managers, Guests] Can see Git repository URL inside Weblate

Can update translation from git [Managers] Can force Git pull in the web interface.

Can push translations to remote git [Managers] Can force Git push in the web interface.

Can do automatic translation using other project strings [Managers] Can do automatic translation based on
strings from other subprojects.

Can lock whole translation project [Managers] Can lock translation for updates, useful while doing some major
changes in the project.

Can reset translations to match remote git [Managers] Can reset Git repository to match remote git.

Can save translation [Users, Managers] Can save translation (might be disabled with Suggestion voting).

Can accept suggestion [Users, Managers] Can accept suggestion (might be disabled with Suggestion voting).

Can delete suggestion [Users, Managers] Can delete suggestion (might be disabled with Suggestion voting).

Can vote for suggestion [Users, Managers] Can vote for suggestion (see Suggestion voting).

Can override suggestion state [Managers] Can save translation, accept or delete suggestion when automatic accept-
ing by voting for suggestions is enabled (see Suggestion voting).

Can import dictionary [Users, Managers] Can import dictionary from translation file.

Can add dictionary [Users, Managers] Can add dictionary entries.

Can change dictionary [Users, Managers] Can change dictionary entries.

Can delete dictionary [Users, Managers] Can delete dictionary entries.

Can lock translation for translating [Users, Managers] Can lock translation while translating (see Translation
locking).

Can add suggestion [Users, Managers, Guests] Can add new suggestions.

Can use machine translation [Users, Managers] Can use machine translations (see Machine translation setup).

36 Chapter 4. Administrators guide

Weblate Documentation, Release 1.8

Per project access control

New in version 1.4: This feature is available since Weblate 1.4.

Note: By enabling ACL, all users are prohibited to access anything within given project unless you add them the
permission to do that.

Additionally you can limit users access to individual projects. This feature is enabled by Enable ACL at Project
configuration. Once you enable this, users without specific privilege (trans | project | Can access project NAME) can
not access this project.

To allow access to this project, you have to add the privilege to do so either directly to given user or group of users in
Django admin interface.

See Also:

https://docs.djangoproject.com/en/1.4/topics/auth/default/#auth-admin

4.5 Translation projects

4.5.1 Translation organization

Weblate organizes translatable content into tree like structure. The toplevel object is Project, which should hold all
translations which belong together (for example translation of an application in several versions and/or documenta-
tion). On the next level, there is Subproject, which is actually the resource to translate. Here you define Git repository
to use and mask of files to translate. Bellow Subproject there are individual translations, which are handled automati-
cally by Weblate as the translation files (matching mask defined in Subproject) appear in Git repository.

4.5.2 Administration

Administration of Weblate is done through standard Django admin interface, which is available under /admin/URL.

4.5.3 Adding new resources

All translation resources need to be available as Git repositories and are organized as project/subproject structure.

Weblate supports wide range of translation formats supported by translate toolkit, see Supported formats for more
information.

Monolingual resources

Weblate does support both multilingual and monolingual formats. For easier translating of monolingual formats, you
should provide template file, which contains mapping of message IDs to source language (usually English).

4.5.4 Project

To add new resource to translate, you need to create translation project first. The project is sort of shelf, in which
real translations are folded. All subprojects in same project share suggestions and dictionary, also the translations are
automatically propagated through the all subproject in single project (unless disabled in subproject configuration).

The project has only few attributes giving translators information about project.

4.5. Translation projects 37

https://docs.djangoproject.com/en/1.4/topics/auth/default/#auth-admin

Weblate Documentation, Release 1.8

Commit message

The commit message on each commit Weblate does, it can use following format strings in the message:

%(language)s Language code

%(language_name)s Language name

%(subproject)s Subproject name

%(project)s Project name

%(total)s Total strings count

%(fuzzy)s Fuzzy strings count

%(fuzzy_percent)s Fuzzy strings percent

%(translated)s Translated strings count

%(translated_percent)s Translated strings percent

Adjusting interaction

There are also additional features which you can control, like automatic pushing of changes (see also Pushing changes),
merge or rebase (see Merge or rebase), git committer name or maintaining of Translation-Team header.

4.5.5 Subproject

Subproject is real resource for translating. You enter Git repository location and file mask which files to translate and
Weblate automatically fetches the Git and finds all matching translatable files.

Should the language definition for translation be missing, empty definition is created and named as “cs_CZ (gen-
erated)”. You should adjust the definition and report this back to Weblate authors so that missing language can be
included in next release.

The subproject contains all important parameters for working with Git and getting translations out of it:

Repo Git repository used to pull changes.

This can be either real Git URL or weblate://project/subproject indicating that Git repository
should be shared with another subproject.

Push Git URL used for pushing, this is completely optional and push support will be disabled when this is empty.

Repoweb URL of repository browser to display source files (location where messages are used). When empty no
such links will be generated.

For example on GitHub, you would use something like https://github.com/nijel/weblate-hello/blob/%(branch)s/%(file)s#L%(line)s.

Branch Which branch to checkout from the Git and where to look for translations.

Filemask Mask of files to translate including path. It should include one * replacing language code. In case your
Git repository contains more than one translation files (eg. more Gettext domains), you need to create separate
subproject for each. For example po/*.po or locale/*/LC_MESSAGES/django.po.

Monolingual base language file Base file containing strings definition for Monolingual resources.

Base file for new translations Base file used to generate new translations, eg. .pot file with Gettext.

Report source bugs Email address used for reporting upstream bugs. This address will also receive notification about
any source string comments made in Weblate.

38 Chapter 4. Administrators guide

Weblate Documentation, Release 1.8

Locked You can lock the translation to prevent updates by users.

Allow translation propagation You can disable propagation of translations to this subproject from other subprojects
within same project. This really depends on what you are translating, sometimes it’s desirable to have same
string used.

Pre commit script One of scripts defined in PRE_COMMIT_SCRIPTS which is executed before commit.

Extra commit file Additional file to include in commit, usually this one is generated by pre commit script described
above.

Save translation history Whether to store history of translation changes in database.

Suggestion voting Enable voting for suggestions, see Suggestion voting.

Autoaccept suggestions Automatically accept voted suggestions, see Suggestion voting.

Quality checks flags Additional flags to pass to quality checks, see Customizing checks.

See Also:

Does Weblate support other VCS than Git?, Pre commit processing of translations

4.5.6 Importing speed

Fetching Git repository and importing translations to Weblate can be lengthy process depending on size of your
translations. Here are some tips to improve this situation:

Clone Git repository in advance

You can put in place Git repository which will be used by Weblate. The repositories are stored in path defined by
GIT_ROOT in settings.py in <project>/<subproject> directories.

This can be especially useful if you already have local clone of this repository and you can use --reference option
while cloning:

git clone \
--reference /path/to/checkout \
git://github.com/nijel/weblate.git \
weblate/repos/project/subproject

Optimize configuration

The default configuration is useful for testing and debugging Weblate, while for production setup, you should do some
adjustments. Many of them have quite big impact on performance. Please check Production setup for more details,
especially:

• Enable indexing offloading

• Enable caching

• Use powerful database engine

• Disable debug mode

Disable not needed checks

Some quality checks can be quite expensive and if you don’t need them, they can save you some time during import.
See CHECK_LIST for more information how to configure this.

4.5. Translation projects 39

Weblate Documentation, Release 1.8

4.5.7 Automatic creation of subprojects

In case you have project with dozen of po files, you might want to import all at once. This can be achieved using
import_project.

First you need to create project which will contain all subprojects and then it’s just a matter of running
import_project.

See Also:

Management commands

4.5.8 Accessing repositories

Private repositories

In case you want Weblate to access private repository it needs to get to it somehow. Most frequently used method here
is based on SSH. To have access to such repository, you generate SSH key for Weblate and authorize it to access the
repository.

You also need to verify SSH host keys of servers you are going to access.

You can generate or display key currently used by Weblate in the admin interface (follow SSH keys link on main admin
page).

Note: The keys need to be without password to make it work, so be sure they are well protected against malicious
usage.

Using proxy

If you need to access http/https Git repositories using a proxy server, you need to configure Git to use it.

This can be configured using the http_proxy, https_proxy, and all_proxy environment variables (check
cURL documentation for more details) or by enforcing it in Git configuration, for example:

git config --global http.proxy http://user:password@proxy.example.com:80

Note: The proxy setting needs to be done in context which is used to execute Weblate. For the environment it should
be set for both server and cron jobs. The Git configuration has to be set for the user which is running Weblate.

See Also:

http://curl.haxx.se/docs/manpage.html, http://git-scm.com/docs/git-config

4.5.9 Fulltext search

Fulltext search is based on Whoosh. You can either allow Weblate to directly update index on every change to content
or offload this to separate process by OFFLOAD_INDEXING.

The first approach (immediate updates) allows more up to date index, but suffers locking issues in some setup (eg.
Apache’s mod_wsgi) and produces more fragmented index.

40 Chapter 4. Administrators guide

http://curl.haxx.se/docs/manpage.html
http://git-scm.com/docs/git-config

Weblate Documentation, Release 1.8

Offloaded indexing is always better choice for production setup - it only marks which items need to be reindexed and
you need to schedule background process (update_index) to update index. This leads to faster response of the site
and less fragmented index with cost that it might be slightly outdated.

See Also:

update_index, OFFLOAD_INDEXING, Fulltext search is too slow, I get “Lock Error” quite often while translat-
ing, Rebuilding index has failed with “No space left on device”

4.6 Continuous translation

Weblate provides you great infrastructure for translation to closely follow your development. This way translators can
work on translations whole time and are not forced to translate huge amount of new texts before release.

4.6.1 Updating repositories

You should set up some way how backend repositories are updated from their source. You can either use hooks (see
Notification hooks) or just regularly run updategit --all.

With Gettext po files, you might be often bitten by conflict in PO file headers. To avoid it, you can use shipped merge
driver (examples/git-merge-gettext-po). To use it just put following configuration to your .gitconfig:

[merge "merge-gettext-po"]
name = merge driver for gettext po files
driver = /path/to/weblate/examples/git-merge-gettext-po %O %A %B

And enable it’s use by defining proper attributes in given repository (eg. in .git/info/attribute):

*.po merge=merge-gettext-po

Note: This merge driver assumes the changes in POT files always are done in branch we’re trying to merge.

See Also:

http://www.no-ack.org/2010/12/writing-git-merge-driver-for-po-files.html

4.6.2 Pushing changes

Each project can have configured push URL and in such case Weblate offers button to push changes to remote reposi-
tory in web interface.

I case you will use SSH for pushing, you need to have key without passphrase (or use ssh-agent for Django) and the
remote server needs to be verified by you first, otherwise push will fail.

Note: You can also enable automatic pushing changes on commit, this can be done in project configuration.

See Also:

Private repositories for setting up SSH keys

4.6. Continuous translation 41

http://www.no-ack.org/2010/12/writing-git-merge-driver-for-po-files.html

Weblate Documentation, Release 1.8

4.6.3 Merge or rebase

By default Weblate merges upstream repository into it’s own. This is safest way in case you also access underlying
repository by other means. In case you don’t need this, you can enable rebasing of changes on upstream, what will
produce history with less merge commits.

Note: Rebasing can cause you troubles in case of complicated merges, so carefully consider whether you want to
enable them or not.

4.6.4 Interacting with others

Weblate makes it easy to interact with others using it’s API.

See Also:

Weblate’s Web API

4.6.5 Lazy commits

Default behaviour (configured by LAZY_COMMITS) of Weblate is to group commits from same author into one if
possible. This heavily reduces number of commits, however you might need to explicitly tell to do the commits in
case you want to get Git repository in sync, eg. for merge (this is by default allowed for Managers group, see Access
control).

The changes are in this mode committed once any of following conditions is fulfilled:

• somebody else works on the translation

• merge from upstream occurs

• import of translation happens

• translation for a language is completed

• explicit commit is requested

You can also additionally set a cron job to commit pending changes after some delay, see commit_pending.

4.6.6 Pre commit processing of translations

In many cases you might want to automatically do some changes to translation before it is committed to the repository.
The pre commit script is exactly the place to achieve this.

Before using any scripts, you need to list them in PRE_COMMIT_SCRIPTS configuration variable. Then you can
enable them at Subproject configuration as Pre commit script.

The hook script is executed using system() call, so it is evaluated in a shell. It is passed single parameter consisting of
file name of current translation.

The script can also generate additional file to be included in the commit. This can be configured as Extra commit file
at Subproject configuration. You can use following format strings in the filename:

%(language)s Language code

42 Chapter 4. Administrators guide

Weblate Documentation, Release 1.8

Example - generating mo files in repository

Allow usage of the hook in the configuration

PRE_COMMIT_SCRIPTS = (
’/usr/share/weblate/examples/hook-generate-mo’,

)

To enable it, choose now hook-generate-mo as Pre commit script. You will also want to add path to generated files to
be included in Git commit, for example po/%(language)s.mo as Extra commit file.

You can find more example scripts in examples folder within Weblate sources, their name start with hook-.

4.7 Translation process

4.7.1 Suggestion voting

New in version 1.6: This feature is available since Weblate 1.6. In default Weblate setup, everybody can add sug-
gestions and logged in users can accept them. You might however want to have more eyes on the translation and
require more people to accept them. This can be achieved by suggestion voting. You can enable this on Subproject
configuration by Suggestion voting and Autoaccept suggestions. The first one enables voting feature, while the latter
allows you to configure threshold at which suggestion will gets automatically accepted (this includes own vote from
suggesting user).

Note: Once you enable automatic accepting, normal users lose privilege to directly save translations or accept
suggestions. This can be overriden by Can override suggestion state privilege (see Access control).

You can combine these with Access control into one of following setups:

• Users can suggest and vote for suggestions, limited group controls what is accepted - enable voting but not
automatic accepting and remove privilege from users to save translations.

• Users can suggest and vote for suggestions, which get automatically accepted once defined number of users
agree on this - enable voting and set desired number of votes for automatic accepting.

• Optional voting for suggestions - you can also only enable voting and in this case it can be optionally used by
users when they are not sure about translation (they can suggest more of them).

4.7.2 Translation locking

To improve collaboration, it is good to prevent duplicate effort on translation. To achieve this, translation can be locked
for single translator. This can be either done manually on translation page or is done automatically when somebody
starts to work on translation. The automatic locking needs to be enabled using AUTO_LOCK.

The automatic lock is valid for AUTO_LOCK_TIME seconds and is automatically extended on every translation made
and while user has opened translation page.

User can also explicitly lock translation for LOCK_TIME seconds.

4.7. Translation process 43

Weblate Documentation, Release 1.8

4.8 Checks and fixups

4.8.1 Custom automatic fixups

You can also implement own automatic fixup in addition to standard ones and include them in AUTOFIX_LIST.

The automatic fixes are powerful, but can also cause damage, be careful when writing one.

For example following automatic fixup would replace every occurrence of string foo in translation with bar:

-*- coding: utf-8 -*-
#
Copyright © 2012 - 2013 Michal Čihař <michal@cihar.com>
#
This file is part of Weblate <http://weblate.org/>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
#

from trans.autofixes.base import AutoFix
from django.utils.translation import ugettext_lazy as _

class ReplaceFooWithBar(AutoFix):
’’’
Replaces foo with bar.
’’’

name = _(’Foobar’)

def fix_single_target(self, target, source, unit):
if ’foo’ in target:

return target.replace(’foo’, ’bar’), True
return target, False

4.8.2 Customizing checks

Fine tuning existing checks

In Subproject setup, you can fine tune some of the checks, here is current list of flags accepted:

rst-text Treat text as RST document, affects Not translated.

python-format, c-format, php-format, python-brace-format Treats all string like format strings,
affects Python format, C format, PHP format, Python brace format, Not translated.

44 Chapter 4. Administrators guide

Weblate Documentation, Release 1.8

ignore-* Ignores given check for a subproject.

These flags are understood both in Subproject settings and in translation file itself (eg. in GNU Gettext).

Writing own checks

Weblate comes with wide range of quality checks (see Quality checks), though they might not 100% cover all you
want to check. The list of performed checks can be adjusted using CHECK_LIST and you can also add custom
checks. All you need to do is to subclass trans.checks.Check, set few attributes and implement either check
or check_single methods (first one if you want to deal with plurals in your code, the latter one does this for you).
You will find below some examples.

Checking translation text does not contain “foo”

This is pretty simple check which just checks whether translation does not contain string “foo”.

-*- coding: utf-8 -*-
#
Copyright © 2012 - 2013 Michal Čihař <michal@cihar.com>
#
This file is part of Weblate <http://weblate.org/>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
#
’’’
Simple quality check example.
’’’

from trans.checks import TargetCheck
from django.utils.translation import ugettext_lazy as _

class FooCheck(TargetCheck):

Used as identifier for check, should be unique
check_id = ’foo’

Short name used to display failing check
name = _(’Foo check’)

Description for failing check
description = _(’Your translation is foo’)

Real check code

4.8. Checks and fixups 45

Weblate Documentation, Release 1.8

def check_single(self, source, target, unit):
return ’foo’ in target

Checking Czech translation text plurals differ

Check using language information to verify that two plural forms in Czech language are not same.

-*- coding: utf-8 -*-
#
Copyright © 2012 - 2013 Michal Čihař <michal@cihar.com>
#
This file is part of Weblate <http://weblate.org/>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
#
’’’
Quality check example for Czech plurals.
’’’

from trans.checks import TargetCheck
from django.utils.translation import ugettext_lazy as _

class PluralCzechCheck(TargetCheck):

Used as identifier for check, should be unique
check_id = ’foo’

Short name used to display failing check
name = _(’Foo check’)

Description for failing check
description = _(’Your translation is foo’)

Real check code
def check(self, sources, targets, unit):

if self.is_language(unit, [’cs’]):
return targets[1] == targets[2]

return False

46 Chapter 4. Administrators guide

Weblate Documentation, Release 1.8

4.9 Machine translation

4.9.1 Machine translation setup

Weblate has builtin support for several machine translation services and it’s up to administrator to enable them. The
services have different terms of use, so please check whether you are allowed to use them before enabling in Weblate.
The individual services are enabled using MACHINE_TRANSLATION_SERVICES.

The source langauge can be configured by SOURCE_LANGUAGE and is shared for all translations within Weblate.

Amagama

Special installation of tmserver run by Virtaal authors.

To enable this service, add trans.machine.tmserver.AmagamaTranslation to
MACHINE_TRANSLATION_SERVICES.

See Also:

http://docs.translatehouse.org/projects/virtaal/en/latest/amagama.html

Apertium

A free/open-source machine translation platform providing translation to limited set of languages.

You should get API key from them, otherwise number of requests is rate limited.

To enable this service, add trans.machine.apertium.ApertiumTranslation to
MACHINE_TRANSLATION_SERVICES.

See Also:

MT_APERTIUM_KEY, http://www.apertium.org/

Glosbe

Free dictionary and translation memory for almost every living language.

API is free to use, regarding indicated data source license. There is a limit of call that may be done from one IP in
fixed period of time, to prevent from abuse.

To enable this service, add trans.machine.glosbe.GlosbeTranslation to
MACHINE_TRANSLATION_SERVICES.

See Also:

http://glosbe.com/

Google Translate

Machine translation service provided by Google.

This service uses Translation API and you need to obtain API key and enable billing on Google API console.

To enable this service, add trans.machine.google.GoogleTranslation to
MACHINE_TRANSLATION_SERVICES.

See Also:

4.9. Machine translation 47

http://docs.translatehouse.org/projects/virtaal/en/latest/amagama.html
http://www.apertium.org/
http://glosbe.com/

Weblate Documentation, Release 1.8

MT_GOOGLE_KEY, https://developers.google.com/translate/

Google Web Translate

Machine translation service provided by Google.

Please note that this does not use official Translation API but rather web based translation interface.

To enable this service, add trans.machine.google.GoogleWebTranslation to
MACHINE_TRANSLATION_SERVICES.

See Also:

http://translate.google.com/

Microsoft Translator

Machine translation service provided by Microsoft.

You need to register at Azure market and use Client ID and secret from there.

To enable this service, add trans.machine.microsoft.MicrosoftTranslation to
MACHINE_TRANSLATION_SERVICES.

See Also:

MT_MICROSOFT_ID, MT_MICROSOFT_SECRET, http://www.microsofttranslator.com/,
https://datamarket.azure.com/developer/applications/

MyMemory

Huge translation memory with machine translation.

Free, anonymous usage is currently limited to 100 requests/day, or to 1000 requests/day when you provide contact
email in MT_MYMEMORY_EMAIL. you can also ask them for more.

To enable this service, add trans.machine.mymemory.MyMemoryTranslation to
MACHINE_TRANSLATION_SERVICES.

See Also:

MT_MYMEMORY_EMAIL, MT_MYMEMORY_USER, MT_MYMEMORY_KEY, http://mymemory.translated.net/

Open-Tran

Database of open source translations.

To enable this service, add trans.machine.opentran.OpenTranTranslation to
MACHINE_TRANSLATION_SERVICES.

See Also:

http://www.open-tran.eu/

48 Chapter 4. Administrators guide

https://developers.google.com/translate/
http://translate.google.com/
http://www.microsofttranslator.com/
https://datamarket.azure.com/developer/applications/
http://mymemory.translated.net/
http://www.open-tran.eu/

Weblate Documentation, Release 1.8

tmserver

You can run your own translation memory server which is bundled with Translate-toolkit and let Weblate talk to it.
You can also use it with amaGama server, which is enhanced version of tmserver.

First you will want to import some data to the translation memory:

To enable this service, add trans.machine.tmserver.TMServerTranslation to
MACHINE_TRANSLATION_SERVICES.

build_tmdb -d /var/lib/tm/db -s en -t cs locale/cs/LC_MESSAGES/django.po
build_tmdb -d /var/lib/tm/db -s en -t de locale/de/LC_MESSAGES/django.po
build_tmdb -d /var/lib/tm/db -s en -t fr locale/fr/LC_MESSAGES/django.po

Now you can start tmserver to listen to your requests:

tmserver -d /var/lib/tm/db

And configure Weblate to talk to it:

MT_TMSERVER = ’http://localhost:8888/’

See Also:

MT_TMSERVER, http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/tmserver.html,
http://amagama.translatehouse.org/

Weblate

Weblate can be source of machine translation as well. There are two services to provide you results - one does exact
search for string, the other one finds all similar strings.

First one is useful for full string translations, the second one for finding individual phrases or words to keep the
translation consistent.

To enable these services, add trans.machine.weblatetm.WeblateSimilarTranslation (for similar
string matching) and/or trans.machine.weblatetm.WeblateTranslation (for exact string matching) to
MACHINE_TRANSLATION_SERVICES.

Note: For similarity matching, it is recommended to have Whoosh 2.5.2 or later, earlier versions can cause infinite
looks under some occasions.

4.9.2 Custom machine translation

You can also implement own machine translation services using few lines of Python code. Following example imple-
ments translation to fixed list of languages using dictionary Python module:

-*- coding: utf-8 -*-
#
Copyright © 2012 - 2013 Michal Čihař <michal@cihar.com>
#
This file is part of Weblate <http://weblate.org/>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

4.9. Machine translation 49

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/tmserver.html
http://amagama.translatehouse.org/

Weblate Documentation, Release 1.8

#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
#
’’’
Machine translation example.
’’’

from trans.machine.base import MachineTranslation
import dictionary

class SampleTranslation(MachineTranslation):
’’’
Sample machine translation interface.
’’’
name = ’Sample’

def download_languages(self):
’’’
Returns list of languages your machine translation supports.
’’’
return set((’cs’,))

def download_translations(self, language, text, unit, request):
’’’
Returns tuple with translations.
’’’
return [(t, 100, self.name, text) for t in dictionary.translate(text)]

You can list own class in MACHINE_TRANSLATION_SERVICES and Weblate will start using that.

4.10 Configuration

All settings are stored in settings.py (as usual for Django).

Note: After changing any of these settings, you need to restart Weblate. In case it is run as mod_wsgi, you need to
restart Apache to reload the configuration.

See Also:

Please check also Django’s documentation for parameters which configure Django itself.

4.10.1 ANONYMOUS_USER_NAME

User name of user for definining privileges of not logged in user.

See Also:

Access control

50 Chapter 4. Administrators guide

https://docs.djangoproject.com/en/1.4/ref/settings/

Weblate Documentation, Release 1.8

4.10.2 AUTO_LOCK

Enables automatic locking of translation when somebody is working on it.

See Also:

Translation locking

4.10.3 AUTO_LOCK_TIME

Time in seconds for how long the automatic lock for translation will be active.

See Also:

Translation locking

4.10.4 AUTOFIX_LIST

List of automatic fixups to apply when saving the message.

Available fixes:

trans.autofixes.whitespace.SameBookendingWhitespace Fixes up whitespace in beginning and
end of the string to match source.

trans.autofixes.chars.ReplaceTrailingDotsWithEllipsis Replaces traling dots with ellipsis if
source string has it.

trans.autofixes.chars.RemoveZeroSpace Removes zero width space char if source does not contain it.

For example you can enable only few of them:

AUTOFIX_LIST = (
’trans.autofixes.whitespace.SameBookendingWhitespace’,
’trans.autofixes.chars.ReplaceTrailingDotsWithEllipsis’,

)

See Also:

Automatic fixups, Custom automatic fixups

4.10.5 BACKGROUND_HOOKS

Whether to run hooks in background. This is generally recommended unless you are debugging.

4.10.6 CHECK_LIST

List of quality checks to perform on translation.

Some of the checks are not useful for all projects, so you are welcome to adjust list of performed on your installation.

For example you can enable only few of them:

CHECK_LIST = (
’trans.checks.same.SameCheck’,
’trans.checks.format.CFormatCheck’,
’trans.checks.chars.ZeroWidthSpaceCheck’,

)

4.10. Configuration 51

Weblate Documentation, Release 1.8

See Also:

Quality checks, Customizing checks

4.10.7 ENABLE_HOOKS

Whether to enable anonymous remote hooks.

See Also:

Notification hooks

4.10.8 GIT_ROOT

Path where Weblate will store cloned Git repositories. Defaults to repos subdirectory.

4.10.9 LAZY_COMMITS

Delay creating Git commits until this is necessary. This heavily reduces number of commits generated by Weblate at
expense of temporarily not being able to merge some changes as they are not yet committed.

See Also:

Lazy commits

4.10.10 LOCK_TIME

Time in seconds for how long the translation will be locked for single translator when locked manually.

See Also:

Translation locking

4.10.11 LOGIN_REQUIRED_URLS

List of URL which require login (besides standard rules built into Weblate). This allows you to password protect
whole installation using:

LOGIN_REQUIRED_URLS = (
r’/(.*)$’,

)

4.10.12 LOGIN_REQUIRED_URLS_EXCEPTIONS

List of exceptions for LOGIN_REQUIRED_URLS, in case you won’t specify this list, the default value will be used,
which allows users to access login page.

Some of exceptions you might want to include:

LOGIN_REQUIRED_URLS_EXCEPTIONS = (
r’/accounts/(.*)$’, # Required for login
r’/media/(.*)$’, # Required for development mode
r’/widgets/(.*)$’, # Allowing public access to widgets
r’/data/(.*)$’, # Allowing public access to data exports

52 Chapter 4. Administrators guide

Weblate Documentation, Release 1.8

r’/hooks/(.*)$’, # Allowing public access to notification hooks
)

4.10.13 MACHINE_TRANSLATION_SERVICES

List of enabled machine translation services to use.

Note: Many of services need additional configuration like API keys, please check their documentation for more
details.

MACHINE_TRANSLATION_SERVICES = (
’trans.machine.apertium.ApertiumTranslation’,
’trans.machine.glosbe.GlosbeTranslation’,
’trans.machine.google.GoogleTranslation’,
’trans.machine.microsoft.MicrosoftTranslation’,
’trans.machine.mymemory.MyMemoryTranslation’,
’trans.machine.opentran.OpenTranTranslation’,
’trans.machine.tmserver.TMServerTranslation’,
’trans.machine.weblatetm.WeblateSimilarTranslation’,
’trans.machine.weblatetm.WeblateTranslation’,

)

See Also:

Machine translation setup, Machine translation

4.10.14 MT_APERTIUM_KEY

API key for Apertium Web Service, you can register at http://api.apertium.org/register.jsp

See Also:

Apertium, Machine translation setup, Machine translation

4.10.15 MT_GOOGLE_KEY

API key for Google Translate API, you can register at https://developers.google.com/translate/

See Also:

Google Translate, Machine translation setup, Machine translation

4.10.16 MT_MICROSOFT_ID

Cliend ID for Microsoft Translator service.

See Also:

Microsoft Translator, Machine translation setup, Machine translation, https://datamarket.azure.com/developer/applications/

4.10. Configuration 53

http://api.apertium.org/register.jsp
https://developers.google.com/translate/
https://datamarket.azure.com/developer/applications/

Weblate Documentation, Release 1.8

4.10.17 MT_MICROSOFT_SECRET

Client secret for Microsoft Translator service.

See Also:

Microsoft Translator, Machine translation setup, Machine translation, https://datamarket.azure.com/developer/applications/

4.10.18 MT_MYMEMORY_EMAIL

MyMemory identification email, you can get 1000 requests per day with this.

See Also:

MyMemory, Machine translation setup, Machine translation, http://mymemory.translated.net/doc/spec.php

4.10.19 MT_MYMEMORY_KEY

MyMemory access key for private translation memory, use together with MT_MYMEMORY_USER.

See Also:

MyMemory, Machine translation setup, Machine translation, http://mymemory.translated.net/doc/keygen.php

4.10.20 MT_MYMEMORY_USER

MyMemory user id for private translation memory, use together with MT_MYMEMORY_KEY.

See Also:

MyMemory, Machine translation setup, Machine translation, http://mymemory.translated.net/doc/keygen.php

4.10.21 MT_TMSERVER

URL where tmserver is running.

See Also:

tmserver, Machine translation setup, Machine translation, http://docs.translatehouse.org/projects/translate-
toolkit/en/latest/commands/tmserver.html

4.10.22 NEARBY_MESSAGES

How many messages around current one to show during translating.

4.10.23 OFFLOAD_INDEXING

Offload updating of fulltext index to separate process. This heavily improves responsiveness of online operation on
expense of slightly outdated index, which might still point to older content.

While enabling this, don’t forget scheduling runs of update_index in cron or similar tool.

This is recommended setup for production use.

See Also:

54 Chapter 4. Administrators guide

https://datamarket.azure.com/developer/applications/
http://mymemory.translated.net/doc/spec.php
http://mymemory.translated.net/doc/keygen.php
http://mymemory.translated.net/doc/keygen.php
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/tmserver.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/tmserver.html

Weblate Documentation, Release 1.8

Fulltext search

4.10.24 PRE_COMMIT_SCRIPTS

List of scripts which are allowed as pre commit scripts. The script needs to be later enabled in subproject configuration.

For example you can allow script which does some cleanup:

PRE_COMMIT_SCRIPTS = (
’/usr/local/bin/cleanup-translation’,

)

Note: The hook is executed using system() call, so it is evaluated in a shell.

See Also:

Pre commit processing of translations

4.10.25 REGISTRATION_CAPTCHA

A boolean (either True or False) indicating whether registration of new accounts is protected by captcha. This
setting is optional, and a default of True will be assumed if it is not supplied.

4.10.26 REGISTRATION_OPEN

A boolean (either True or False) indicating whether registration of new accounts is currently permitted. This setting
is optional, and a default of True will be assumed if it is not supplied.

4.10.27 SITE_TITLE

Site title to be used in website and emails as well.

4.10.28 SOURCE_LANGUAGE

Source language used for translation. This is mostly useful for machine translation services.

4.10.29 TTF_PATH

Path to Droid fonts used for widgets and charts.

4.10.30 WHOOSH_INDEX

Directory where Whoosh fulltext indices will be stored. Defaults to whoosh-index subdirectory.

4.10. Configuration 55

Weblate Documentation, Release 1.8

4.11 Management commands

Note: Running management commands under different user than is running your webserver can cause wrong permis-
sions on some files, please check Filesystem permissions for more details.

The ./manage.py is extended with following commands:

4.11.1 checkgit <project|project/subproject>

manage.py checkgit

Prints current state of backend git repository.

You can either define which project or subproject to update (eg. weblate/master) or use --all to update all
existing subprojects.

4.11.2 commitgit <project|project/subproject>

manage.py commitgit

Commits any possible pending changes to backend git repository.

You can either define which project or subproject to update (eg. weblate/master) or use --all to update all
existing subprojects.

4.11.3 commit_pending <project|project/subproject>

manage.py commit_pending

Commits pending changes older than given age (using --age parameter, defaults to 24 hours).

You can either define which project or subproject to update (eg. weblate/master) or use --all to update all
existing subprojects.

This is most useful if executed periodically from cron or similar tool:

./manage.py commit_pending --all --age=48

4.11.4 cleanuptrans

manage.py cleanuptrans

Cleanups orphaned checks and translation suggestions.

4.11.5 createadmin

manage.py createadmin

Creates admin account with password admin.

56 Chapter 4. Administrators guide

Weblate Documentation, Release 1.8

4.11.6 import_project <project> <gitrepo> <branch> <filemask>

manage.py import_project

Batch imports subprojects into project based on file mask.

<project> names an existing project, into which the subprojects should be imported.

The <gitrepo> defines URL of Git repository to use, and <branch> the git branch. To import additional translation
subprojects, from an existing Weblate subproject, use a weblate://<project>/<subproject> URL for the <gitrepo>.

The repository is searched for directories matching a double wildcard (**) in the <filemask>. Each of these is then
added as a subproject, named after the matched directory. Existing subprojects will be skipped.

To customise the subproject’s name, use the --name-template option. Its parameter is a python formatting string,
which will expect the match from <filemask>.

By format string passed by the --base-file-template option you can customize base file for monolingual
translations.

You can also specify file format to use (see Supported formats) by the --file-format parameter. The default is
autodetection.

For example:

./manage.py import_project debian-handbook git://anonscm.debian.org/debian-handbook/debian-handbook.git squeeze/master ’*/**.po’

4.11.7 importusers <file.json>

manage.py importusers

Imports users from JSON dump of Django auth_users database.

You can dump users from existing Django installation using:

./manage.py dumpdata auth.User > users.json

4.11.8 list_ignored_checks

manage.py list_ignored_checks

Lists most frequently ignored checks. This can be useful for tuning your setup, if users have to ignore too many of
consistency checks.

4.11.9 list_versions

manage.py list_versions

Lists versions of Weblate dependencies.

4.11.10 loadpo <project|project/subproject>

manage.py loadpo

4.11. Management commands 57

Weblate Documentation, Release 1.8

Reloads translations from disk (eg. in case you did some updates in Git repository).

You can use --force to force update even if the files should be up to date. Additionally you can limit languages to
process with --lang.

You can either define which project or subproject to update (eg. weblate/master) or use --all to update all
existing subprojects.

4.11.11 pushgit <project|project/subproject>

manage.py pushgit

Pushes committed changes to upstream Git repository. With --force-commit it also commits any pending
changes.

You can either define which project or subproject to update (eg. weblate/master) or use --all to update all
existing subprojects.

4.11.12 rebuild_index <project|project/subproject>

manage.py rebuild_index

Rebuilds index for fulltext search. This might be lengthy operation if you have huge set of translation units.

You can use --clean to remove all words from database prior updating.

See Also:

Fulltext search

4.11.13 update_index

manage.py update_index

Updates index for fulltext search when OFFLOAD_INDEXING is enabled.

It is recommended to run this frequently (eg. every 5 minutes) to have index uptodate.

See Also:

Fulltext search

4.11.14 setupgroups

manage.py setupgroups

Configures default groups and (if called with --move) assigns all users to default group.

The option --no-update disables update of existing groups (only adds new ones).

See Also:

Access control

58 Chapter 4. Administrators guide

Weblate Documentation, Release 1.8

4.11.15 setuplang

manage.py setuplang

Setups list of languages (it has own list and all defined in translate-toolkit).

The option --no-update disables update of existing languages (only adds new ones).

4.11.16 updatechecks <project|project/subproject>

manage.py updatechecks

Updates all check for all units. This could be useful only on upgrades which do major changes to checks.

You can either define which project or subproject to update (eg. weblate/master) or use --all to update all
existing subprojects.

4.11.17 updategit <project|project/subproject>

manage.py updategit

Fetches remote Git repositories and updates internal cache.

You can either define which project or subproject to update (eg. weblate/master) or use --all to update all
existing subprojects.

4.11. Management commands 59

Weblate Documentation, Release 1.8

60 Chapter 4. Administrators guide

CHAPTER 5

Frequently Asked Questions

5.1 Configuration

5.1.1 How to create automatic worflow?

Weblate can handle all the translation things semi-automatically for you. If you will give it push access to your
repository, the translations can live without interaction unless some merge conflict occurs.

1. Set up you git repository to tell Weblate whenever there is any change, see Notification hooks for information
how to do it.

2. Set push URL at your Subproject in Weblate, this will allow Weblate to push changes to your repository.

3. Enable push on commit on your Project in Weblate, this will make Weblate push changes to your repository
whenever they are committed at Weblate.

4. Optionally setup cron job for commit_pending.

See Also:

Continuous translation

5.1.2 How to access repositories over SSH?

Please see Private repositories for information about setting up SSH keys.

5.1.3 How to fix merge conflicts in translations?

The easiest way is to solve all conflicts locally at your workstation - simply add Weblate as remote repository, merge
it into upstream and fix conflicts. Once you push changes back, Weblate will be able to use merged version without
any other special actions.

Add remote
git remote add weblate git://git.weblate.org/debian-handbook.git

Update remotes
git remote update

61

Weblate Documentation, Release 1.8

Merge Weblate changes
git merge weblate/master

Resolve conflicts
edit
git add ...
...
git commit

Push changes to upstream respository, Weblate will fetch merge from there
git push

See Also:

How to export Git repository weblate uses?

5.1.4 How do I translate several branches at once?

Weblate supports pushing translation changes within one Project. For every Subproject which has it enabled (the de-
fault behavior), the change made is automatically propagated to others. This way the translations are kept synchronized
even if the branches themselves have already diverged quite a lot and it is not possible to simply merge translation
changes between them.

Once you merge changes from Weblate, you might have to merge these branches (depending on your development
workflow) discarding differences:

git merge -s ours origin/maintenance

5.1.5 How to export Git repository weblate uses?

There is nothing special about the repository, it lives under GIT_ROOT directory and is named as project/subproject/.
If you have SSH access to this machine, you can use the repository directly.

For anonymous access you might want to run git server and let it serve the repository to outside world.

5.1.6 What are options of pushing changes back upstream?

This heavily depends on your setup, Weblate is quite flexible in this area. Here are examples of workflows used with
Weblate:

• Weblate automatically pushes and merges changes (see How to create automatic worflow?)

• You tell manually Weblate to push (it needs push access to upstream repository)

• Somebody manually merges changes from Weblate git repository into upstream repository

• Somebody rewrites history produced by Weblate (eg. by eliminating merge commits), merges changes and tells
Weblate to reset contet on upstream repository.

Of course your are free to mix all of these as you wish.

5.1.7 How can I check if my Weblate is configured properly?

Weblate includes set of configuration checks, which you can see in admin interface, just follow Performace report link
in admin interface or directly open /admin/performance/ URL.

62 Chapter 5. Frequently Asked Questions

Weblate Documentation, Release 1.8

5.1.8 Why does registration contain example.com as domain?

Weblate uses Django sites framework and it defines site name inside the database. Please open admin interface and
edit default site name and domain (you can do that directly at /admin/sites/site/1/ URL under your Weblate
installation).

See Also:

https://docs.djangoproject.com/en/dev/ref/contrib/sites/

5.2 Usage

5.2.1 How do I review others translations?

• You can subscribe to any changes made in Subscriptions and then check other contributions in email.

• There is review tool available at bottom of translation view, where you can choose to browse translations made
by others since given date.

5.2.2 How do I provide feedback on source string?

On context tabs below translation, you can use Source tab to provide feedback on source string or discuss it with other
translators.

5.2.3 How can I use existing translations while translating?

Weblate provides you several ways to utilize existing translations while translating:

• You can use import functionality to load compendium as translations, suggestions or fuzzy translations. This is
best approach for one time translation using compedium or similar translation database.

• You can setup tmserver with all databases you have and let Weblate use it. This is good for case when you want
to use it for several times during translating.

• Another option is to translate all related projects in single Weblate instance, what will make it automatically
pick up translation from other projects as well.

See Also:

Machine translation setup, Machine translation

5.2.4 Does Weblate update translation files besides translations?

Weblate tries to limit changes in translation files to minimum. For some file formats it might unfortunately lead to
reformatting the file. If you want to keep the file formattted in your way, please use pre commit hook for that.

For monolingual files (see Supported formats) Weblate might add new translation units which are present in the
template and not in actual translations. It does not however perform any automatic cleanup of stale strings as it might
have unexpected outcome. If you want to do this, please install pre commit hook which will handle the cleanup
according to your needs.

Weblate also will not try to update bilingual files in any way, so if you need po files being updated from pot, you
need to do it on your own.

See Also:

5.2. Usage 63

https://docs.djangoproject.com/en/dev/ref/contrib/sites/

Weblate Documentation, Release 1.8

Pre commit processing of translations

5.2.5 Where do language definition come from and how can I add own?

Basic set of language definitions is included within Weblate and Translate-toolkit. This covers more than 150 lan-
guages and includes information about used plural forms or text direction.

You are free to define own language in administrative interface, you just need to provide information about it.

5.2.6 Can Weblate highlight change in a fuzzy string?

Weblate supports this, however it needs the data to show the difference.

For Gettext PO files, you have to pass parameter --previous to msgmerge when updating PO files, for example:

msgmerge --previous -U po/cs.po po/phpmyadmin.pot

For monolingual translations, Weblate can find the previous string by ID, so it shows the differences automatically.

5.3 Troubleshooting

5.3.1 Requests sometimes fail with too many open files error

This happens sometimes when your Git repository grows too much and you have more of them. Compressing the Git
repositories will improve this situation.

The easiest way to do this is to run:

Go to GIT_ROOT directory
cd weblate/repos
Compress all Git repositories
for d in */* ; do

pushd $d
git gc
popd

done

See Also:

GIT_ROOT

5.3.2 Fulltext search is too slow

Depending on various conditions (frequency of updates, server restarts and other), fulltext index might get too frag-
mented over time. It is recommended to rebuild it from scratch time to time:

./manage.py rebuild_index --clean

See Also:

rebuild_index

64 Chapter 5. Frequently Asked Questions

Weblate Documentation, Release 1.8

5.3.3 I get “Lock Error” quite often while translating

This is usually caused by concurrent updates to fulltext index. In case you are running multi threaded server (eg.
mod_wsgi), this happens quite often. For such setup it is recommended to enable OFFLOAD_INDEXING.

See Also:

Fulltext search

5.3.4 Rebuilding index has failed with “No space left on device”

Whoosh uses temporary directory to build indices. In case you have small /tmp (eg. using ramdisk), this might fail.
Change used temporary directory by passing as TEMP variable:

TEMP=/path/to/big/temp ./manage.py rebuild_index --clean

See Also:

rebuild_index

5.4 Features

5.4.1 Does Weblate support other VCS than Git?

Weblate does not have native support for anything else than Git, however Git is versatile system, which allows plugging
in remote helpers for other VCS as well.

At this time, helpers for Bazaar and Mercurial (hg) are available within Git source code, they might be also included
in your Git package. If this is not the case, you can download them manually and put somewhere in your search path
(for example ~/bin). You also need to have installed appropriate version control programs.

Once you have these installed, you can use such remotes to specifi repository in Weblate.

To clone gnuhello project from Launchpad with Bazaar use:

bzr::lp:gnuhello

For hello repository from selenic.com with Mercurial use:

hg::http://selenic.com/repo/hello

Note: For native support of other VCS, Weblate requires distributed VCS and could be probably adjusted to work
with anything else than Git, but somebody has to implement this support.

5.4.2 How does Weblate credit translators?

Every change made in Weblate is committed into VCS under translators name. This way every single change has
proper authorship and you can track it down using standard VCS tools you use for code.

Additionally, when translation file format supports it, the file headers are updated to include translator name.

5.4. Features 65

http://git-scm.com/docs/git-remote-helpers
https://github.com/git/git/tree/master/contrib/remote-helpers

Weblate Documentation, Release 1.8

5.4.3 Why does Weblate force to have show all po files in single tree?

Weblate was designed in a way that every po file is represented as single subproject. This is beneficial for translators,
that they know what they are actually translating. If you feel your project should be translated as one, consider merging
these po files. It will make life easier even for translators not using Weblate.

Note: In case there will be big demand for this feature, it might be implemented in future versions, but it’s definitely
not a priority for now.

66 Chapter 5. Frequently Asked Questions

CHAPTER 6

Supported formats

Weblate supports any format understood by Translate-toolkit, however each format being slightly different, there might
be some issues with not well tested formats.

See Also:

Supported formats in translate-toolkit

Weblate does support both monolingual and bilingual formats. Bilingual formats store two languages in single file -
source and translation (typical examples is GNU Gettext, XLIFF or Apple OS X strings). On the other side, mono-
lingual formats identify the string by ID and each language file contains only mapping of those to given language
(typically Android string resources). Some file formats are used in both variants, see detailed description below.

For correct use of monolingual files, Weblate requires access to file containing complete list of strings to translate with
their source - this file is called Monolingual base language file within Weblate, though the naming might vary in your
application.

6.1 GNU Gettext

Most widely used format in translating free software. This was first format supported by Weblate and still has best
support.

Weblate supports contextual information stored in the file, adjusting it’s headers or linking to corresponding source
files.

See Also:

https://en.wikipedia.org/wiki/Gettext, http://docs.translatehouse.org/projects/translate-
toolkit/en/latest/formats/po.html

6.1.1 Monolingual Gettext

Some projects decide to use Gettext as monolingual formats - they code just IDs in their source code and the string
needs to be translated to all languages, including English. Weblate does support this, though you have to choose
explicitely this file format when importing resources into Weblate.

67

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/index.html
https://en.wikipedia.org/wiki/Gettext
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/po.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/po.html

Weblate Documentation, Release 1.8

6.2 XLIFF

XML based format created to standardize translation files, but in the end it is one of many standards in this area.

XLIFF is usually used as bilingual.

See Also:

https://en.wikipedia.org/wiki/XLIFF, http://docs.translatehouse.org/projects/translate-
toolkit/en/latest/formats/xliff.html

6.3 Java properties

Native Java format for translations.

Java properties are usually used as bilingual.

See Also:

https://en.wikipedia.org/wiki/.properties, http://docs.translatehouse.org/projects/translate-
toolkit/en/latest/formats/properties.html

6.4 Qt Linguist .ts

Translation format used in Qt based applications.

Qt Linguist files are used as both bilingual and monolingual.

See Also:

http://qt-project.org/doc/qt-4.8/linguist-manual.html, http://docs.translatehouse.org/projects/translate-
toolkit/en/latest/formats/ts.html

6.5 Android string resources

Android specific file format for translating applications.

Android string resources are monolingual, the Monolingual base language file file being stored in different location
than others res/values/strings.xml.

See Also:

https://developer.android.com/guide/topics/resources/string-resource.html

Note: This format is not yet supported by Translate-toolkit (merge request is pending), but Weblate includes own
support for it.

6.6 Apple OS X strings

Apple specific file format for translating applications, used for both OS X and iPhone/iPad application translations.

Apple OS X strings are usually used as bilingual.

68 Chapter 6. Supported formats

https://en.wikipedia.org/wiki/XLIFF
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/xliff.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/xliff.html
https://en.wikipedia.org/wiki/.properties
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/properties.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/properties.html
http://qt-project.org/doc/qt-4.8/linguist-manual.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/ts.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/ts.html
https://developer.android.com/guide/topics/resources/string-resource.html

Weblate Documentation, Release 1.8

See Also:

https://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPInternational/Articles/StringsFiles.html,
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/strings.html

Note: Apple OS X strings are half broken in translate-toolkit 1.9.0 (it will generate corrupted files while saving),
please use Git snapshot for handling these.

6.7 PHP files

PHP files can be processed directly, though currently Translate-toolkit has some problems writing them properly, so
please double check that your files won’t get corrupted.

PHP translations are usually monolingual, so it is recommended to specify base file with English strings.

Sample file which should work:

<?php

$string[’foo’] = ’This is foo string’;

See Also:

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/php.html

6.8 Others

As already mentioned, all Translate-toolkit formats are supported, but they did not (yet) receive deeper testing.

See Also:

Supported formats in translate-toolkit

6.7. PHP files 69

https://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPInternational/Articles/StringsFiles.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/strings.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/php.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/index.html

Weblate Documentation, Release 1.8

70 Chapter 6. Supported formats

CHAPTER 7

Weblate’s Web API

7.1 Notification hooks

Notification hooks allow external applications to notify Weblate that Git repository has been updated.

GET /hooks/update/(string:project)/(string:subproject)/
Triggers update of a subproject (pulling from Git and scanning for translation changes).

GET /hooks/update/(string:project)/
Triggers update of all subprojects in a project (pulling from Git and scanning for translation changes).

POST /hooks/github/
Special hook for handling GitHub notifications and automatically updating matching subprojects.

Note: GitHub includes direct support for notifying Weblate, just enable Weblate service hook in repository
settings and set URL to URL of your Weblate installation.

See Also:

http://help.github.com/post-receive-hooks/ ENABLE_HOOKS

POST /hooks/bitbucket/
Special hook for handling Bitbucket notifications and automatically updating matching subprojects.

See Also:

https://confluence.atlassian.com/display/BITBUCKET/POST+Service+Management
https://confluence.atlassian.com/display/BITBUCKET/Writing+Brokers+for+Bitbucket ENABLE_HOOKS

7.2 Exports

Weblate provides various exports to allow you further process the data.

GET /exports/stats/(string:project)/(string:subproject)/
Retrieves statistics for given subproject in JSON format.

You can get pretty-printed output by appending ?indent=1 to the request.

Example response:

71

http://help.github.com/post-receive-hooks/
https://confluence.atlassian.com/display/BITBUCKET/POST+Service+Management
https://confluence.atlassian.com/display/BITBUCKET/Writing+Brokers+for+Bitbucket

Weblate Documentation, Release 1.8

[
{

"code": "cs",
"failing": 0,
"failing_percent": 0.0,
"fuzzy": 0,
"fuzzy_percent": 0.0,
"last_author": "Michal \u010ciha\u0159",
"last_change": "2012-03-28T15:07:38+00:00",
"name": "Czech",
"total": 436,
"translated": 436,
"translated_percent": 100.0,
"url": "http://l10n.cihar.com/engage/weblate/cs/"
"url_translate": "http://l10n.cihar.com/projects/weblate/master/cs/"

},
{

"code": "nl",
"failing": 21,
"failing_percent": 4.8,
"fuzzy": 11,
"fuzzy_percent": 2.5,
"last_author": null,
"last_change": null,
"name": "Dutch",
"total": 436,
"translated": 319,
"translated_percent": 73.2,
"url": "http://l10n.cihar.com/engage/weblate/nl/"
"url_translate": "http://l10n.cihar.com/projects/weblate/master/nl/"

},
{

"code": "el",
"failing": 11,
"failing_percent": 2.5,
"fuzzy": 21,
"fuzzy_percent": 4.8,
"last_author": null,
"last_change": null,
"name": "Greek",
"total": 436,
"translated": 312,
"translated_percent": 71.6,
"url": "http://l10n.cihar.com/engage/weblate/el/"
"url_translate": "http://l10n.cihar.com/projects/weblate/master/el/"

},
]

Included data:

code language code

failing, failing_percent number and percentage of failing checks

fuzzy, fuzzy_percent number and percentage of fuzzy strings

last_author name of last author

last_change date of last change

name language name

72 Chapter 7. Weblate’s Web API

Weblate Documentation, Release 1.8

total total number of strings

translated, translated_percet number and percentage of translated strings

url URL to access the translation (engagement URL)

url_translate URL to access the translation (real translation URL)

7.3 RSS feeds

Changes in translations are exported in RSS feeds.

GET /exports/rss/(string:project)/(string:subproject)/(string:language)/
Retrieves RSS feed with recent changes for a translation.

GET /exports/rss/(string:project)/(string:subproject)/
Retrieves RSS feed with recent changes for a subproject.

GET /exports/rss/(string:project)/
Retrieves RSS feed with recent changes for a project.

GET /exports/rss/language/(string:language)/
Retrieves RSS feed with recent changes for a language.

GET /exports/rss/
Retrieves RSS feed with recent changes for Weblate instance.

See Also:

https://en.wikipedia.org/wiki/RSS

7.3. RSS feeds 73

https://en.wikipedia.org/wiki/RSS

Weblate Documentation, Release 1.8

74 Chapter 7. Weblate’s Web API

CHAPTER 8

Changes

8.1 weblate 1.8

Released on November 7th 2013.

• Please check manual for upgrade instructions.

• Nicer listing of project summary.

• Better visible options for sharing.

• More control over anonymous users privileges.

• Supports login using third party services, check manual for more details.

• Users can login by email instead of username.

• Documentation improvements.

• Improved source strings review.

• Searching across all units.

• Better tracking of source strings.

• Captcha protection for registration.

8.2 weblate 1.7

Released on October 7th 2013.

• Please check manual for upgrade instructions.

• Support for checking Python brace format string.

• Per subproject customization of quality checks.

• Detailed per translation stats.

• Changed way of linking suggestions, checks and comments to units.

• Users can now add text to commit message.

• Support for subscribing on new language requests.

75

Weblate Documentation, Release 1.8

• Support for adding new translations.

• Widgets and charts are now rendered using Pillow instead of Pango + Cairo.

• Add status badge widget.

• Dropped invalid text direction check.

• Changes in dictionary are now logged in history.

• Performance improvements for translating view.

8.3 weblate 1.6

Released on July 25th 2013.

• Nicer error handling on registration.

• Browsing of changes.

• Fixed sorting of machine translation suggestions.

• Improved support for MyMemory machine translation.

• Added support for Amagama machine translation.

• Various optimizations on frequently used pages.

• Highlights searched phrase in search results.

• Support for automatic fixups while saving the message.

• Tracking of translation history and option to revert it.

• Added support for Google Translate API.

• Added support for managing SSH host keys.

• Various form validation improvements.

• Various quality checks improvements.

• Performance improvements for import.

• Added support for voting on suggestions.

• Cleanup of admin interface.

8.4 weblate 1.5

Released on April 16th 2013.

• Please check manual for upgrade instructions.

• Added public user pages.

• Better naming of plural forms.

• Added support for TBX export of glossary.

• Added support for Bitbucket notifications.

• Activity charts are now available for each translation, language or user.

• Extended options of import_project admin command.

76 Chapter 8. Changes

Weblate Documentation, Release 1.8

• Compatible with Django 1.5.

• Avatars are now shown using libravatar.

• Added possibility to pretty print JSON export.

• Various performance improvements.

• Indicate failing checks or fuzzy strings in progress bars for projects or languages as well.

• Added support for custom pre-commit hooks and commiting additional files.

• Rewritten search for better performance and user experience.

• New interface for machine translations.

• Added support for monolingual po files.

• Extend amount of cached metadata to improve speed of various searches.

• Now shows word counts as well.

8.5 weblate 1.4

Released on January 23rd 2013.

• Fixed deleting of checks/comments on unit deletion.

• Added option to disable automatic propagation of translations.

• Added option to subscribe for merge failures.

• Correctly import on projects which needs custom ttkit loader.

• Added sitemaps to allow easier access by crawlers.

• Provide direct links to string in notification emails or feeds.

• Various improvements to admin interface.

• Provide hints for production setup in admin interface.

• Added per language widgets and engage page.

• Improved translation locking handling.

• Show code snippets for widgets in more variants.

• Indicate failing checks or fuzzy strings in progress bars.

• More options for formatting commit message.

• Fixed error handling with machine translation services.

• Improved automatic translation locking behaviour.

• Support for showing changes from previous source string.

• Added support for substring search.

• Various quality checks improvements.

• Support for per project ACL.

• Basic unit tests coverage.

8.5. weblate 1.4 77

Weblate Documentation, Release 1.8

8.6 weblate 1.3

Released on November 16th 2012.

• Compatibility with PostgreSQL database backend.

• Removes languages removed in upstream git repository.

• Improved quality checks processing.

• Added new checks (BB code, XML markup and newlines).

• Support for optional rebasing instead of merge.

• Possibility to relocate Weblate (eg. to run it under /weblate path).

• Support for manually choosing file type in case autodetection fails.

• Better support for Android resources.

• Support for generating SSH key from web interface.

• More visible data exports.

• New buttons to enter some special characters.

• Support for exporting dictionary.

• Support for locking down whole Weblate installation.

• Checks for source strings and support for source strings review.

• Support for user comments for both translations and source strings.

• Better changes log tracking.

• Changes can now be monitored using RSS.

• Improved support for RTL languages.

8.7 weblate 1.2

Released on August 14th 2012.

• Weblate now uses South for database migration, please check upgrade instructions if you are upgrading.

• Fixed minor issues with linked git repos.

• New introduction page for engaging people with translating using Weblate.

• Added widgets which can be used for promoting translation projects.

• Added option to reset repository to origin (for privileged users).

• Project or subproject can now be locked for translations.

• Possibility to disable some translations.

• Configurable options for adding new translations.

• Configuration of git commits per project.

• Simple antispam protection.

• Better layout of main page.

• Support for automatically pushing changes on every commit.

78 Chapter 8. Changes

Weblate Documentation, Release 1.8

• Support for email notifications of translators.

• List only used languages in preferences.

• Improved handling of not known languages when importing project.

• Support for locking translation by translator.

• Optionally maintain Language-Team header in po file.

• Include some statistics in about page.

• Supports (and requires) django-registration 0.8.

• Caching of counted units with failing checks.

• Checking of requirements during setup.

• Documentation improvements.

8.8 weblate 1.1

Released on July 4th 2012.

• Improved several translations.

• Better validation while creating subproject.

• Added support for shared git repositories across subprojects.

• Do not necessary commit on every attempt to pull remote repo.

• Added support for offloading indexing.

8.9 weblate 1.0

Released on May 10th 2012.

• Improved validation while adding/saving subproject.

• Experimental support for Android resource files (needs patched ttkit).

• Updates from hooks are run in background.

• Improved installation instructions.

• Improved navigation in dictionary.

8.10 weblate 0.9

Released on April 18th 2012.

• Fixed import of unknown languages.

• Improved listing of nearby messages.

• Improved several checks.

• Documentation updates.

• Added definition for several more languages.

8.8. weblate 1.1 79

Weblate Documentation, Release 1.8

• Various code cleanups.

• Documentation improvements.

• Changed file layout.

• Update helper scripts to Django 1.4.

• Improved navigation while translating.

• Better handling of po file renames.

• Better validation while creating subproject.

• Integrated full setup into syncdb.

• Added list of recent changes to all translation pages.

• Check for not translated strings ignores format string only messages.

8.11 weblate 0.8

Released on April 3rd 2012.

• Replaced own full text search with Whoosh.

• Various fixes and improvements to checks.

• New command updatechecks.

• Lot of translation updates.

• Added dictionary for storing most frequently used terms.

• Added /admin/report/ for overview of repositories status.

• Machine translation services no longer block page loading.

• Management interface now contains also useful actions to update data.

• Records log of changes made by users.

• Ability to postpone commit to Git to generate less commits from single user.

• Possibility to browse failing checks.

• Automatic translation using already translated strings.

• New about page showing used versions.

• Django 1.4 compatibility.

• Ability to push changes to remote repo from web interface.

• Added review of translations done by others.

8.12 weblate 0.7

Released on February 16th 2012.

• Direct support for GitHub notifications.

• Added support for cleaning up orphaned checks and translations.

• Displays nearby strings while translating.

80 Chapter 8. Changes

Weblate Documentation, Release 1.8

• Displays similar strings while translating.

• Improved searching for string.

8.13 weblate 0.6

Released on February 14th 2012.

• Added various checks for translated messages.

• Tunable access control.

• Improved handling of translations with new lines.

• Added client side sorting of tables.

• Please check upgrading instructions in case you are upgrading.

8.14 weblate 0.5

Released on February 12th 2012.

• Support for machine translation using following online services:

– Apertium

– Microsoft Translator

– MyMemory

• Several new translations.

• Improved merging of upstream changes.

• Better handle concurrent git pull and translation.

• Propagating works for fuzzy changes as well.

• Propagating works also for file upload.

• Fixed file downloads while using FastCGI (and possibly others).

8.15 weblate 0.4

Released on February 8th 2012.

• Added usage guide to documentation.

• Fixed API hooks not to require CSRF protection.

8.16 weblate 0.3

Released on February 8th 2012.

• Better display of source for plural translations.

• New documentation in Sphinx format.

8.13. weblate 0.6 81

Weblate Documentation, Release 1.8

• Displays secondary languages while translating.

• Improved error page to give list of existing projects.

• New per language stats.

8.17 weblate 0.2

Released on February 7th 2012.

• Improved validation of several forms.

• Warn users on profile upgrade.

• Remember URL for login.

• Naming of text areas while entering plural forms.

• Automatic expanding of translation area.

8.18 weblate 0.1

Released on February 6th 2012.

• Initial release.

82 Chapter 8. Changes

CHAPTER 9

Contributing

There are dozens od ways to contribute to Weblate. We welcome any help, be it coding help, graphics design, docu-
mentation or sponsorship.

9.1 Code and development

Weblate is being developed on GitHub <https://github.com/nijel/weblate>. You are welcome to fork the code and open
pull requests. Patches in any other form are welcome as well. The code should follow PEP-8 coding guidelines.

We do write testsuite for our code, so please add testcases for any new functionality and verify that it
works. You can see current test results on Travis <https://travis-ci.org/nijel/weblate> and coverage on Coveralls
<https://coveralls.io/r/nijel/weblate>.

9.2 Translating

Weblate is being translated using Weblate on <http://l10n.cihar.com/>, feel free to join us in effort to make Weblate
available in as many world languages as possible.

83

https://github.com/nijel/weblate
https://travis-ci.org/nijel/weblate
https://coveralls.io/r/nijel/weblate
http://l10n.cihar.com/

Weblate Documentation, Release 1.8

84 Chapter 9. Contributing

CHAPTER 10

License

Copyright (C) 2012 - 2013 Michal Čihař <michal@cihar.com>

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

85

mailto:michal@cihar.com
http://www.gnu.org/licenses/

Weblate Documentation, Release 1.8

86 Chapter 10. License

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

87

