

 [image: Weblate]
 [https://weblate.org/]Weblate is a copylefted libre software web-based continuous localization system,
used by over 1150 libre projects and companies in more than 115 countries.

Install it, or use the Hosted Weblate service at weblate.org [https://weblate.org/].

[image: Website]
 [https://weblate.org/][image: Translation status]
 [https://hosted.weblate.org/engage/weblate/][image: CII Best Practices]
 [https://bestpractices.coreinfrastructure.org/projects/552][image: _images/Weblate.svg]
 [https://pypi.org/project/Weblate/][image: _images/32428948dccd6d4ff5da4b8d4f00933aca443296.svg]
 [https://docs.weblate.org/][image: License]
 [https://github.com/WeblateOrg/weblate/blob/master/COPYING]
Support

Weblate is a libre software with optional professional support and cloud
hosting offerings. Check out https://weblate.org/hosting/ for more information.

Documentation

To be found in the docs directory of the source code, or
viewed online on https://docs.weblate.org/

Installation

Setup instructions:

https://docs.weblate.org/en/latest/admin/install.html

Bugs

Please report feature requests and problems to:

https://github.com/WeblateOrg/weblate/issues

License

Copyright © 2012–2021 Michal Čihař michal@cihar.com

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program. If not, see https://www.gnu.org/licenses/.

User docs

	Weblate basics

	Registration and user profile

	Translating using Weblate

	Downloading and uploading translations

	Glossary

	Checks and fixups

	Searching

	Translation workflows

	Frequently Asked Questions

	Supported file formats

	Version control integration

	Weblate’s REST API

	Weblate Client

	Weblate’s Python API

Administrator docs

	Configuration instructions

	Weblate deployments

	Upgrading Weblate

	Backing up and moving Weblate

	Authentication

	Access control

	Translation projects

	Language definitions

	Continuous localization

	Licensing translations

	Translation process

	Checks and fixups

	Machine translation

	Addons

	Translation Memory

	Configuration

	Sample configuration

	Management commands

	Announcements

	Component Lists

	Optional Weblate modules

	Customizing Weblate

	Management interface

	Getting support for Weblate

	Legal documents

Application developer guide

	Starting with internationalization

	Integrating with Weblate

	Translating software using GNU Gettext

	Translating documentation using Sphinx

	Translating HTML and JavaScript using Weblate CDN

	Translation component alerts

	Building translators community

	Managing translations

	Reviewing strings

	Promoting the translation

	Translation progress reporting

Contributor docs

	Contributing to Weblate

	Starting contributing code to Weblate

	Weblate source code

	Debugging Weblate

	Weblate internals

	Developing addons

	Weblate frontend

	Reporting issues in Weblate

	Weblate testsuite and continuous integration

	Data schemas

	Releasing Weblate

	Security and privacy

	About Weblate

	License

Change history

	Weblate 4.5.1

	Weblate 4.5

	Weblate 4.4.2

	Weblate 4.4.1

	Weblate 4.4

	Weblate 4.3.2

	Weblate 4.3.1

	Weblate 4.3

	Weblate 4.2.2

	Weblate 4.2.1

	Weblate 4.2

	Weblate 4.1.1

	Weblate 4.1

	Weblate 4.0.4

	Weblate 4.0.3

	Weblate 4.0.2

	Weblate 4.0.1

	Weblate 4.0

	Weblate 3.x series

	Weblate 2.x series

	Weblate 1.x series

	Weblate 0.x series

Indices and tables

	Index

	HTTP Routing Table

	Python Module Index

Weblate basics

Project and component structure

In Weblate translations are organized into projects and components. Each project
can contain number of components and those contain translations into individual
languages. The component corresponds to one translatable file (for example
GNU gettext or Android string resources). The projects are there to help you
organize component into logical sets (for example to group all translations
used within one application).

Internally, each project has translations to common strings propagated across
other components within it by default. This lightens the burden of repetitive
and multi version translation. The translation propagation can be disabled per
Component configuration using Allow translation propagation in case
the translations should diverge.

See also

Integrating with Weblate

Registration and user profile

Registration

Everybody can browse projects, view translations or suggest translations by default.
Only registered users are allowed to actually save changes, and are credited for
every translation made.

You can register by following a few simple steps:

	Fill out the registration form with your credentials.

	Activate registration by following the link in the e-mail you receive.

	Optionally adjust your profile to choose which languages you know.

Dashboard

When you sign in, you will see an overview of projects and components,
as well as their respective translation progression.

New in version 2.5.

Components of projects you are watching are shown by default, and
cross-referenced with your preferred languages.

Hint

You can switch to different views using the navigation tabs.

[image: ../_images/dashboard-dropdown.png]
The menu has these options:

	Projects > Browse all projects in the main menu showing translation status
for each project on the Weblate instance.

	Selecting a language in the main menu Languages will show translation status of all projects,
filtered by one of your primary languages.

	Watched translations in the Dashboard will show translation status of only those
projects you are watching, filtered by your primary languages.

In addition, the drop-down can also show any number of component lists, sets
of project components preconfigured by the Weblate administrator, see
Component Lists.

You can configure your personal default dashboard view in the Preferences section of
your user profile settings.

Note

When Weblate is configured for a single project using
SINGLE_PROJECT in the settings.py file (see Configuration), the dashboard
will not be shown, as the user will be redirected to a single project or component instead.

User profile

The user profile is accessible by clicking your user icon in the top-right of the top menu,
then the Settings menu.

The user profile contains your preferences. Name and e-mail address is used in VCS commits, so keep this info accurate.

Note

All language selections only offer currently translated languages.

Hint

Request or add other languages you want to translate by clicking the button to make
them available too.

Translated languages

Choose which languages you prefer to translate, and they will be offered on the
main page of watched projects, so that you have easier access to these all translations
in each of those languages.

[image: ../_images/your-translations.png]

Secondary languages

You can define which secondary languages are shown to you as a guide while translating.
An example can be seen in the following image, where
the Hebrew language is shown as secondarily:

[image: ../_images/secondary-language.png]

Default dashboard view

On the Preferences tab, you can pick which of the available
dashboard views to present by default. If you pick the Component
list, you have to select which component list will be displayed from the
Default component list drop-down.

See also

Component Lists

Public profile

All of the fields on this page are optional and can be deleted at any time, and
by filling them out, you’re giving us consent to share this data wherever your
user profile appears.

Avatar can be shown for each user (depending on ENABLE_AVATARS).
These images are obtained using https://gravatar.com/.

Editor link

A source code link is shown in the web-browser configured in the
Component configuration by default.

Hint

By setting the Editor link, you use your local editor to open the VCS source code
file of translated strings. You can use Template markup.

Usually something like editor://open/?file={{filename}}&line={{line}} is a good option.

See also

You can find more info on registering custom URL protocols for the editor in
the Nette documentation [https://tracy.nette.org/en/open-files-in-ide].

Notifications

Subscribe to various notifications from the Notifications tab.
Notifications for selected events on watched or administered
projects will be sent to you per e-mail.

Some of the notifications are sent only for events in your languages (for
example about new strings to translate), while some trigger at component level
(for example merge errors). These two groups of notifications are visually
separated in the settings.

You can toggle notifications for watched projects and administered projects and it
can be further tweaked (or muted) per project and component. Visit the component
overview page and select appropriate choice from the Watching menu.

In case Automatically watch projects on contribution is enabled you
will automatically start watching projects upon translating a string. The
default value depends on DEFAULT_AUTO_WATCH.

Note

You will not receive notifications for your own actions.

[image: ../_images/profile-subscriptions.png]

Account

The Account tab lets you set up basic account details,
connect various services you can use to sign in into Weblate, completely
remove your account, or download your user data (see Weblate user data export).

Note

The list of services depends on your Weblate configuration, but can be made to
include popular sites such as GitLab, GitHub, Google, Facebook, or Bitbucket or other
OAuth 2.0 providers.

[image: ../_images/authentication.png]

API access

You can get or reset your API access token here.

Audit log

Audit log keeps track of the actions performed with your account. It logs IP
address and browser for every important action with your account. The critical
actions also trigger a notification to a primary e-mail address.

See also

Running behind reverse proxy

Translating using Weblate

Thank you for interest in translating using Weblate. Projects can either be
set up for direct translation, or by way of accepting suggestions made by
users without accounts.

Overall, there are two modes of translation:

	The project accepts direct translations

	The project only accepts suggestions, which are automatically validated once a defined number of votes is reached

Please see Translation workflows for more info on translation workflow.

Options for translation project visibility:

	Publicly visible and anybody can contribute

	Visible only to a certain group of translators

See also

Access control,
Translation workflows

Translation projects

Translation projects hold related components; resources for the same software, book, or project.

[image: ../_images/project-overview.png]

Translation links

Having navigated to a component, a set of links lead to its actual translation.
The translation is further divided into individual checks, like
Not translated strings or Strings needing action. If the whole project
is translated, without error, All strings is still available.
Alternatively you can use the search field to find a specific string or term.

[image: ../_images/strings-to-check.png]

Suggestions

Note

Actual permissions might vary depending on your Weblate configuration.

Anonymous users can only (by default) forward suggestions. Doing so is still
available to signed-in users, in cases where uncertainty about the translation
arises, prompting other translators to review it.

The suggestions are scanned on a daily basis to remove duplicates and
suggestions matching the current translation.

Comments

Three types of comments can be posted: for translations, source strings, or to
report source string bugs when this functionality is turned on using
Enable source reviews. Choose the one suitable to topic you want to
discuss. Source string comments are in any event good for providing feedback on
the original string, for example that it should be rephrased or to ask
questions about it.

You can use Markdown syntax in all comments and mention other users using
@mention.

See also

Receiving source string feedback,
Source strings reviews,
Enable source reviews

Variants

Variants are used to group different length variants of the string. The
frontend of your project can then use different strings depending on the screen
or window size.

See also

String variants,
Variants

Labels

Labels are used to categorize strings within a project to further customize the
localization workflow (for example to define categories of strings).

See also

String labels

Translating

On the translation page, the source string and an editing area for its translation are shown.
Should the translation be plural, multiple source strings and editing areas are
shown, each described and labeled in the amount of plural forms the translated language has.

All special whitespace characters are underlined in red and indicated with grey
symbols. More than one subsequent space is also underlined in red to alert the translator to
a potential formatting issue.

Various bits of extra info can be shown on this page, most of which coming from the project source code
(like context, comments or where the message is being used). Translation fields for any secondary
languages translators select in the preferences will be shown
(see Secondary languages) above the source string.

Below the translation, translators will find suggestion made by others, to be
accepted (✓), accepted with changes (🖉), or deleted (🗑).

Plurals

Words changing form to account of their numeric designation are called
plurals. Each language has its own definition of plurals. English, for
example, supports one. In the singular definition of for example «car»,
implicitly one car is referenced, in the plural definition, «cars» two or more
cars are referenced (or the concept of cars as a noun). Languages like for
example Czech or Arabic have more plurals and also their rules for plurals are
different.

Weblate has full support for each of these forms, in each respective language
(by translating every plural separately). The number of fields and how it is
in turn used in the translated application or project depends on the configured
plural formula. Weblate shows the basic info, and the Language Plural Rules [https://unicode-org.github.io/cldr-staging/charts/37/supplemental/language_plural_rules.html]
by the Unicode Consortium is a more detailed description.

See also

Plural formula

[image: ../_images/plurals.png]

Keyboard shortcuts

Changed in version 2.18: The keyboard shortcuts have been revamped in 2.18 to less likely collide
with browser or system defaults.

The following keyboard shortcuts can be utilized during translation:

	Keyboard shortcut

	Description

	Alt+Home

	Navigate to first translation in current search.

	Alt+End

	Navigate to last translation in current search.

	Alt+PageUp or

Ctrl ↑ or

Alt ↑ or

Cmd ↑

	Navigate to previous translation in current search.

	Alt+PageDown or

Ctrl+↓ or

Alt+↓ or

Cmd+↓

	Navigate to next translation in current search.

	Alt+Enter or

Ctrl+Enter or

Cmd+Enter

	Save current translation.

	Ctrl+Shift+Enter or

Cmd+Shift+Enter

	Unmark translation as needing edit and submit it.

	Ctrl+E or

Cmd+E

	Focus translation editor.

	Ctrl+U or

Cmd+U

	Focus comment editor.

	Ctrl+M or

Cmd+M

	Shows Automatic suggestions tab,
see Automatic suggestions.

	Ctrl+1 to Ctrl+9 or

Cmd+1 to Cmd+9

	Copies placeable of given number from source string.

	Ctrl+M`+:kbd:`1 to 9 or

Cmd+M`+:kbd:`1 to 9

	Copy the machine translation of given number to current translation.

	Ctrl+I`+:kbd:`1 to 9 or

Cmd+I`+:kbd:`1 to 9

	Ignore one item in the list of failing checks.

	Ctrl+J or

Cmd+J

	Shows the Nearby strings tab.

	Ctrl+S or

Cmd+S

	Focus search field.

	Ctrl+O or

Cmd+O

	Copy source string.

	Ctrl+Y or

Cmd+Y

	Toggle the Needs editing flag.

Visual keyboard

A small visual keyboard row is shown just above the translation field. This can be useful to
keep local punctuation in mind (as the row is local to each language), or have characters
otherwise hard to type handy.

The shown symbols factor into three categories:

	User configured characters defined in the User profile

	Per-language characters provided by Weblate (e.g. quotes or RTL specific characters)

	Characters configured using SPECIAL_CHARS

[image: ../_images/visual-keyboard.png]

Translation context

This contextual description provides related info about the current string.

	String attributes
	Things like message ID, context (msgctxt) or location in source code.

	Screenshots
	Screenshots can be uploaded to Weblate to better inform translators
of where and how the string is used, see Visual context for strings.

	Nearby strings
	Displays neighbouring messages from the translation file. These
are usually also used in a similar context and prove useful in keeping the translation consistent.

	Other occurrences
	In case a message appears in multiple places (e.g. multiple components),
this tab shows all of them if they are found to be inconsistent (see
Inconsistent). You can choose which one to use.

	Translation memory
	Look at similar strings translated in past, see Memory Management [https://docs.python.org/3.7/c-api/memory.html#memory].

	Glossary
	Displays terms from the project glossary used in the current message.

	Recent changes
	List of people whom have changed this message recently using Weblate.

	Project
	Project info like instructions for translators, or a directory or link
to the string in the version control system repository the project uses.

If you want direct links, the translation format has to support it.

Translation history

Every change is by default (unless turned off in component settings) saved in
the database, and can be reverted. Optionally one can still also revert anything
in the underlying version control system.

Translated string length

Weblate can limit the length of a translation in several ways to ensure the
translated string is not too long:

	The default limitation for translation is ten times longer than the source
string. This can be turned off by
LIMIT_TRANSLATION_LENGTH_BY_SOURCE_LENGTH. In case you are hitting
this, it might be also caused by a monolingual translation erroneously set up
as bilingual one, making Weblate mistaking the translation key for the actual
source string. See Bilingual and monolingual formats for more info.

	Maximal length in characters defined by translation file or flag, see
Maximum length of translation.

	Maximal rendered size in pixels defined by flags, see Maximum size of translation.

Automatic suggestions

Based on configuration and your translated language, Weblate provides suggestions
from several machine translation tools and Translation Memory.
All machine translations are available in a single tab of each translation page.

See also

You can find the list of supported tools in Machine translation.

Automatic translation

You can use automatic translation to bootstrap translation based on external
sources. This tool is called Automatic translation accessible in
the Tools menu, once you have selected a component and a language:

[image: ../_images/automatic-translation.png]
Two modes of operation are possible:

	Using other Weblate components as a source for translations.

	Using selected machine translation services with translations above a certain
quality threshold.

You can also choose which strings are to be auto-translated.

Warning

Be mindful that this will overwrite existing translations if employed with
wide filters such as All strings.

Useful in several situations like consolidating translation between different
components (for example the application and its website) or when bootstrapping
a translation for a new component using existing translations
(translation memory).

See also

Keeping translations same across components

Rate limiting

To avoid abuse of the interface, rate limiting is applied to several
operations like searching, sending contact forms or translating. If affected by
it, you are blocked for a certain period until you can perform the
operation again.

Default limits and fine-tuning is described in the administrative manual, see
Rate limiting.

Search and replace

Change terminology effectively or perform bulk fixing of the
strings using Search and replace in the Tools menu.

Hint

Don’t worry about messing up the strings. This is a two-step process
showing a preview of edited strings before the actual change is confirmed.

Bulk edit

Bulk editing allows performing one operation on number of strings. You define
strings by searching for them and set up something to be done for matching ones.
The following operations are supported:

	Changing string state (for example to approve all unreviewed strings).

	Adjust translation flags (see Customizing behavior using flags)

	Adjust string labels (see String labels)

Hint

This tool is called Bulk edit accessible in the
Tools menu of each project, component or translation.

See also

Bulk edit addon

Downloading and uploading translations

You can export files from a translation, make changes, and import them again. This allows
working offline, and then merging changes back into the existing translation.
This works even if it has been changed in the meantime.

Note

What options are available might be limited by Access control.

Downloading translations

From the project or component dashboard, translatable files can be downloaded
in the Files menu.

The first option is to download the file in the original format as it is stored in the
repository. In this case, any pending changes in the translation are getting committed
and the up-to-date file is yield without any conversions.

You can also download the translation converted into one of the widely used
localization formats. The converted files will be enriched with data provided
in Weblate; such as additional context, comments or flags. Several file formats
are available via the Files ↓ Customize download menu:

	gettext PO

	XLIFF with gettext extensions

	XLIFF 1.1

	TermBase eXchange

	Translation Memory eXchange

	gettext MO

	CSV

	Excel Open XML

	JSON

	Android String Resource

	iOS strings

Uploading translations

When you have made your changes, use Upload translation
in the Files menu.

[image: ../_images/export-import.png]

Supported file formats

Any file in a supported file format can be uploaded, but it is still
recommended to use the same file format as the one used for translation, otherwise some
features might not be translated properly.

See also

Supported file formats

The uploaded file is merged to update the translation, overwriting existing
entries by default (this can be turned off or on in the upload dialog).

Import methods

These are the choices presented when uploading translation files:

	Add as translation (translate)
	Imported translations are added as translations. This is the most common usecase, and
the default behavior.

	Add as suggestion (suggest)
	Imported translations are added as suggestions, do this when you want to have your
uploaded strings reviewed.

	Add as translation needing edit (fuzzy)
	Imported translations are added as translations needing edit. This can be useful
when you want translations to be used, but also reviewed.

	Replace existing translation file (replace)
	Existing file is replaced with new content. This can lead to loss of existing
translations, use with caution.

	Update source strings (source)
	Updates source strings in bilingual translation file. This is similar to
what Update PO files to match POT (msgmerge) does.

This option is supported only for some file formats.

	Add new strings (add)
	Adds new strings to the translation. It skips the one which already exist.

In case you want to both add new strings and update existing translations,
upload the file second time with Add as translation.

This option is available only with Manage strings turned on.

See also

POST /api/translations/(string:project)/(string:component)/(string:language)/file/

Conflicts handling

Defines how to deal with uploaded strings which are already translated.

Strings needing edit

There is also an option for how to handle strings needing edit in the imported
file. Such strings can be handle in one of the three following ways: «Do not
import», «Import as string needing edit», or «Import as translated».

Overriding authorship

With admin permissions, you can also specify authorship of uploaded file. This
can be useful in case you’ve received the file in another way and want to merge
it into existing translations while properly crediting the actual author.

Glossary

Each project can have an assigned glossary for any language as a shorthand for storing
terminology. Consistency is more easily maintained this way.
Terms from the glossary containing words from the currently translated string can be
displayed in the sidebar.

Managing glossaries

Changed in version 4.5: Glossaries are now regular translation components and you can use all
Weblate features on them — commenting, storing in a Git repository, or
adding explanations.

Use any component as a glossary by turning on Use as a glossary.

An empty glossary for a given project is automatically created with the project.
Glossaries are shared among all components of the same project, and optionally
with other projects using Share in projects on the glossary component.

The glossary component looks like any other component in Weblate:

[image: ../_images/glossary-component.png]
You can browse all glossary terms:

[image: ../_images/glossary-browse.png]

Glossary terms

Glossary terms are translated the same way regular strings are. You can
toggle additional features using the Tools menu for each term.

[image: ../_images/glossary-tools.png]

Not translatable terms

New in version 4.5.

Glossary terms which are read-only are not meant to be translated. You can use
this for names or other terms which should not change while translating. Such
terms are visually highlighted in the glossary sidebar.

The terms can be flagged using Tools ↓
Mark as read-only. In the background this toggles the read-only
flag of the string.

See also

Customizing behavior using flags

Forbidden translations

New in version 4.5.

You can flag certain glossary terms as forbidden, meaning ones _not_ to be used
for translations. Use this to clarify translation when some words are
ambiguous or could have unexpected meanings.

Terms can be flagged using Tools ↓
Mark as forbidden translation. In the background this toggles the forbidden
flag of the string.

See also

Customizing behavior using flags

Terminology

New in version 4.5.

Flagging certain glossary terms as terminology puts them in
all glossary languages. Use this to flag important terms which should be
translated consistently.

The terms can be flagged in the source language using Tools ↓
Mark as terminology. In the background this toggles the
terminology flag of the string.

See also

Customizing behavior using flags

Variants

Variants are a generic way to group strings together. All term variants are
listed in the glossary sidebar when translating.

Hint

You can use this to add abbreviations or shorter expressions for a term.

See also

String variants

Checks and fixups

The quality checks help catch common translator errors, ensuring the
translation is in good shape. The checks can be ignored in case of false positives.

Once submitting a translation with a failing check, this is immediately shown to
the user:

[image: ../_images/checks.png]

Automatic fixups

In addition to Quality checks, Weblate can fix some common
errors in translated strings automatically. Use it with caution to not have
it add errors.

See also

AUTOFIX_LIST

Quality checks

Weblate employs a wide range of quality checks on strings. The following section
describes them all in further detail. There are also language specific checks.
Please file a bug if anything is reported in error.

See also

CHECK_LIST, Customizing behavior using flags

Translation checks

Executed upon every translation change, helping translators maintain
good quality translations.

BBcode markup

BBcode in translation does not match source

BBCode represents simple markup, like for example highlighting important parts of a
message in bold font, or italics.

This check ensures they are also found in translation.

Note

The method for detecting BBcode is currently quite simple so this check
might produce false positives.

Consecutive duplicated words

Text contains the same word twice in a row:

New in version 4.1.

Checks that no consecutive duplicate words occur in a translation. This usually
indicates a mistake in the translation.

Hint

This check includes language specific rules to avoid false positives. In
case it triggers falsely in your case, let us know. See Reporting issues in Weblate.

Does not follow glossary

New in version 4.5.

The translation does not follow terms defined in a glossary.

This check has to be turned on using check-glossary flag (see
Customizing behavior using flags). Please consider following prior to enabling it:

	It does exact string matching, the glossary is expected to contain terms in all variants.

	Checking each string against glossary is expensive, it will slow down any operation in Weblate which involves running checks like importing strings or translating.

See also

Glossary,
Customizing behavior using flags,
Translation flags

Double space

Translation contains double space

Checks that double space is present in translation to avoid false positives on other space-related checks.

Check is false when double space is found in source meaning double space is intentional.

Formatted strings

Checks that formatting in strings are replicated between both source and translation.
Omitting format strings in translation usually causes severe problems, so the formatting in strings
should usually match the source.

Weblate supports checking format strings in several languages. The check is not
enabled automatically, only if a string is flagged appropriately (e.g.
c-format for C format). Gettext adds this automatically, but you will
probably have to add it manually for other file formats or if your PO files are
not generated by xgettext.

This can be done per unit (see Additional info on source strings) or in Component configuration.
Having it defined per component is simpler, but can lead to false positives in
case the string is not interpreted as a formatting string, but format string syntax
happens to be used.

Hint

In case specific format check is not available in Weblate, you can use
generic Placeholders.

Besides checking, this will also highlight the formatting strings to easily
insert them into translated strings:

[image: ../_images/format-highlight.png]

AngularJS interpolation string

AngularJS interpolation strings do not match source

	Named format string

	Your balance is {{amount}} {{ currency }}

	Flag to enable

	angularjs-format

See also

AngularJS text interpolation [https://angular.io/guide/interpolation]

C format

C format string does not match source

	Simple format string

	There are %d apples

	Position format string

	Your balance is %1$d %2$s

	Flag to enable

	c-format

See also

C format strings [https://www.gnu.org/software/gettext/manual/html_node/c_002dformat.html],
C printf format [https://en.wikipedia.org/wiki/Printf_format_string]

C# format

C# format string does not match source

	Position format string

	There are {0} apples

	Flag to enable

	c-sharp-format

See also

C# String Format [https://docs.microsoft.com/en-us/dotnet/api/system.string.format?view=netframework-4.7.2]

ECMAScript template literals

ECMAScript template literals do not match source

	Interpolation

	There are ${number} apples

	Flag to enable

	es-format

See also

Template literals [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals]

i18next interpolation

The i18next interpolation does not match source

New in version 4.0.

	Interpolation

	There are {{number}} apples

	Nesting

	There are $t(number) apples

	Flag to enable

	i18next-interpolation

See also

i18next interpolation [https://www.i18next.com/translation-function/interpolation]

Java format

Java format string does not match source

	Simple format string

	There are %d apples

	Position format string

	Your balance is %1$d %2$s

	Flag to enable

	java-format

See also

Java Format Strings [https://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html]

Java MessageFormat

Java MessageFormat string does not match source

	Position format string

	There are {0} apples

	Flag to enable

	java-messageformat enables the check unconditionally

	
	auto-java-messageformat enables check only if there is a
format string in the source

See also

Java MessageFormat [https://docs.oracle.com/javase/7/docs/api/java/text/MessageFormat.html]

JavaScript format

JavaScript format string does not match source

	Simple format string

	There are %d apples

	Flag to enable

	javascript-format

See also

JavaScript formatting strings [https://www.gnu.org/software/gettext/manual/html_node/javascript_002dformat.html]

Lua format

Lua format string does not match source

	Simple format string

	There are %d apples

	Flag to enable

	lua-format

See also

Lua formatting strings [https://www.gnu.org/software/gettext/manual/html_node/lua_002dformat.html#lua_002dformat]

Percent placeholders

The percent placeholders do not match source

New in version 4.0.

	Simple format string

	There are %number% apples

	Flag to enable

	percent-placeholders

Perl format

Perl format string does not match source

	Simple format string

	There are %d apples

	Position format string

	Your balance is %1$d %2$s

	Flag to enable

	perl-format

See also

Perl sprintf [https://perldoc.perl.org/functions/sprintf],
Perl Format Strings [https://www.gnu.org/software/gettext/manual/html_node/perl_002dformat.html]

PHP format

PHP format string does not match source

	Simple format string

	There are %d apples

	Position format string

	Your balance is %1$d %2$s

	Flag to enable

	php-format

See also

PHP sprintf documentation [https://www.php.net/manual/en/function.sprintf.php],
PHP Format Strings [https://www.gnu.org/software/gettext/manual/html_node/php_002dformat.html]

Python brace format

Python brace format string does not match source

	Simple format string

	There are {} apples

	Named format string

	Your balance is {amount} {currency}

	Flag to enable

	python-brace-format

See also

Python brace format [https://docs.python.org/3.7/library/string.html#formatstrings],
Python Format Strings [https://www.gnu.org/software/gettext/manual/html_node/python_002dformat.html]

Python format

Python format string does not match source

	Simple format string

	There are %d apples

	Named format string

	Your balance is %(amount) %(currency)

	Flag to enable

	python-format

See also

Python string formatting [https://docs.python.org/3.7/library/stdtypes.html#old-string-formatting],
Python Format Strings [https://www.gnu.org/software/gettext/manual/html_node/python_002dformat.html]

Qt format

Qt format string does not match source

	Position format string

	There are %1 apples

	Flag to enable

	qt-format

See also

Qt QString::arg() [https://doc.qt.io/qt-5/qstring.html#arg]

Qt plural format

Qt plural format string does not match source

	Plural format string

	There are %Ln apple(s)

	Flag to enable

	qt-plural-format

See also

Qt i18n guide [https://doc.qt.io/qt-5/i18n-source-translation.html#handling-plurals]

Ruby format

Ruby format string does not match source

	Simple format string

	There are %d apples

	Position format string

	Your balance is %1$f %2$s

	Named format string

	Your balance is %+.2<amount>f %<currency>s

	Named template string

	Your balance is %{amount} %{currency}

	Flag to enable

	ruby-format

See also

Ruby Kernel#sprintf [https://ruby-doc.org/core/Kernel.html#method-i-sprintf]

Vue I18n formatting

The Vue I18n formatting does not match source

	Named formatting

	There are {count} apples

	Rails i18n formatting

	There are %{count} apples

	Linked locale messages

	@:message.dio @:message.the_world!

	Flag to enable

	vue-format

See also

Vue I18n Formatting [https://kazupon.github.io/vue-i18n/guide/formatting.html],
Vue I18n Linked locale messages [https://kazupon.github.io/vue-i18n/guide/messages.html#linked-locale-messages]

Has been translated

This string has been translated in the past

Means a string has been translated already. This can happen when the
translations have been reverted in VCS or lost otherwise.

Inconsistent

This string has more than one translation in this project or is not translated
in some components.

Weblate checks translations of the same string across all translation within a
project to help you keep consistent translations.

The check fails on differing translations of one string within a project. This
can also lead to inconsistencies in displayed checks. You can find other
translations of this string on the Other occurrences tab.

Note

This check also fires in case the string is translated in one component and
not in another. It can be used as a quick way to manually handle strings
which are not translated in some components just by clicking on the
Use this translation button displayed on each line in the
Other occurrences tab.

You can use Automatic translation addon to
automate translating of newly added strings which are already translated in
another component.

See also

Keeping translations same across components

Kashida letter used

The decorative kashida letters should not be used

New in version 3.5.

The decorative Kashida letters should not be used in translation. These are
also known as Tatweel.

See also

Kashida on Wikipedia [https://en.wikipedia.org/wiki/Kashida]

Markdown links

Markdown links do not match source

New in version 3.5.

Markdown links do not match source.

See also

Markdown links [https://daringfireball.net/projects/markdown/syntax#link]

Markdown references

Markdown link references do not match source

New in version 3.5.

Markdown link references do not match source.

See also

Markdown links [https://daringfireball.net/projects/markdown/syntax#link]

Markdown syntax

Markdown syntax does not match source

New in version 3.5.

Markdown syntax does not match source

See also

Markdown span elements [https://daringfireball.net/projects/markdown/syntax#span]

Maximum length of translation

Translation should not exceed given length

Checks that translations are of acceptable length to fit available space.
This only checks for the length of translation characters.

Unlike the other checks, the flag should be set as a key:value pair like
max-length:100.

Hint

This check looks at number of chars, what might not be the best metric when
using proportional fonts to render the text. The Maximum size of translation check
does check actual rendering of the text.

The replacements: flag might be also useful to expand placeables before
checking the string.

Maximum size of translation

Translation rendered text should not exceed given size

New in version 3.7.

Translation rendered text should not exceed given size. It renders the text
with line wrapping and checks if it fits into given boundaries.

This check needs one or two parameters - maximal width and maximal number of
lines. In case the number of lines is not provided, one line text is
considered.

You can also configure used font by font-* directives (see
Customizing behavior using flags), for example following translation flags say that the
text rendered with ubuntu font size 22 should fit into two lines and 500
pixels:

max-size:500:2, font-family:ubuntu, font-size:22

Hint

You might want to set font-* directives in Component configuration to have the same
font configured for all strings within a component. You can override those
values per string in case you need to customize it per string.

The replacements: flag might be also useful to expand placeables before
checking the string.

See also

Managing fonts, Customizing behavior using flags, Maximum length of translation

Mismatched \n

Number of \n in translation does not match source

Usually escaped newlines are important for formatting program output.
Check fails if the number of \n literals in translation do not match the source.

Mismatched colon

Source and translation do not both end with a colon

Checks that colons are replicated between both source and translation. The
presence of colons is also checked for various languages where they do not
belong (Chinese or Japanese).

See also

Colon on Wikipedia [https://en.wikipedia.org/wiki/Colon_(punctuation)]

Mismatched ellipsis

Source and translation do not both end with an ellipsis

Checks that trailing ellipses are replicated between both source and translation.
This only checks for real ellipsis (…) not for three dots (...).

An ellipsis is usually rendered nicer than three dots in print, and sounds better with text-to-speech.

See also

Ellipsis on Wikipedia [https://en.wikipedia.org/wiki/Ellipsis]

Mismatched exclamation mark

Source and translation do not both end with an exclamation mark

Checks that exclamations are replicated between both source and translation.
The presence of exclamation marks is also checked for various languages where
they do not belong (Chinese, Japanese, Korean, Armenian, Limbu, Myanmar or
Nko).

See also

Exclamation mark on Wikipedia [https://en.wikipedia.org/wiki/Exclamation_mark]

Mismatched full stop

Source and translation do not both end with a full stop

Checks that full stops are replicated between both source and translation.
The presence of full stops is checked for various languages where they do not belong
(Chinese, Japanese, Devanagari or Urdu).

See also

Full stop on Wikipedia [https://en.wikipedia.org/wiki/Full_stop]

Mismatched question mark

Source and translation do not both end with a question mark

Checks that question marks are replicated between both source and translation.
The presence of question marks is also checked for various languages where they
do not belong (Armenian, Arabic, Chinese, Korean, Japanese, Ethiopic, Vai or
Coptic).

See also

Question mark on Wikipedia [https://en.wikipedia.org/wiki/Question_mark]

Mismatched semicolon

Source and translation do not both end with a semicolon

Checks that semicolons at the end of sentences are replicated between both source and translation.
This can be useful to keep formatting of entries such as desktop files.

See also

Semicolon on Wikipedia [https://en.wikipedia.org/wiki/Semicolon]

Mismatching line breaks

Number of new lines in translation does not match source

Usually newlines are important for formatting program output.
Check fails if the number of \n literals in translation do not match the source.

Missing plurals

Some plural forms are not translated

Checks that all plural forms of a source string have been translated.
Specifics on how each plural form is used can be found in the string definition.

Failing to fill in plural forms will in some cases lead to displaying nothing when
the plural form is in use.

Placeholders

Translation is missing some placeholders:

New in version 3.9.

Changed in version 4.3: You can use regular expression as placeholder.

Translation is missing some placeholders. These are either extracted from the
translation file or defined manually using placeholders flag, more can be
separated with colon, strings with space can be quoted:

placeholders:URL:$TARGET$:"some long text"

In case you have some syntax for placeholders, you can use a regular expression:

placeholders:r"%[^%]%"

See also

Customizing behavior using flags

Punctuation spacing

Missing non breakable space before double punctuation sign

New in version 3.9.

Checks that there is non breakable space before double punctuation sign
(exclamation mark, question mark, semicolon and colon). This rule is used only
in a few selected languages like French or Breton, where space before double
punctuation sign is a typographic rule.

See also

French and English spacing on Wikipedia [https://en.wikipedia.org/wiki/History_of_sentence_spacing#French_and_English_spacing]

Regular expression

Translation does not match regular expression:

New in version 3.9.

Translation does not match regular expression. The expression is either extracted from the
translation file or defined manually using regex flag:

regex:^foo|bar$

Same plurals

Some plural forms are translated in the same way

Check that fails if some plural forms are duplicated in the translation.
In most languages they have to be different.

Starting newline

Source and translation do not both start with a newline

Newlines usually appear in source strings for good reason, omissions or additions
can lead to formatting problems when the translated text is put to use.

See also

Trailing newline

Starting spaces

Source and translation do not both start with same number of spaces

A space in the beginning of a string is usually used for indentation in the interface and thus
important to keep.

Trailing newline

Source and translation do not both end with a newline

Newlines usually appear in source strings for good reason, omissions or additions
can lead to formatting problems when the translated text is put to use.

See also

Starting newline

Trailing space

Source and translation do not both end with a space

Checks that trailing spaces are replicated between both source and translation.

Trailing space is usually utilized to space out neighbouring elements, so
removing it might break layout.

Unchanged translation

Source and translation are identical

Happens if the source and corresponding translation strings is identical, down to
at least one of the plural forms. Some strings commonly found across all
languages are ignored, and various markup is stripped. This reduces
the number of false positives.

This check can help find strings mistakenly untranslated.

The default behavior of this check is to exclude words from the built-in
blacklist from the checking. These are words which are frequently not being
translated. This is useful to avoid false positives on short strings, which
consist only of single word which is same in several languages. This blacklist
can be disabled by adding strict-same flag to string or component.

See also

Component configuration,
Customizing behavior using flags

Unsafe HTML

The translation uses unsafe HTML markup

New in version 3.9.

The translation uses unsafe HTML markup. This check has to be enabled using
safe-html flag (see Customizing behavior using flags). There is also accompanied
autofixer which can automatically sanitize the markup.

See also

The HTML check is performed by the Bleach [https://bleach.readthedocs.io/]
library developed by Mozilla.

URL

The translation does not contain an URL

New in version 3.5.

The translation does not contain an URL. This is triggered only in case the
unit is marked as containing URL. In that case the translation has to be a
valid URL.

XML markup

XML tags in translation do not match source

This usually means the resulting output will look different. In most cases this is
not a desired result from changing the translation, but occasionally it is.

Checks that XML tags are replicated between both source and translation.

XML syntax

The translation is not valid XML

New in version 2.8.

The XML markup is not valid.

Zero-width space

Translation contains extra zero-width space character

Zero-width space (<U+200B>) characters are used to break messages within words (word wrapping).

As they are usually inserted by mistake, this check is triggered once they are present
in translation. Some programs might have problems when this character is used.

See also

Zero width space on Wikipedia [https://en.wikipedia.org/wiki/Zero-width_space]

Source checks

Source checks can help developers improve the quality of source strings.

Ellipsis

The string uses three dots (…) instead of an ellipsis character (…)

This fails when the string uses three dots (...) when it should use an ellipsis character (…).

Using the Unicode character is in most cases the better approach and looks better
rendered, and may sound better with text-to-speech.

See also

Ellipsis on Wikipedia [https://en.wikipedia.org/wiki/Ellipsis]

Long untranslated

The string has not been translated for a long time

New in version 4.1.

When the string has not been translated for a long time, it is can indicate problem in a
source string making it hard to translate.

Multiple failing checks

The translations in several languages have failing checks

Numerous translations of this string have failing quality checks. This is
usually an indication that something could be done to improve the source
string.

This check failing can quite often be caused by a missing full stop at the end of
a sentence, or similar minor issues which translators tend to fix in
translation, while it would be better to fix it in the source string.

Multiple unnamed variables

There are multiple unnamed variables in the string, making it impossible for
translators to reorder them

New in version 4.1.

There are multiple unnamed variables in the string, making it impossible for
translators to reorder them.

Consider using named variables instead to allow translators to reorder them.

Unpluralised

The string is used as plural, but not using plural forms

The string is used as a plural, but does not use plural forms. In case your
translation system supports this, you should use the plural aware variant of
it.

For example with Gettext in Python it could be:

from gettext import ngettext

print ngettext("Selected %d file", "Selected %d files", files) % files

Searching

New in version 3.9.

Advanced queries using boolean operations, parentheses, or field specific lookup can be used to
find the strings you want.

When no field is defined, the lookup happens on Source,
Translate and Context fields.

[image: ../_images/search.png]

Simple search

Any phrase typed into the search box is split into words. Strings containing any
of them are shown. To look for an exact phrase, put «the searchphrase» into
quotes (both single (’) and double («) quotes will work): "this is a quoted
string" or 'another quoted string'.

Fields

	source:TEXT
	Source string case insensitive search.

	target:TEXT
	Target string case insensitive search.

	context:TEXT
	Context string case insensitive search.

	key:TEXT
	Key string case insensitive search.

	note:TEXT
	Comment string case insensitive search.

	location:TEXT
	Location string case insensitive search.

	priority:NUMBER
	String priority.

	added:DATETIME
	Timestamp for when the string was added to Weblate.

	state:TEXT
	State search (approved, translated, needs-editing, empty, read-only), supports Field operators.

	pending:BOOLEAN
	String pending for flushing to VCS.

	has:TEXT
	Search for string having attributes - plural, context, suggestion, comment, check, dismissed-check, translation, variant, screenshot, flags, explanation, glossary.

	is:TEXT
	Search for string states (pending, translated, untranslated).

	language:TEXT
	String target language.

	component:TEXT
	Component slug, see Component slug.

	project:TEXT
	Project slug, see Project slug.

	changed_by:TEXT
	String was changed by author with given username.

	changed:DATETIME
	String content was changed on date, supports Field operators.

	change_time:DATETIME
	String was changed on date, supports Field operators, unlike
changed this includes event which don’t change content and you can apply
custom action filtering using change_action.

	change_action:TEXT
	Filters on change action, useful together with change_time. Accepts
English name of the change action, either quoted and with spaces or
lowercase and spaces replaced by a hyphen. See Searching for changes for
examples.

	check:TEXT
	String has failing check.

	dismissed_check:TEXT
	String has dismissed check.

	comment:TEXT
	Search in user comments.

	comment_author:TEXT
	Filter by comment author.

	suggestion:TEXT
	Search in suggestions.

	suggestion_author:TEXT
	Filter by suggestion author.

	explanation:TEXT
	Search in explanations.

Boolean operators

You can combine lookups using AND, OR, NOT and parentheses to
form complex queries. For example: state:translated AND (source:hello OR source:bar)

Field operators

You can specify operators, ranges or partial lookups for date or numeric searches:

	state:>=translated
	State is translated or better (approved).

	changed:2019
	Changed in year 2019.

	changed:[2019-03-01 to 2019-04-01]
	Changed between two given dates.

Exact operators

You can do an exact match query on different string fields using = operator. For example, to
search for all source strings exactly matching hello world, use: source:="hello world".
For searching single word expressions, you can skip quotes. For example, to search for all source strings
matching hello, you can use: source:=hello.

Searching for changes

New in version 4.4.

Searching for history events can be done using change_action and
change_time operators.

For example, searching for strings marked for edit in 2018 can be entered as
change_time:2018 AND change_action:marked-for-edit or
change_time:2018 AND change_action:"Marked for edit".

Regular expressions

Anywhere text is accepted you can also specify a regular expression as r"regexp".

For example, to search for all source strings which contain any digit between 2
and 5, use source:r"[2-5]".

Predefined queries

You can select out of predefined queries on the search page, this allows you to quickly access the most frequent searches:

[image: ../_images/query-dropdown.png]

Ordering the results

There are many options to order the strings according to your needs:

[image: ../_images/query-sort.png]

Translation workflows

Using Weblate is a process that brings your users closer to you, by bringing
you closer to your translators. It is up to you to decide how many of its
features you want to make use of.

The following is not a complete list of ways to configure Weblate.
You can base other workflows on the most usual examples listed here.

Translation access

The Access control is not much discussed in the workflows as each access control option can be applied to any workflow. Please consult that
documentation for information on how to manage access to translations.

In the following chapters, any user means a user who has access to the
translation. It can be any authenticated user if the project is public, or a user
that has a Translate permission for the project.

Translation states

Each translated string can be in one of following states:

	Untranslated
	Translation is empty, it might or not be stored in the file, depending
on the file format.

	Needs editing
	Translation needs editing, this is usually the result of a source string change, fuzzy matching or translator action.
The translation is stored in the file, depending on the file format it might
be marked as needing edit (for example as it gets a fuzzy flag in the Gettext file).

	Waiting for review
	Translation is made, but not reviewed. It is stored in the file as a valid
translation.

	Approved
	Translation has been approved in the review. It can no longer be changed by
translators, but only by reviewers. Translators can only add suggestions to
it.

	Suggestions
	Suggestions are stored in Weblate only and not in the translation file.

The states are represented in the translation files when possible.

Hint

In case file format you use does not support storing states, you might want
to use Flag unchanged translations as «Needs editing» addon to flag unchanged strings
as needing editing.

See also

Translation types capabilities,
Translation workflows

Direct translation

This is most usual setup for smaller teams, anybody can directly translate.
This is also the default setup in Weblate.

	Any user can edit translations.

	Suggestions are optional ways to suggest changes, when translators are not
sure about the change.

	Setting

	Value

	Note

	Enable reviews

	off

	Configured at project level.

	Enable suggestions

	on

	It is useful for users to be able
to suggest when they are not sure.

	Suggestion voting

	off

	

	Autoaccept suggestions

	0

	

	Translators group

	Users

	Or Translate with
Access control.

	Reviewers group

	N/A

	Not used.

Peer review

With this workflow, anybody can add suggestions, and need approval
from additional member(s) before it is accepted as a translation.

	Any user can add suggestions.

	Any user can vote for suggestions.

	Suggestions become translations when given a predetermined number of votes.

	Setting

	Value

	Note

	Enable reviews

	off

	Configured at project level.

	Enable suggestions

	on

	

	Suggestion voting

	off

	

	Autoaccept suggestions

	1

	You can set higher value to
require more peer reviews.

	Translators group

	Users

	Or Translate with
Access control.

	Reviewers group

	N/A

	Not used, all translators review.

Dedicated reviewers

New in version 2.18: The proper review workflow is supported since Weblate 2.18.

With dedicated reviewers you have two groups of users, one able to submit
translations, and one able to review them to ensure translations are
consistent and that the quality is good.

	Any user can edit unapproved translations.

	Reviewer can approve / unapprove strings.

	Reviewer can edit all translations (including approved ones).

	Suggestions can also be used to suggest changes for approved strings.

	Setting

	Value

	Note

	Enable reviews

	on

	Configured at project level.

	Enable suggestions

	off

	It is useful for users to be able
to suggest when they are not sure.

	Suggestion voting

	off

	

	Autoaccept suggestions

	0

	

	Translators group

	Users

	Or Translate with
Access control.

	Reviewers group

	Reviewers

	Or Review with
Access control.

Turning on reviews

Reviews can be turned on in the project configuration, from the
Workflow subpage of project settings (to be found in the
Manage → Settings menu):

[image: _images/project-workflow.png]

Note

Depending on Weblate configuration, the setting might not be available to
you. For example on Hosted Weblate this is not available for projects hosted
for free.

Quality gateway for the source strings

In many cases the original source language strings are coming from developers,
because they write the code and provide initial strings. However developers are
often not a native speakers in the source language and do not provide desired
quality of the source strings. The intermediate translation can help you in
addressing this - there is additional quality gateway for the strings between
developers and translators and users.

By setting Intermediate language file, this file will be used as source for
the strings, but it will be edited to source language to polish it. Once the
string is ready in the source language, it will be also available for
translators to translate into additional languages.

digraph translations {
 graph [fontname = "sans-serif", fontsize=10];
 node [fontname = "sans-serif", fontsize=10, margin=0.1, height=0, style=filled, fillcolor=white, shape=note];
 edge [fontname = "sans-serif", fontsize=10];

 subgraph cluster_dev {
 style=filled;
 color=lightgrey;

 label = "Development process";

 "Developers" [shape=box, fillcolor="#144d3f", fontcolor=white];
 "Developers" -> "Intermediate file";
 }

 subgraph cluster_l10n {
 style=filled;
 color=lightgrey;

 label = "Localization process";

 "Translators" [shape=box, fillcolor="#144d3f", fontcolor=white];
 "Editors" [shape=box, fillcolor="#144d3f", fontcolor=white];

 "Editors" -> "Monolingual base language file";
 "Translators" -> "Translation language file";
 }

 "Intermediate file" -> "Monolingual base language file" [constraint=false];
 "Monolingual base language file" -> "Translation language file" [constraint=false];

}

See also

Intermediate language file,
Monolingual base language file,
Bilingual and monolingual formats

Source strings reviews

With Enable source reviews enabled, the review process can be applied on
the source strings. Once enabled, users can report issues in the source
strings. The actual process depends on whether you use bilingual or
monolingual formats.

For monolingual formats, the source string review behaves similarly as with
Dedicated reviewers - once issue is reported on the source string, it is marked as
Needs editing.

The bilingual formats do not allow direct editing of the source strings (these
are typically extracted directly from the source code). In this case
Source needs review label is attached to strings reported by
translators. You should review such strings and either edit them in the source
or remove the label.

See also

Bilingual and monolingual formats,
Dedicated reviewers,
String labels,
Comments

Frequently Asked Questions

Configuration

How to create an automated workflow?

Weblate can handle all the translation things semi-automatically for you. If
you give it push access to your repository, the translations can happen
without interaction, unless some merge conflict occurs.

	Set up your Git repository to tell Weblate when there is any change, see
Notification hooks for info on how to do it.

	Set a push URL at your Component configuration in Weblate, this allows Weblate
to push changes to your repository.

	Turn on push-on-commit on your Project configuration in Weblate, this will make
Weblate push changes to your repository whenever they happen at Weblate.

See also

Continuous localization, Avoiding merge conflicts

How to access repositories over SSH?

Please see Accessing repositories for info on setting up SSH keys.

How to fix merge conflicts in translations?

Merge conflicts happen from time to time when the translation file is changed in
both Weblate and the upstream repository concurrently. You can usually avoid this by merging
Weblate translations prior to making changes in the translation files (e.g.
before running msgmerge). Just tell Weblate to commit all pending
translations (you can do it in Repository maintenance in the
Manage menu) and merge the repository (if automatic push is not
on).

If you’ve already ran into a merge conflict, the easiest way is to solve all
conflicts locally at your workstation - is to simply add Weblate as a remote
repository, merge it into upstream and fix any conflicts. Once you push changes
back, Weblate will be able to use the merged version without any other special
actions.

Note

Depending on your setup, access to the Weblate repository might require
authentication. When using the built in Git exporter in Weblate, you
authenticate with your username and the API key.

Commit all pending changes in Weblate, you can do this in the UI as well:
wlc commit
Lock the translation in Weblate, again this can be done in the UI as well:
wlc lock
Add Weblate as remote:
git remote add weblate https://hosted.weblate.org/git/project/component/
You might need to include credentials in some cases:
git remote add weblate https://username:APIKEY@hosted.weblate.org/git/project/component/

Update weblate remote:
git remote update weblate

Merge Weblate changes:
git merge weblate/main

Resolve conflicts:
edit …
git add …
…
git commit

Push changes to upstream repository, Weblate will fetch merge from there:
git push

Open Weblate for translation:
wlc unlock

If you’re using multiple branches in Weblate, you can do the same to all of them:

Add and update Weblate remotes
git remote add weblate-one https://hosted.weblate.org/git/project/one/
git remote add weblate-second https://hosted.weblate.org/git/project/second/
git remote update weblate-one weblate-second

Merge QA_4_7 branch:
git checkout QA_4_7
git merge weblate-one/QA_4_7
... # Resolve conflicts
git commit

Merge main branch:
git checkout main
git merge weblates-second/main
... # Resolve conflicts
git commit

Push changes to the upstream repository, Weblate will fetch the merge from there:
git push

In case of gettext PO files, there is a way to merge conflicts in a semi-automatic way:

Fetch and keep a local clone of the Weblate Git repository. Also get a second fresh
local clone of the upstream Git repository (i. e. you need two copies of the
upstream Git repository: An intact and a working copy):

Add remote:
git remote add weblate /path/to/weblate/snapshot/

Update Weblate remote:
git remote update weblate

Merge Weblate changes:
git merge weblate/main

Resolve conflicts in the PO files:
for PO in `find . -name '*.po'` ; do
 msgcat --use-first /path/to/weblate/snapshot/$PO\
 /path/to/upstream/snapshot/$PO -o $PO.merge
 msgmerge --previous --lang=${PO%.po} $PO.merge domain.pot -o $PO
 rm $PO.merge
 git add $PO
done
git commit

Push changes to the upstream repository, Weblate will fetch merge from there:
git push

See also

How to export the Git repository that Weblate uses?, Continuous localization, Avoiding merge conflicts

How do I translate several branches at once?

Weblate supports pushing translation changes within one Project configuration. For
every Component configuration which has it turned on (the default behavior), the change
made is automatically propagated to others. This way translations are kept
synchronized even if the branches themselves have already diverged quite a lot,
and it is not possible to simply merge translation changes between them.

Once you merge changes from Weblate, you might have to merge these branches
(depending on your development workflow) discarding differences:

git merge -s ours origin/maintenance

See also

Keeping translations same across components

How to translate multi-platform projects?

Weblate supports a wide range of file formats (see Supported file formats) and the
easiest approach is to use the native format for each platform.

Once you have added all platform translation files as components in one project
(see Adding translation projects and components), you can utilize the translation propagation
feature (turned on by default, and can be turned off in the Component configuration) to
translate strings for all platforms at once.

See also

Keeping translations same across components

How to export the Git repository that Weblate uses?

There is nothing special about the repository, it lives under the
DATA_DIR directory and is named vcs/<project>/<component>/. If you
have SSH access to this machine, you can use the repository directly.

For anonymous access, you might want to run a Git server and let it serve the
repository to the outside world.

Alternatively, you can use Git exporter inside Weblate to automate this.

What are the options for pushing changes back upstream?

This heavily depends on your setup, Weblate is quite flexible in this area.
Here are examples of some workflows used with Weblate:

	Weblate automatically pushes and merges changes (see How to create an automated workflow?).

	You manually tell Weblate to push (it needs push access to the upstream repository).

	Somebody manually merges changes from the Weblate git repository into the upstream
repository.

	Somebody rewrites history produced by Weblate (e.g. by eliminating merge
commits), merges changes, and tells Weblate to reset the content in the upstream
repository.

Of course you are free to mix all of these as you wish.

How can I limit Weblate access to only translations, without exposing source code to it?

You can use git submodule [https://git-scm.com/docs/git-submodule] for separating translations from source code
while still having them under version control.

	Create a repository with your translation files.

	Add this as a submodule to your code:

git submodule add git@example.com:project-translations.git path/to/translations

	Link Weblate to this repository, it no longer needs access to the repository
containing your source code.

	You can update the main repository with translations from Weblate by:

git submodule update --remote path/to/translations

Please consult the git submodule [https://git-scm.com/docs/git-submodule] documentation for more details.

How can I check whether my Weblate is set up properly?

Weblate includes a set of configuration checks which you can see in the admin
interface, just follow the Performance report link in the admin interface, or
open the /manage/performance/ URL directly.

Why are all commits committed by Weblate <noreply@weblate.org>?

This is the default committer name, configured when you create a translation component.
You can change it in the administration at any time.

The author of every commit (if the underlying VCS supports it) is still recorded
correctly as the user that made the translation.

See also

Component configuration

Usage

How do I review the translations of others?

	There are several review based workflows available in Weblate, see Translation workflows.

	You can subscribe to any changes made in Notifications and then check
others contributions as they come in by e-mail.

	There is a review tool available at the bottom of the translation view, where you can
choose to browse translations made by others since a given date.

See also

Translation workflows

How do I provide feedback on a source string?

On context tabs below translation, you can use the Comments tab to
provide feedback on a source string, or discuss it with other translators.

See also

Receiving source string feedback,
Comments

How can I use existing translations while translating?

	All translations within Weblate can be used thanks to shared translation memory.

	You can import existing translation memory files into Weblate.

	Use the import functionality to load compendium as translations,
suggestions or translations needing review. This is the best approach for a one-time
translation using a compendium or a similar translation database.

	You can set up tmserver with all databases you have and let Weblate use
it. This is good when you want to use it several times during
translation.

	Another option is to translate all related projects in a single Weblate
instance, which will make it automatically pick up translations from other
projects as well.

See also

Machine translation,
Automatic suggestions,
Memory Management [https://docs.python.org/3.7/c-api/memory.html#memory]

Does Weblate update translation files besides translations?

Weblate tries to limit changes in translation files to a minimum. For some file
formats it might unfortunately lead to reformatting the file. If you want to
keep the file formatted your way, please use a pre-commit hook for that.

See also

Updating target language files

Where do language definitions come from and how can I add my own?

The basic set of language definitions is included within Weblate and
Translate-toolkit. This covers more than 150 languages and includes info
about plural forms or text direction.

You are free to define your own languages in the administrative interface, you just need
to provide info about it.

See also

Language definitions

Can Weblate highlight changes in a fuzzy string?

Weblate supports this, however it needs the data to show the difference.

For Gettext PO files, you have to pass the parameter --previous to
msgmerge when updating PO files, for example:

msgmerge --previous -U po/cs.po po/phpmyadmin.pot

For monolingual translations, Weblate can find the previous string by ID, so it
shows the differences automatically.

Why does Weblate still show old translation strings when I’ve updated the template?

Weblate does not try to manipulate the translation files in any way other
than allowing translators to translate. So it also does not update the
translatable files when the template or source code have been changed. You
simply have to do this manually and push changes to the repository, Weblate
will then pick up the changes automatically.

Note

It is usually a good idea to merge changes done in Weblate before updating
translation files, as otherwise you will usually end up with some conflicts
to merge.

For example with gettext PO files, you can update the translation files using
the msgmerge tool:

msgmerge -U locale/cs/LC_MESSAGES/django.mo locale/django.pot

In case you want to do the update automatically, you can install
addon Update PO files to match POT (msgmerge).

See also

Updating target language files

Troubleshooting

Requests sometimes fail with «too many open files» error

This happens sometimes when your Git repository grows too much and you have
many of them. Compressing the Git repositories will improve this situation.

The easiest way to do this is to run:

Go to DATA_DIR directory
cd data/vcs
Compress all Git repositories
for d in */* ; do
 pushd $d
 git gc
 popd
done

See also

DATA_DIR

When accessing the site I get a «Bad Request (400)» error

This is most likely caused by an improperly configured ALLOWED_HOSTS.
It needs to contain all hostnames you want to access on your Weblate. For example:

ALLOWED_HOSTS = ["weblate.example.com", "weblate", "localhost"]

See also

Allowed hosts setup

What does mean «There are more files for the single language (en)»?

This typically happens when you have translation file for source language.
Weblate keeps track of source strings and reserves source language for this.
The additional file for same language is not processed.

	In case the translation to the source language is desired, please change the Source language in the component settings.

	In case the translation file for the source language is not needed, please remove it from the repository.

	In case the translation file for the source language is needed, but should be ignored by Weblate, please adjust the Language filter to exclude it.

Hint

You might get similar error message for other languages as well. In that
case the most likely reason is that several files map to single language in
Weblate.

This can be caused by using obsolete language codes together with new one
(ja and jp for Japanese) or including both country specific and
generic codes (fr and fr_FR). See Parsing language codes for
more details.

Features

Does Weblate support other VCSes than Git and Mercurial?

Weblate currently does not have native support for anything other than
Git (with extended support for GitHub, Gerrit
and Subversion) and Mercurial, but it is possible to write
backends for other VCSes.

You can also use Git remote helpers in Git to access other VCSes.

Weblate also supports VCS less operation, see Local files.

Note

For native support of other VCSes, Weblate requires using distributed VCS, and could
probably be adjusted to work with anything other than Git and Mercurial, but
somebody has to implement this support.

See also

Version control integration

How does Weblate credit translators?

Every change made in Weblate is committed into VCS under the translators name. This
way every single change has proper authorship, and you can track it down using
the standard VCS tools you use for code.

Additionally, when the translation file format supports it, the file headers are
updated to include the translator’s name.

See also

list_translators,
Translation progress reporting

Why does Weblate force showing all PO files in a single tree?

Weblate was designed in a way that every PO file is represented as a single
component. This is beneficial for translators, so they know what they are
actually translating.

Changed in version 4.2: Translators can translate all the components of a project into a specific
language as a whole.

Why does Weblate use language codes such sr_Latn or zh_Hant?

These are language codes defined by RFC 4646 [https://tools.ietf.org/html/rfc4646.html] to better indicate that they
are really different languages instead previously wrongly used modifiers (for
@latin variants) or country codes (for Chinese).

Weblate still understands legacy language codes and will map them to
current one - for example sr@latin will be handled as sr_Latn or
zh@CN as zh_Hans.

See also

Language definitions

Supported file formats

Weblate supports most translation format understood by translate-toolkit [https://toolkit.translatehouse.org/],
however each format being slightly different, some issues with
formats that are not well tested can arise.

See also

Translation Related File Formats [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/index.html]

Note

When choosing a file format for your application, it’s better to stick some
well established format in the toolkit/platform you use. This way your
translators can additionally use whatever tools they are used to, and will more
likely contribute to your project.

Bilingual and monolingual formats

Both monolingual
and bilingual formats are supported.
Bilingual formats store two languages in single file—source and translation
(typical examples are GNU gettext, XLIFF or Apple iOS strings). On the other side,
monolingual formats identify the string by ID, and each language file contains
only the mapping of those to any given language (typically Android string resources). Some file
formats are used in both variants, see the detailed description below.

For correct use of monolingual files, Weblate requires access to a file
containing complete list of strings to translate with their source—this file
is called Monolingual base language file within Weblate, though the naming might
vary in your paradigm.

Additionally this workflow can be extended by utilizing
Intermediate language file to include strings provided by developers, but
not to be used as is in the final strings.

Automatic detection

Weblate can automatically detect several widespread file formats, but this
detection can harm your performance and will limit features specific to given
file format (for example automatic addition of new translations).

Translation types capabilities

Capabilities of all supported formats:

	Format

	Linguality 1

	Plurals 2

	Comments 3

	Context 4

	Location 5

	Flags 8

	Additional states 6

	GNU gettext

	bilingual

	yes

	yes

	yes

	yes

	yes 9

	needs editing

	Monolingual gettext

	mono

	yes

	yes

	yes

	yes

	yes 9

	needs editing

	XLIFF

	both

	yes

	yes

	yes

	yes

	yes 10

	needs editing, approved

	Java properties

	both

	no

	yes

	no

	no

	no

	

	GWT properties

	mono

	yes

	yes

	no

	no

	no

	

	Joomla translations

	mono

	no

	yes

	no

	yes

	no

	

	Qt Linguist .ts

	both

	yes

	yes

	no

	yes

	yes 10

	needs editing

	Android string resources

	mono

	yes

	yes 7

	no

	no

	yes 10

	

	Apple iOS strings

	bilingual

	no

	yes

	no

	no

	no

	

	PHP strings

	mono

	no 11

	yes

	no

	no

	no

	

	JSON files

	mono

	no

	no

	no

	no

	no

	

	JSON i18next files

	mono

	yes

	no

	no

	no

	no

	

	go-i18n JSON files

	mono

	yes

	no

	no

	no

	no

	

	ARB File

	mono

	yes

	yes

	no

	no

	no

	

	WebExtension JSON

	mono

	yes

	yes

	no

	no

	no

	

	.XML resource files

	mono

	no

	yes

	no

	no

	yes 10

	

	CSV files

	both

	no

	yes

	yes

	yes

	no

	needs editing

	YAML files

	mono

	no

	yes

	no

	no

	no

	

	Ruby YAML files

	mono

	yes

	yes

	no

	no

	no

	

	DTD files

	mono

	no

	no

	no

	no

	no

	

	Flat XML [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/flatxml.html#flatxml]

	mono

	no

	no

	no

	no

	yes 10

	

	Windows RC files

	mono

	no

	yes

	no

	no

	no

	

	Excel Open XML

	mono

	no

	yes

	yes

	yes

	no

	needs editing

	App store metadata files

	mono

	no

	no

	no

	no

	no

	

	Subtitle files

	mono

	no

	no

	no

	yes

	no

	

	HTML files

	mono

	no

	no

	no

	no

	no

	

	OpenDocument Format

	mono

	no

	no

	no

	no

	no

	

	IDML Format

	mono

	no

	no

	no

	no

	no

	

	INI translations

	mono

	no

	no

	no

	no

	no

	

	Inno Setup INI translations

	mono

	no

	no

	no

	no

	no

	

	TermBase eXchange format

	bilingual

	no

	yes

	no

	no

	yes 10

	

	1

	See Bilingual and monolingual formats

	2

	Plurals are necessary to properly localize strings with variable count.

	3

	Comments can be used to pass additional info about the string to translate.

	4

	Context is used to differentiate identical strings used in different scopes (for example Sun can be used as an abbreviated name of the day «Sunday» or as the name of our closest star).

	5

	Location of a string in source code might help proficient translators figure out how the string is used.

	6

	Additional states supported by the file format in addition to «Not translated» and «Translated».

	7

	XML comment placed before the <string> element, parsed as a developer comment.

	8

	See Customizing behavior using flags

	9(1,2)

	The gettext type comments are used as flags.

	10(1,2,3,4,5,6)

	The flags are extracted from the non-standard attribute weblate-flags for all XML based formats. Additionally max-length:N is supported through the maxwidth attribute [http://docs.oasis-open.org/xliff/v1.2/os/xliff-core.html#maxwidth] as defined in the XLIFF standard, see Specifying translation flags.

	11

	The plurals are supported only for Laravel which uses in string syntax to define them, see Localization in Laravel [https://laravel.com/docs/7.x/localization].

GNU gettext

Most widely used format for translating libre software.

Contextual info stored in the file is supported by adjusting its
headers or linking to corresponding source files.

The bilingual gettext PO file typically looks like this:

#: weblate/media/js/bootstrap-datepicker.js:1421
msgid "Monday"
msgstr "Pondělí"

#: weblate/media/js/bootstrap-datepicker.js:1421
msgid "Tuesday"
msgstr "Úterý"

#: weblate/accounts/avatar.py:163
msgctxt "No known user"
msgid "None"
msgstr "Žádný"

	Typical Weblate Component configuration

	Filemask

	po/*.po

	Monolingual base language file

	Empty

	Template for new translations

	po/messages.pot

	File format

	Gettext PO file

See also

Translating software using GNU Gettext,
Translating documentation using Sphinx,
Gettext on Wikipedia [https://en.wikipedia.org/wiki/Gettext],
PO Files [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/po.html],
Update ALL_LINGUAS variable in the «configure» file,
Customize gettext output,
Update LINGUAS file,
Generate MO files,
Update PO files to match POT (msgmerge)

Monolingual gettext

Some projects decide to use gettext as monolingual formats—they code just the IDs
in their source code and the string then needs to be translated to all languages,
including English. This is supported, though you have to choose
this file format explicitly when importing components into Weblate.

The monolingual gettext PO file typically looks like this:

#: weblate/media/js/bootstrap-datepicker.js:1421
msgid "day-monday"
msgstr "Pondělí"

#: weblate/media/js/bootstrap-datepicker.js:1421
msgid "day-tuesday"
msgstr "Úterý"

#: weblate/accounts/avatar.py:163
msgid "none-user"
msgstr "Žádný"

While the base language file will be:

#: weblate/media/js/bootstrap-datepicker.js:1421
msgid "day-monday"
msgstr "Monday"

#: weblate/media/js/bootstrap-datepicker.js:1421
msgid "day-tuesday"
msgstr "Tuesday"

#: weblate/accounts/avatar.py:163
msgid "none-user"
msgstr "None"

	Typical Weblate Component configuration

	Filemask

	po/*.po

	Monolingual base language file

	po/en.po

	Template for new translations

	po/messages.pot

	File format

	Gettext PO file (monolingual)

XLIFF

XML-based format created to standardize translation files, but in the end it
is one of many standards [https://xkcd.com/927/], in this area.

XML Localization Interchange File Format (XLIFF) is usually used as bilingual, but Weblate supports it as monolingual as well.

See also

XML Localization Interchange File Format (XLIFF) specification

Translation states

Changed in version 3.3: Weblate ignored the state attribute prior to the 3.3 release.

The state attribute in the file is partially processed and mapped to the
«Needs edit» state in Weblate (the following states are used to flag the string as
needing edit if there is a target present: new, needs-translation,
needs-adaptation, needs-l10n). Should the state attribute be
missing, a string is considered translated as soon as a <target> element
exists.

If the translation string has approved="yes", it will also be imported into Weblate
as «Approved», anything else will be imported as «Waiting for review» (which matches the
XLIFF specification).

While saving, Weblate doesn’t add those attributes unless necessary:

	The state attribute is only added in case string is marked as needing edit.

	The approved attribute is only added in case string has been reviewed.

	In other cases the attributes are not added, but they are updated in case they are present.

That means that when using the XLIFF format, it is strongly recommended to turn on the
Weblate review process, in order to see and change the approved state of strings.

Similarly upon importing such files (in the upload form), you should choose
Import as translated under
Processing of strings needing edit.

See also

Dedicated reviewers

Whitespace and newlines in XLIFF

Generally types or amounts of whitespace is not differentiated between in XML formats.
If you want to keep it, you have to add the xml:space="preserve" flag to
the string.

For example:

 <trans-unit id="10" approved="yes">
 <source xml:space="preserve">hello</source>
 <target xml:space="preserve">Hello, world!
</target>
 </trans-unit>

Specifying translation flags

You can specify additional translation flags (see Customizing behavior using flags) by
using the weblate-flags attribute. Weblate also understands maxwidth and font
attributes from the XLIFF specification:

<trans-unit id="10" maxwidth="100" size-unit="pixel" font="ubuntu;22;bold">
 <source>Hello %s</source>
</trans-unit>
<trans-unit id="20" maxwidth="100" size-unit="char" weblate-flags="c-format">
 <source>Hello %s</source>
</trans-unit>

The font attribute is parsed for font family, size and weight, the above
example shows all of that, though only font family is required. Any whitespace
in the font family is converted to underscore, so Source Sans Pro becomes
Source_Sans_Pro, please keep that in mind when naming the font group (see
Managing fonts).

String keys

Weblate identifies the units in the XLIFF file by resname attribute in case
it is present and falls back to id (together with file tag if present).

The resname attribute is supposed to be human friendly identifier of the
unit making it more suitable for Weblate to display instead of id. The
resname has to be unique in the whole XLIFF file. This is required by
Weblate and is not covered by the XLIFF standard - it does not put any
uniqueness restrictions on this attribute.

	Typical Weblate Component configuration for bilingual XLIFF

	Filemask

	localizations/*.xliff

	Monolingual base language file

	Empty

	Template for new translations

	localizations/en-US.xliff

	File format

	XLIFF Translation File

	Typical Weblate Component configuration for monolingual XLIFF

	File mask

	localizations/*.xliff

	Monolingual base language file

	localizations/en-US.xliff

	Template for new translations

	localizations/en-US.xliff

	File format

	XLIFF Translation File

See also

XLIFF on Wikipedia [https://en.wikipedia.org/wiki/XLIFF],
XLIFF [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/xliff.html],
font attribute in XLIFF 1.2 [http://docs.oasis-open.org/xliff/v1.2/os/xliff-core.html#font],
maxwidth attribute in XLIFF 1.2 [http://docs.oasis-open.org/xliff/v1.2/os/xliff-core.html#maxwidth]

Java properties

Native Java format for translations.

Java properties are usually used as monolingual translations.

Weblate supports ISO-8859-1, UTF-8 and UTF-16 variants of this format. All of
them support storing all Unicode characters, it is just differently encoded.
In the ISO-8859-1, the Unicode escape sequences are used (for example zkou\u0161ka),
all others encode characters directly either in UTF-8 or UTF-16.

Note

Loading escape sequences works in UTF-8 mode as well, so please be
careful choosing the correct encoding set to match your application needs.

	Typical Weblate Component configuration

	Filemask

	src/app/Bundle_*.properties

	Monolingual base language file

	src/app/Bundle.properties

	Template for new translations

	Empty

	File format

	Java Properties (ISO-8859-1)

See also

Java properties on Wikipedia [https://en.wikipedia.org/wiki/.properties],
Mozilla and Java properties files [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/properties.html],
Formats the Java properties file,
Cleanup translation files

GWT properties

Native GWT format for translations.

GWT properties are usually used as monolingual translations.

	Typical Weblate Component configuration

	Filemask

	src/app/Bundle_*.properties

	Monolingual base language file

	src/app/Bundle.properties

	Template for new translations

	Empty

	File format

	GWT Properties

See also

GWT localization guide [http://www.gwtproject.org/doc/latest/DevGuideI18n.html],
GWT Internationalization Tutorial [http://www.gwtproject.org/doc/latest/tutorial/i18n.html],
Mozilla and Java properties files [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/properties.html],
Formats the Java properties file,
Cleanup translation files

INI translations

New in version 4.1.

INI file format for translations.

INI translations are usually used as monolingual translations.

	Typical Weblate Component configuration

	Filemask

	language/*.ini

	Monolingual base language file

	language/en.ini

	Template for new translations

	Empty

	File format

	INI File

Note

Weblate only extracts keys from sections within an INI file. In case your INI
file lacks sections, you might want to use Joomla translations or Java properties
instead.

See also

INI Files [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/ini.html],
Java properties,
Joomla translations,
Inno Setup INI translations

Inno Setup INI translations

New in version 4.1.

Inno Setup INI file format for translations.

Inno Setup INI translations are usually used as monolingual translations.

Note

The only notable difference to INI translations is in supporting %n and %t
placeholders for line break and tab.

	Typical Weblate Component configuration

	Filemask

	language/*.islu

	Monolingual base language file

	language/en.islu

	Template for new translations

	Empty

	File format

	Inno Setup INI File

Note

Only Unicode files (.islu) are currently supported, ANSI variant
(.isl) is currently not supported.

See also

INI Files [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/ini.html],
Joomla translations,
INI translations

Joomla translations

New in version 2.12.

Native Joomla format for translations.

Joomla translations are usually used as monolingual translations.

	Typical Weblate Component configuration

	Filemask

	language/*/com_foobar.ini

	Monolingual base language file

	language/en-GB/com_foobar.ini

	Template for new translations

	Empty

	File format

	Joomla Language File

See also

Specification of Joomla language files [https://docs.joomla.org/Specification_of_language_files],
Mozilla and Java properties files [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/properties.html],
INI translations,
Inno Setup INI translations

Qt Linguist .ts

Translation format used in Qt based applications.

Qt Linguist files are used as both bilingual and monolingual translations.

	Typical Weblate Component configuration when using as bilingual

	Filemask

	i18n/app.*.ts

	Monolingual base language file

	Empty

	Template for new translations

	i18n/app.de.ts

	File format

	Qt Linguist Translation File

	Typical Weblate Component configuration when using as monolingual

	Filemask

	i18n/app.*.ts

	Monolingual base language file

	i18n/app.en.ts

	Template for new translations

	i18n/app.en.ts

	File format

	Qt Linguist Translation File

See also

Qt Linguist manual [https://doc.qt.io/qt-5/qtlinguist-index.html],
Qt .ts [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/ts.html],
Bilingual and monolingual formats

Android string resources

Android specific file format for translating applications.

Android string resources are monolingual, the Monolingual base language file is
stored in a different location from the others res/values/strings.xml.

	Typical Weblate Component configuration

	Filemask

	res/values-*/strings.xml

	Monolingual base language file

	res/values/strings.xml

	Template for new translations

	Empty

	File format

	Android String Resource

See also

Android string resources documentation [https://developer.android.com/guide/topics/resources/string-resource],
Android string resources [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/android.html]

Note

Android string-array structures are not currently supported. To work around this,
you can break your string arrays apart:

<string-array name="several_strings">
 <item>First string</item>
 <item>Second string</item>
</string-array>

become:

<string-array name="several_strings">
 <item>@string/several_strings_0</item>
 <item>@string/several_strings_1</item>
</string-array>
<string name="several_strings_0">First string</string>
<string name="several_strings_1">Second string</string>

The string-array that points to the string elements should be stored in a different
file, and not be made available for translation.

This script may help pre-process your existing strings.xml files and translations: https://gist.github.com/paour/11291062

Apple iOS strings

Apple specific file format for translating applications, used for both iOS
and iPhone/iPad application translations.

Apple iOS strings are usually used as bilingual translations.

	Typical Weblate Component configuration

	Filemask

	Resources/*.lproj/Localizable.strings

	Monolingual base language file

	Resources/en.lproj/Localizable.strings or
Resources/Base.lproj/Localizable.strings

	Template for new translations

	Empty

	File format

	iOS Strings (UTF-8)

See also

Apple «strings files» documentation [https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPInternational/MaintaingYourOwnStringsFiles/MaintaingYourOwnStringsFiles.html],
Mac OSX strings [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/strings.html]

PHP strings

PHP translations are usually monolingual, so it is recommended to specify a base
file with (what is most often the) English strings.

Example file:

<?php
$LANG['foo'] = 'bar';
$LANG['foo1'] = 'foo bar';
$LANG['foo2'] = 'foo bar baz';
$LANG['foo3'] = 'foo bar baz bag';

	Typical Weblate Component configuration

	Filemask

	lang/*/texts.php

	Monolingual base language file

	lang/en/texts.php

	Template for new translations

	lang/en/texts.php

	File format

	PHP strings

Laravel PHP strings

Changed in version 4.1.

The Laravel PHP localization files are supported as well with plurals:

<?php
return [
 'welcome' => 'Welcome to our application',
 'apples' => 'There is one apple|There are many apples',
];

See also

PHP [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/php.html],
Localization in Laravel [https://laravel.com/docs/7.x/localization]

JSON files

New in version 2.0.

Changed in version 2.16: Since Weblate 2.16 and with translate-toolkit [https://toolkit.translatehouse.org/] at-least 2.2.4, nested
structure JSON files are supported as well.

Changed in version 4.3: The structure of JSON file is properly preserved even for complex
situations which were broken in prior releases.

JSON format is used mostly for translating applications implemented in
JavaScript.

Weblate currently supports several variants of JSON translations:

	Simple key / value files, used for example by vue-i18n or react-intl.

	Files with nested keys.

	JSON i18next files

	go-i18n JSON files

	WebExtension JSON

	ARB File

JSON translations are usually monolingual, so it is recommended to specify a base
file with (what is most often the) English strings.

Example file:

{
 "Hello, world!\n": "Ahoj světe!\n",
 "Orangutan has %d banana.\n": "",
 "Try Weblate at https://demo.weblate.org/!\n": "",
 "Thank you for using Weblate.": ""
}

Nested files are supported as well (see above for requirements), such a file can look like:

{
 "weblate": {
 "hello": "Ahoj světe!\n",
 "orangutan": "",
 "try": "",
 "thanks": ""
 }
}

Hint

The JSON file and JSON nested structure file can
both handle same type of files. Both preserve existing JSON structure when
translating.

The only difference between them is when adding new strings using Weblate.
The nested structure format parses the newly added key and inserts the new
string into the matching structure. For example app.name key is inserted as:

{
 "app": {
 "name": "Weblate"
 }
}

	Typical Weblate Component configuration

	Filemask

	langs/translation-*.json

	Monolingual base language file

	langs/translation-en.json

	Template for new translations

	Empty

	File format

	JSON nested structure file

See also

JSON [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/json.html],
Customize JSON output,
Cleanup translation files,

JSON i18next files

Changed in version 2.17: Since Weblate 2.17 and with translate-toolkit [https://toolkit.translatehouse.org/] at-least 2.2.5, i18next
JSON files with plurals are supported as well.

i18next [https://www.i18next.com/] is an internationalization framework
written in and for JavaScript. Weblate supports its localization files with
features such as plurals.

i18next translations are monolingual, so it is recommended to specify a base file
with (what is most often the) English strings.

Note

Weblate supports the i18next JSON v3 format. The v2 and v1 variants are mostly
compatible, with exception of how plurals are handled.

Example file:

{
 "hello": "Hello",
 "apple": "I have an apple",
 "apple_plural": "I have {{count}} apples",
 "apple_negative": "I have no apples"
}

	Typical Weblate Component configuration

	Filemask

	langs/*.json

	Monolingual base language file

	langs/en.json

	Template for new translations

	Empty

	File format

	i18next JSON file

See also

JSON [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/json.html],
i18next JSON Format [https://www.i18next.com/misc/json-format],
Customize JSON output,
Cleanup translation files

go-i18n JSON files

New in version 4.1.

go-i18n translations are monolingual, so it is recommended to specify a base file
with (what is most often the) English strings.

Note

Weblate supports the go-i18n JSON v1 format, for flat JSON formats please
use JSON files. The v2 format with hash is currently not supported.

	Typical Weblate Component configuration

	Filemask

	langs/*.json

	Monolingual base language file

	langs/en.json

	Template for new translations

	Empty

	File format

	go-i18n JSON file

See also

JSON [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/json.html],
go-i18n [https://github.com/nicksnyder/go-i18n],
Customize JSON output,
Cleanup translation files,

ARB File

New in version 4.1.

ARB translations are monolingual, so it is recommended to specify a base file
with (what is most often the) English strings.

	Typical Weblate Component configuration

	Filemask

	lib/l10n/intl_*.arb

	Monolingual base language file

	lib/l10n/intl_en.arb

	Template for new translations

	Empty

	File format

	ARB file

See also

JSON [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/json.html],
Application Resource Bundle Specification [https://github.com/google/app-resource-bundle/wiki/ApplicationResourceBundleSpecification],
Internationalizing Flutter apps [https://flutter.dev/docs/development/accessibility-and-localization/internationalization],
Customize JSON output,
Cleanup translation files

WebExtension JSON

New in version 2.16: This is supported since Weblate 2.16 and with translate-toolkit [https://toolkit.translatehouse.org/] at-least 2.2.4.

File format used when translating extensions for Mozilla Firefox or Google Chromium.

Note

While this format is called JSON, its specification allows to include
comments, which are not part of JSON specification. Weblate currently does
not support file with comments.

Example file:

{
 "hello": {
 "message": "Ahoj světe!\n",
 "description": "Description",
 "placeholders": {
 "url": {
 "content": "$1",
 "example": "https://developer.mozilla.org"
 }
 }
 },
 "orangutan": {
 "message": "",
 "description": "Description"
 },
 "try": {
 "message": "",
 "description": "Description"
 },
 "thanks": {
 "message": "",
 "description": "Description"
 }
}

	Typical Weblate Component configuration

	Filemask

	_locales/*/messages.json

	Monolingual base language file

	_locales/en/messages.json

	Template for new translations

	Empty

	File format

	WebExtension JSON file

See also

JSON [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/json.html],
Google chrome.i18n [https://developer.chrome.com/docs/extensions/reference/i18n/],
Mozilla Extensions Internationalization [https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Internationalization]

.XML resource files

New in version 2.3.

A .XML resource (.resx) file employs a monolingual XML file format used in Microsoft
.NET applications. It is interchangeable with .resw, when using identical
syntax to .resx [https://lingohub.com/developers/resource-files/resw-resx-localization].

	Typical Weblate Component configuration

	Filemask

	Resources/Language.*.resx

	Monolingual base language file

	Resources/Language.resx

	Template for new translations

	Empty

	File format

	.NET resource file

See also

.NET Resource files (.resx) [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/resx.html],
Cleanup translation files,

CSV files

New in version 2.4.

CSV files can contain a simple list of source and translation. Weblate supports
the following files:

	Files with header defining fields (location, source, target,
ID, fuzzy, context, translator_comments,
developer_comments). This is the recommended approach, as it is the least
error prone. Choose CSV file as a file format.

	Files with two fields—source and translation (in this order), choose
Simple CSV file as a file format

	Headerless files with fields in order defined by the translate-toolkit [https://toolkit.translatehouse.org/]: location, source,
target, ID, fuzzy, context, translator_comments, developer_comments
Choose CSV file as a file format.

	Remember to define Monolingual base language file when your files are monolingual
(see Bilingual and monolingual formats).

Warning

The CSV format currently automatically detects the dialect of the CSV file.
In some cases the automatic detection might fail and you will get mixed
results. This is especially true for CSV files with newlines in the
values. As a workaround it is recommended to omit quoting characters.

Example file:

Thank you for using Weblate.,Děkujeme za použití Weblate.

	Typical Weblate Component configuration for bilingual CSV

	Filemask

	locale/*.csv

	Monolingual base language file

	Empty

	Template for new translations

	locale/en.csv

	File format

	CSV file

	Typical Weblate Component configuration for monolingual CSV

	Filemask

	locale/*.csv

	Monolingual base language file

	locale/en.csv

	Template for new translations

	locale/en.csv

	File format

	Simple CSV file

See also

CSV [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/csv.html]

YAML files

New in version 2.9.

The plain YAML files with string keys and values. Weblate also extract strings from lists or dictionaries.

Example of a YAML file:

weblate:
 hello: ""
 orangutan": ""
 try": ""
 thanks": ""

	Typical Weblate Component configuration

	Filemask

	translations/messages.*.yml

	Monolingual base language file

	translations/messages.en.yml

	Template for new translations

	Empty

	File format

	YAML file

See also

YAML [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/yaml.html], Ruby YAML files

Ruby YAML files

New in version 2.9.

Ruby i18n YAML files with language as root node.

Example Ruby i18n YAML file:

cs:
 weblate:
 hello: ""
 orangutan: ""
 try: ""
 thanks: ""

	Typical Weblate Component configuration

	Filemask

	translations/messages.*.yml

	Monolingual base language file

	translations/messages.en.yml

	Template for new translations

	Empty

	File format

	Ruby YAML file

See also

YAML [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/yaml.html], YAML files

DTD files

New in version 2.18.

Example DTD file:

<!ENTITY hello "">
<!ENTITY orangutan "">
<!ENTITY try "">
<!ENTITY thanks "">

	Typical Weblate Component configuration

	Filemask

	locale/*.dtd

	Monolingual base language file

	locale/en.dtd

	Template for new translations

	Empty

	File format

	DTD file

See also

Mozilla DTD format [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/dtd.html]

Flat XML files

New in version 3.9.

Example of a flat XML file:

<?xml version='1.0' encoding='UTF-8'?>
<root>
 <str key="hello_world">Hello World!</str>
 <str key="resource_key">Translated value.</str>
</root>

	Typical Weblate Component configuration

	Filemask

	locale/*.xml

	Monolingual base language file

	locale/en.xml

	Template for new translations

	Empty

	File format

	Flat XML file

See also

Flat XML [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/flatxml.html]

Windows RC files

Changed in version 4.1: Support for Windows RC files has been rewritten.

Note

Support for this format is currently in beta, feedback from testing is welcome.

Example Windows RC file:

LANGUAGE LANG_CZECH, SUBLANG_DEFAULT

STRINGTABLE
BEGIN
 IDS_MSG1 "Hello, world!\n"
 IDS_MSG2 "Orangutan has %d banana.\n"
 IDS_MSG3 "Try Weblate at http://demo.weblate.org/!\n"
 IDS_MSG4 "Thank you for using Weblate."
END

	Typical Weblate Component configuration

	Filemask

	lang/*.rc

	Monolingual base language file

	lang/en-US.rc

	Template for new translations

	lang/en-US.rc

	File format

	RC file

See also

Windows RC files [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/rc.html]

App store metadata files

New in version 3.5.

Metadata used for publishing apps in various app stores can be translated.
Currently the following tools are compatible:

	Triple-T gradle-play-publisher [https://github.com/Triple-T/gradle-play-publisher]

	Fastlane [https://docs.fastlane.tools/getting-started/android/setup/#fetch-your-app-metadata]

	F-Droid [https://f-droid.org/docs/All_About_Descriptions_Graphics_and_Screenshots/]

The metadata consists of several textfiles, which Weblate will present as
separate strings to translate.

	Typical Weblate Component configuration

	Filemask

	fastlane/android/metadata/*

	Monolingual base language file

	fastlane/android/metadata/en-US

	Template for new translations

	fastlane/android/metadata/en-US

	File format

	App store metadata files

Hint

In case you don’t want to translate certain strings (for example
changelogs), mark them read-only (see Customizing behavior using flags). This can be
automated by the Bulk edit.

Subtitle files

New in version 3.7.

Weblate can translate various subtitle files:

	SubRip subtitle file (*.srt)

	MicroDVD subtitle file (*.sub)

	Advanced Substation Alpha subtitles file (*.ass)

	Substation Alpha subtitle file (*.ssa)

	Typical Weblate Component configuration

	Filemask

	path/*.srt

	Monolingual base language file

	path/en.srt

	Template for new translations

	path/en.srt

	File format

	SubRip subtitle file

See also

Subtitles [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/subtitles.html]

Excel Open XML

New in version 3.2.

Excel Open XML (.xlsx) files can be imported and exported.

When uploading XLSX files for translation, be aware that only the active
worksheet is considered, and there must be at least a column called source
(which contains the source string) and a column called target (which
contains the translation). Additionally there should be the column called context
(which contains the context path of the translation string). If you use the XLSX
download for exporting the translations into an Excel workbook, you already get
a file with the correct file format.

HTML files

New in version 4.1.

Note

Support for this format is currently in beta, feedback from testing is welcome.

The translatable content is extracted from the HTML files and offered for the translation.

See also

HTML [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/html.html]

OpenDocument Format

New in version 4.1.

Note

Support for this format is currently in beta, feedback from testing is welcome.

The translatable content is extracted from the OpenDocument files and offered for the translation.

See also

OpenDocument Format [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/odf.html]

IDML Format

New in version 4.1.

Note

Support for this format is currently in beta, feedback from testing is welcome.

The translatable content is extracted from the Adobe InDesign Markup Language files and offered for the translation.

TermBase eXchange format

New in version 4.5.

TBX is an XML format for the exchange of terminology data.

	Typical Weblate Component configuration

	Filemask

	tbx/*.tbx

	Monolingual base language file

	Empty

	Template for new translations

	Empty

	File format

	TermBase eXchange file

See also

TBX on Wikipedia [https://en.wikipedia.org/wiki/TermBase_eXchange],
TBX [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/tbx.html],
Glossary

Others

Most formats supported by translate-toolkit [https://toolkit.translatehouse.org/] which support serializing can be
easily supported, but they did not (yet) receive any testing. In most cases
some thin layer is needed in Weblate to hide differences in behavior of
different translate-toolkit [https://toolkit.translatehouse.org/] storages.

See also

Translation Related File Formats [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/index.html]

Read only strings

New in version 3.10.

Read-only strings from translation files will be included, but
can not be edited in Weblate. This feature is natively supported by few formats
(XLIFF and Android string resources), but can be emulated in others by adding a
read-only flag, see Customizing behavior using flags.

Version control integration

Weblate currently supports Git (with extended support for
GitHub, Gerrit and Subversion) and
Mercurial as version control back-ends.

Accessing repositories

The VCS repository you want to use has to be accessible to Weblate. With a
publicly available repository you just need to enter the correct URL (for
example https://github.com/WeblateOrg/weblate.git), but for private
repositories or for push URLs the setup is more complex and requires
authentication.

Accessing repositories from Hosted Weblate

For Hosted Weblate there is a dedicated push user registered on GitHub,
Bitbucket, Codeberg and GitLab (with the username weblate, e-mail
hosted@weblate.org and, named Weblate push user). You need to
add this user as a collaborator and give it appropriate permission to your
repository (read-only is okay for cloning, write is required for pushing).
Depending on service and your organization settings, this happens immediately,
or requires confirmation on the Weblate side.

The weblate user on GitHub accepts invitations automatically within five minutes.
Manual processing might be needed on the other services, so please be patient.

Once the weblate user is added, you can configure
Source code repository and Repository push URL using the SSH protocol (for example
git@github.com:WeblateOrg/weblate.git).

SSH repositories

The most frequently used method to access private repositories is based on SSH.
Authorize the public Weblate SSH key (see Weblate SSH key) to access the upstream
repository this way.

Warning

On GitHub, each key can only be used once, see GitHub repositories and
Accessing repositories from Hosted Weblate.

Weblate also stores the host key fingerprint upon first connection, and fails to
connect to the host should it be changed later (see Verifying SSH host keys).

In case adjustment is needed, do so from the Weblate admin interface:

[image: _images/ssh-keys.png]

Weblate SSH key

The Weblate public key is visible to all users browsing the About page.

Admins can generate or display the public key currently used by Weblate in the connection
(from SSH keys) on the admin interface landing page.

Note

The corresponding private SSH key can not currently have a password, so make sure it is
well protected.

Hint

Make a backup of the generated private Weblate SSH key.

Verifying SSH host keys

Weblate automatically stores the SSH host keys on first access and remembers
them for further use.

In case you want to verify the key fingerprint before connecting to the
repository, add the SSH host keys of the servers you are going to access in
Add host key, from the same section of the admin interface. Enter
the hostname you are going to access (e.g. gitlab.com), and press
Submit. Verify its fingerprint matches the server you added.

The added keys with fingerprints are shown in the confirmation message:

[image: _images/ssh-keys-added.png]

GitHub repositories

Access via SSH is possible (see SSH repositories), but in case you need to
access more than one repository, you will hit a GitHub limitation on allowed
SSH key usage (since each key can be used only once).

In case the Push branch is not set, the project is forked and
changes pushed through a fork. In case it is set, changes are pushed to the
upstream repository and chosen branch.

For smaller deployments, use HTTPS authentication with a personal access
token and your GitHub account, see Creating an access token for command-line use [https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token].

For bigger setups, it is usually better to create a dedicated user for Weblate,
assign it the public SSH key generated in Weblate (see Weblate SSH key)
and grant it access to all the repositories you want to translate. This
approach is also used for Hosted Weblate, there is dedicated
weblate user for that.

See also

Accessing repositories from Hosted Weblate

Weblate internal URLs

Share one repository setup between different components by referring to
its placement as weblate://project/component in other(linked) components. This way linked components
use the VCS repository configuration of the main(referenced) component.

Warning

Removing main component also removes linked components.

Weblate automatically adjusts the repository URL when creating a component if it
finds a component with a matching repository setup. You can override this in
the last step of the component configuration.

Reasons to use this:

	Saves disk space on the server, the repository is stored just once.

	Makes the updates faster, only one repository is updated.

	There is just single exported repository with Weblate translations (see Git exporter).

	Some addons can operate on multiple components sharing one repository, for example Squash Git commits.

HTTPS repositories

To access protected HTTPS repositories, include the username and password
in the URL. Don’t worry, Weblate will strip this info when the URL is shown
to users (if even allowed to see the repository URL at all).

For example the GitHub URL with authentication added might look like:
https://user:your_access_token@github.com/WeblateOrg/weblate.git.

Note

If your username or password contains special characters, those have to be
URL encoded, for example
https://user%40example.com:%24password%23@bitbucket.org/….

Using proxy

If you need to access HTTP/HTTPS VCS repositories using a proxy server,
configure the VCS to use it.

This can be done using the http_proxy, https_proxy, and all_proxy
environment variables, (as described in the cURL documentation [https://curl.se/docs/])
or by enforcing it in the VCS configuration, for example:

git config --global http.proxy http://user:password@proxy.example.com:80

Note

The proxy configuration needs to be done under user running Weblate (see
also Filesystem permissions) and with HOME=$DATA_DIR/home (see
DATA_DIR), otherwise Git executed by Weblate will not use it.

See also

The cURL manpage [https://curl.se/docs/manpage.html],
Git config documentation [https://git-scm.com/docs/git-config]

Git

See also

See Accessing repositories for info on how to access different kinds of repositories.

Git with force push

This behaves exactly like Git itself, the only difference being that it always
force pushes. This is intended only in the case of using a separate repository
for translations.

Warning

Use with caution, as this easily leads to lost commits in your
upstream repository.

Customizing Git configuration

Weblate invokes all VCS commands with HOME=$DATA_DIR/home (see
DATA_DIR), therefore editing the user configuration needs to be done
in DATA_DIR/home/.git.

Git remote helpers

You can also use Git remote helpers [https://git-scm.com/docs/gitremote-helpers] for additionally supporting other version
control systems, but be prepared to debug problems this may lead to.

At this time, helpers for Bazaar and Mercurial are available within separate
repositories on GitHub: git-remote-hg [https://github.com/felipec/git-remote-hg] and git-remote-bzr [https://github.com/felipec/git-remote-bzr].
Download them manually and put somewhere in your search path
(for example ~/bin). Make sure you have the corresponding version control
systems installed.

Once you have these installed, such remotes can be used to specify a repository
in Weblate.

To clone the gnuhello project from Launchpad using Bazaar:

bzr::lp:gnuhello

For the hello repository from selenic.com using Mercurial:

hg::http://selenic.com/repo/hello

Warning

The inconvenience of using Git remote helpers is for example with Mercurial,
the remote helper sometimes creates a new tip when pushing changes back.

GitHub

New in version 2.3.

This adds a thin layer atop Git using the GitHub API [https://docs.github.com/en/rest] to allow pushing
translation changes as pull requests, instead of pushing directly to the repository.

Git pushes changes directly to a repository, while
GitHub creates pull requests.
The latter is not needed for merely accessing Git repositories.

See also

Pushing changes from Weblate

Pushing changes to GitHub as pull requests

If not wanting to push translations to a GitHub repository, they can be sent as
either one or many pull requests instead.

You need to configure API credentials to make this work.

See also

GITHUB_USERNAME,
GITHUB_TOKEN,
GITHUB_CREDENTIALS

GitLab

New in version 3.9.

This just adds a thin layer atop Git using the GitLab API [https://docs.gitlab.com/ee/api/] to allow
pushing translation changes as merge requests instead of
pushing directly to the repository.

There is no need to use this to access Git repositories, ordinary Git
works the same, the only difference is how pushing to a repository is
handled. With Git changes are pushed directly to the repository,
while GitLab creates merge request.

See also

Pushing changes from Weblate

Pushing changes to GitLab as merge requests

If not wanting to push translations to a GitLab repository, they can be sent as either
one or many merge requests instead.

You need to configure API credentials to make this work.

See also

GITLAB_USERNAME,
GITLAB_TOKEN,
GITLAB_CREDENTIALS

Pagure

New in version 4.3.2.

This just adds a thin layer atop Git using the Pagure API [https://pagure.io/api/0/] to allow
pushing translation changes as merge requests instead of
pushing directly to the repository.

There is no need to use this to access Git repositories, ordinary Git
works the same, the only difference is how pushing to a repository is
handled. With Git changes are pushed directly to the repository,
while Pagure creates merge request.

See also

Pushing changes from Weblate

Pushing changes to Pagure as merge requests

If not wanting to push translations to a Pagure repository, they can be sent as either
one or many merge requests instead.

You need to configure API credentials to make this work.

See also

PAGURE_USERNAME,
PAGURE_TOKEN,
PAGURE_CREDENTIALS

Gerrit

New in version 2.2.

Adds a thin layer atop Git using the git-review [https://pypi.org/project/git-review/] tool to allow
pushing translation changes as Gerrit review requests, instead of
pushing them directly to the repository.

The Gerrit documentation has the details on the configuration necessary to set up
such repositories.

Mercurial

New in version 2.1.

Mercurial is another VCS you can use directly in Weblate.

Note

It should work with any Mercurial version, but there are sometimes
incompatible changes to the command-line interface which breaks Weblate
integration.

See also

See Accessing repositories for info on how to access different kinds of
repositories.

Subversion

New in version 2.8.

Weblate uses git-svn [https://git-scm.com/docs/git-svn] to interact with subversion [https://subversion.apache.org/] repositories. It is
a Perl script that lets subversion be used by a Git client, enabling
users to maintain a full clone of the internal repository and commit locally.

Note

Weblate tries to detect Subversion repository layout automatically - it
supports both direct URLs for branch or repositories with standard layout
(branches/, tags/ and trunk/). More info about this is to be found in the
git-svn documentation [https://git-scm.com/docs/git-svn#Documentation/git-svn.txt---stdlayout].
If your repository does not have a standard layout and you encounter errors,
try including the branch name in the repository URL and leaving branch empty.

Changed in version 2.19: Before this, only repositories using the standard layout were supported.

Subversion credentials

Weblate expects you to have accepted the certificate up-front (and your
credentials if needed). It will look to insert them into the DATA_DIR
directory. Accept the certificate by using svn once with the $HOME
environment variable set to the DATA_DIR:

Use DATA_DIR as configured in Weblate settings.py, it is /app/data in the Docker
HOME=${DATA_DIR}/home svn co https://svn.example.com/example

See also

DATA_DIR

Local files

New in version 3.8.

Weblate can also operate without a remote VCS. The initial translations are
imported by uploading them. Later you can replace individual files by file upload,
or add translation strings directly from Weblate (currently available only for
monolingual translations).

In the background Weblate creates a Git repository for you and all changes are
tracked in. In case you later decide to use a VCS to store the translations,
you already have a repository within Weblate can base your integration on.

Weblate’s REST API

New in version 2.6: The REST API is available since Weblate 2.6.

The API is accessible on the /api/ URL and it is based on
Django REST framework [https://www.django-rest-framework.org/].
You can use it directly or by Weblate Client.

Authentication and generic parameters

The public project API is available without authentication, though
unauthenticated requests are heavily throttled (by default to 100 requests per
day), so it is recommended to use authentication. The authentication uses a
token, which you can get in your profile. Use it in the Authorization header:

	
ANY /

	Generic request behaviour for the API, the headers, status codes and
parameters here apply to all endpoints as well.

	Query Parameters

	
	format – Response format (overrides Accept [https://tools.ietf.org/html/rfc7231#section-5.3.2]).
Possible values depends on REST framework setup,
by default json and api are supported. The
latter provides web browser interface for API.

	Request Headers

	
	Accept [https://tools.ietf.org/html/rfc7231#section-5.3.2] – the response content type depends on
Accept [https://tools.ietf.org/html/rfc7231#section-5.3.2] header

	Authorization [https://tools.ietf.org/html/rfc7235#section-4.2] – optional token to authenticate

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – this depends on Accept [https://tools.ietf.org/html/rfc7231#section-5.3.2]
header of request

	Allow [https://tools.ietf.org/html/rfc7231#section-7.4.1] – list of allowed HTTP methods on object

	Response JSON Object

	
	detail (string) – verbose description of failure (for HTTP status codes other than 200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1])

	count (int) – total item count for object lists

	next (string) – next page URL for object lists

	previous (string) – previous page URL for object lists

	results (array) – results for object lists

	url (string) – URL to access this resource using API

	web_url (string) – URL to access this resource using web browser

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – when request was correctly handled

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – when form parameters are missing

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – when access is denied

	429 Too Many Requests [http://tools.ietf.org/html/rfc6585#section-4] – when throttling is in place

Authentication examples

Example request:

GET /api/ HTTP/1.1
Host: example.com
Accept: application/json, text/javascript
Authorization: Token YOUR-TOKEN

Example response:

HTTP/1.0 200 OK
Date: Fri, 25 Mar 2016 09:46:12 GMT
Server: WSGIServer/0.1 Python/2.7.11+
Vary: Accept, Accept-Language, Cookie
X-Frame-Options: SAMEORIGIN
Content-Type: application/json
Content-Language: en
Allow: GET, HEAD, OPTIONS

{
 "projects":"http://example.com/api/projects/",
 "components":"http://example.com/api/components/",
 "translations":"http://example.com/api/translations/",
 "languages":"http://example.com/api/languages/"
}

CURL example:

curl \
 -H "Authorization: Token TOKEN" \
 https://example.com/api/

Passing Parameters Examples

For the POST [https://tools.ietf.org/html/rfc7231#section-4.3.3] method the parameters can be specified either as
form submission (application/x-www-form-urlencoded) or as JSON
(application/json).

Form request example:

POST /api/projects/hello/repository/ HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/x-www-form-urlencoded
Authorization: Token TOKEN

operation=pull

JSON request example:

POST /api/projects/hello/repository/ HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Token TOKEN
Content-Length: 20

{"operation":"pull"}

CURL example:

curl \
 -d operation=pull \
 -H "Authorization: Token TOKEN" \
 http://example.com/api/components/hello/weblate/repository/

CURL JSON example:

curl \
 --data-binary '{"operation":"pull"}' \
 -H "Content-Type: application/json" \
 -H "Authorization: Token TOKEN" \
 http://example.com/api/components/hello/weblate/repository/

API rate limiting

The API requests are rate limited; the default configuration limits it to 100
requests per day for anonymous users and 5000 requests per hour for authenticated
users.

Rate limiting can be adjusted in the settings.py; see
Throttling in Django REST framework documentation [https://www.django-rest-framework.org/api-guide/throttling/]
for more details how to configure it.

The status of rate limiting is reported in following headers:

	X-RateLimit-Limit

	Rate limiting limit of requests to perform

	X-RateLimit-Remaining

	Remaining limit of requests

	X-RateLimit-Reset

	Number of seconds until ratelimit window resets

Changed in version 4.1: Added ratelimiting status headers.

See also

Rate limiting,
Rate limiting

API Entry Point

	
GET /api/

	The API root entry point.

Example request:

GET /api/ HTTP/1.1
Host: example.com
Accept: application/json, text/javascript
Authorization: Token YOUR-TOKEN

Example response:

HTTP/1.0 200 OK
Date: Fri, 25 Mar 2016 09:46:12 GMT
Server: WSGIServer/0.1 Python/2.7.11+
Vary: Accept, Accept-Language, Cookie
X-Frame-Options: SAMEORIGIN
Content-Type: application/json
Content-Language: en
Allow: GET, HEAD, OPTIONS

{
 "projects":"http://example.com/api/projects/",
 "components":"http://example.com/api/components/",
 "translations":"http://example.com/api/translations/",
 "languages":"http://example.com/api/languages/"
}

Users

New in version 4.0.

	
GET /api/users/

	Returns a list of users if you have permissions to see manage users. If not, then you get to see
only your own details.

See also

Users object attributes are documented at GET /api/users/(str:username)/.

	
POST /api/users/

	Creates a new user.

	Parameters

	
	username (string) – Username

	full_name (string) – User full name

	email (string) – User email

	is_superuser (boolean) – Is user superuser? (optional)

	is_active (boolean) – Is user active? (optional)

	
GET /api/users/(str: username)/

	Returns information about users.

	Parameters

	
	username (string) – User’s username

	Response JSON Object

	
	username (string) – username of a user

	full_name (string) – full name of a user

	email (string) – email of a user

	is_superuser (boolean) – whether the user is a super user

	is_active (boolean) – whether the user is active

	date_joined (string) – date the user is created

	groups (array) – link to associated groups; see GET /api/groups/(int:id)/

Example JSON data:

{
 "email": "user@example.com",
 "full_name": "Example User",
 "username": "exampleusername",
 "groups": [
 "http://example.com/api/groups/2/",
 "http://example.com/api/groups/3/"
],
 "is_superuser": true,
 "is_active": true,
 "date_joined": "2020-03-29T18:42:42.617681Z",
 "url": "http://example.com/api/users/exampleusername/",
 "statistics_url": "http://example.com/api/users/exampleusername/statistics/"
}

	
PUT /api/users/(str: username)/

	Changes the user parameters.

	Parameters

	
	username (string) – User’s username

	Response JSON Object

	
	username (string) – username of a user

	full_name (string) – full name of a user

	email (string) – email of a user

	is_superuser (boolean) – whether the user is a super user

	is_active (boolean) – whether the user is active

	date_joined (string) – date the user is created

	
PATCH /api/users/(str: username)/

	Changes the user parameters.

	Parameters

	
	username (string) – User’s username

	Response JSON Object

	
	username (string) – username of a user

	full_name (string) – full name of a user

	email (string) – email of a user

	is_superuser (boolean) – whether the user is a super user

	is_active (boolean) – whether the user is active

	date_joined (string) – date the user is created

	
DELETE /api/users/(str: username)/

	Deletes all user information and marks the user inactive.

	Parameters

	
	username (string) – User’s username

	
POST /api/users/(str: username)/groups/

	Associate groups with a user.

	Parameters

	
	username (string) – User’s username

	Form Parameters

	
	string group_id – The unique group ID

	
GET /api/users/(str: username)/statistics/

	List statistics of a user.

	Parameters

	
	username (string) – User’s username

	Response JSON Object

	
	translated (int) – Number of translations by user

	suggested (int) – Number of suggestions by user

	uploaded (int) – Number of uploads by user

	commented (int) – Number of comments by user

	languages (int) – Number of languages user can translate

	
GET /api/users/(str: username)/notifications/

	List subscriptions of a user.

	Parameters

	
	username (string) – User’s username

	
POST /api/users/(str: username)/notifications/

	Associate subscriptions with a user.

	Parameters

	
	username (string) – User’s username

	Request JSON Object

	
	notification (string) – Name of notification registered

	scope (int) – Scope of notification from the available choices

	frequency (int) – Frequency choices for notifications

	
GET /api/users/(str: username)/notifications/(int: subscription_id)/

	Get a subscription associated with a user.

	Parameters

	
	username (string) – User’s username

	subscription_id (int) – ID of notification registered

	
PUT /api/users/(str: username)/notifications/(int: subscription_id)/

	Edit a subscription associated with a user.

	Parameters

	
	username (string) – User’s username

	subscription_id (int) – ID of notification registered

	Request JSON Object

	
	notification (string) – Name of notification registered

	scope (int) – Scope of notification from the available choices

	frequency (int) – Frequency choices for notifications

	
PATCH /api/users/(str: username)/notifications/(int: subscription_id)/

	Edit a subscription associated with a user.

	Parameters

	
	username (string) – User’s username

	subscription_id (int) – ID of notification registered

	Request JSON Object

	
	notification (string) – Name of notification registered

	scope (int) – Scope of notification from the available choices

	frequency (int) – Frequency choices for notifications

	
DELETE /api/users/(str: username)/notifications/(int: subscription_id)/

	Delete a subscription associated with a user.

	Parameters

	
	username (string) – User’s username

	subscription_id – Name of notification registered

	subscription_id – int

Groups

New in version 4.0.

	
GET /api/groups/

	Returns a list of groups if you have permissions to see manage groups. If not, then you get to see
only the groups the user is a part of.

See also

Group object attributes are documented at GET /api/groups/(int:id)/.

	
POST /api/groups/

	Creates a new group.

	Parameters

	
	name (string) – Group name

	project_selection (int) – Group of project selection from given options

	language_selection (int) – Group of languages selected from given options

	
GET /api/groups/(int: id)/

	Returns information about group.

	Parameters

	
	id (int) – Group’s ID

	Response JSON Object

	
	name (string) – name of a group

	project_selection (int) – integer corresponding to group of projects

	language_selection (int) – integer corresponding to group of languages

	roles (array) – link to associated roles; see GET /api/roles/(int:id)/

	projects (array) – link to associated projects; see GET /api/projects/(string:project)/

	components (array) – link to associated components; see GET /api/components/(string:project)/(string:component)/

	componentlist (array) – link to associated componentlist; see GET /api/component-lists/(str:slug)/

Example JSON data:

{
 "name": "Guests",
 "project_selection": 3,
 "language_selection": 1,
 "url": "http://example.com/api/groups/1/",
 "roles": [
 "http://example.com/api/roles/1/",
 "http://example.com/api/roles/2/"
],
 "languages": [
 "http://example.com/api/languages/en/",
 "http://example.com/api/languages/cs/",
],
 "projects": [
 "http://example.com/api/projects/demo1/",
 "http://example.com/api/projects/demo/"
],
 "componentlist": "http://example.com/api/component-lists/new/",
 "components": [
 "http://example.com/api/components/demo/weblate/"
]
}

	
PUT /api/groups/(int: id)/

	Changes the group parameters.

	Parameters

	
	id (int) – Group’s ID

	Response JSON Object

	
	name (string) – name of a group

	project_selection (int) – integer corresponding to group of projects

	language_selection (int) – integer corresponding to group of Languages

	
PATCH /api/groups/(int: id)/

	Changes the group parameters.

	Parameters

	
	id (int) – Group’s ID

	Response JSON Object

	
	name (string) – name of a group

	project_selection (int) – integer corresponding to group of projects

	language_selection (int) – integer corresponding to group of languages

	
DELETE /api/groups/(int: id)/

	Deletes the group.

	Parameters

	
	id (int) – Group’s ID

	
POST /api/groups/(int: id)/roles/

	Associate roles with a group.

	Parameters

	
	id (int) – Group’s ID

	Form Parameters

	
	string role_id – The unique role ID

	
POST /api/groups/(int: id)/components/

	Associate components with a group.

	Parameters

	
	id (int) – Group’s ID

	Form Parameters

	
	string component_id – The unique component ID

	
DELETE /api/groups/(int: id)/components/(int: component_id)

	Delete component from a group.

	Parameters

	
	id (int) – Group’s ID

	component_id (int) – The unique component ID

	
POST /api/groups/(int: id)/projects/

	Associate projects with a group.

	Parameters

	
	id (int) – Group’s ID

	Form Parameters

	
	string project_id – The unique project ID

	
DELETE /api/groups/(int: id)/projects/(int: project_id)

	Delete project from a group.

	Parameters

	
	id (int) – Group’s ID

	project_id (int) – The unique project ID

	
POST /api/groups/(int: id)/languages/

	Associate languages with a group.

	Parameters

	
	id (int) – Group’s ID

	Form Parameters

	
	string language_code – The unique language code

	
DELETE /api/groups/(int: id)/languages/(string: language_code)

	Delete language from a group.

	Parameters

	
	id (int) – Group’s ID

	language_code (string) – The unique language code

	
POST /api/groups/(int: id)/componentlists/

	Associate componentlists with a group.

	Parameters

	
	id (int) – Group’s ID

	Form Parameters

	
	string component_list_id – The unique componentlist ID

	
DELETE /api/groups/(int: id)/componentlists/(int: component_list_id)

	Delete componentlist from a group.

	Parameters

	
	id (int) – Group’s ID

	component_list_id (int) – The unique componentlist ID

Roles

	
GET /api/roles/

	Returns a list of all roles associated with user. If user is superuser, then list of all
existing roles is returned.

See also

Roles object attributes are documented at GET /api/roles/(int:id)/.

	
POST /api/roles/

	Creates a new role.

	Parameters

	
	name (string) – Role name

	permissions (array) – List of codenames of permissions

	
GET /api/roles/(int: id)/

	Returns information about a role.

	Parameters

	
	id (int) – Role ID

	Response JSON Object

	
	name (string) – Role name

	permissions (array) – list of codenames of permissions

Example JSON data:

{
 "name": "Access repository",
 "permissions": [
 "vcs.access",
 "vcs.view"
],
 "url": "http://example.com/api/roles/1/",
}

	
PUT /api/roles/(int: id)/

	Changes the role parameters.

	Parameters

	
	id (int) – Role’s ID

	Response JSON Object

	
	name (string) – Role name

	permissions (array) – list of codenames of permissions

	
PATCH /api/roles/(int: id)/

	Changes the role parameters.

	Parameters

	
	id (int) – Role’s ID

	Response JSON Object

	
	name (string) – Role name

	permissions (array) – list of codenames of permissions

	
DELETE /api/roles/(int: id)/

	Deletes the role.

	Parameters

	
	id (int) – Role’s ID

Languages

	
GET /api/languages/

	Returns a list of all languages.

See also

Language object attributes are documented at GET /api/languages/(string:language)/.

	
POST /api/languages/

	Creates a new language.

	Parameters

	
	code (string) – Language name

	name (string) – Language name

	direction (string) – Language direction

	plural (object) – Language plural formula and number

	
GET /api/languages/(string: language)/

	Returns information about a language.

	Parameters

	
	language (string) – Language code

	Response JSON Object

	
	code (string) – Language code

	direction (string) – Text direction

	plural (object) – Object of language plural information

	aliases (array) – Array of aliases for language

Example JSON data:

{
 "code": "en",
 "direction": "ltr",
 "name": "English",
 "plural": {
 "id": 75,
 "source": 0,
 "number": 2,
 "formula": "n != 1",
 "type": 1
 },
 "aliases": [
 "english",
 "en_en",
 "base",
 "source",
 "eng"
],
 "url": "http://example.com/api/languages/en/",
 "web_url": "http://example.com/languages/en/",
 "statistics_url": "http://example.com/api/languages/en/statistics/"
}

	
PUT /api/languages/(string: language)/

	Changes the language parameters.

	Parameters

	
	language (string) – Language’s code

	Request JSON Object

	
	name (string) – Language name

	direction (string) – Language direction

	plural (object) – Language plural details

	
PATCH /api/languages/(string: language)/

	Changes the language parameters.

	Parameters

	
	language (string) – Language’s code

	Request JSON Object

	
	name (string) – Language name

	direction (string) – Language direction

	plural (object) – Language plural details

	
DELETE /api/languages/(string: language)/

	Deletes the Language.

	Parameters

	
	language (string) – Language’s code

	
GET /api/languages/(string: language)/statistics/

	Returns statistics for a language.

	Parameters

	
	language (string) – Language code

	Response JSON Object

	
	total (int) – total number of strings

	total_words (int) – total number of words

	last_change (timestamp) – last changes in the language

	recent_changes (int) – total number of changes

	translated (int) – number of translated strings

	translated_percent (float) – percentage of translated strings

	translated_words (int) – number of translated words

	translated_words_percent (int) – percentage of translated words

	translated_chars (int) – number of translated characters

	translated_chars_percent (int) – percentage of translated characters

	total_chars (int) – number of total characters

	fuzzy (int) – number of fuzzy (marked for edit) strings

	fuzzy_percent (int) – percentage of fuzzy (marked for edit) strings

	failing (int) – number of failing strings

	failing – percentage of failing strings

Projects

	
GET /api/projects/

	Returns a list of all projects.

See also

Project object attributes are documented at GET /api/projects/(string:project)/.

	
POST /api/projects/

	
New in version 3.9.

Creates a new project.

	Parameters

	
	name (string) – Project name

	slug (string) – Project slug

	web (string) – Project website

	
GET /api/projects/(string: project)/

	Returns information about a project.

	Parameters

	
	project (string) – Project URL slug

	Response JSON Object

	
	name (string) – project name

	slug (string) – project slug

	web (string) – project website

	components_list_url (string) – URL to components list; see GET /api/projects/(string:project)/components/

	repository_url (string) – URL to repository status; see GET /api/projects/(string:project)/repository/

	changes_list_url (string) – URL to changes list; see GET /api/projects/(string:project)/changes/

	translation_review (boolean) – Enable reviews

	source_review (boolean) – Enable source reviews

	set_language_team (boolean) – Set Language-Team header

	enable_hooks (boolean) – Enable hooks

	instructions (string) – Translation instructions

	language_aliases (string) – Language aliases

Example JSON data:

{
 "name": "Hello",
 "slug": "hello",
 "url": "http://example.com/api/projects/hello/",
 "web": "https://weblate.org/",
 "web_url": "http://example.com/projects/hello/"
}

	
PATCH /api/projects/(string: project)/

	
New in version 4.3.

Edit a project by a PATCH [https://tools.ietf.org/html/rfc5789#section-2] request.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	
PUT /api/projects/(string: project)/

	
New in version 4.3.

Edit a project by a PUT [https://tools.ietf.org/html/rfc7231#section-4.3.4] request.

	Parameters

	
	project (string) – Project URL slug

	
DELETE /api/projects/(string: project)/

	
New in version 3.9.

Deletes a project.

	Parameters

	
	project (string) – Project URL slug

	
GET /api/projects/(string: project)/changes/

	Returns a list of project changes. This is essentially a project scoped
GET /api/changes/ accepting same params.

	Parameters

	
	project (string) – Project URL slug

	Response JSON Object

	
	results (array) – array of component objects; see GET /api/changes/(int:id)/

	
GET /api/projects/(string: project)/repository/

	Returns information about VCS repository status. This endpoint contains
only an overall summary for all repositories for the project. To get more detailed
status use GET /api/components/(string:project)/(string:component)/repository/.

	Parameters

	
	project (string) – Project URL slug

	Response JSON Object

	
	needs_commit (boolean) – whether there are any pending changes to commit

	needs_merge (boolean) – whether there are any upstream changes to merge

	needs_push (boolean) – whether there are any local changes to push

Example JSON data:

{
 "needs_commit": true,
 "needs_merge": false,
 "needs_push": true
}

	
POST /api/projects/(string: project)/repository/

	Performs given operation on the VCS repository.

	Parameters

	
	project (string) – Project URL slug

	Request JSON Object

	
	operation (string) – Operation to perform: one of push, pull, commit, reset, cleanup

	Response JSON Object

	
	result (boolean) – result of the operation

CURL example:

curl \
 -d operation=pull \
 -H "Authorization: Token TOKEN" \
 http://example.com/api/projects/hello/repository/

JSON request example:

POST /api/projects/hello/repository/ HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Token TOKEN
Content-Length: 20

{"operation":"pull"}

JSON response example:

HTTP/1.0 200 OK
Date: Tue, 12 Apr 2016 09:32:50 GMT
Server: WSGIServer/0.1 Python/2.7.11+
Vary: Accept, Accept-Language, Cookie
X-Frame-Options: SAMEORIGIN
Content-Type: application/json
Content-Language: en
Allow: GET, POST, HEAD, OPTIONS

{"result":true}

	
GET /api/projects/(string: project)/components/

	Returns a list of translation components in the given project.

	Parameters

	
	project (string) – Project URL slug

	Response JSON Object

	
	results (array) – array of component objects; see GET /api/components/(string:project)/(string:component)/

	
POST /api/projects/(string: project)/components/

	
New in version 3.9.

Changed in version 4.3: The zipfile and docfile parameters are now accepted for VCS less components, see Local files.

Creates translation components in the given project.

Hint

Use Weblate internal URLs when creating multiple components from a single VCS repository.

Note

Most of the component creation happens in the background. Check the
task_url attribute of created component and follow the progress
there.

	Parameters

	
	project (string) – Project URL slug

	Request JSON Object

	
	zipfile (file) – ZIP file to upload into Weblate for translations initialization

	docfile (file) – Document to translate

	Response JSON Object

	
	result (object) – Created component object; see GET /api/components/(string:project)/(string:component)/

CURL example:

curl \
 --data-binary '{
 "branch": "master",
 "file_format": "po",
 "filemask": "po/*.po",
 "git_export": "",
 "license": "",
 "license_url": "",
 "name": "Weblate",
 "slug": "weblate",
 "repo": "file:///home/nijel/work/weblate-hello",
 "template": "",
 "new_base": "",
 "vcs": "git"
 }' \
 -H "Content-Type: application/json" \
 -H "Authorization: Token TOKEN" \
 http://example.com/api/projects/hello/components/

JSON request example:

POST /api/projects/hello/components/ HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Token TOKEN
Content-Length: 20

{
 "branch": "master",
 "file_format": "po",
 "filemask": "po/*.po",
 "git_export": "",
 "license": "",
 "license_url": "",
 "name": "Weblate",
 "slug": "weblate",
 "repo": "file:///home/nijel/work/weblate-hello",
 "template": "",
 "new_base": "",
 "vcs": "git"
}

JSON response example:

HTTP/1.0 200 OK
Date: Tue, 12 Apr 2016 09:32:50 GMT
Server: WSGIServer/0.1 Python/2.7.11+
Vary: Accept, Accept-Language, Cookie
X-Frame-Options: SAMEORIGIN
Content-Type: application/json
Content-Language: en
Allow: GET, POST, HEAD, OPTIONS

{
 "branch": "master",
 "file_format": "po",
 "filemask": "po/*.po",
 "git_export": "",
 "license": "",
 "license_url": "",
 "name": "Weblate",
 "slug": "weblate",
 "project": {
 "name": "Hello",
 "slug": "hello",
 "source_language": {
 "code": "en",
 "direction": "ltr",
 "name": "English",
 "url": "http://example.com/api/languages/en/",
 "web_url": "http://example.com/languages/en/"
 },
 "url": "http://example.com/api/projects/hello/",
 "web": "https://weblate.org/",
 "web_url": "http://example.com/projects/hello/"
 },
 "repo": "file:///home/nijel/work/weblate-hello",
 "template": "",
 "new_base": "",
 "url": "http://example.com/api/components/hello/weblate/",
 "vcs": "git",
 "web_url": "http://example.com/projects/hello/weblate/"
}

	
GET /api/projects/(string: project)/languages/

	Returns paginated statistics for all languages within a project.

New in version 3.8.

	Parameters

	
	project (string) – Project URL slug

	Response JSON Object

	
	results (array) – array of translation statistics objects

	language (string) – language name

	code (string) – language code

	total (int) – total number of strings

	translated (int) – number of translated strings

	translated_percent (float) – percentage of translated strings

	total_words (int) – total number of words

	translated_words (int) – number of translated words

	words_percent (float) – percentage of translated words

	
GET /api/projects/(string: project)/statistics/

	Returns statistics for a project.

New in version 3.8.

	Parameters

	
	project (string) – Project URL slug

	Response JSON Object

	
	total (int) – total number of strings

	translated (int) – number of translated strings

	translated_percent (float) – percentage of translated strings

	total_words (int) – total number of words

	translated_words (int) – number of translated words

	words_percent (float) – percentage of translated words

Components

	
GET /api/components/

	Returns a list of translation components.

See also

Component object attributes are documented at GET /api/components/(string:project)/(string:component)/.

	
GET /api/components/(string: project)/(string: component)/

	Returns information about translation component.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Response JSON Object

	
	project (object) – the translation project; see GET /api/projects/(string:project)/

	name (string) – Component name

	slug (string) – Component slug

	vcs (string) – Version control system

	repo (string) – Source code repository

	git_export (string) – Exported repository URL

	branch (string) – Repository branch

	push_branch (string) – Push branch

	filemask (string) – File mask

	template (string) – Monolingual base language file

	edit_template (string) – Edit base file

	intermediate (string) – Intermediate language file

	new_base (string) – Template for new translations

	file_format (string) – File format

	license (string) – Translation license

	agreement (string) – Contributor agreement

	new_lang (string) – Adding new translation

	language_code_style (string) – Language code style

	source_language (object) – source language object; see GET /api/languages/(string:language)/

	push (string) – Repository push URL

	check_flags (string) – Translation flags

	priority (string) – Priority

	enforced_checks (string) – Enforced checks

	restricted (string) – Restricted access

	repoweb (string) – Repository browser

	report_source_bugs (string) – Source string bug reporting address

	merge_style (string) – Merge style

	commit_message (string) – Commit, add, delete, merge and addon messages

	add_message (string) – Commit, add, delete, merge and addon messages

	delete_message (string) – Commit, add, delete, merge and addon messages

	merge_message (string) – Commit, add, delete, merge and addon messages

	addon_message (string) – Commit, add, delete, merge and addon messages

	allow_translation_propagation (string) – Allow translation propagation

	enable_suggestions (string) – Enable suggestions

	suggestion_voting (string) – Suggestion voting

	suggestion_autoaccept (string) – Autoaccept suggestions

	push_on_commit (string) – Push on commit

	commit_pending_age (string) – Age of changes to commit

	auto_lock_error (string) – Lock on error

	language_regex (string) – Language filter

	variant_regex (string) – Variants regular expression

	repository_url (string) – URL to repository status; see GET /api/components/(string:project)/(string:component)/repository/

	translations_url (string) – URL to translations list; see GET /api/components/(string:project)/(string:component)/translations/

	lock_url (string) – URL to lock status; see GET /api/components/(string:project)/(string:component)/lock/

	changes_list_url (string) – URL to changes list; see GET /api/components/(string:project)/(string:component)/changes/

	task_url (string) – URL to a background task (if any); see GET /api/tasks/(str:uuid)/

Example JSON data:

{
 "branch": "master",
 "file_format": "po",
 "filemask": "po/*.po",
 "git_export": "",
 "license": "",
 "license_url": "",
 "name": "Weblate",
 "slug": "weblate",
 "project": {
 "name": "Hello",
 "slug": "hello",
 "source_language": {
 "code": "en",
 "direction": "ltr",
 "name": "English",
 "url": "http://example.com/api/languages/en/",
 "web_url": "http://example.com/languages/en/"
 },
 "url": "http://example.com/api/projects/hello/",
 "web": "https://weblate.org/",
 "web_url": "http://example.com/projects/hello/"
 },
 "source_language": {
 "code": "en",
 "direction": "ltr",
 "name": "English",
 "url": "http://example.com/api/languages/en/",
 "web_url": "http://example.com/languages/en/"
 },
 "repo": "file:///home/nijel/work/weblate-hello",
 "template": "",
 "new_base": "",
 "url": "http://example.com/api/components/hello/weblate/",
 "vcs": "git",
 "web_url": "http://example.com/projects/hello/weblate/"
}

	
PATCH /api/components/(string: project)/(string: component)/

	Edit a component by a PATCH [https://tools.ietf.org/html/rfc5789#section-2] request.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	source_language (string) – Project source language code (optional)

	Request JSON Object

	
	name (string) – name of component

	slug (string) – slug of component

	repo (string) – VCS repository URL

CURL example:

curl \
 --data-binary '{"name": "new name"}' \
 -H "Content-Type: application/json" \
 -H "Authorization: Token TOKEN" \
 PATCH http://example.com/api/projects/hello/components/

JSON request example:

PATCH /api/projects/hello/components/ HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Token TOKEN
Content-Length: 20

{
 "name": "new name"
}

JSON response example:

HTTP/1.0 200 OK
Date: Tue, 12 Apr 2016 09:32:50 GMT
Server: WSGIServer/0.1 Python/2.7.11+
Vary: Accept, Accept-Language, Cookie
X-Frame-Options: SAMEORIGIN
Content-Type: application/json
Content-Language: en
Allow: GET, POST, HEAD, OPTIONS

{
 "branch": "master",
 "file_format": "po",
 "filemask": "po/*.po",
 "git_export": "",
 "license": "",
 "license_url": "",
 "name": "new name",
 "slug": "weblate",
 "project": {
 "name": "Hello",
 "slug": "hello",
 "source_language": {
 "code": "en",
 "direction": "ltr",
 "name": "English",
 "url": "http://example.com/api/languages/en/",
 "web_url": "http://example.com/languages/en/"
 },
 "url": "http://example.com/api/projects/hello/",
 "web": "https://weblate.org/",
 "web_url": "http://example.com/projects/hello/"
 },
 "repo": "file:///home/nijel/work/weblate-hello",
 "template": "",
 "new_base": "",
 "url": "http://example.com/api/components/hello/weblate/",
 "vcs": "git",
 "web_url": "http://example.com/projects/hello/weblate/"
}

	
PUT /api/components/(string: project)/(string: component)/

	Edit a component by a PUT [https://tools.ietf.org/html/rfc7231#section-4.3.4] request.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Request JSON Object

	
	branch (string) – VCS repository branch

	file_format (string) – file format of translations

	filemask (string) – mask of translation files in the repository

	name (string) – name of component

	slug (string) – slug of component

	repo (string) – VCS repository URL

	template (string) – base file for monolingual translations

	new_base (string) – base file for adding new translations

	vcs (string) – version control system

	
DELETE /api/components/(string: project)/(string: component)/

	
New in version 3.9.

Deletes a component.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	
GET /api/components/(string: project)/(string: component)/changes/

	Returns a list of component changes. This is essentially a component scoped
GET /api/changes/ accepting same params.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Response JSON Object

	
	results (array) – array of component objects; see GET /api/changes/(int:id)/

	
GET /api/components/(string: project)/(string: component)/screenshots/

	Returns a list of component screenshots.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Response JSON Object

	
	results (array) – array of component screenshots; see GET /api/screenshots/(int:id)/

	
GET /api/components/(string: project)/(string: component)/lock/

	Returns component lock status.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Response JSON Object

	
	locked (boolean) – whether component is locked for updates

Example JSON data:

{
 "locked": false
}

	
POST /api/components/(string: project)/(string: component)/lock/

	Sets component lock status.

Response is same as GET /api/components/(string:project)/(string:component)/lock/.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Request JSON Object

	
	lock – Boolean whether to lock or not.

CURL example:

curl \
 -d lock=true \
 -H "Authorization: Token TOKEN" \
 http://example.com/api/components/hello/weblate/repository/

JSON request example:

POST /api/components/hello/weblate/repository/ HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Token TOKEN
Content-Length: 20

{"lock": true}

JSON response example:

HTTP/1.0 200 OK
Date: Tue, 12 Apr 2016 09:32:50 GMT
Server: WSGIServer/0.1 Python/2.7.11+
Vary: Accept, Accept-Language, Cookie
X-Frame-Options: SAMEORIGIN
Content-Type: application/json
Content-Language: en
Allow: GET, POST, HEAD, OPTIONS

{"locked":true}

	
GET /api/components/(string: project)/(string: component)/repository/

	Returns information about VCS repository status.

The response is same as for GET /api/projects/(string:project)/repository/.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Response JSON Object

	
	needs_commit (boolean) – whether there are any pending changes to commit

	needs_merge (boolean) – whether there are any upstream changes to merge

	needs_push (boolean) – whether there are any local changes to push

	remote_commit (string) – Remote commit information

	status (string) – VCS repository status as reported by VCS

	merge_failure – Text describing merge failure or null if there is none

	
POST /api/components/(string: project)/(string: component)/repository/

	Performs the given operation on a VCS repository.

See POST /api/projects/(string:project)/repository/ for documentation.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Request JSON Object

	
	operation (string) – Operation to perform: one of push, pull, commit, reset, cleanup

	Response JSON Object

	
	result (boolean) – result of the operation

CURL example:

curl \
 -d operation=pull \
 -H "Authorization: Token TOKEN" \
 http://example.com/api/components/hello/weblate/repository/

JSON request example:

POST /api/components/hello/weblate/repository/ HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Token TOKEN
Content-Length: 20

{"operation":"pull"}

JSON response example:

HTTP/1.0 200 OK
Date: Tue, 12 Apr 2016 09:32:50 GMT
Server: WSGIServer/0.1 Python/2.7.11+
Vary: Accept, Accept-Language, Cookie
X-Frame-Options: SAMEORIGIN
Content-Type: application/json
Content-Language: en
Allow: GET, POST, HEAD, OPTIONS

{"result":true}

	
GET /api/components/(string: project)/(string: component)/monolingual_base/

	Downloads base file for monolingual translations.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	
GET /api/components/(string: project)/(string: component)/new_template/

	Downloads template file for new translations.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	
GET /api/components/(string: project)/(string: component)/translations/

	Returns a list of translation objects in the given component.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Response JSON Object

	
	results (array) – array of translation objects; see GET /api/translations/(string:project)/(string:component)/(string:language)/

	
POST /api/components/(string: project)/(string: component)/translations/

	Creates new translation in the given component.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Request JSON Object

	
	language_code (string) – translation language code; see GET /api/languages/(string:language)/

	Response JSON Object

	
	result (object) – new translation object created

CURL example:

curl \
 -d language_code=cs \
 -H "Authorization: Token TOKEN" \
 http://example.com/api/projects/hello/components/

JSON request example:

POST /api/projects/hello/components/ HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Token TOKEN
Content-Length: 20

{"language_code": "cs"}

JSON response example:

HTTP/1.0 200 OK
Date: Tue, 12 Apr 2016 09:32:50 GMT
Server: WSGIServer/0.1 Python/2.7.11+
Vary: Accept, Accept-Language, Cookie
X-Frame-Options: SAMEORIGIN
Content-Type: application/json
Content-Language: en
Allow: GET, POST, HEAD, OPTIONS

{
 "failing_checks": 0,
 "failing_checks_percent": 0,
 "failing_checks_words": 0,
 "filename": "po/cs.po",
 "fuzzy": 0,
 "fuzzy_percent": 0.0,
 "fuzzy_words": 0,
 "have_comment": 0,
 "have_suggestion": 0,
 "is_template": false,
 "is_source": false,
 "language": {
 "code": "cs",
 "direction": "ltr",
 "name": "Czech",
 "url": "http://example.com/api/languages/cs/",
 "web_url": "http://example.com/languages/cs/"
 },
 "language_code": "cs",
 "id": 125,
 "last_author": null,
 "last_change": null,
 "share_url": "http://example.com/engage/hello/cs/",
 "total": 4,
 "total_words": 15,
 "translate_url": "http://example.com/translate/hello/weblate/cs/",
 "translated": 0,
 "translated_percent": 0.0,
 "translated_words": 0,
 "url": "http://example.com/api/translations/hello/weblate/cs/",
 "web_url": "http://example.com/projects/hello/weblate/cs/"
}

	
GET /api/components/(string: project)/(string: component)/statistics/

	Returns paginated statistics for all translations within component.

New in version 2.7.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Response JSON Object

	
	results (array) – array of translation statistics objects; see GET /api/translations/(string:project)/(string:component)/(string:language)/statistics/

	
GET /api/components/(string: project)/(string: component)/links/

	Returns projects linked with a component.

New in version 4.5.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Response JSON Object

	
	projects (array) – associated projects; see GET /api/projects/(string:project)/

	
POST /api/components/(string: project)/(string: component)/links/

	Associate project with a component.

New in version 4.5.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	Form Parameters

	
	string project_slug – Project slug

	
DELETE /api/components/(string: project)/(string: component)/links/(string: project_slug)/

	Remove association of a project with a component.

New in version 4.5.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	project_slug (string) – Slug of the project to remove

Translations

	
GET /api/translations/

	Returns a list of translations.

See also

Translation object attributes are documented at GET /api/translations/(string:project)/(string:component)/(string:language)/.

	
GET /api/translations/(string: project)/(string: component)/(string: language)/

	Returns information about a translation.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

	Response JSON Object

	
	component (object) – component object; see GET /api/components/(string:project)/(string:component)/

	failing_checks (int) – number of strings failing checks

	failing_checks_percent (float) – percentage of strings failing checks

	failing_checks_words (int) – number of words with failing checks

	filename (string) – translation filename

	fuzzy (int) – number of fuzzy (marked for edit) strings

	fuzzy_percent (float) – percentage of fuzzy (marked for edit) strings

	fuzzy_words (int) – number of words in fuzzy (marked for edit) strings

	have_comment (int) – number of strings with comment

	have_suggestion (int) – number of strings with suggestion

	is_template (boolean) – whether the translation has a monolingual base

	language (object) – source language object; see GET /api/languages/(string:language)/

	language_code (string) – language code used in the repository; this can be different from language code in the language object

	last_author (string) – name of last author

	last_change (timestamp) – last change timestamp

	revision (string) – revision hash for the file

	share_url (string) – URL for sharing leading to engagement page

	total (int) – total number of strings

	total_words (int) – total number of words

	translate_url (string) – URL for translating

	translated (int) – number of translated strings

	translated_percent (float) – percentage of translated strings

	translated_words (int) – number of translated words

	repository_url (string) – URL to repository status; see GET /api/translations/(string:project)/(string:component)/(string:language)/repository/

	file_url (string) – URL to file object; see GET /api/translations/(string:project)/(string:component)/(string:language)/file/

	changes_list_url (string) – URL to changes list; see GET /api/translations/(string:project)/(string:component)/(string:language)/changes/

	units_list_url (string) – URL to strings list; see GET /api/translations/(string:project)/(string:component)/(string:language)/units/

Example JSON data:

{
 "component": {
 "branch": "master",
 "file_format": "po",
 "filemask": "po/*.po",
 "git_export": "",
 "license": "",
 "license_url": "",
 "name": "Weblate",
 "new_base": "",
 "project": {
 "name": "Hello",
 "slug": "hello",
 "source_language": {
 "code": "en",
 "direction": "ltr",
 "name": "English",
 "url": "http://example.com/api/languages/en/",
 "web_url": "http://example.com/languages/en/"
 },
 "url": "http://example.com/api/projects/hello/",
 "web": "https://weblate.org/",
 "web_url": "http://example.com/projects/hello/"
 },
 "repo": "file:///home/nijel/work/weblate-hello",
 "slug": "weblate",
 "template": "",
 "url": "http://example.com/api/components/hello/weblate/",
 "vcs": "git",
 "web_url": "http://example.com/projects/hello/weblate/"
 },
 "failing_checks": 3,
 "failing_checks_percent": 75.0,
 "failing_checks_words": 11,
 "filename": "po/cs.po",
 "fuzzy": 0,
 "fuzzy_percent": 0.0,
 "fuzzy_words": 0,
 "have_comment": 0,
 "have_suggestion": 0,
 "is_template": false,
 "language": {
 "code": "cs",
 "direction": "ltr",
 "name": "Czech",
 "url": "http://example.com/api/languages/cs/",
 "web_url": "http://example.com/languages/cs/"
 },
 "language_code": "cs",
 "last_author": "Weblate Admin",
 "last_change": "2016-03-07T10:20:05.499",
 "revision": "7ddfafe6daaf57fc8654cc852ea6be212b015792",
 "share_url": "http://example.com/engage/hello/cs/",
 "total": 4,
 "total_words": 15,
 "translate_url": "http://example.com/translate/hello/weblate/cs/",
 "translated": 4,
 "translated_percent": 100.0,
 "translated_words": 15,
 "url": "http://example.com/api/translations/hello/weblate/cs/",
 "web_url": "http://example.com/projects/hello/weblate/cs/"
}

	
DELETE /api/translations/(string: project)/(string: component)/(string: language)/

	
New in version 3.9.

Deletes a translation.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

	
GET /api/translations/(string: project)/(string: component)/(string: language)/changes/

	Returns a list of translation changes. This is essentially a translations-scoped
GET /api/changes/ accepting the same parameters.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

	Response JSON Object

	
	results (array) – array of component objects; see GET /api/changes/(int:id)/

	
GET /api/translations/(string: project)/(string: component)/(string: language)/units/

	Returns a list of translation units.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

	q (string) – Search query string Searching (optional)

	Response JSON Object

	
	results (array) – array of component objects; see GET /api/units/(int:id)/

	
POST /api/translations/(string: project)/(string: component)/(string: language)/units/

	Add new monolingual unit.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

	Request JSON Object

	
	key (string) – Name of translation unit

	value (string) – The translation unit value

See also

Manage strings,
Adding new strings

	
POST /api/translations/(string: project)/(string: component)/(string: language)/autotranslate/

	Trigger automatic translation.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

	Request JSON Object

	
	mode (string) – Automatic translation mode

	filter_type (string) – Automatic translation filter type

	auto_source (string) – Automatic translation source

	component (string) – Turn on contribution to shared translation memory for the project to get access to additional components.

	engines (string) – Machine translation engines

	threshold (string) – Score threshold

	
GET /api/translations/(string: project)/(string: component)/(string: language)/file/

	Download current translation file as it is stored in the VCS (without the format
parameter) or converted to another format (see Downloading translations).

Note

This API endpoint uses different logic for output than rest of API as
it operates on whole file rather than on data. Set of accepted format
parameter differs and without such parameter you get translation file
as stored in VCS.

	Query Parameters

	
	format – File format to use; if not specified no format conversion happens; supported file formats: po, mo, xliff, xliff11, tbx, csv, xlsx, json, aresource, strings

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

	
POST /api/translations/(string: project)/(string: component)/(string: language)/file/

	Upload new file with translations.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

	Form Parameters

	
	string conflicts – How to deal with conflicts (ignore, replace-translated or replace-approved)

	file file – Uploaded file

	string email – Author e-mail

	string author – Author name

	string method – Upload method (translate, approve, suggest, fuzzy, replace, source, add), see Import methods

	string fuzzy – Fuzzy (marked for edit) strings processing (empty, process, approve)

CURL example:

curl -X POST \
 -F file=@strings.xml \
 -H "Authorization: Token TOKEN" \
 http://example.com/api/translations/hello/android/cs/file/

	
GET /api/translations/(string: project)/(string: component)/(string: language)/repository/

	Returns information about VCS repository status.

The response is same as for GET /api/components/(string:project)/(string:component)/repository/.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

	
POST /api/translations/(string: project)/(string: component)/(string: language)/repository/

	Performs given operation on the VCS repository.

See POST /api/projects/(string:project)/repository/ for documentation.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

	Request JSON Object

	
	operation (string) – Operation to perform: one of push, pull, commit, reset, cleanup

	Response JSON Object

	
	result (boolean) – result of the operation

	
GET /api/translations/(string: project)/(string: component)/(string: language)/statistics/

	Returns detailed translation statistics.

New in version 2.7.

	Parameters

	
	project (string) – Project URL slug

	component (string) – Component URL slug

	language (string) – Translation language code

	Response JSON Object

	
	code (string) – language code

	failing (int) – number of failing checks

	failing_percent (float) – percentage of failing checks

	fuzzy (int) – number of fuzzy (marked for edit) strings

	fuzzy_percent (float) – percentage of fuzzy (marked for edit) strings

	total_words (int) – total number of words

	translated_words (int) – number of translated words

	last_author (string) – name of last author

	last_change (timestamp) – date of last change

	name (string) – language name

	total (int) – total number of strings

	translated (int) – number of translated strings

	translated_percent (float) – percentage of translated strings

	url (string) – URL to access the translation (engagement URL)

	url_translate (string) – URL to access the translation (real translation URL)

Units

A unit is a single piece of a translation which pairs a source string with a
corresponding translated string and also contains some related metadata. The
term is derived from the Translate Toolkit [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/api/storage.html#translate.storage.base.TranslationUnit]
and XLIFF.

New in version 2.10.

	
GET /api/units/

	Returns list of translation units.

See also

Unit object attributes are documented at GET /api/units/(int:id)/.

	
GET /api/units/(int: id)/

	
Changed in version 4.3: The target and source are now arrays to properly handle plural
strings.

Returns information about translation unit.

	Parameters

	
	id (int) – Unit ID

	Response JSON Object

	
	translation (string) – URL of a related translation object

	source (array) – source string

	previous_source (string) – previous source string used for fuzzy matching

	target (array) – target string

	id_hash (string) – unique identifier of the unit

	content_hash (string) – unique identifier of the source string

	location (string) – location of the unit in source code

	context (string) – translation unit context

	note (string) – translation unit note

	flags (string) – translation unit flags

	state (int) – unit state, 0 - not translated, 10 - needs editing, 20 - translated, 30 - approved, 100 - read only

	fuzzy (boolean) – whether the unit is fuzzy or marked for review

	translated (boolean) – whether the unit is translated

	approved (boolean) – whether the translation is approved

	position (int) – unit position in translation file

	has_suggestion (boolean) – whether the unit has suggestions

	has_comment (boolean) – whether the unit has comments

	has_failing_check (boolean) – whether the unit has failing checks

	num_words (int) – number of source words

	priority (int) – translation priority; 100 is default

	id (int) – unit identifier

	explanation (string) – String explanation, available on source units, see Additional info on source strings

	extra_flags (string) – Additional string flags, available on source units, see Customizing behavior using flags

	web_url (string) – URL where the unit can be edited

	souce_unit (string) – Source unit link; see GET /api/units/(int:id)/

	
PATCH /api/units/(int: id)/

	
New in version 4.3.

Performs partial update on translation unit.

	Parameters

	
	id (int) – Unit ID

	Request JSON Object

	
	state (int) – unit state, 0 - not translated, 10 - needs editing, 20 - translated, 30 - approved (need review workflow enabled, see Dedicated reviewers)

	target (array) – target string

	explanation (string) – String explanation, available on source units, see Additional info on source strings

	extra_flags (string) – Additional string flags, available on source units, see Customizing behavior using flags

	
PUT /api/units/(int: id)/

	
New in version 4.3.

Performs full update on translation unit.

	Parameters

	
	id (int) – Unit ID

	Request JSON Object

	
	state (int) – unit state, 0 - not translated, 10 - needs editing, 20 - translated, 30 - approved (need review workflow enabled, see Dedicated reviewers)

	target (array) – target string

	explanation (string) – String explanation, available on source units, see Additional info on source strings

	extra_flags (string) – Additional string flags, available on source units, see Customizing behavior using flags

	
DELETE /api/units/(int: id)/

	
New in version 4.3.

Deletes a translation unit.

	Parameters

	
	id (int) – Unit ID

Changes

New in version 2.10.

	
GET /api/changes/

	
Changed in version 4.1: Filtering of changes was introduced in the 4.1 release.

Returns a list of translation changes.

See also

Change object attributes are documented at GET /api/changes/(int:id)/.

	Query Parameters

	
	user (string) – Username of user to filters

	action (int) – Action to filter, can be used several times

	timestamp_after (timestamp) – ISO 8601 formatted timestamp to list changes after

	timestamp_before (timestamp) – ISO 8601 formatted timestamp to list changes before

	
GET /api/changes/(int: id)/

	Returns information about translation change.

	Parameters

	
	id (int) – Change ID

	Response JSON Object

	
	unit (string) – URL of a related unit object

	translation (string) – URL of a related translation object

	component (string) – URL of a related component object

	user (string) – URL of a related user object

	author (string) – URL of a related author object

	timestamp (timestamp) – event timestamp

	action (int) – numeric identification of action

	action_name (string) – text description of action

	target (string) – event changed text or detail

	id (int) – change identifier

Screenshots

New in version 2.14.

	
GET /api/screenshots/

	Returns a list of screenshot string information.

See also

Screenshot object attributes are documented at GET /api/screenshots/(int:id)/.

	
GET /api/screenshots/(int: id)/

	Returns information about screenshot information.

	Parameters

	
	id (int) – Screenshot ID

	Response JSON Object

	
	name (string) – name of a screenshot

	component (string) – URL of a related component object

	file_url (string) – URL to download a file; see GET /api/screenshots/(int:id)/file/

	units (array) – link to associated source string information; see GET /api/units/(int:id)/

	
GET /api/screenshots/(int: id)/file/

	Download the screenshot image.

	Parameters

	
	id (int) – Screenshot ID

	
POST /api/screenshots/(int: id)/file/

	Replace screenshot image.

	Parameters

	
	id (int) – Screenshot ID

	Form Parameters

	
	file image – Uploaded file

CURL example:

curl -X POST \
 -F image=@image.png \
 -H "Authorization: Token TOKEN" \
 http://example.com/api/screenshots/1/file/

	
POST /api/screenshots/(int: id)/units/

	Associate source string with screenshot.

	Parameters

	
	id (int) – Screenshot ID

	Form Parameters

	
	string unit_id – Unit ID

	Response JSON Object

	
	name (string) – name of a screenshot

	translation (string) – URL of a related translation object

	file_url (string) – URL to download a file; see GET /api/screenshots/(int:id)/file/

	units (array) – link to associated source string information; see GET /api/units/(int:id)/

	
DELETE /api/screenshots/(int: id)/units/(int: unit_id)

	Remove source string association with screenshot.

	Parameters

	
	id (int) – Screenshot ID

	unit_id – Source string unit ID

	
POST /api/screenshots/

	Creates a new screenshot.

	Form Parameters

	
	file image – Uploaded file

	string name – Screenshot name

	string project_slug – Project slug

	string component_slug – Component slug

	string language_code – Language code

	Response JSON Object

	
	name (string) – name of a screenshot

	component (string) – URL of a related component object

	file_url (string) – URL to download a file; see GET /api/screenshots/(int:id)/file/

	units (array) – link to associated source string information; see GET /api/units/(int:id)/

	
PATCH /api/screenshots/(int: id)/

	Edit partial information about screenshot.

	Parameters

	
	id (int) – Screenshot ID

	Response JSON Object

	
	name (string) – name of a screenshot

	component (string) – URL of a related component object

	file_url (string) – URL to download a file; see GET /api/screenshots/(int:id)/file/

	units (array) – link to associated source string information; see GET /api/units/(int:id)/

	
PUT /api/screenshots/(int: id)/

	Edit full information about screenshot.

	Parameters

	
	id (int) – Screenshot ID

	Response JSON Object

	
	name (string) – name of a screenshot

	component (string) – URL of a related component object

	file_url (string) – URL to download a file; see GET /api/screenshots/(int:id)/file/

	units (array) – link to associated source string information; see GET /api/units/(int:id)/

	
DELETE /api/screenshots/(int: id)/

	Delete screenshot.

	Parameters

	
	id (int) – Screenshot ID

Addons

New in version 4.4.1.

	
GET /api/addons/

	Returns a list of addons.

See also

Addon object attributes are documented at GET /api/addons/(int:id)/.

	
GET /api/addons/(int: id)/

	Returns information about addon information.

	Parameters

	
	id (int) – Addon ID

	Response JSON Object

	
	name (string) – name of an addon

	component (string) – URL of a related component object

	configuration (object) – Optional addon configuration

	
POST /api/components/(string: project)/(string: component)/addons/

	Creates a new addon.

	Parameters

	
	project_slug (string) – Project slug

	component_slug (string) – Component slug

	Request JSON Object

	
	name (string) – name of an addon

	configuration (object) – Optional addon configuration

	
PATCH /api/addons/(int: id)/

	Edit partial information about addon.

	Parameters

	
	id (int) – Addon ID

	Response JSON Object

	
	configuration (object) – Optional addon configuration

	
PUT /api/addons/(int: id)/

	Edit full information about addon.

	Parameters

	
	id (int) – Addon ID

	Response JSON Object

	
	configuration (object) – Optional addon configuration

	
DELETE /api/addons/(int: id)/

	Delete addon.

	Parameters

	
	id (int) – Addon ID

Component lists

New in version 4.0.

	
GET /api/component-lists/

	Returns a list of component lists.

See also

Component list object attributes are documented at GET /api/component-lists/(str:slug)/.

	
GET /api/component-lists/(str: slug)/

	Returns information about component list.

	Parameters

	
	slug (string) – Component list slug

	Response JSON Object

	
	name (string) – name of a component list

	slug (string) – slug of a component list

	show_dashboard (boolean) – whether to show it on a dashboard

	components (array) – link to associated components; see GET /api/components/(string:project)/(string:component)/

	auto_assign (array) – automatic assignment rules

	
PUT /api/component-lists/(str: slug)/

	Changes the component list parameters.

	Parameters

	
	slug (string) – Component list slug

	Request JSON Object

	
	name (string) – name of a component list

	slug (string) – slug of a component list

	show_dashboard (boolean) – whether to show it on a dashboard

	
PATCH /api/component-lists/(str: slug)/

	Changes the component list parameters.

	Parameters

	
	slug (string) – Component list slug

	Request JSON Object

	
	name (string) – name of a component list

	slug (string) – slug of a component list

	show_dashboard (boolean) – whether to show it on a dashboard

	
DELETE /api/component-lists/(str: slug)/

	Deletes the component list.

	Parameters

	
	slug (string) – Component list slug

	
POST /api/component-lists/(str: slug)/components/

	Associate component with a component list.

	Parameters

	
	slug (string) – Component list slug

	Form Parameters

	
	string component_id – Component ID

	
DELETE /api/component-lists/(str: slug)/components/(str: component_slug)

	Disassociate a component from the component list.

	Parameters

	
	slug (string) – Component list slug

	component_slug (string) – Component slug

Glossary

Changed in version 4.5: Glossaries are now stored as regular components, translations and strings,
please use respective API instead.

Tasks

New in version 4.4.

	
GET /api/tasks/

	Listing of the tasks is currently not available.

	
GET /api/tasks/(str: uuid)/

	Returns information about a task

	Parameters

	
	uuid (string) – Task UUID

	Response JSON Object

	
	completed (boolean) – Whether the task has completed

	progress (int) – Task progress in percent

	result (object) – Task result or progress details

	log (string) – Task log

Notification hooks

Notification hooks allow external applications to notify Weblate that the VCS
repository has been updated.

You can use repository endpoints for projects, components and translations to
update individual repositories; see
POST /api/projects/(string:project)/repository/ for documentation.

	
GET /hooks/update/(string: project)/(string: component)/

	
Deprecated since version 2.6: Please use POST /api/components/(string:project)/(string:component)/repository/
instead which works properly with authentication for ACL limited projects.

Triggers update of a component (pulling from VCS and scanning for
translation changes).

	
GET /hooks/update/(string: project)/

	
Deprecated since version 2.6: Please use POST /api/projects/(string:project)/repository/
instead which works properly with authentication for ACL limited projects.

Triggers update of all components in a project (pulling from VCS and
scanning for translation changes).

	
POST /hooks/github/

	Special hook for handling GitHub notifications and automatically updating
matching components.

Note

GitHub includes direct support for notifying Weblate: enable
Weblate service hook in repository settings and set the URL to the URL of your
Weblate installation.

See also

	Automatically receiving changes from GitHub
	For instruction on setting up GitHub integration

	https://docs.github.com/en/github/extending-github/about-webhooks
	Generic information about GitHub Webhooks

	ENABLE_HOOKS
	For enabling hooks for whole Weblate

	
POST /hooks/gitlab/

	Special hook for handling GitLab notifications and automatically updating
matching components.

See also

	Automatically receiving changes from GitLab
	For instruction on setting up GitLab integration

	https://docs.gitlab.com/ce/user/project/integrations/webhooks.html
	Generic information about GitLab Webhooks

	ENABLE_HOOKS
	For enabling hooks for whole Weblate

	
POST /hooks/bitbucket/

	Special hook for handling Bitbucket notifications and automatically
updating matching components.

See also

	Automatically receiving changes from Bitbucket
	For instruction on setting up Bitbucket integration

	https://support.atlassian.com/bitbucket-cloud/docs/manage-webhooks/
	Generic information about Bitbucket Webhooks

	ENABLE_HOOKS
	For enabling hooks for whole Weblate

	
POST /hooks/pagure/

	
New in version 3.3.

Special hook for handling Pagure notifications and automatically
updating matching components.

See also

	Automatically receiving changes from Pagure
	For instruction on setting up Pagure integration

	https://docs.pagure.org/pagure/usage/using_webhooks.html
	Generic information about Pagure Webhooks

	ENABLE_HOOKS
	For enabling hooks for whole Weblate

	
POST /hooks/azure/

	
New in version 3.8.

Special hook for handling Azure Repos notifications and automatically
updating matching components.

See also

	Automatically receiving changes from Azure Repos
	For instruction on setting up Azure integration

	https://docs.microsoft.com/en-us/azure/devops/service-hooks/services/webhooks?view=azure-devops
	Generic information about Azure Repos Web Hooks

	ENABLE_HOOKS
	For enabling hooks for whole Weblate

	
POST /hooks/gitea/

	
New in version 3.9.

Special hook for handling Gitea Webhook notifications and automatically
updating matching components.

See also

	Automatically receiving changes from Gitea Repos
	For instruction on setting up Gitea integration

	https://docs.gitea.io/en-us/webhooks/
	Generic information about Gitea Webhooks

	ENABLE_HOOKS
	For enabling hooks for whole Weblate

	
POST /hooks/gitee/

	
New in version 3.9.

Special hook for handling Gitee Webhook notifications and automatically
updating matching components.

See also

	Automatically receiving changes from Gitee Repos
	For instruction on setting up Gitee integration

	https://gitee.com/help/categories/40
	Generic information about Gitee Webhooks

	ENABLE_HOOKS
	For enabling hooks for whole Weblate

Exports

Weblate provides various exports to allow you to further process the data.

	
GET /exports/stats/(string: project)/(string: component)/

	
	Query Parameters

	
	format (string) – Output format: either json or csv

Deprecated since version 2.6: Please use GET /api/components/(string:project)/(string:component)/statistics/
and GET /api/translations/(string:project)/(string:component)/(string:language)/statistics/
instead; it allows access to ACL controlled projects as well.

Retrieves statistics for given component in given format.

Example request:

GET /exports/stats/weblate/master/ HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

[
 {
 "code": "cs",
 "failing": 0,
 "failing_percent": 0.0,
 "fuzzy": 0,
 "fuzzy_percent": 0.0,
 "last_author": "Michal Čihař",
 "last_change": "2012-03-28T15:07:38+00:00",
 "name": "Czech",
 "total": 436,
 "total_words": 15271,
 "translated": 436,
 "translated_percent": 100.0,
 "translated_words": 3201,
 "url": "http://hosted.weblate.org/engage/weblate/cs/",
 "url_translate": "http://hosted.weblate.org/projects/weblate/master/cs/"
 },
 {
 "code": "nl",
 "failing": 21,
 "failing_percent": 4.8,
 "fuzzy": 11,
 "fuzzy_percent": 2.5,
 "last_author": null,
 "last_change": null,
 "name": "Dutch",
 "total": 436,
 "total_words": 15271,
 "translated": 319,
 "translated_percent": 73.2,
 "translated_words": 3201,
 "url": "http://hosted.weblate.org/engage/weblate/nl/",
 "url_translate": "http://hosted.weblate.org/projects/weblate/master/nl/"
 },
 {
 "code": "el",
 "failing": 11,
 "failing_percent": 2.5,
 "fuzzy": 21,
 "fuzzy_percent": 4.8,
 "last_author": null,
 "last_change": null,
 "name": "Greek",
 "total": 436,
 "total_words": 15271,
 "translated": 312,
 "translated_percent": 71.6,
 "translated_words": 3201,
 "url": "http://hosted.weblate.org/engage/weblate/el/",
 "url_translate": "http://hosted.weblate.org/projects/weblate/master/el/"
 }
]

RSS feeds

Changes in translations are exported in RSS feeds.

	
GET /exports/rss/(string: project)/(string: component)/(string: language)/

	Retrieves RSS feed with recent changes for a translation.

	
GET /exports/rss/(string: project)/(string: component)/

	Retrieves RSS feed with recent changes for a component.

	
GET /exports/rss/(string: project)/

	Retrieves RSS feed with recent changes for a project.

	
GET /exports/rss/language/(string: language)/

	Retrieves RSS feed with recent changes for a language.

	
GET /exports/rss/

	Retrieves RSS feed with recent changes for Weblate instance.

See also

RSS on wikipedia [https://en.wikipedia.org/wiki/RSS]

Weblate Client

New in version 2.7: There has been full wlc utility support ever since Weblate 2.7. If you are using an older version
some incompatibilities with the API might occur.

Installation

The Weblate Client is shipped separately and includes the Python module.
To use the commands below, you need to install wlc:

pip3 install wlc

Docker usage

The Weblate Client is also available as a Docker image.

The image is published on Docker Hub: https://hub.docker.com/r/weblate/wlc

Installing:

docker pull weblate/wlc

The Docker container uses Weblate’s default settings and connects to the API
deployed in localhost. The API URL and API_KEY can be configured through the
arguments accepted by Weblate.

The command to launch the container uses the following syntax:

docker run --rm weblate/wlc [WLC_ARGS]

Example:

docker run --rm weblate/wlc --url https://hosted.weblate.org/api/ list-projects

You might want to pass your Configuration files to the Docker container, the
easiest approach is to add your current directory as /home/weblate
volume:

docker run --volume $PWD:/home/weblate --rm weblate/wlc show

Getting started

The wlc configuration is stored in ~/.config/weblate (see Configuration files
for other locations), please create it to match your environment:

[weblate]
url = https://hosted.weblate.org/api/

[keys]
https://hosted.weblate.org/api/ = APIKEY

You can then invoke commands on the default server:

wlc ls
wlc commit sandbox/hello-world

See also

Configuration files

Synopsis

wlc [arguments] <command> [options]

Commands actually indicate which operation should be performed.

Description

Weblate Client is a Python library and command-line utility to manage Weblate remotely
using API [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/api/index.html#api]. The command-line utility can be invoked as wlc and is
built-in on wlc.

Arguments

The program accepts the following arguments which define output format or which
Weblate instance to use. These must be entered before any command.

	
--format {csv,json,text,html}

	Specify the output format.

	
--url URL

	Specify the API URL. Overrides any value found in the configuration file, see Configuration files.
The URL should end with /api/, for example https://hosted.weblate.org/api/.

	
--key KEY

	Specify the API user key to use. Overrides any value found in the configuration file, see Configuration files.
You can find your key in your profile on Weblate.

	
--config PATH

	Overrides the configuration file path, see Configuration files.

	
--config-section SECTION

	Overrides configuration file section in use, see Configuration files.

Commands

The following commands are available:

	
version

	Prints the current version.

	
list-languages

	Lists used languages in Weblate.

	
list-projects

	Lists projects in Weblate.

	
list-components

	Lists components in Weblate.

	
list-translations

	Lists translations in Weblate.

	
show

	Shows Weblate object (translation, component or project).

	
ls

	Lists Weblate object (translation, component or project).

	
commit

	Commits changes made in a Weblate object (translation, component or project).

	
pull

	Pulls remote repository changes into Weblate object (translation, component or project).

	
push

	Pushes Weblate object changes into remote repository (translation, component or project).

	
reset

	
New in version 0.7: Supported since wlc 0.7.

Resets changes in Weblate object to match remote repository (translation, component or project).

	
cleanup

	
New in version 0.9: Supported since wlc 0.9.

Removes any untracked changes in a Weblate object to match the remote repository (translation, component or project).

	
repo

	Displays repository status for a given Weblate object (translation, component or project).

	
statistics

	Displays detailed statistics for a given Weblate object (translation, component or project).

	
lock-status

	
New in version 0.5: Supported since wlc 0.5.

Displays lock status.

	
lock

	
New in version 0.5: Supported since wlc 0.5.

Locks component from further translation in Weblate.

	
unlock

	
New in version 0.5: Supported since wlc 0.5.

Unlocks translation of Weblate component.

	
changes

	
New in version 0.7: Supported since wlc 0.7 and Weblate 2.10.

Displays changes for a given object.

	
download

	
New in version 0.7: Supported since wlc 0.7.

Downloads a translation file.

	
--convert

	Converts file format, if unspecified no conversion happens on the server
and the file is downloaded as is to the repository.

	
--output

	Specifies file to save output in, if left unspecified it is printed to stdout.

	
upload

	
New in version 0.9: Supported since wlc 0.9.

Uploads a translation file.

	
--overwrite

	Overwrite existing translations upon uploading.

	
--input

	File from which content is read, if left unspecified it is read from stdin.

Hint

You can get more detailed information on invoking individual commands by
passing --help, for example: wlc ls --help.

Configuration files

	.weblate, .weblate.ini, weblate.ini
	
Changed in version 1.6: The files with .ini extension are accepted as well.

Per project configuration file

	C:\Users\NAME\AppData\weblate.ini
	
New in version 1.6.

User configuration file on Windows.

	~/.config/weblate
	User configuration file

	/etc/xdg/weblate
	System wide configuration file

The program follows the XDG specification, so you can adjust placement of config files
by environment variables XDG_CONFIG_HOME or XDG_CONFIG_DIRS. On Windows
APPDATA directory is preferred location for the configuration file.

Following settings can be configured in the [weblate] section (you can
customize this by --config-section):

	
key

	API KEY to access Weblate.

	
url

	API server URL, defaults to http://127.0.0.1:8000/api/.

	
translation

	Path to the default translation - component or project.

The configuration file is an INI file, for example:

[weblate]
url = https://hosted.weblate.org/api/
key = APIKEY
translation = weblate/master

Additionally API keys can be stored in the [keys] section:

[keys]
https://hosted.weblate.org/api/ = APIKEY

This allows you to store keys in your personal settings, while using the
.weblate configuration in the VCS repository so that wlc knows which
server it should talk to.

Examples

Print current program version:

$ wlc version
version: 0.1

List all projects:

$ wlc list-projects
name: Hello
slug: hello
url: http://example.com/api/projects/hello/
web: https://weblate.org/
web_url: http://example.com/projects/hello/

You can also designate what project wlc should work on:

$ cat .weblate
[weblate]
url = https://hosted.weblate.org/api/
translation = weblate/master

$ wlc show
branch: master
file_format: po
source_language: en
filemask: weblate/locale/*/LC_MESSAGES/django.po
git_export: https://hosted.weblate.org/git/weblate/master/
license: GPL-3.0+
license_url: https://spdx.org/licenses/GPL-3.0+
name: master
new_base: weblate/locale/django.pot
project: weblate
repo: git://github.com/WeblateOrg/weblate.git
slug: master
template:
url: https://hosted.weblate.org/api/components/weblate/master/
vcs: git
web_url: https://hosted.weblate.org/projects/weblate/master/

With this setup it is easy to commit pending changes in the current project:

$ wlc commit

Weblate’s Python API

Installation

The Python API is shipped separately, you need to install the
Weblate Client: (wlc) to have it.

pip install wlc

wlc

WeblateException

	
exception wlc.WeblateException

	Base class for all exceptions.

Weblate

	
class wlc.Weblate(key='', url=None, config=None)

	
	Parameters

	
	key (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – User key

	url (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – API server URL, if not specified default is used

	config (wlc.config.WeblateConfig) – Configuration object, overrides any other parameters.

Access class to the API, define API key and optionally API URL.

	
get(path)

	
	Parameters

	path (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – Request path

	Return type

	object [https://docs.python.org/3.7/library/functions.html#object]

Performs a single API GET call.

	
post(path, **kwargs)

	
	Parameters

	path (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – Request path

	Return type

	object [https://docs.python.org/3.7/library/functions.html#object]

Performs a single API GET call.

wlc.config

WeblateConfig

	
class wlc.config.WeblateConfig(section='wlc')

	
	Parameters

	section (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – Configuration section to use

Configuration file parser following XDG specification.

	
load(path=None)

	
	Parameters

	path (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – Path from which to load configuration.

Loads configuration from a file, if none is specified, it loads from
the wlc configuration file (~/.config/wlc) placed in your
XDG configuration path (/etc/xdg/wlc).

wlc.main

	
wlc.main.main(settings=None, stdout=None, args=None)

	
	Parameters

	
	settings (list [https://docs.python.org/3.7/library/stdtypes.html#list]) – Settings to override as list of tuples

	stdout (object [https://docs.python.org/3.7/library/functions.html#object]) – stdout file object for printing output, uses sys.stdout as default

	args (list [https://docs.python.org/3.7/library/stdtypes.html#list]) – Command-line arguments to process, uses sys.args as default

Main entry point for command-line interface.

	
@wlc.main.register_command(command)

	Decorator to register Command class in main parser used by
main().

Command

	
class wlc.main.Command(args, config, stdout=None)

	Main class for invoking commands.

Configuration instructions

Installing Weblate

Depending on your setup and experience, choose an appropriate installation method for you:

	Installing using Docker, recommended for production setups.

	Virtualenv installation, recommended for production setups:

	Installing on Debian and Ubuntu

	Installing on SUSE and openSUSE

	Installing on RedHat, Fedora and CentOS

	Installing on macOS

	Installing from sources, recommended for development.

	Installing on OpenShift

	Installing on Kubernetes

Software requirements

Operating system

Weblate is known to work on Linux, FreeBSD and macOS. Other Unix like systems
will most likely work too.

Weblate is not supported on Windows. But it may still work and patches are
happily accepted.

Other services

Weblate is using other services for its operation. You will need at least
following services running:

	PostgreSQL database server, see Database setup for Weblate.

	Redis server for cache and tasks queue, see Background tasks using Celery.

	SMTP server for outgoing e-mail, see Configuring outgoing e-mail.

Python dependencies

Weblate is written in Python [https://www.python.org/] and supports Python
3.6 or newer. You can install dependencies using pip or from your
distribution packages, full list is available in requirements.txt.

Most notable dependencies:

	Django
	https://www.djangoproject.com/

	Celery
	https://docs.celeryproject.org/

	Translate Toolkit
	https://toolkit.translatehouse.org/

	translation-finder
	https://github.com/WeblateOrg/translation-finder

	Python Social Auth
	https://python-social-auth.readthedocs.io/

	Django REST Framework
	https://www.django-rest-framework.org/

Optional dependencies

Following modules are necessary for some Weblate features. You can find all
of them in requirements-optional.txt.

	Mercurial (optional for Mercurial repositories support)
	https://www.mercurial-scm.org/

	phply (optional for PHP support)
	https://github.com/viraptor/phply

	tesserocr (optional for screenshots OCR)
	https://github.com/sirfz/tesserocr

	akismet (optional for suggestion spam protection)
	https://github.com/ubernostrum/akismet

	ruamel.yaml (optional for YAML files)
	https://pypi.org/project/ruamel.yaml/

	Zeep (optional for Microsoft Terminology Service)
	https://docs.python-zeep.org/

	aeidon (optional for Subtitle files)
	https://pypi.org/project/aeidon/

Database backend dependencies

Weblate supports PostgreSQL, MySQL and MariaDB, see Database setup for Weblate and
backends documentation for more details.

Other system requirements

The following dependencies have to be installed on the system:

	Git
	https://git-scm.com/

	Pango, Cairo and related header files and gir introspection data
	https://cairographics.org/, https://pango.gnome.org/, see Pango and Cairo

	git-review (optional for Gerrit support)
	https://pypi.org/project/git-review/

	git-svn (optional for Subversion support)
	https://git-scm.com/docs/git-svn

	tesseract and its data (optional for screenshots OCR)
	https://github.com/tesseract-ocr/tesseract

	licensee (optional for detecting license when creating component)
	https://github.com/licensee/licensee

Build-time dependencies

To build some of the Python dependencies you might need to install their
dependencies. This depends on how you install them, so please consult
individual packages for documentation. You won’t need those if using prebuilt
Wheels while installing using pip or when you use distribution packages.

Pango and Cairo

Changed in version 3.7.

Weblate uses Pango and Cairo for rendering bitmap widgets (see
Promoting the translation) and rendering checks (see Managing fonts). To properly install
Python bindings for those you need to install system libraries first - you need
both Cairo and Pango, which in turn need GLib. All those should be installed
with development files and GObject introspection data.

Verifying release signatures

Weblate release are cryptographically signed by the releasing developer.
Currently this is Michal Čihař. Fingerprint of his PGP key is:

63CB 1DF1 EF12 CF2A C0EE 5A32 9C27 B313 42B7 511D

and you can get more identification information from <https://keybase.io/nijel>.

You should verify that the signature matches the archive you have downloaded.
This way you can be sure that you are using the same code that was released.
You should also verify the date of the signature to make sure that you
downloaded the latest version.

Each archive is accompanied with .asc files which contain the PGP signature
for it. Once you have both of them in the same folder, you can verify the signature:

$ gpg --verify Weblate-3.5.tar.xz.asc
gpg: assuming signed data in 'Weblate-3.5.tar.xz'
gpg: Signature made Ne 3. března 2019, 16:43:15 CET
gpg: using RSA key 87E673AF83F6C3A0C344C8C3F4AA229D4D58C245
gpg: Can't check signature: public key not found

As you can see GPG complains that it does not know the public key. At this
point you should do one of the following steps:

	Use wkd to download the key:

$ gpg --auto-key-locate wkd --locate-keys michal@cihar.com
pub rsa4096 2009-06-17 [SC]
 63CB1DF1EF12CF2AC0EE5A329C27B31342B7511D
uid [ultimate] Michal Čihař <michal@cihar.com>
uid [ultimate] Michal Čihař <nijel@debian.org>
uid [ultimate] [jpeg image of size 8848]
uid [ultimate] Michal Čihař (Braiins) <michal.cihar@braiins.cz>
sub rsa4096 2009-06-17 [E]
sub rsa4096 2015-09-09 [S]

	Download the keyring from Michal’s server [https://cihar.com/.well-known/openpgpkey/hu/wmxth3chu9jfxdxywj1skpmhsj311mzm], then import it with:

$ gpg --import wmxth3chu9jfxdxywj1skpmhsj311mzm

	Download and import the key from one of the key servers:

$ gpg --keyserver hkp://pgp.mit.edu --recv-keys 87E673AF83F6C3A0C344C8C3F4AA229D4D58C245
gpg: key 9C27B31342B7511D: "Michal Čihař <michal@cihar.com>" imported
gpg: Total number processed: 1
gpg: unchanged: 1

This will improve the situation a bit - at this point you can verify that the
signature from the given key is correct but you still can not trust the name used
in the key:

$ gpg --verify Weblate-3.5.tar.xz.asc
gpg: assuming signed data in 'Weblate-3.5.tar.xz'
gpg: Signature made Ne 3. března 2019, 16:43:15 CET
gpg: using RSA key 87E673AF83F6C3A0C344C8C3F4AA229D4D58C245
gpg: Good signature from "Michal Čihař <michal@cihar.com>" [ultimate]
gpg: aka "Michal Čihař <nijel@debian.org>" [ultimate]
gpg: aka "[jpeg image of size 8848]" [ultimate]
gpg: aka "Michal Čihař (Braiins) <michal.cihar@braiins.cz>" [ultimate]
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: 63CB 1DF1 EF12 CF2A C0EE 5A32 9C27 B313 42B7 511D

The problem here is that anybody could issue the key with this name. You need to
ensure that the key is actually owned by the mentioned person. The GNU Privacy
Handbook covers this topic in the chapter Validating other keys on your public
keyring [https://www.gnupg.org/gph/en/manual.html#AEN335]. The most reliable method is to meet the developer in person and
exchange key fingerprints, however you can also rely on the web of trust. This way
you can trust the key transitively though signatures of others, who have met
the developer in person.

Once the key is trusted, the warning will not occur:

$ gpg --verify Weblate-3.5.tar.xz.asc
gpg: assuming signed data in 'Weblate-3.5.tar.xz'
gpg: Signature made Sun Mar 3 16:43:15 2019 CET
gpg: using RSA key 87E673AF83F6C3A0C344C8C3F4AA229D4D58C245
gpg: Good signature from "Michal Čihař <michal@cihar.com>" [ultimate]
gpg: aka "Michal Čihař <nijel@debian.org>" [ultimate]
gpg: aka "[jpeg image of size 8848]" [ultimate]
gpg: aka "Michal Čihař (Braiins) <michal.cihar@braiins.cz>" [ultimate]

Should the signature be invalid (the archive has been changed), you would get a
clear error regardless of the fact that the key is trusted or not:

$ gpg --verify Weblate-3.5.tar.xz.asc
gpg: Signature made Sun Mar 3 16:43:15 2019 CET
gpg: using RSA key 87E673AF83F6C3A0C344C8C3F4AA229D4D58C245
gpg: BAD signature from "Michal Čihař <michal@cihar.com>" [ultimate]

Filesystem permissions

The Weblate process needs to be able to read and write to the directory where
it keeps data - DATA_DIR. All files within this directory should be
owned and writable by the user running all Weblate processes (typically WSGI and Celery, see Running server and Background tasks using Celery).

The default configuration places them in the same tree as the Weblate sources, however
you might prefer to move these to a better location such as:
/var/lib/weblate.

Weblate tries to create these directories automatically, but it will fail
when it does not have permissions to do so.

You should also take care when running Management commands, as they should be ran
under the same user as Weblate itself is running, otherwise permissions on some
files might be wrong.

In the Docker container, all files in the /app/data volume have to be
owned by weblate user inside the container (UID 1000).

See also

Serving static files

Database setup for Weblate

It is recommended to run Weblate with a PostgreSQL database server.

See also

Use a powerful database engine,
Databases [https://docs.djangoproject.com/en/stable/ref/databases/],
Migrating from other databases to PostgreSQL

PostgreSQL

PostgreSQL is usually the best choice for Django-based sites. It’s the reference
database used for implementing Django database layer.

Note

Weblate uses trigram extension which has to be installed separately in some
cases. Look for postgresql-contrib or a similarly named package.

See also

PostgreSQL notes [https://docs.djangoproject.com/en/stable/ref/databases/#postgresql-notes]

Creating a database in PostgreSQL

It is usually a good idea to run Weblate in a separate database, and separate user account:

If PostgreSQL was not installed before, set the main password
sudo -u postgres psql postgres -c "\password postgres"

Create a database user called "weblate"
sudo -u postgres createuser --superuser --pwprompt weblate

Create the database "weblate" owned by "weblate"
sudo -u postgres createdb -O weblate weblate

Hint

If you don’t want to make the Weblate user a superuser in PostgreSQL, you can
omit that. In that case you will have to perform some of the migration steps
manually as a PostgreSQL superuser in schema Weblate will use:

CREATE EXTENSION IF NOT EXISTS pg_trgm WITH SCHEMA weblate;

Configuring Weblate to use PostgreSQL

The settings.py snippet for PostgreSQL:

DATABASES = {
 "default": {
 # Database engine
 "ENGINE": "django.db.backends.postgresql",
 # Database name
 "NAME": "weblate",
 # Database user
 "USER": "weblate",
 # Name of role to alter to set parameters in PostgreSQL,
 # use in case role name is different than user used for authentication.
 # "ALTER_ROLE": "weblate",
 # Database password
 "PASSWORD": "password",
 # Set to empty string for localhost
 "HOST": "database.example.com",
 # Set to empty string for default
 "PORT": "",
 }
}

The database migration performs ALTER ROLE [https://www.postgresql.org/docs/12/sql-alterrole.html] on database role used
by Weblate. In most cases the name of the role matches username. In more
complex setups the role name is different than username and you will get error
about non-existing role during the database migration
(psycopg2.errors.UndefinedObject: role "weblate@hostname" does not exist).
This is known to happen with Azure Database for PostgreSQL, but it’s not
limited to this environment. Please set ALTER_ROLE to change name of the
role Weblate should alter during the database migration.

MySQL and MariaDB

Hint

Some Weblate features will perform better with PostgreSQL. This
includes searching and translation memory, which both utilize full-text
features in the database and PostgreSQL implementation is superior.

Weblate can be also used with MySQL or MariaDB, please see
MySQL notes [https://docs.djangoproject.com/en/stable/ref/databases/#mysql-notes] and MariaDB notes [https://docs.djangoproject.com/en/stable/ref/databases/#mariadb-notes] for caveats using
Django with those. Because of the limitations it is recommended to use
PostgreSQL for new installations.

Weblate requires MySQL at least 5.7.8 or MariaDB at least 10.2.7.

Following configuration is recommended for Weblate:

	Use the utf8mb4 charset to allow representation of higher Unicode planes (for example emojis).

	Configure the server with innodb_large_prefix to allow longer indices on text fields.

	Set the isolation level to READ COMMITTED.

	The SQL mode should be set to STRICT_TRANS_TABLES.

Below is an example /etc/my.cnf.d/server.cnf for a server with 8 GB of
RAM. These settings should be sufficient for most installs. MySQL and MariaDB
have tunables that will increase the performance of your server that are
considered not necessary unless you are planning on having large numbers of
concurrent users accessing the system. See the various vendors documentation on
those details.

It is absolutely critical to reduce issues when installing that the setting
innodb_file_per_table is set properly and MySQL/MariaDB restarted before
you start your Weblate install.

[mysqld]
character-set-server = utf8mb4
character-set-client = utf8mb4
collation-server = utf8mb4_unicode_ci

datadir=/var/lib/mysql

log-error=/var/log/mariadb/mariadb.log

innodb_large_prefix=1
innodb_file_format=Barracuda
innodb_file_per_table=1
innodb_buffer_pool_size=2G
sql_mode=STRICT_TRANS_TABLES

Hint

In case you are getting #1071 - Specified key was too long; max key length
is 767 bytes error, please update your configuration to include the innodb
settings above and restart your install.

Hint

In case you are getting #2006 - MySQL server has gone away error,
configuring CONN_MAX_AGE [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-CONN_MAX_AGE] might help.

Configuring Weblate to use MySQL/MariaDB

The settings.py snippet for MySQL and MariaDB:

DATABASES = {
 "default": {
 # Database engine
 "ENGINE": "django.db.backends.mysql",
 # Database name
 "NAME": "weblate",
 # Database user
 "USER": "weblate",
 # Database password
 "PASSWORD": "password",
 # Set to empty string for localhost
 "HOST": "127.0.0.1",
 # Set to empty string for default
 "PORT": "3306",
 # In case you wish to use additional
 # connection options
 "OPTIONS": {},
 }
}

You should also create the weblate user account in MySQL or MariaDB before
you begin the install. Use the commands below to achieve that:

GRANT ALL ON weblate.* to 'weblate'@'localhost' IDENTIFIED BY 'password';
FLUSH PRIVILEGES;

Other configurations

Configuring outgoing e-mail

Weblate sends out e-mails on various occasions - for account activation and on
various notifications configured by users. For this it needs access to an SMTP
server.

The mail server setup is configured using these settings:
EMAIL_HOST [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_HOST], EMAIL_HOST_PASSWORD [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_HOST_PASSWORD],
EMAIL_USE_TLS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_USE_TLS], EMAIL_USE_SSL [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_USE_SSL],
EMAIL_HOST_USER [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_HOST_USER] and EMAIL_PORT [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_PORT]. Their
names are quite self-explanatory, but you can find more info in the
Django documentation.

Hint

In case you get error about not supported authentication (for example
SMTP AUTH extension not supported by server), it is most likely caused
by using insecure connection and server refuses to authenticate this way.
Try enabling EMAIL_USE_TLS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_USE_TLS] in such case.

See also

Not receiving e-mails from Weblate,
Configuring outgoing e-mail in Docker container

Running behind reverse proxy

Several features in Weblate rely on being able to get client IP address. This
includes Rate limiting, Spam protection or Audit log.

In default configuration Weblate parses IP address from REMOTE_ADDR which
is set by the WSGI handler.

In case you are running a reverse proxy, this field will most likely contain
its address. You need to configure Weblate to trust additional HTTP headers and
parse the IP address from these. This can not be enabled by default as it would
allow IP address spoofing for installations not using a reverse proxy. Enabling
IP_BEHIND_REVERSE_PROXY might be enough for the most usual setups,
but you might need to adjust IP_PROXY_HEADER and
IP_PROXY_OFFSET as well.

See also

Spam protection,
Rate limiting,
Audit log,
IP_BEHIND_REVERSE_PROXY,
IP_PROXY_HEADER,
IP_PROXY_OFFSET,
SECURE_PROXY_SSL_HEADER [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECURE_PROXY_SSL_HEADER]

HTTP proxy

Weblate does execute VCS commands and those accept proxy configuration from
environment. The recommended approach is to define proxy settings in
settings.py:

import os

os.environ["http_proxy"] = "http://proxy.example.com:8080"
os.environ["HTTPS_PROXY"] = "http://proxy.example.com:8080"

See also

Proxy Environment Variables [https://ec.haxx.se/usingcurl/usingcurl-proxies#proxy-environment-variables]

Adjusting configuration

See also

Sample configuration

Copy weblate/settings_example.py to weblate/settings.py and
adjust it to match your setup. You will probably want to adjust the following
options:

ADMINS

List of site administrators to receive notifications when something goes
wrong, for example notifications on failed merges, or Django errors.

See also

ADMINS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-ADMINS]

ALLOWED_HOSTS

You need to set this to list the hosts your site is supposed to serve. For
example:

ALLOWED_HOSTS = ["demo.weblate.org"]

Alternatively you can include wildcard:

ALLOWED_HOSTS = ["*"]

See also

ALLOWED_HOSTS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-ALLOWED_HOSTS],
WEBLATE_ALLOWED_HOSTS,
Allowed hosts setup

SESSION_ENGINE

Configure how your sessions will be stored. In case you keep the default
database backend engine, you should schedule:
weblate clearsessions to remove stale session data from the
database.

If you are using Redis as cache (see Enable caching) it is
recommended to use it for sessions as well:

SESSION_ENGINE = "django.contrib.sessions.backends.cache"

See also

Configuring the session engine [https://docs.djangoproject.com/en/stable/topics/http/sessions/#configuring-sessions],
SESSION_ENGINE [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SESSION_ENGINE]

DATABASES

Connectivity to database server, please check Django’s documentation for more
details.

See also

Database setup for Weblate,
DATABASES [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DATABASES],
Databases [https://docs.djangoproject.com/en/stable/ref/databases/]

DEBUG

Disable this for any production server. With debug mode enabled, Django will
show backtraces in case of error to users, when you disable it, errors will
be sent per e-mail to ADMINS (see above).

Debug mode also slows down Weblate, as Django stores much more info
internally in this case.

See also

DEBUG [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DEBUG]

DEFAULT_FROM_EMAIL

E-mail sender address for outgoing e-mail, for example registration e-mails.

See also

DEFAULT_FROM_EMAIL [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DEFAULT_FROM_EMAIL]

SECRET_KEY

Key used by Django to sign some info in cookies, see
Django secret key for more info.

See also

SECRET_KEY [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECRET_KEY]

SERVER_EMAIL

E-mail used as sender address for sending e-mails to the administrator, for
example notifications on failed merges.

See also

SERVER_EMAIL [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SERVER_EMAIL]

Filling up the database

After your configuration is ready, you can run
weblate migrate to create the database structure. Now you should be
able to create translation projects using the admin interface.

In case you want to run an installation non interactively, you can use
weblate migrate --noinput, and then create an admin user using
createadmin command.

Once you are done, you should also check the Performance report in the
admin interface, which will give you hints of potential non optimal configuration on your
site.

See also

Configuration,
Access control

Production setup

For a production setup you should carry out adjustments described in the following sections.
The most critical settings will trigger a warning, which is indicated by an
exclamation mark in the top bar if signed in as a superuser:

[image: ../_images/admin-wrench.png]
It is also recommended to inspect checks triggered by Django (though you might not
need to fix all of them):

weblate check --deploy

You can also review the very same checklist from the Management interface.

See also

Deployment checklist [https://docs.djangoproject.com/en/stable/howto/deployment/checklist/]

Disable debug mode

Disable Django’s debug mode (DEBUG) by:

DEBUG = False

With debug mode on, Django stores all executed queries and shows users backtraces
of errors, which is not desired in a production setup.

See also

Adjusting configuration

Properly configure admins

Set the correct admin addresses to the ADMINS setting to defining who will receive
e-mails in case something goes wrong on the server, for example:

ADMINS = (("Your Name", "your_email@example.com"),)

See also

Adjusting configuration

Set correct site domain

Adjust site name and domain in the admin interface, otherwise links in RSS or
registration e-mails will not work. This is configured using
SITE_DOMAIN which should contain site domain name.

Changed in version 4.2: Prior to the 4.2 release the Django sites framework was used instead, please
see The “sites” framework [https://docs.djangoproject.com/en/stable/ref/contrib/sites/].

See also

Allowed hosts setup,
Correctly configure HTTPS
SITE_DOMAIN,
WEBLATE_SITE_DOMAIN,
ENABLE_HTTPS

Correctly configure HTTPS

It is strongly recommended to run Weblate using the encrypted HTTPS protocol.
After enabling it, you should set ENABLE_HTTPS in the settings:

ENABLE_HTTPS = True

Hint

You might want to set up HSTS as well, see
SSL/HTTPS [https://docs.djangoproject.com/en/stable/topics/security/#security-recommendation-ssl] for more details.

See also

ENABLE_HTTPS,
Allowed hosts setup,
Set correct site domain

Set properly SECURE_HSTS_SECONDS

If your site is served over SSL, you have to consider setting a value for SECURE_HSTS_SECONDS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECURE_HSTS_SECONDS]
in the settings.py to enable HTTP Strict Transport Security.
By default it’s set to 0 as shown below.

SECURE_HSTS_SECONDS = 0

If set to a non-zero integer value, the django.middleware.security.SecurityMiddleware [https://docs.djangoproject.com/en/stable/ref/middleware/#django.middleware.security.SecurityMiddleware]
sets the HTTP Strict Transport Security [https://docs.djangoproject.com/en/stable/ref/middleware/#http-strict-transport-security] header on all responses that do not already have it.

Warning

Setting this incorrectly can irreversibly (for some time) break your site. Read the
HTTP Strict Transport Security [https://docs.djangoproject.com/en/stable/ref/middleware/#http-strict-transport-security] documentation first.

Use a powerful database engine

Please use PostgreSQL for a production environment, see Database setup for Weblate
for more info.

See also

Database setup for Weblate,
Migrating from other databases to PostgreSQL,
Adjusting configuration,
Databases [https://docs.djangoproject.com/en/stable/ref/databases/]

Enable caching

If possible, use Redis from Django by adjusting the CACHES configuration
variable, for example:

CACHES = {
 "default": {
 "BACKEND": "django_redis.cache.RedisCache",
 "LOCATION": "redis://127.0.0.1:6379/0",
 # If redis is running on same host as Weblate, you might
 # want to use unix sockets instead:
 # 'LOCATION': 'unix:///var/run/redis/redis.sock?db=0',
 "OPTIONS": {
 "CLIENT_CLASS": "django_redis.client.DefaultClient",
 "PARSER_CLASS": "redis.connection.HiredisParser",
 },
 }
}

Hint

In case you change Redis settings for the cache, you might need to adjust
them for Celery as well, see Background tasks using Celery.

See also

Avatar caching,
Django’s cache framework [https://docs.djangoproject.com/en/stable/topics/cache/]

Avatar caching

In addition to caching of Django, Weblate performs caching of avatars. It is
recommended to use a separate, file-backed cache for this purpose:

CACHES = {
 "default": {
 # Default caching backend setup, see above
 "BACKEND": "django_redis.cache.RedisCache",
 "LOCATION": "unix:///var/run/redis/redis.sock?db=0",
 "OPTIONS": {
 "CLIENT_CLASS": "django_redis.client.DefaultClient",
 "PARSER_CLASS": "redis.connection.HiredisParser",
 },
 },
 "avatar": {
 "BACKEND": "django.core.cache.backends.filebased.FileBasedCache",
 "LOCATION": os.path.join(DATA_DIR, "avatar-cache"),
 "TIMEOUT": 604800,
 "OPTIONS": {
 "MAX_ENTRIES": 1000,
 },
 },
}

See also

ENABLE_AVATARS,
AVATAR_URL_PREFIX,
Avatars,
Enable caching,
Django’s cache framework [https://docs.djangoproject.com/en/stable/topics/cache/]

Configure e-mail sending

Weblate needs to send out e-mails on several occasions, and these e-mails should
have a correct sender address, please configure SERVER_EMAIL and
DEFAULT_FROM_EMAIL to match your environment, for example:

SERVER_EMAIL = "admin@example.org"
DEFAULT_FROM_EMAIL = "weblate@example.org"

Note

To disable sending e-mails by Weblate set EMAIL_BACKEND [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_BACKEND]
to django.core.mail.backends.dummy.EmailBackend.

This will disable all e-mail delivery including registration or password
reset e-mails.

See also

Adjusting configuration,
Configuring outgoing e-mail,
EMAIL_BACKEND [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_BACKEND],
DEFAULT_FROM_EMAIL [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DEFAULT_FROM_EMAIL],
SERVER_EMAIL [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SERVER_EMAIL]

Allowed hosts setup

Django requires ALLOWED_HOSTS to hold a list of domain names
your site is allowed to serve, leaving it empty will block any requests.

In case this is not configured to match your HTTP server, you will get errors
like Invalid HTTP_HOST header: '1.1.1.1'. You may need to add '1.1.1.1'
to ALLOWED_HOSTS.

Hint

On Docker container, this is available as WEBLATE_ALLOWED_HOSTS.

See also

ALLOWED_HOSTS,
WEBLATE_ALLOWED_HOSTS,
Set correct site domain

Django secret key

The SECRET_KEY setting is used by Django to sign cookies, and you should
really generate your own value rather than using the one from the example setup.

You can generate a new key using weblate/examples/generate-secret-key shipped
with Weblate.

See also

SECRET_KEY

Home directory

Changed in version 2.1: This is no longer required, Weblate now stores all its data in
DATA_DIR.

The home directory for the user running Weblate should exist and be
writable by this user. This is especially needed if you want to use SSH to
access private repositories, but Git might need to access this directory as
well (depending on the Git version you use).

You can change the directory used by Weblate in settings.py, for
example to set it to configuration directory under the Weblate tree:

os.environ["HOME"] = os.path.join(BASE_DIR, "configuration")

Note

On Linux, and other UNIX like systems, the path to user’s home directory is
defined in /etc/passwd. Many distributions default to a non-writable
directory for users used for serving web content (such as apache,
www-data or wwwrun), so you either have to run Weblate under
a different user, or change this setting.

See also

Accessing repositories

Template loading

It is recommended to use a cached template loader for Django. It caches parsed
templates and avoids the need to do parsing with every single request. You can
configure it using the following snippet (the loaders setting is important here):

TEMPLATES = [
 {
 "BACKEND": "django.template.backends.django.DjangoTemplates",
 "DIRS": [
 os.path.join(BASE_DIR, "templates"),
],
 "OPTIONS": {
 "context_processors": [
 "django.contrib.auth.context_processors.auth",
 "django.template.context_processors.debug",
 "django.template.context_processors.i18n",
 "django.template.context_processors.request",
 "django.template.context_processors.csrf",
 "django.contrib.messages.context_processors.messages",
 "weblate.trans.context_processors.weblate_context",
],
 "loaders": [
 (
 "django.template.loaders.cached.Loader",
 [
 "django.template.loaders.filesystem.Loader",
 "django.template.loaders.app_directories.Loader",
],
),
],
 },
 },
]

See also

django.template.loaders.cached.Loader [https://docs.djangoproject.com/en/stable/ref/templates/api/#django.template.loaders.cached.Loader]

Running maintenance tasks

For optimal performance, it is good idea to run some maintenance tasks in the
background. This is now automatically done by Background tasks using Celery and covers following tasks:

	Configuration health check (hourly).

	Committing pending changes (hourly), see Lazy commits and commit_pending.

	Updating component alerts (daily).

	Update remote branches (nightly), see AUTO_UPDATE.

	Translation memory backup to JSON (daily), see dump_memory.

	Fulltext and database maintenance tasks (daily and weekly tasks), see cleanuptrans.

Changed in version 3.2: Since version 3.2, the default way of executing these tasks is using Celery
and Weblate already comes with proper configuration, see Background tasks using Celery.

System locales and encoding

The system locales should be configured to UTF-8 capable ones. On most Linux
distributions this is the default setting. In case it is not the case on your
system, please change locales to UTF-8 variant.

For example by editing /etc/default/locale and setting there
LANG="C.UTF-8".

In some cases the individual services have separate configuration for locales.
For example when using Apache you might want to set it in /etc/apache2/envvars:

export LANG='en_US.UTF-8'
export LC_ALL='en_US.UTF-8'

Using custom certificate authority

Weblate does verify SSL certificates during HTTP requests. In case you are
using custom certificate authority which is not trusted in default bundles, you
will have to add its certificate as trusted.

The preferred approach is to do this at system level, please check your distro
documentation for more details (for example on debian this can be done by
placing the CA certificate into /usr/local/share/ca-certificates/ and
running update-ca-certificates).

Once this is done, system tools will trust the certificate and this includes
Git.

For Python code, you will need to configure requests to use system CA bundle
instead of the one shipped with it. This can be achieved by placing following
snippet to settings.py (the path is Debian specific):

import os

os.environ["REQUESTS_CA_BUNDLE"] = "/etc/ssl/certs/ca-certificates.crt"

Compressing client assets

Weblate comes with a bunch of JavaScript and CSS files. For performance reasons
it is good to compress them before sending to a client. In default
configuration this is done on the fly at cost of little overhead. On big
installations, it is recommended to enable offline compression mode. This needs
to be done in the configuration and the compression has to be triggered on
every Weblate upgrade.

The configuration switch is simple by enabling
django.conf.settings.COMPRESS_OFFLINE [https://django-compressor.readthedocs.io/en/stable/settings/#django.conf.settings.COMPRESS_OFFLINE] and configuring
django.conf.settings.COMPRESS_OFFLINE_CONTEXT [https://django-compressor.readthedocs.io/en/stable/settings/#django.conf.settings.COMPRESS_OFFLINE_CONTEXT] (the latter is
already included in the example configuration):

COMPRESS_OFFLINE = True

On each deploy you need to compress the files to match current version:

weblate compress

Hint

The official Docker image has this feature already enabled.

See also

Common Deployment Scenarios [https://django-compressor.readthedocs.io/en/stable/scenarios/#scenarios],
Serving static files

Running server

Hint

In case you are not experienced with services described below, you might want to try Installing using Docker.

You will need several services to run Weblate, the recommended setup consists of:

	Database server (see Database setup for Weblate)

	Cache server (see Enable caching)

	Frontend web server for static files and SSL termination (see Serving static files)

	WSGI server for dynamic content (see Sample configuration for NGINX and uWSGI)

	Celery for executing background tasks (see Background tasks using Celery)

Note

There are some dependencies between the services, for example cache and
database should be running when starting up Celery or uwsgi processes.

In most cases, you will run all services on single (virtual) server, but in
case your installation is heavy loaded, you can split up the services. The only
limitation on this is that Celery and Wsgi servers need access to
DATA_DIR.

Note

The WSGI process has to be executed under the same user the Celery
process, otherwise files in the DATA_DIR will be stored with
mixed ownership, leading to runtime issues.

See also Filesystem permissions and Background tasks using Celery.

Running web server

Running Weblate is not different from running any other Django based
program. Django is usually executed as uWSGI or fcgi (see examples for
different webservers below).

For testing purposes, you can use the built-in web server in Django:

weblate runserver

Warning

DO NOT USE THIS SERVER IN A PRODUCTION SETTING. It has not gone through
security audits or performance tests. See also Django documentation on
runserver [https://docs.djangoproject.com/en/stable/ref/django-admin/#django-admin-runserver].

Hint

The Django built-in server serves static files only with DEBUG
enabled as it is intended for development only. For production use, please
see wsgi setups in Sample configuration for NGINX and uWSGI, Sample configuration for Apache, Sample configuration for Apache and Gunicorn, and
Serving static files.

Serving static files

Changed in version 2.4: Prior to version 2.4, Weblate didn’t properly use the Django static files
framework and the setup was more complex.

Django needs to collect its static files in a single directory. To do so,
execute weblate collectstatic --noinput. This will copy the static
files into a directory specified by the STATIC_ROOT [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-STATIC_ROOT] setting (this defaults to
a static directory inside DATA_DIR).

It is recommended to serve static files directly from your web server, you should
use that for the following paths:

	/static/
	Serves static files for Weblate and the admin interface
(from defined by STATIC_ROOT).

	/media/
	Used for user media uploads (e.g. screenshots).

	/favicon.ico
	Should be rewritten to rewrite a rule to serve /static/favicon.ico.

See also

Sample configuration for NGINX and uWSGI,
Sample configuration for Apache,
Sample configuration for Apache and Gunicorn,
Compressing client assets,
Deploying Django [https://docs.djangoproject.com/en/stable/howto/deployment/],
Deploying static files [https://docs.djangoproject.com/en/stable/howto/static-files/deployment/]

Content security policy

The default Weblate configuration enables weblate.middleware.SecurityMiddleware
middleware which sets security related HTTP headers like Content-Security-Policy
or X-XSS-Protection. These are by default set up to work with Weblate and its
configuration, but this might need customization for your environment.

See also

CSP_SCRIPT_SRC,
CSP_IMG_SRC,
CSP_CONNECT_SRC,
CSP_STYLE_SRC,
CSP_FONT_SRC

Sample configuration for NGINX and uWSGI

To run production webserver, use the wsgi wrapper installed with Weblate (in
virtual env case it is installed as
~/weblate-env/lib/python3.7/site-packages/weblate/wsgi.py). Don’t
forget to set the Python search path to your virtualenv as well (for example
using virtualenv = /home/user/weblate-env in uWSGI).

The following configuration runs Weblate as uWSGI under the NGINX webserver.

Configuration for NGINX (also available as weblate/examples/weblate.nginx.conf):

This example assumes Weblate is installed in virtualenv in /home/weblate/weblate-env
and DATA_DIR is set to /home/weblate/data, please adjust paths to match your setup.
server {
 listen 80;
 server_name weblate;
 # Not used
 root /var/www/html;

 location ~ ^/favicon.ico$ {
 # DATA_DIR/static/favicon.ico
 alias /home/weblate/data/static/favicon.ico;
 expires 30d;
 }

 location /static/ {
 # DATA_DIR/static/
 alias /home/weblate/data/static/;
 expires 30d;
 }

 location /media/ {
 # DATA_DIR/media/
 alias /home/weblate/data/media/;
 expires 30d;
 }

 location / {
 include uwsgi_params;
 # Needed for long running operations in admin interface
 uwsgi_read_timeout 3600;
 # Adjust based to uwsgi configuration:
 uwsgi_pass unix:///run/uwsgi/app/weblate/socket;
 # uwsgi_pass 127.0.0.1:8080;
 }
}

Configuration for uWSGI (also available as weblate/examples/weblate.uwsgi.ini):

This example assumes Weblate is installed in virtualenv in /home/weblate/weblate-env
and DATA_DIR is set to /home/weblate/data, please adjust paths to match your setup.
[uwsgi]
plugins = python3
master = true
protocol = uwsgi
socket = 127.0.0.1:8080
wsgi-file = /home/weblate/weblate-env/lib/python3.7/site-packages/weblate/wsgi.py

Add path to Weblate checkout if you did not install
Weblate by pip
python-path = /path/to/weblate

In case you're using virtualenv uncomment this:
virtualenv = /home/weblate/weblate-env

Needed for OAuth/OpenID
buffer-size = 8192

Reload when consuming too much of memory
reload-on-rss = 250

Increase number of workers for heavily loaded sites
workers = 8

Enable threads for Sentry error submission
enable-threads = true

Child processes do not need file descriptors
close-on-exec = true

Avoid default 0000 umask
umask = 0022

Run as weblate user
uid = weblate
gid = weblate

Enable harakiri mode (kill requests after some time)
harakiri = 3600
harakiri-verbose = true

Enable uWSGI stats server
stats = :1717
stats-http = true

Do not log some errors caused by client disconnects
ignore-sigpipe = true
ignore-write-errors = true
disable-write-exception = true

See also

How to use Django with uWSGI [https://docs.djangoproject.com/en/stable/howto/deployment/wsgi/uwsgi/]

Sample configuration for Apache

It is recommended to use prefork MPM when using WSGI with Weblate.

The following configuration runs Weblate as WSGI, you need to have enabled
mod_wsgi (available as weblate/examples/apache.conf):

#
VirtualHost for Weblate
#
This example assumes Weblate is installed in virtualenv in /home/weblate/weblate-env
and DATA_DIR is set to /home/weblate/data, please adjust paths to match your setup.
#
<VirtualHost *:80>
 ServerAdmin admin@weblate.example.org
 ServerName weblate.example.org

 # DATA_DIR/static/favicon.ico
 Alias /favicon.ico /home/weblate/data/static/favicon.ico

 # DATA_DIR/static/
 Alias /static/ /home/weblate/data/static/
 <Directory /home/weblate/data/static/>
 Require all granted
 </Directory>

 # DATA_DIR/media/
 Alias /media/ /home/weblate/data/media/
 <Directory /home/weblate/data/media/>
 Require all granted
 </Directory>

 # Path to your Weblate virtualenv
 WSGIDaemonProcess weblate python-home=/home/weblate/weblate-env user=weblate
 WSGIProcessGroup weblate
 WSGIApplicationGroup %{GLOBAL}

 WSGIScriptAlias / /home/weblate/weblate-env/lib/python3.7/site-packages/weblate/wsgi.py process-group=weblate request-timeout=600
 WSGIPassAuthorization On

 <Directory /home/weblate/weblate-env/lib/python3.7/site-packages/weblate/>
 <Files wsgi.py>
 Require all granted
 </Files>
 </Directory>

</VirtualHost>

Note

Weblate requires Python 3, so please make sure you are running Python 3
variant of the modwsgi. Usually it is available as a separate package, for
example libapache2-mod-wsgi-py3.

See also

System locales and encoding,
How to use Django with Apache and mod_wsgi [https://docs.djangoproject.com/en/stable/howto/deployment/wsgi/modwsgi/]

Sample configuration for Apache and Gunicorn

The following configuration runs Weblate in Gunicorn and Apache 2.4
(available as weblate/examples/apache.gunicorn.conf):

#
VirtualHost for Weblate using gunicorn on localhost:8000
#
This example assumes Weblate is installed in virtualenv in /home/weblate/weblate-env
and DATA_DIR is set to /home/weblate/data, please adjust paths to match your setup.
#
<VirtualHost *:443>
 ServerAdmin admin@weblate.example.org
 ServerName weblate.example.org

 # DATA_DIR/static/favicon.ico
 Alias /favicon.ico /home/weblate/data/static/favicon.ico

 # DATA_DIR/static/
 Alias /static/ /home/weblate/data/static/
 <Directory /home/weblate/data/static/>
 Require all granted
 </Directory>

 # DATA_DIR/media/
 Alias /media/ /home/weblate/data/media/
 <Directory /home/weblate/data/media/>
 Require all granted
 </Directory>

 SSLEngine on
 SSLCertificateFile /etc/apache2/ssl/https_cert.cert
 SSLCertificateKeyFile /etc/apache2/ssl/https_key.pem
 SSLProxyEngine On

 ProxyPass /favicon.ico !
 ProxyPass /static/ !
 ProxyPass /media/ !

 ProxyPass / http://localhost:8000/
 ProxyPassReverse / http://localhost:8000/
 ProxyPreserveHost On
</VirtualHost>

See also

How to use Django with Gunicorn [https://docs.djangoproject.com/en/stable/howto/deployment/wsgi/gunicorn/]

Running Weblate under path

New in version 1.3.

It is recommended to use prefork MPM when using WSGI with Weblate.

A sample Apache configuration to serve Weblate under /weblate. Again using
mod_wsgi (also available as weblate/examples/apache-path.conf):

#
VirtualHost for Weblate, running under /weblate path
#
This example assumes Weblate is installed in virtualenv in /home/weblate/weblate-env
and DATA_DIR is set to /home/weblate/data, please adjust paths to match your setup.
#
<VirtualHost *:80>
 ServerAdmin admin@weblate.example.org
 ServerName weblate.example.org

 # DATA_DIR/static/favicon.ico
 Alias /weblate/favicon.ico /home/weblate/data/static/favicon.ico

 # DATA_DIR/static/
 Alias /weblate/static/ /home/weblate/data/static/
 <Directory /home/weblate/data/static/>
 Require all granted
 </Directory>

 # DATA_DIR/media/
 Alias /weblate/media/ /home/weblate/data/media/
 <Directory /home/weblate/data/media/>
 Require all granted
 </Directory>

 # Path to your Weblate virtualenv
 WSGIDaemonProcess weblate python-home=/home/weblate/weblate-env user=weblate
 WSGIProcessGroup weblate
 WSGIApplicationGroup %{GLOBAL}

 WSGIScriptAlias /weblate /home/weblate/weblate-env/lib/python3.7/site-packages/weblate/wsgi.py process-group=weblate request-timeout=600
 WSGIPassAuthorization On

 <Directory /home/weblate/weblate-env/lib/python3.7/site-packages/weblate/>
 <Files wsgi.py>
 Require all granted
 </Files>
 </Directory>

</VirtualHost>

Additionally, you will have to adjust weblate/settings.py:

URL_PREFIX = "/weblate"

Background tasks using Celery

New in version 3.2.

Weblate uses Celery to process background tasks. A typical setup using Redis as
a backend looks like this:

CELERY_TASK_ALWAYS_EAGER = False
CELERY_BROKER_URL = "redis://localhost:6379"
CELERY_RESULT_BACKEND = CELERY_BROKER_URL

See also

Redis broker configuration in Celery [https://docs.celeryproject.org/en/latest/getting-started/backends-and-brokers/redis.html#broker-redis-configuration]

For development, you might want to use eager configuration, which does process
all tasks in place, but this will have performance impact on Weblate:

CELERY_TASK_ALWAYS_EAGER = True
CELERY_BROKER_URL = "memory://"
CELERY_TASK_EAGER_PROPAGATES = True

You should also start the Celery worker to process the tasks and start
scheduled tasks, this can be done directly on the command line (which is mostly
useful when debugging or developing):

./weblate/examples/celery start
./weblate/examples/celery stop

Note

The Celery process has to be executed under the same user as the WSGI
process, otherwise files in the DATA_DIR will be stored with
mixed ownership, leading to runtime issues.

See also Filesystem permissions and Running server.

Running Celery as system service

Most likely you will want to run Celery as a daemon and that is covered by
Daemonization [https://docs.celeryproject.org/en/latest/userguide/daemonizing.html]. For the most common Linux setup using
systemd, you can use the example files shipped in the examples folder
listed below.

Systemd unit to be placed as /etc/systemd/system/celery-weblate.service:

[Unit]
Description=Celery Service (Weblate)
After=network.target

[Service]
Type=forking
User=weblate
Group=weblate
EnvironmentFile=/etc/default/celery-weblate
WorkingDirectory=/home/weblate
RuntimeDirectory=celery
RuntimeDirectoryPreserve=restart
LogsDirectory=celery
ExecStart=/bin/sh -c '${CELERY_BIN} multi start ${CELERYD_NODES} \
 -A ${CELERY_APP} --pidfile=${CELERYD_PID_FILE} \
 --logfile=${CELERYD_LOG_FILE} --loglevel=${CELERYD_LOG_LEVEL} ${CELERYD_OPTS}'
ExecStop=/bin/sh -c '${CELERY_BIN} multi stopwait ${CELERYD_NODES} \
 --pidfile=${CELERYD_PID_FILE}'
ExecReload=/bin/sh -c '${CELERY_BIN} multi restart ${CELERYD_NODES} \
 -A ${CELERY_APP} --pidfile=${CELERYD_PID_FILE} \
 --logfile=${CELERYD_LOG_FILE} --loglevel=${CELERYD_LOG_LEVEL} ${CELERYD_OPTS}'

[Install]
WantedBy=multi-user.target

Environment configuration to be placed as /etc/default/celery-weblate:

Name of nodes to start
CELERYD_NODES="celery notify memory backup translate"

Absolute or relative path to the 'celery' command:
CELERY_BIN="/home/weblate/weblate-env/bin/celery"

App instance to use
comment out this line if you don't use an app
CELERY_APP="weblate.utils"

Extra command-line arguments to the worker,
increase concurency if you get weblate.E019
CELERYD_OPTS="--beat:celery --queues:celery=celery --prefetch-multiplier:celery=4 \
 --queues:notify=notify --prefetch-multiplier:notify=10 \
 --queues:memory=memory --prefetch-multiplier:memory=10 \
 --queues:translate=translate --prefetch-multiplier:translate=4 \
 --concurrency:backup=1 --queues:backup=backup --prefetch-multiplier:backup=2"

Logging configuration
- %n will be replaced with the first part of the nodename.
- %I will be replaced with the current child process index
and is important when using the prefork pool to avoid race conditions.
CELERYD_PID_FILE="/run/celery/weblate-%n.pid"
CELERYD_LOG_FILE="/var/log/celery/weblate-%n%I.log"
CELERYD_LOG_LEVEL="INFO"

Internal Weblate variable to indicate we're running inside Celery
CELERY_WORKER_RUNNING="1"

Additional configuration to rotate Celery logs using logrotate to be
placed as /etc/logrotate.d/celery:

/var/log/celery/*.log {
 weekly
 missingok
 rotate 12
 compress
 notifempty
}

Periodic tasks using Celery beat

Weblate comes with built-in setup for scheduled tasks. You can however define
additional tasks in settings.py, for example see Lazy commits.

The tasks are supposed to be executed by Celery beats daemon. In case it is not
working properly, it might not be running or its database was corrupted. Check
the Celery startup logs in such case to figure out root cause.

Monitoring Celery status

You can use celery_queues to see current length of Celery task
queues. In case the queue will get too long, you will also get configuration
error in the admin interface.

Warning

The Celery errors are by default only logged into Celery log and are not
visible to user. In case you want to have overview on such failures, it is
recommended to configure Collecting error reports.

See also

Configuration and defaults [https://docs.celeryproject.org/en/latest/userguide/configuration.html],
Workers Guide [https://docs.celeryproject.org/en/latest/userguide/workers.html],
Daemonization [https://docs.celeryproject.org/en/latest/userguide/daemonizing.html],
Monitoring and Management Guide [https://docs.celeryproject.org/en/latest/userguide/monitoring.html],
celery_queues

Monitoring Weblate

Weblate provides the /healthz/ URL to be used in simple health checks, for example
using Kubernetes.

Collecting error reports

Weblate, as any other software, can fail. In order to collect useful failure
states we recommend to use third party services to collect such information.
This is especially useful in case of failing Celery tasks, which would
otherwise only report error to the logs and you won’t get notified on them.
Weblate has support for the following services:

Sentry

Weblate has built-in support for Sentry [https://sentry.io/]. To use
it, it’s enough to set SENTRY_DSN in the settings.py:

SENTRY_DSN = "https://id@your.sentry.example.com/"

Rollbar

Weblate has built-in support for Rollbar [https://rollbar.com/]. To use
it, it’s enough to follow instructions for Rollbar notifier for Python [https://docs.rollbar.com/docs/python/].

In short, you need to adjust settings.py:

Add rollbar as last middleware:
MIDDLEWARE = [
 # … other middleware classes …
 "rollbar.contrib.django.middleware.RollbarNotifierMiddleware",
]

Configure client access
ROLLBAR = {
 "access_token": "POST_SERVER_ITEM_ACCESS_TOKEN",
 "client_token": "POST_CLIENT_ITEM_ACCESS_TOKEN",
 "environment": "development" if DEBUG else "production",
 "branch": "master",
 "root": "/absolute/path/to/code/root",
}

Everything else is integrated automatically, you will now collect both server
and client side errors.

Migrating Weblate to another server

Migrating Weblate to another server should be pretty easy, however it stores
data in few locations which you should migrate carefully. The best approach is
to stop Weblate for the migration.

Migrating database

Depending on your database backend, you might have several options to migrate
the database. The most straightforward one is to dump the database on one
server and import it on the new one. Alternatively you can use replication in
case your database supports it.

The best approach is to use database native tools, as they are usually the most
effective (e.g. mysqldump or pg_dump). If you want to
migrate between different databases, the only option might be to use Django
management to dump and import the database:

Export current data
weblate dumpdata > /tmp/weblate.dump
Import dump
weblate loaddata /tmp/weblate.dump

Migrating VCS repositories

The VCS repositories stored under DATA_DIR need to be migrated as
well. You can simply copy them or use rsync to do the migration
more effectively.

Other notes

Don’t forget to move other services Weblate might have been using like
Redis, Cron jobs or custom authentication backends.

Installing using Docker

With dockerized Weblate deployment you can get your personal Weblate instance
up and running in seconds. All of Weblate’s dependencies are already included.
PostgreSQL is set up as the default database.

Hardware requirements

Weblate should run on any contemporary hardware without problems, the following is
the minimal configuration required to run Weblate on a single host (Weblate, database
and webserver):

	2 GB of RAM

	2 CPU cores

	1 GB of storage space

The more memory the better - it is used for caching on all
levels (filesystem, database and Weblate).

Many concurrent users increases the amount of needed CPU cores.
For hundreds of translation components at least 4 GB of RAM is
recommended.

The typical database storage usage is around 300 MB per 1 million hosted words.
Storage space needed for cloned repositories varies, but Weblate tries to keep
their size minimal by doing shallow clones.

Note

Actual requirements for your installation of Weblate vary heavily based on the size of
the translations managed in it.

Installation

The following examples assume you have a working Docker environment, with
docker-compose installed. Please check the Docker documentation for instructions.

	Clone the weblate-docker repo:

git clone https://github.com/WeblateOrg/docker-compose.git weblate-docker
cd weblate-docker

	Create a docker-compose.override.yml file with your settings.
See Docker environment variables for full list of environment variables.

version: '3'
services:
 weblate:
 ports:
 - 80:8080
 environment:
 WEBLATE_EMAIL_HOST: smtp.example.com
 WEBLATE_EMAIL_HOST_USER: user
 WEBLATE_EMAIL_HOST_PASSWORD: pass
 WEBLATE_SERVER_EMAIL: weblate@example.com
 WEBLATE_DEFAULT_FROM_EMAIL: weblate@example.com
 WEBLATE_SITE_DOMAIN: weblate.example.com
 WEBLATE_ADMIN_PASSWORD: password for the admin user
 WEBLATE_ADMIN_EMAIL: weblate.admin@example.com

Note

If WEBLATE_ADMIN_PASSWORD is not set, the admin user is created with
a random password shown on first startup.

The provided example makes Weblate listen on port 80, edit the port
mapping in the docker-compose.override.yml file to change it.

	Start Weblate containers:

docker-compose up

Enjoy your Weblate deployment, it’s accessible on port 80 of the weblate container.

Changed in version 2.15-2: The setup has changed recently, priorly there was separate web server
container, since 2.15-2 the web server is embedded in the Weblate
container.

Changed in version 3.7.1-6: In July 2019 (starting with the 3.7.1-6 tag), the containers are not running
as a root user. This has changed the exposed port from 80 to 8080.

See also

Invoking management commands

Docker container with HTTPS support

Please see Installation for generic deployment instructions, this
section only mentions differences compared to it.

Using own SSL certificates

New in version 3.8-3.

In case you have own SSL certificate you want to use, simply place the files
into the Weblate data volume (see Docker container volumes):

	ssl/fullchain.pem containing the certificate including any needed CA certificates

	ssl/privkey.pem containing the private key

Both of these files must be owned by the same user as the one starting the docker container and have file mask set to 600 (readable and writable only by the owning user).

Additionally, Weblate container will now accept SSL connections on port 4443,
you will want to include the port forwarding for HTTPS in docker compose override:

version: '3'
services:
 weblate:
 ports:
 - 80:8080
 - 443:4443

If you already host other sites on the same server, it is likely ports 80 and 443 are used by a reverse proxy, such as NGINX. To pass the HTTPS connection from NGINX to the docker container, you can use the following configuration:

server {
 listen 443;
 listen [::]:443;

 server_name <SITE_URL>;
 ssl_certificate /etc/letsencrypt/live/<SITE>/fullchain.pem;
 ssl_certificate_key /etc/letsencrypt/live/<SITE>/privkey.pem;

 location / {
 proxy_set_header HOST $host;
 proxy_set_header X-Forwarded-Proto https;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 proxy_pass https://127.0.0.1:<EXPOSED_DOCKER_PORT>;
 }
}

Replace <SITE_URL>, <SITE> and <EXPOSED_DOCKER_PORT> with actual values from your environment.

Automatic SSL certificates using Let’s Encrypt

In case you want to use Let’s Encrypt [https://letsencrypt.org/]
automatically generated SSL certificates on public installation, you need to
add a reverse HTTPS proxy an additional Docker container, https-portal [https://hub.docker.com/r/steveltn/https-portal/] will be used for that.
This is made use of in the docker-compose-https.yml file. Then create
a docker-compose-https.override.yml file with your settings:

version: '3'
services:
 weblate:
 environment:
 WEBLATE_EMAIL_HOST: smtp.example.com
 WEBLATE_EMAIL_HOST_USER: user
 WEBLATE_EMAIL_HOST_PASSWORD: pass
 WEBLATE_SITE_DOMAIN: weblate.example.com
 WEBLATE_ADMIN_PASSWORD: password for admin user
 https-portal:
 environment:
 DOMAINS: 'weblate.example.com -> http://weblate:8080'

Whenever invoking docker-compose you need to pass both files to it,
and then do:

docker-compose -f docker-compose-https.yml -f docker-compose-https.override.yml build
docker-compose -f docker-compose-https.yml -f docker-compose-https.override.yml up

Upgrading the Docker container

Usually it is good idea to only update the Weblate container and keep the PostgreSQL
container at the version you have, as upgrading PostgreSQL is quite painful and in most
cases does not bring many benefits.

You can do this by sticking with the existing docker-compose and just pull
the latest images and then restart:

docker-compose stop
docker-compose pull
docker-compose up

The Weblate database should be automatically migrated on first startup, and there
should be no need for additional manual actions.

Note

Upgrades across 3.0 are not supported by Weblate. If you are on 2.x series
and want to upgrade to 3.x, first upgrade to the latest 3.0.1-x (at time of
writing this it is the 3.0.1-7) image, which will do the migration and then
continue upgrading to newer versions.

You might also want to update the docker-compose repository, though it’s
not needed in most case. Please beware of PostgreSQL version changes in this
case as it’s not straightforward to upgrade the database, see GitHub issue [https://github.com/docker-library/postgres/issues/37] for more info.

Admin sign in

After container setup, you can sign in as admin user with password provided
in WEBLATE_ADMIN_PASSWORD, or a random password generated on first
start if that was not set.

To reset admin password, restart the container with
WEBLATE_ADMIN_PASSWORD set to new password.

See also

WEBLATE_ADMIN_PASSWORD,
WEBLATE_ADMIN_NAME,
WEBLATE_ADMIN_EMAIL

Docker environment variables

Many of Weblate’s Configuration can be set in the Docker container using environment variables:

Generic settings

	
WEBLATE_DEBUG

	Configures Django debug mode using DEBUG.

Example:

environment:
 WEBLATE_DEBUG: 1

See also

Disable debug mode.

	
WEBLATE_LOGLEVEL

	Configures the logging verbosity.

	
WEBLATE_SITE_TITLE

	Changes the site-title shown in the header of all pages.

	
WEBLATE_SITE_DOMAIN

	Configures the site domain. This parameter is required.

See also

Set correct site domain,
SITE_DOMAIN

	
WEBLATE_ADMIN_NAME

	

	
WEBLATE_ADMIN_EMAIL

	Configures the site-admin’s name and e-mail. It is used for both
ADMINS setting and creating admin user (see
WEBLATE_ADMIN_PASSWORD for more info on that).

Example:

environment:
 WEBLATE_ADMIN_NAME: Weblate admin
 WEBLATE_ADMIN_EMAIL: noreply@example.com

See also

Admin sign in,
Properly configure admins,
ADMINS

	
WEBLATE_ADMIN_PASSWORD

	Sets the password for the admin user.

	If not set and admin user does not exist, it is created with a random
password shown on first container startup.

	If not set and admin user exists, no action is performed.

	If set the admin user is adjusted on every container startup to match
WEBLATE_ADMIN_PASSWORD, WEBLATE_ADMIN_NAME and
WEBLATE_ADMIN_EMAIL.

Warning

It might be a security risk to store password in the configuration
file. Consider using this variable only for initial setup (or let
Weblate generate random password on initial startup) or for password
recovery.

See also

Admin sign in,
WEBLATE_ADMIN_PASSWORD,
WEBLATE_ADMIN_NAME,
WEBLATE_ADMIN_EMAIL

	
WEBLATE_SERVER_EMAIL

	

	
WEBLATE_DEFAULT_FROM_EMAIL

	Configures the address for outgoing e-mails.

See also

Configure e-mail sending

	
WEBLATE_ALLOWED_HOSTS

	Configures allowed HTTP hostnames using ALLOWED_HOSTS.

Defaults to * which allows all hostnames.

Example:

environment:
 WEBLATE_ALLOWED_HOSTS: weblate.example.com,example.com

See also

ALLOWED_HOSTS,
Allowed hosts setup,
Set correct site domain

	
WEBLATE_REGISTRATION_OPEN

	Configures whether registrations are open by toggling REGISTRATION_OPEN.

Example:

environment:
 WEBLATE_REGISTRATION_OPEN: 0

	
WEBLATE_REGISTRATION_ALLOW_BACKENDS

	Configure which authentication methods can be used to create new account via
REGISTRATION_ALLOW_BACKENDS.

Example:

environment:
 WEBLATE_REGISTRATION_OPEN: 0
 WEBLATE_REGISTRATION_ALLOW_BACKENDS: azuread-oauth2,azuread-tenant-oauth2

	
WEBLATE_TIME_ZONE

	Configures the used time zone in Weblate, see TIME_ZONE [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-TIME_ZONE].

Note

To change the time zone of the Docker container itself, use the TZ
environment variable.

Example:

environment:
 WEBLATE_TIME_ZONE: Europe/Prague

	
WEBLATE_ENABLE_HTTPS

	Makes Weblate assume it is operated behind a reverse HTTPS proxy, it makes
Weblate use HTTPS in e-mail and API links or set secure flags on cookies.

Hint

Please see ENABLE_HTTPS documentation for possible caveats.

Note

This does not make the Weblate container accept HTTPS connections, you
need to configure that as well, see Docker container with HTTPS support for examples.

Example:

environment:
 WEBLATE_ENABLE_HTTPS: 1

See also

ENABLE_HTTPS
Set correct site domain,
WEBLATE_SECURE_PROXY_SSL_HEADER

	
WEBLATE_IP_PROXY_HEADER

	Lets Weblate fetch the IP address from any given HTTP header. Use this when using
a reverse proxy in front of the Weblate container.

Enables IP_BEHIND_REVERSE_PROXY and sets IP_PROXY_HEADER.

Note

The format must conform to Django’s expectations. Django
transforms [https://docs.djangoproject.com/en/2.2/ref/request-response/#django.http.HttpRequest.META]
raw HTTP header names as follows:

	converts all characters to uppercase

	replaces any hyphens with underscores

	prepends HTTP_ prefix

So X-Forwarded-For would be mapped to HTTP_X_FORWARDED_FOR.

Example:

environment:
 WEBLATE_IP_PROXY_HEADER: HTTP_X_FORWARDED_FOR

	
WEBLATE_SECURE_PROXY_SSL_HEADER

	A tuple representing a HTTP header/value combination that signifies a
request is secure. This is needed when Weblate is running behind a reverse
proxy doing SSL termination which does not pass standard HTTPS headers.

Example:

environment:
 WEBLATE_SECURE_PROXY_SSL_HEADER: HTTP_X_FORWARDED_PROTO,https

See also

SECURE_PROXY_SSL_HEADER [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECURE_PROXY_SSL_HEADER]

	
WEBLATE_REQUIRE_LOGIN

	Enables REQUIRE_LOGIN to enforce authentication on whole Weblate.

Example:

environment:
 WEBLATE_REQUIRE_LOGIN: 1

	
WEBLATE_LOGIN_REQUIRED_URLS_EXCEPTIONS

	

	
WEBLATE_ADD_LOGIN_REQUIRED_URLS_EXCEPTIONS

	

	
WEBLATE_REMOVE_LOGIN_REQUIRED_URLS_EXCEPTIONS

	Adds URL exceptions for authentication required for the whole Weblate
installation using LOGIN_REQUIRED_URLS_EXCEPTIONS.

You can either replace whole settings, or modify default value using ADD and REMOVE variables.

	
WEBLATE_GOOGLE_ANALYTICS_ID

	Configures ID for Google Analytics by changing GOOGLE_ANALYTICS_ID.

	
WEBLATE_GITHUB_USERNAME

	Configures GitHub username for GitHub pull-requests by changing
GITHUB_USERNAME.

See also

GitHub

	
WEBLATE_GITHUB_TOKEN

	
New in version 4.3.

Configures GitHub personal access token for GitHub pull-requests via API by changing
GITHUB_TOKEN.

See also

GitHub

	
WEBLATE_GITLAB_USERNAME

	Configures GitLab username for GitLab merge-requests by changing
GITLAB_USERNAME

See also

GitLab

	
WEBLATE_GITLAB_TOKEN

	Configures GitLab personal access token for GitLab merge-requests via API by changing
GITLAB_TOKEN

See also

GitLab

	
WEBLATE_PAGURE_USERNAME

	Configures Pagure username for Pagure merge-requests by changing
PAGURE_USERNAME

See also

Pagure

	
WEBLATE_PAGURE_TOKEN

	Configures Pagure personal access token for Pagure merge-requests via API by changing
PAGURE_TOKEN

See also

Pagure

	
WEBLATE_SIMPLIFY_LANGUAGES

	Configures the language simplification policy, see SIMPLIFY_LANGUAGES.

	
WEBLATE_DEFAULT_ACCESS_CONTROL

	Configures the default Access control for new projects, see DEFAULT_ACCESS_CONTROL.

	
WEBLATE_DEFAULT_RESTRICTED_COMPONENT

	Configures the default value for Restricted access for new components, see DEFAULT_RESTRICTED_COMPONENT.

	
WEBLATE_DEFAULT_TRANSLATION_PROPAGATION

	Configures the default value for Allow translation propagation for new components, see DEFAULT_TRANSLATION_PROPAGATION.

	
WEBLATE_DEFAULT_COMMITER_EMAIL

	Configures DEFAULT_COMMITER_EMAIL.

	
WEBLATE_DEFAULT_COMMITER_NAME

	Configures DEFAULT_COMMITER_NAME.

	
WEBLATE_AKISMET_API_KEY

	Configures the Akismet API key, see AKISMET_API_KEY.

	
WEBLATE_GPG_IDENTITY

	Configures GPG signing of commits, see WEBLATE_GPG_IDENTITY.

See also

Signing Git commits with GnuPG

	
WEBLATE_URL_PREFIX

	Configures URL prefix where Weblate is running, see URL_PREFIX.

	
WEBLATE_SILENCED_SYSTEM_CHECKS

	Configures checks which you do not want to be displayed, see
SILENCED_SYSTEM_CHECKS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SILENCED_SYSTEM_CHECKS].

	
WEBLATE_CSP_SCRIPT_SRC

	

	
WEBLATE_CSP_IMG_SRC

	

	
WEBLATE_CSP_CONNECT_SRC

	

	
WEBLATE_CSP_STYLE_SRC

	

	
WEBLATE_CSP_FONT_SRC

	Allows to customize Content-Security-Policy HTTP header.

See also

Content security policy,
CSP_SCRIPT_SRC,
CSP_IMG_SRC,
CSP_CONNECT_SRC,
CSP_STYLE_SRC,
CSP_FONT_SRC

	
WEBLATE_LICENSE_FILTER

	Configures LICENSE_FILTER.

	
WEBLATE_HIDE_VERSION

	Configures HIDE_VERSION.

	
WEBLATE_BASIC_LANGUAGES

	Configures BASIC_LANGUAGES.

	
WEBLATE_DEFAULT_AUTO_WATCH

	Configures DEFAULT_AUTO_WATCH.

Machine translation settings

	
WEBLATE_MT_APERTIUM_APY

	Enables Apertium machine translation and sets MT_APERTIUM_APY

	
WEBLATE_MT_AWS_REGION

	

	
WEBLATE_MT_AWS_ACCESS_KEY_ID

	

	
WEBLATE_MT_AWS_SECRET_ACCESS_KEY

	Configures AWS machine translation.

environment:
 WEBLATE_MT_AWS_REGION: us-east-1
 WEBLATE_MT_AWS_ACCESS_KEY_ID: AKIAIOSFODNN7EXAMPLE
 WEBLATE_MT_AWS_SECRET_ACCESS_KEY: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

	
WEBLATE_MT_DEEPL_KEY

	Enables DeepL machine translation and sets MT_DEEPL_KEY

	
WEBLATE_MT_DEEPL_API_VERSION

	Configures DeepL API version to use, see MT_DEEPL_API_VERSION.

	
WEBLATE_MT_GOOGLE_KEY

	Enables Google Translate and sets MT_GOOGLE_KEY

	
WEBLATE_MT_MICROSOFT_COGNITIVE_KEY

	Enables Microsoft Cognitive Services Translator and sets MT_MICROSOFT_COGNITIVE_KEY

	
WEBLATE_MT_MICROSOFT_ENDPOINT_URL

	Sets MT_MICROSOFT_ENDPOINT_URL, please note this is supposed to contain domain name only.

	
WEBLATE_MT_MICROSOFT_REGION

	Sets MT_MICROSOFT_REGION

	
WEBLATE_MT_MICROSOFT_BASE_URL

	Sets MT_MICROSOFT_BASE_URL

	
WEBLATE_MT_MODERNMT_KEY

	Enables ModernMT and sets MT_MODERNMT_KEY.

	
WEBLATE_MT_MYMEMORY_ENABLED

	
Enables MyMemory machine translation and sets
MT_MYMEMORY_EMAIL to WEBLATE_ADMIN_EMAIL.

Example:

environment:
 WEBLATE_MT_MYMEMORY_ENABLED: 1

	
WEBLATE_MT_GLOSBE_ENABLED

	Enables Glosbe machine translation.

environment:
 WEBLATE_MT_GLOSBE_ENABLED: 1

	
WEBLATE_MT_MICROSOFT_TERMINOLOGY_ENABLED

	Enables Microsoft Terminology Service machine translation.

environment:
 WEBLATE_MT_MICROSOFT_TERMINOLOGY_ENABLED: 1

	
WEBLATE_MT_SAP_BASE_URL

	

	
WEBLATE_MT_SAP_SANDBOX_APIKEY

	

	
WEBLATE_MT_SAP_USERNAME

	

	
WEBLATE_MT_SAP_PASSWORD

	

	
WEBLATE_MT_SAP_USE_MT

	Configures SAP Translation Hub machine translation.

environment:
 WEBLATE_MT_SAP_BASE_URL: "https://example.hana.ondemand.com/translationhub/api/v1/"
 WEBLATE_MT_SAP_USERNAME: "user"
 WEBLATE_MT_SAP_PASSWORD: "password"
 WEBLATE_MT_SAP_USE_MT: 1

Authentication settings

LDAP

	
WEBLATE_AUTH_LDAP_SERVER_URI

	

	
WEBLATE_AUTH_LDAP_USER_DN_TEMPLATE

	

	
WEBLATE_AUTH_LDAP_USER_ATTR_MAP

	

	
WEBLATE_AUTH_LDAP_BIND_DN

	

	
WEBLATE_AUTH_LDAP_BIND_PASSWORD

	

	
WEBLATE_AUTH_LDAP_CONNECTION_OPTION_REFERRALS

	

	
WEBLATE_AUTH_LDAP_USER_SEARCH

	

	
WEBLATE_AUTH_LDAP_USER_SEARCH_FILTER

	

	
WEBLATE_AUTH_LDAP_USER_SEARCH_UNION

	

	
WEBLATE_AUTH_LDAP_USER_SEARCH_UNION_DELIMITER

	LDAP authentication configuration.

Example for direct bind:

environment:
 WEBLATE_AUTH_LDAP_SERVER_URI: ldap://ldap.example.org
 WEBLATE_AUTH_LDAP_USER_DN_TEMPLATE: uid=%(user)s,ou=People,dc=example,dc=net
 # map weblate 'full_name' to ldap 'name' and weblate 'email' attribute to 'mail' ldap attribute.
 # another example that can be used with OpenLDAP: 'full_name:cn,email:mail'
 WEBLATE_AUTH_LDAP_USER_ATTR_MAP: full_name:name,email:mail

Example for search and bind:

environment:
 WEBLATE_AUTH_LDAP_SERVER_URI: ldap://ldap.example.org
 WEBLATE_AUTH_LDAP_BIND_DN: CN=ldap,CN=Users,DC=example,DC=com
 WEBLATE_AUTH_LDAP_BIND_PASSWORD: password
 WEBLATE_AUTH_LDAP_USER_ATTR_MAP: full_name:name,email:mail
 WEBLATE_AUTH_LDAP_USER_SEARCH: CN=Users,DC=example,DC=com

Example for union search and bind:

environment:
 WEBLATE_AUTH_LDAP_SERVER_URI: ldap://ldap.example.org
 WEBLATE_AUTH_LDAP_BIND_DN: CN=ldap,CN=Users,DC=example,DC=com
 WEBLATE_AUTH_LDAP_BIND_PASSWORD: password
 WEBLATE_AUTH_LDAP_USER_ATTR_MAP: full_name:name,email:mail
 WEBLATE_AUTH_LDAP_USER_SEARCH_UNION: ou=users,dc=example,dc=com|ou=otherusers,dc=example,dc=com

Example with search and bind against Active Directory:

environment:
 WEBLATE_AUTH_LDAP_BIND_DN: CN=ldap,CN=Users,DC=example,DC=com
 WEBLATE_AUTH_LDAP_BIND_PASSWORD: password
 WEBLATE_AUTH_LDAP_SERVER_URI: ldap://ldap.example.org
 WEBLATE_AUTH_LDAP_CONNECTION_OPTION_REFERRALS: 0
 WEBLATE_AUTH_LDAP_USER_ATTR_MAP: full_name:name,email:mail
 WEBLATE_AUTH_LDAP_USER_SEARCH: CN=Users,DC=example,DC=com
 WEBLATE_AUTH_LDAP_USER_SEARCH_FILTER: (sAMAccountName=%(user)s)

See also

LDAP authentication

GitHub

	
WEBLATE_SOCIAL_AUTH_GITHUB_KEY

	

	
WEBLATE_SOCIAL_AUTH_GITHUB_SECRET

	Enables GitHub authentication.

Bitbucket

	
WEBLATE_SOCIAL_AUTH_BITBUCKET_KEY

	

	
WEBLATE_SOCIAL_AUTH_BITBUCKET_SECRET

	Enables Bitbucket authentication.

Facebook

	
WEBLATE_SOCIAL_AUTH_FACEBOOK_KEY

	

	
WEBLATE_SOCIAL_AUTH_FACEBOOK_SECRET

	Enables Facebook OAuth 2.

Google

	
WEBLATE_SOCIAL_AUTH_GOOGLE_OAUTH2_KEY

	

	
WEBLATE_SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET

	

	
WEBLATE_SOCIAL_AUTH_GOOGLE_OAUTH2_WHITELISTED_DOMAINS

	

	
WEBLATE_SOCIAL_AUTH_GOOGLE_OAUTH2_WHITELISTED_EMAILS

	Enables Google OAuth 2.

GitLab

	
WEBLATE_SOCIAL_AUTH_GITLAB_KEY

	

	
WEBLATE_SOCIAL_AUTH_GITLAB_SECRET

	

	
WEBLATE_SOCIAL_AUTH_GITLAB_API_URL

	Enables GitLab OAuth 2.

Azure Active Directory

	
WEBLATE_SOCIAL_AUTH_AZUREAD_OAUTH2_KEY

	

	
WEBLATE_SOCIAL_AUTH_AZUREAD_OAUTH2_SECRET

	Enables Azure Active Directory authentication, see Microsoft Azure Active Directory.

Azure Active Directory with Tenant support

	
WEBLATE_SOCIAL_AUTH_AZUREAD_TENANT_OAUTH2_KEY

	

	
WEBLATE_SOCIAL_AUTH_AZUREAD_TENANT_OAUTH2_SECRET

	

	
WEBLATE_SOCIAL_AUTH_AZUREAD_TENANT_OAUTH2_TENANT_ID

	Enables Azure Active Directory authentication with Tenant support, see
Microsoft Azure Active Directory.

Keycloak

	
WEBLATE_SOCIAL_AUTH_KEYCLOAK_KEY

	

	
WEBLATE_SOCIAL_AUTH_KEYCLOAK_SECRET

	

	
WEBLATE_SOCIAL_AUTH_KEYCLOAK_PUBLIC_KEY

	

	
WEBLATE_SOCIAL_AUTH_KEYCLOAK_ALGORITHM

	

	
WEBLATE_SOCIAL_AUTH_KEYCLOAK_AUTHORIZATION_URL

	

	
WEBLATE_SOCIAL_AUTH_KEYCLOAK_ACCESS_TOKEN_URL

	Enables Keycloak authentication, see
documentation [https://github.com/python-social-auth/social-core/blob/master/social_core/backends/keycloak.py].

Linux vendors

You can enable authentication using Linux vendors authentication services by
setting following variables to any value.

	
WEBLATE_SOCIAL_AUTH_FEDORA

	

	
WEBLATE_SOCIAL_AUTH_OPENSUSE

	

	
WEBLATE_SOCIAL_AUTH_UBUNTU

	

Slack

	
WEBLATE_SOCIAL_AUTH_SLACK_KEY

	

	
SOCIAL_AUTH_SLACK_SECRET

	Enables Slack authentication, see Slack.

SAML

Self-signed SAML keys are automatically generated on first container startup.
In case you want to use own keys, place the certificate and private key in
/app/data/ssl/saml.crt and /app/data/ssl/saml.key.

	
WEBLATE_SAML_IDP_ENTITY_ID

	

	
WEBLATE_SAML_IDP_URL

	

	
WEBLATE_SAML_IDP_X509CERT

	SAML Identity Provider settings, see SAML authentication.

Other authentication settings

	
WEBLATE_NO_EMAIL_AUTH

	Disables e-mail authentication when set to any value.

PostgreSQL database setup

The database is created by docker-compose.yml, so these settings affect
both Weblate and PostgreSQL containers.

See also

Database setup for Weblate

	
POSTGRES_PASSWORD

	PostgreSQL password.

	
POSTGRES_USER

	PostgreSQL username.

	
POSTGRES_DATABASE

	PostgreSQL database name.

	
POSTGRES_HOST

	PostgreSQL server hostname or IP address. Defaults to database.

	
POSTGRES_PORT

	PostgreSQL server port. Defaults to none (uses the default value).

	
POSTGRES_SSL_MODE

	Configure how PostgreSQL handles SSL in connection to the server, for possible choices see
SSL Mode Descriptions [https://www.postgresql.org/docs/11/libpq-ssl.html#LIBPQ-SSL-SSLMODE-STATEMENTS]

	
POSTGRES_ALTER_ROLE

	Configures name of role to alter during migrations, see Configuring Weblate to use PostgreSQL.

Database backup settings

See also

Dumped data for backups

	
WEBLATE_DATABASE_BACKUP

	Configures the daily database dump using DATABASE_BACKUP. Defaults to plain.

Caching server setup

Using Redis is strongly recommended by Weblate and you have to provide a Redis
instance when running Weblate in Docker.

See also

Enable caching

	
REDIS_HOST

	The Redis server hostname or IP address. Defaults to cache.

	
REDIS_PORT

	The Redis server port. Defaults to 6379.

	
REDIS_DB

	The Redis database number, defaults to 1.

	
REDIS_PASSWORD

	The Redis server password, not used by default.

	
REDIS_TLS

	Enables using SSL for Redis connection.

	
REDIS_VERIFY_SSL

	Can be used to disable SSL certificate verification for Redis connection.

Email server setup

To make outgoing e-mail work, you need to provide a mail server.

Example TLS configuration:

environment:
 WEBLATE_EMAIL_HOST: smtp.example.com
 WEBLATE_EMAIL_HOST_USER: user
 WEBLATE_EMAIL_HOST_PASSWORD: pass

Example SSL configuration:

environment:
 WEBLATE_EMAIL_HOST: smtp.example.com
 WEBLATE_EMAIL_PORT: 465
 WEBLATE_EMAIL_HOST_USER: user
 WEBLATE_EMAIL_HOST_PASSWORD: pass
 WEBLATE_EMAIL_USE_TLS: 0
 WEBLATE_EMAIL_USE_SSL: 1

See also

Configuring outgoing e-mail

	
WEBLATE_EMAIL_HOST

	Mail server hostname or IP address.

See also

WEBLATE_EMAIL_PORT,
WEBLATE_EMAIL_USE_SSL,
WEBLATE_EMAIL_USE_TLS,
EMAIL_HOST [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_HOST]

	
WEBLATE_EMAIL_PORT

	Mail server port, defaults to 25.

See also

EMAIL_PORT [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_PORT]

	
WEBLATE_EMAIL_HOST_USER

	E-mail authentication user.

See also

EMAIL_HOST_USER [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_HOST_USER]

	
WEBLATE_EMAIL_HOST_PASSWORD

	E-mail authentication password.

See also

EMAIL_HOST_PASSWORD [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_HOST_PASSWORD]

	
WEBLATE_EMAIL_USE_SSL

	Whether to use an implicit TLS (secure) connection when talking to the SMTP
server. In most e-mail documentation, this type of TLS connection is referred
to as SSL. It is generally used on port 465. If you are experiencing
problems, see the explicit TLS setting WEBLATE_EMAIL_USE_TLS.

See also

WEBLATE_EMAIL_PORT,
WEBLATE_EMAIL_USE_TLS,
EMAIL_USE_SSL [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_USE_SSL]

	
WEBLATE_EMAIL_USE_TLS

	Whether to use a TLS (secure) connection when talking to the SMTP server.
This is used for explicit TLS connections, generally on port 587 or 25. If
you are experiencing connections that hang, see the implicit TLS setting
WEBLATE_EMAIL_USE_SSL.

See also

WEBLATE_EMAIL_PORT,
WEBLATE_EMAIL_USE_SSL,
EMAIL_USE_TLS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_USE_TLS]

	
WEBLATE_EMAIL_BACKEND

	Configures Django back-end to use for sending e-mails.

See also

Configure e-mail sending,
EMAIL_BACKEND [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_BACKEND]

Error reporting

It is recommended to collect errors from the installation systematically,
see Collecting error reports.

To enable support for Rollbar, set the following:

	
ROLLBAR_KEY

	Your Rollbar post server access token.

	
ROLLBAR_ENVIRONMENT

	Your Rollbar environment, defaults to production.

To enable support for Sentry, set following:

	
SENTRY_DSN

	Your Sentry DSN.

	
SENTRY_ENVIRONMENT

	Your Sentry Environment (optional).

Localization CDN

	
WEBLATE_LOCALIZE_CDN_URL

	

	
WEBLATE_LOCALIZE_CDN_PATH

	
New in version 4.2.1.

Configuration for JavaScript localization CDN.

The WEBLATE_LOCALIZE_CDN_PATH is path within the container. It
should be stored on the persistent volume and not in the transient storage.

One of possibilities is storing that inside the Weblate data dir:

environment:
 WEBLATE_LOCALIZE_CDN_URL: https://cdn.example.com/
 WEBLATE_LOCALIZE_CDN_PATH: /app/data/l10n-cdn

Note

You are responsible for setting up serving of the files generated by
Weblate, it only does stores the files in configured location.

See also

Translating HTML and JavaScript using Weblate CDN,
LOCALIZE_CDN_URL,
LOCALIZE_CDN_PATH

Changing enabled apps, checks, addons or autofixes

New in version 3.8-5.

The built-in configuration of enabled checks, addons or autofixes can be
adjusted by the following variables:

	
WEBLATE_ADD_APPS

	

	
WEBLATE_REMOVE_APPS

	

	
WEBLATE_ADD_CHECK

	

	
WEBLATE_REMOVE_CHECK

	

	
WEBLATE_ADD_AUTOFIX

	

	
WEBLATE_REMOVE_AUTOFIX

	

	
WEBLATE_ADD_ADDONS

	

	
WEBLATE_REMOVE_ADDONS

	

Example:

environment:
 WEBLATE_REMOVE_AUTOFIX: weblate.trans.autofixes.whitespace.SameBookendingWhitespace
 WEBLATE_ADD_ADDONS: customize.addons.MyAddon,customize.addons.OtherAddon

See also

CHECK_LIST,
AUTOFIX_LIST,
WEBLATE_ADDONS,
INSTALLED_APPS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS]

Container settings

	
CELERY_MAIN_OPTIONS

	

	
CELERY_NOTIFY_OPTIONS

	

	
CELERY_MEMORY_OPTIONS

	

	
CELERY_TRANSLATE_OPTIONS

	

	
CELERY_BACKUP_OPTIONS

	

	
CELERY_BEAT_OPTIONS

	These variables allow you to adjust Celery worker options. It can be useful
to adjust concurrency (--concurrency 16) or use different pool
implementation (--pool=gevent).

By default, the number of concurrent workers matches the number of processors
(except the backup worker, which is supposed to run only once).

Example:

environment:
 CELERY_MAIN_OPTIONS: --concurrency 16

See also

Celery worker options [https://docs.celeryproject.org/en/latest/reference/celery.bin.worker.html],
Background tasks using Celery

	
UWSGI_WORKERS

	Configure how many uWSGI workers should be executed.

It defaults to number of processors + 1.

Example:

environment:
 UWSGI_WORKERS: 32

In case you have a lot of CPU cores and hit out of memory issues, try reducing
number of workers:

environment:
 UWSGI_WORKERS: 4
 CELERY_MAIN_OPTIONS: --concurrency 2
 CELERY_NOTIFY_OPTIONS: --concurrency 1
 CELERY_TRANSLATE_OPTIONS: --concurrency 1

Docker container volumes

There is single data volume exported by the Weblate container. The other
service containers (PostgreSQL or Redis) have their data volumes as well, but
those are not covered by this document.

The data volume is used to store Weblate persistent data such as cloned
repositories or to customize Weblate installation.

The placement of the Docker volume on host system depends on your Docker
configuration, but usually it is stored in
/var/lib/docker/volumes/weblate-docker_weblate-data/_data/. In the
container it is mounted as /app/data.

See also

Docker volumes documentation [https://docs.docker.com/storage/volumes/]

Further configuration customization

You can further customize Weblate installation in the data volume, see
Docker container volumes.

Custom configuration files

You can additionally override the configuration in
/app/data/settings-override.py (see Docker container volumes). This is
executed at the end of built-in settings, after all environment settings
are loaded, and you can adjust or override them.

Replacing logo and other static files

New in version 3.8-5.

The static files coming with Weblate can be overridden by placing into
/app/data/python/customize/static (see Docker container volumes). For
example creating /app/data/python/customize/static/favicon.ico will
replace the favicon.

Hint

The files are copied to the corresponding location upon container startup, so
a restart of Weblate is needed after changing the content of the volume.

Alternatively you can also include own module (see Customizing Weblate) and add
it as separate volume to the Docker container, for example:

weblate:
 volumes:
 - weblate-data:/app/data
 - ./weblate_customization/weblate_customization:/app/data/python/weblate_customization
 environment:
 WEBLATE_ADD_APPS: weblate_customization

Adding own Python modules

New in version 3.8-5.

You can place own Python modules in /app/data/python/ (see
Docker container volumes) and they can be then loaded by Weblate, most likely by
using Custom configuration files.

See also

Customizing Weblate

Select your machine - local or cloud providers

With Docker Machine you can create your Weblate deployment either on your local
machine, or on any large number of cloud-based deployments on e.g. Amazon AWS,
Greenhost, and many other providers.

Installing on Debian and Ubuntu

Hardware requirements

Weblate should run on any contemporary hardware without problems, the following is
the minimal configuration required to run Weblate on a single host (Weblate, database
and webserver):

	2 GB of RAM

	2 CPU cores

	1 GB of storage space

The more memory the better - it is used for caching on all
levels (filesystem, database and Weblate).

Many concurrent users increases the amount of needed CPU cores.
For hundreds of translation components at least 4 GB of RAM is
recommended.

The typical database storage usage is around 300 MB per 1 million hosted words.
Storage space needed for cloned repositories varies, but Weblate tries to keep
their size minimal by doing shallow clones.

Note

Actual requirements for your installation of Weblate vary heavily based on the size of
the translations managed in it.

Installation

System requirements

Install the dependencies needed to build the Python modules (see Software requirements):

apt install \
 libxml2-dev libxslt-dev libfreetype6-dev libjpeg-dev libz-dev libyaml-dev \
 libcairo-dev gir1.2-pango-1.0 libgirepository1.0-dev libacl1-dev libssl-dev \
 build-essential python3-gdbm python3-dev python3-pip python3-virtualenv virtualenv git

Install wanted optional dependencies depending on features you intend to use (see Optional dependencies):

apt install tesseract-ocr libtesseract-dev libleptonica-dev

Optionally install software for running production server, see Running server,
Database setup for Weblate, Background tasks using Celery. Depending on size of your installation
you might want to run these components on dedicated servers.

The local installation instructions:

Web server option 1: NGINX and uWSGI
apt install nginx uwsgi uwsgi-plugin-python3

Web server option 2: Apache with ``mod_wsgi``
apt install apache2 libapache2-mod-wsgi

Caching backend: Redis
apt install redis-server

Database server: PostgreSQL
apt install postgresql postgresql-contrib

SMTP server
apt install exim4

Python modules

Hint

We’re using virtualenv to install Weblate in a separate environment from your
system. If you are not familiar with it, check virtualenv User Guide [https://virtualenv.pypa.io/en/stable/user_guide.html].

	Create the virtualenv for Weblate:

virtualenv --python=python3 ~/weblate-env

	Activate the virtualenv for Weblate:

. ~/weblate-env/bin/activate

	Install Weblate including all dependencies:

pip install Weblate

	Install database driver:

pip install psycopg2-binary

	Install wanted optional dependencies depending on features you intend to use
(some might require additional system libraries, check Optional dependencies):

pip install ruamel.yaml aeidon boto3 zeep chardet tesserocr

Configuring Weblate

Note

Following steps assume virtualenv used by Weblate is active (what can be
done by . ~/weblate-env/bin/activate). In case this is not true, you will
have to specify full path to weblate command as
~/weblate-env/bin/weblate.

	Copy the file ~/weblate-env/lib/python3.7/site-packages/weblate/settings_example.py
to ~/weblate-env/lib/python3.7/site-packages/weblate/settings.py.

	Adjust the values in the new settings.py file to your liking. You can
stick with shipped example for testing purposes, but you will want changes for
production setup, see Adjusting configuration.

	Create the database and its structure for Weblate (the example settings use
PostgreSQL, check Database setup for Weblate for production ready setup):

weblate migrate

	Create the administrator user account and copy the password it outputs
to the clipboard, and also save it for later use:

weblate createadmin

	Collect static files for web server (see Running server and Serving static files):

weblate collectstatic

	Compress JavaScript and CSS files (optional, see Compressing client assets):

weblate compress

	Start Celery workers. This is not necessary for development purposes, but
strongly recommended otherwise. See Background tasks using Celery for more info:

~/weblate-env/lib/python3.7/site-packages/weblate/examples/celery start

	Start the development server (see Running server for production setup):

weblate runserver

After installation

Congratulations, your Weblate server is now running and you can start using it.

	You can now access Weblate on http://localhost:8000/.

	Login with admin credentials obtained during installation or register with new users.

	You can now run Weblate commands using weblate command when
Weblate virtualenv is active, see Management commands.

	You can stop the test server with Ctrl+C.

	Review potential issues with your installation either on /manage/performance/ URL or using weblate check --deploy, see Production setup.

Adding translation

	Open the admin interface (http://localhost:8000/create/project/) and create the project you
want to translate. See Project configuration for more details.

All you need to specify here is the project name and its website.

	Create a component which is the real object for translation - it points to the
VCS repository, and selects which files to translate. See Component configuration
for more details.

The important fields here are: Component name, VCS repository address and
mask for finding translatable files. Weblate supports a wide range of formats
including gettext PO files, Android resource strings, iOS string properties,
Java properties or Qt Linguist files, see Supported file formats for more details.

	Once the above is completed (it can be lengthy process depending on the size of
your VCS repository, and number of messages to translate), you can start
translating.

Installing on SUSE and openSUSE

Hardware requirements

Weblate should run on any contemporary hardware without problems, the following is
the minimal configuration required to run Weblate on a single host (Weblate, database
and webserver):

	2 GB of RAM

	2 CPU cores

	1 GB of storage space

The more memory the better - it is used for caching on all
levels (filesystem, database and Weblate).

Many concurrent users increases the amount of needed CPU cores.
For hundreds of translation components at least 4 GB of RAM is
recommended.

The typical database storage usage is around 300 MB per 1 million hosted words.
Storage space needed for cloned repositories varies, but Weblate tries to keep
their size minimal by doing shallow clones.

Note

Actual requirements for your installation of Weblate vary heavily based on the size of
the translations managed in it.

Installation

System requirements

Install the dependencies needed to build the Python modules (see Software requirements):

zypper install \
 libxslt-devel libxml2-devel freetype-devel libjpeg-devel zlib-devel libyaml-devel \
 cairo-devel typelib-1_0-Pango-1_0 gobject-introspection-devel libacl-devel \
 python3-pip python3-virtualenv python3-devel git

Install wanted optional dependencies depending on features you intend to use (see Optional dependencies):

zypper install tesseract-ocr tesseract-devel leptonica-devel

Optionally install software for running production server, see Running server,
Database setup for Weblate, Background tasks using Celery. Depending on size of your installation
you might want to run these components on dedicated servers.

The local installation instructions:

Web server option 1: NGINX and uWSGI
zypper install nginx uwsgi uwsgi-plugin-python3

Web server option 2: Apache with ``mod_wsgi``
zypper install apache2 apache2-mod_wsgi

Caching backend: Redis
zypper install redis-server

Database server: PostgreSQL
zypper install postgresql postgresql-contrib

SMTP server
zypper install postfix

Python modules

Hint

We’re using virtualenv to install Weblate in a separate environment from your
system. If you are not familiar with it, check virtualenv User Guide [https://virtualenv.pypa.io/en/stable/user_guide.html].

	Create the virtualenv for Weblate:

virtualenv --python=python3 ~/weblate-env

	Activate the virtualenv for Weblate:

. ~/weblate-env/bin/activate

	Install Weblate including all dependencies:

pip install Weblate

	Install database driver:

pip install psycopg2-binary

	Install wanted optional dependencies depending on features you intend to use
(some might require additional system libraries, check Optional dependencies):

pip install ruamel.yaml aeidon boto3 zeep chardet tesserocr

Configuring Weblate

Note

Following steps assume virtualenv used by Weblate is active (what can be
done by . ~/weblate-env/bin/activate). In case this is not true, you will
have to specify full path to weblate command as
~/weblate-env/bin/weblate.

	Copy the file ~/weblate-env/lib/python3.7/site-packages/weblate/settings_example.py
to ~/weblate-env/lib/python3.7/site-packages/weblate/settings.py.

	Adjust the values in the new settings.py file to your liking. You can
stick with shipped example for testing purposes, but you will want changes for
production setup, see Adjusting configuration.

	Create the database and its structure for Weblate (the example settings use
PostgreSQL, check Database setup for Weblate for production ready setup):

weblate migrate

	Create the administrator user account and copy the password it outputs
to the clipboard, and also save it for later use:

weblate createadmin

	Collect static files for web server (see Running server and Serving static files):

weblate collectstatic

	Compress JavaScript and CSS files (optional, see Compressing client assets):

weblate compress

	Start Celery workers. This is not necessary for development purposes, but
strongly recommended otherwise. See Background tasks using Celery for more info:

~/weblate-env/lib/python3.7/site-packages/weblate/examples/celery start

	Start the development server (see Running server for production setup):

weblate runserver

After installation

Congratulations, your Weblate server is now running and you can start using it.

	You can now access Weblate on http://localhost:8000/.

	Login with admin credentials obtained during installation or register with new users.

	You can now run Weblate commands using weblate command when
Weblate virtualenv is active, see Management commands.

	You can stop the test server with Ctrl+C.

	Review potential issues with your installation either on /manage/performance/ URL or using weblate check --deploy, see Production setup.

Adding translation

	Open the admin interface (http://localhost:8000/create/project/) and create the project you
want to translate. See Project configuration for more details.

All you need to specify here is the project name and its website.

	Create a component which is the real object for translation - it points to the
VCS repository, and selects which files to translate. See Component configuration
for more details.

The important fields here are: Component name, VCS repository address and
mask for finding translatable files. Weblate supports a wide range of formats
including gettext PO files, Android resource strings, iOS string properties,
Java properties or Qt Linguist files, see Supported file formats for more details.

	Once the above is completed (it can be lengthy process depending on the size of
your VCS repository, and number of messages to translate), you can start
translating.

Installing on RedHat, Fedora and CentOS

Hardware requirements

Weblate should run on any contemporary hardware without problems, the following is
the minimal configuration required to run Weblate on a single host (Weblate, database
and webserver):

	2 GB of RAM

	2 CPU cores

	1 GB of storage space

The more memory the better - it is used for caching on all
levels (filesystem, database and Weblate).

Many concurrent users increases the amount of needed CPU cores.
For hundreds of translation components at least 4 GB of RAM is
recommended.

The typical database storage usage is around 300 MB per 1 million hosted words.
Storage space needed for cloned repositories varies, but Weblate tries to keep
their size minimal by doing shallow clones.

Note

Actual requirements for your installation of Weblate vary heavily based on the size of
the translations managed in it.

Installation

System requirements

Install the dependencies needed to build the Python modules (see Software requirements):

dnf install \
 libxslt-devel libxml2-devel freetype-devel libjpeg-devel zlib-devel libyaml-devel \
 cairo-devel pango-devel gobject-introspection-devel libacl-devel \
 python3-pip python3-virtualenv python3-devel git

Install wanted optional dependencies depending on features you intend to use (see Optional dependencies):

dnf install tesseract-langpack-eng tesseract-devel leptonica-devel

Optionally install software for running production server, see Running server,
Database setup for Weblate, Background tasks using Celery. Depending on size of your installation
you might want to run these components on dedicated servers.

The local installation instructions:

Web server option 1: NGINX and uWSGI
dnf install nginx uwsgi uwsgi-plugin-python3

Web server option 2: Apache with ``mod_wsgi``
dnf install apache2 apache2-mod_wsgi

Caching backend: Redis
dnf install redis

Database server: PostgreSQL
dnf install postgresql postgresql-contrib

SMTP server
dnf install postfix

Python modules

Hint

We’re using virtualenv to install Weblate in a separate environment from your
system. If you are not familiar with it, check virtualenv User Guide [https://virtualenv.pypa.io/en/stable/user_guide.html].

	Create the virtualenv for Weblate:

virtualenv --python=python3 ~/weblate-env

	Activate the virtualenv for Weblate:

. ~/weblate-env/bin/activate

	Install Weblate including all dependencies:

pip install Weblate

	Install database driver:

pip install psycopg2-binary

	Install wanted optional dependencies depending on features you intend to use
(some might require additional system libraries, check Optional dependencies):

pip install ruamel.yaml aeidon boto3 zeep chardet tesserocr

Configuring Weblate

Note

Following steps assume virtualenv used by Weblate is active (what can be
done by . ~/weblate-env/bin/activate). In case this is not true, you will
have to specify full path to weblate command as
~/weblate-env/bin/weblate.

	Copy the file ~/weblate-env/lib/python3.7/site-packages/weblate/settings_example.py
to ~/weblate-env/lib/python3.7/site-packages/weblate/settings.py.

	Adjust the values in the new settings.py file to your liking. You can
stick with shipped example for testing purposes, but you will want changes for
production setup, see Adjusting configuration.

	Create the database and its structure for Weblate (the example settings use
PostgreSQL, check Database setup for Weblate for production ready setup):

weblate migrate

	Create the administrator user account and copy the password it outputs
to the clipboard, and also save it for later use:

weblate createadmin

	Collect static files for web server (see Running server and Serving static files):

weblate collectstatic

	Compress JavaScript and CSS files (optional, see Compressing client assets):

weblate compress

	Start Celery workers. This is not necessary for development purposes, but
strongly recommended otherwise. See Background tasks using Celery for more info:

~/weblate-env/lib/python3.7/site-packages/weblate/examples/celery start

	Start the development server (see Running server for production setup):

weblate runserver

After installation

Congratulations, your Weblate server is now running and you can start using it.

	You can now access Weblate on http://localhost:8000/.

	Login with admin credentials obtained during installation or register with new users.

	You can now run Weblate commands using weblate command when
Weblate virtualenv is active, see Management commands.

	You can stop the test server with Ctrl+C.

	Review potential issues with your installation either on /manage/performance/ URL or using weblate check --deploy, see Production setup.

Adding translation

	Open the admin interface (http://localhost:8000/create/project/) and create the project you
want to translate. See Project configuration for more details.

All you need to specify here is the project name and its website.

	Create a component which is the real object for translation - it points to the
VCS repository, and selects which files to translate. See Component configuration
for more details.

The important fields here are: Component name, VCS repository address and
mask for finding translatable files. Weblate supports a wide range of formats
including gettext PO files, Android resource strings, iOS string properties,
Java properties or Qt Linguist files, see Supported file formats for more details.

	Once the above is completed (it can be lengthy process depending on the size of
your VCS repository, and number of messages to translate), you can start
translating.

Installing on macOS

Hardware requirements

Weblate should run on any contemporary hardware without problems, the following is
the minimal configuration required to run Weblate on a single host (Weblate, database
and webserver):

	2 GB of RAM

	2 CPU cores

	1 GB of storage space

The more memory the better - it is used for caching on all
levels (filesystem, database and Weblate).

Many concurrent users increases the amount of needed CPU cores.
For hundreds of translation components at least 4 GB of RAM is
recommended.

The typical database storage usage is around 300 MB per 1 million hosted words.
Storage space needed for cloned repositories varies, but Weblate tries to keep
their size minimal by doing shallow clones.

Note

Actual requirements for your installation of Weblate vary heavily based on the size of
the translations managed in it.

Installation

System requirements

Install the dependencies needed to build the Python modules (see Software requirements):

brew install python pango cairo gobject-introspection libffi glib libyaml
pip3 install virtualenv

Make sure pip will be able to find the libffi version provided by homebrew
— this will be needed during the installation build step.

export PKG_CONFIG_PATH="/usr/local/opt/libffi/lib/pkgconfig"

Install wanted optional dependencies depending on features you intend to use (see Optional dependencies):

brew install tesseract

Optionally install software for running production server, see Running server,
Database setup for Weblate, Background tasks using Celery. Depending on size of your installation
you might want to run these components on dedicated servers.

The local installation instructions:

Web server option 1: NGINX and uWSGI
brew install nginx uwsgi

Web server option 2: Apache with ``mod_wsgi``
brew install httpd

Caching backend: Redis
brew install redis

Database server: PostgreSQL
brew install postgresql

Python modules

Hint

We’re using virtualenv to install Weblate in a separate environment from your
system. If you are not familiar with it, check virtualenv User Guide [https://virtualenv.pypa.io/en/stable/user_guide.html].

	Create the virtualenv for Weblate:

virtualenv --python=python3 ~/weblate-env

	Activate the virtualenv for Weblate:

. ~/weblate-env/bin/activate

	Install Weblate including all dependencies:

pip install Weblate

	Install database driver:

pip install psycopg2-binary

	Install wanted optional dependencies depending on features you intend to use
(some might require additional system libraries, check Optional dependencies):

pip install ruamel.yaml aeidon boto3 zeep chardet tesserocr

Configuring Weblate

Note

Following steps assume virtualenv used by Weblate is active (what can be
done by . ~/weblate-env/bin/activate). In case this is not true, you will
have to specify full path to weblate command as
~/weblate-env/bin/weblate.

	Copy the file ~/weblate-env/lib/python3.7/site-packages/weblate/settings_example.py
to ~/weblate-env/lib/python3.7/site-packages/weblate/settings.py.

	Adjust the values in the new settings.py file to your liking. You can
stick with shipped example for testing purposes, but you will want changes for
production setup, see Adjusting configuration.

	Create the database and its structure for Weblate (the example settings use
PostgreSQL, check Database setup for Weblate for production ready setup):

weblate migrate

	Create the administrator user account and copy the password it outputs
to the clipboard, and also save it for later use:

weblate createadmin

	Collect static files for web server (see Running server and Serving static files):

weblate collectstatic

	Compress JavaScript and CSS files (optional, see Compressing client assets):

weblate compress

	Start Celery workers. This is not necessary for development purposes, but
strongly recommended otherwise. See Background tasks using Celery for more info:

~/weblate-env/lib/python3.7/site-packages/weblate/examples/celery start

	Start the development server (see Running server for production setup):

weblate runserver

After installation

Congratulations, your Weblate server is now running and you can start using it.

	You can now access Weblate on http://localhost:8000/.

	Login with admin credentials obtained during installation or register with new users.

	You can now run Weblate commands using weblate command when
Weblate virtualenv is active, see Management commands.

	You can stop the test server with Ctrl+C.

	Review potential issues with your installation either on /manage/performance/ URL or using weblate check --deploy, see Production setup.

Adding translation

	Open the admin interface (http://localhost:8000/create/project/) and create the project you
want to translate. See Project configuration for more details.

All you need to specify here is the project name and its website.

	Create a component which is the real object for translation - it points to the
VCS repository, and selects which files to translate. See Component configuration
for more details.

The important fields here are: Component name, VCS repository address and
mask for finding translatable files. Weblate supports a wide range of formats
including gettext PO files, Android resource strings, iOS string properties,
Java properties or Qt Linguist files, see Supported file formats for more details.

	Once the above is completed (it can be lengthy process depending on the size of
your VCS repository, and number of messages to translate), you can start
translating.

Installing from sources

	Please follow the installation instructions for your system first:

	Installing on Debian and Ubuntu

	Installing on SUSE and openSUSE

	Installing on RedHat, Fedora and CentOS

	Grab the latest Weblate sources using Git (or download a tarball and unpack that):

git clone https://github.com/WeblateOrg/weblate.git weblate-src

Alternatively you can use released archives. You can download them from our
website <https://weblate.org/>. Those downloads are cryptographically
signed, please see Verifying release signatures.

	Install current Weblate code into the virtualenv:

. ~/weblate-env/bin/activate
pip install -e weblate-src

	Copy weblate/settings_example.py to weblate/settings.py.

	Adjust the values in the new settings.py file to your liking. You can
stick with shipped example for testing purposes, but you will want changes for
production setup, see Adjusting configuration.

	Create the database used by Weblate, see Database setup for Weblate.

	Build Django tables, static files and initial data (see
Filling up the database and Serving static files):

weblate migrate
weblate collectstatic
weblate compress
weblate compilemessages

Note

This step should be repeated whenever you update the repository.

Installing on OpenShift

With the OpenShift Weblate template you can get your personal Weblate
instance up and running in seconds. All of Weblate’s dependencies are
already included. PostgreSQL is set up as the default database and
persistent volume claims are used.

You can find the template at <https://github.com/WeblateOrg/openshift/>.

Installation

The following examples assume you have a working OpenShift v3.x
environment, with oc client tool installed. Please check the
OpenShift documentation for instructions.

Web Console

Copy the raw content from template.yml and import them into your
project, then use the Create button in the OpenShift web console to
create your application. The web console will prompt you for the values
for all of the parameters used by the template.

CLI

To upload the Weblate template to your current project’s template
library, pass the template.yml file with the following command:

$ oc create -f https://raw.githubusercontent.com/WeblateOrg/openshift/main/template.yml \
 -n <PROJECT>

The template is now available for selection using the web console or the
CLI.

Parameters

The parameters that you can override are listed in the parameters section of
the template. You can list them with the CLI by using the following command and
specifying the file to be used:

$ oc process --parameters -f https://raw.githubusercontent.com/WeblateOrg/openshift/main/template.yml

If the template is already uploaded
$ oc process --parameters -n <PROJECT> weblate

Provisioning

You can also use the CLI to process templates and use the configuration
that is generated to create objects immediately.

$ oc process -f https://raw.githubusercontent.com/WeblateOrg/openshift/main/template.yml \
 -p APPLICATION_NAME=weblate \
 -p WEBLATE_VERSION=4.3.1-1 \
 -p WEBLATE_SITE_DOMAIN=weblate.app-openshift.example.com \
 -p POSTGRESQL_IMAGE=docker-registry.default.svc:5000/openshift/postgresql:9.6 \
 -p REDIS_IMAGE=docker-registry.default.svc:5000/openshift/redis:3.2 \
 | oc create -f

The Weblate instance should be available after successful migration and
deployment at the specified WEBLATE_SITE_DOMAIN parameter.

After container setup, you can sign in as admin user with password provided
in WEBLATE_ADMIN_PASSWORD, or a random password generated on first
start if that was not set.

To reset admin password, restart the container with
WEBLATE_ADMIN_PASSWORD set to new password in the respective Secret.

Eliminate

$ oc delete all -l app=<APPLICATION_NAME>
$ oc delete configmap -l app= <APPLICATION_NAME>
$ oc delete secret -l app=<APPLICATION_NAME>
ATTTENTION! The following command is only optional and will permanently delete all of your data.
$ oc delete pvc -l app=<APPLICATION_NAME>

$ oc delete all -l app=weblate \
 && oc delete secret -l app=weblate \
 && oc delete configmap -l app=weblate \
 && oc delete pvc -l app=weblate

Configuration

By processing the template a respective ConfigMap will be created
and which can be used to customize the Weblate image. The ConfigMap
is directly mounted as environment variables and triggers a new
deployment every time it is changed. For further configuration options,
see Docker environment variables for full list of environment variables.

Installing on Kubernetes

Note

This guide is looking for contributors experienced with Kubernetes to cover
the setup in more details.

With the Kubernetes Helm chart you can get your personal Weblate
instance up and running in seconds. All of Weblate’s dependencies are
already included. PostgreSQL is set up as the default database and
persistent volume claims are used.

You can find the chart at <https://github.com/WeblateOrg/helm/> and it can be
displayed at <https://artifacthub.io/packages/helm/weblate/weblate>.

Installation

helm repo add weblate https://helm.weblate.org
helm install my-release weblate/weblate

Weblate deployments

Weblate can be easily installed in your cloud. Please find detailed guide for your platform:

	Installing using Docker

	Installing on OpenShift

	Installing on Kubernetes

Third-party deployments for Weblate

Note

Following deployments are not developed or supported by Weblate team. Parts
of the setup might vary from what is described in this documentation.

Bitnami Weblate stack

Bitnami provides a Weblate stack for many platforms at
<https://bitnami.com/stack/weblate>. The setup will be adjusted during
installation, see <https://bitnami.com/stack/weblate/README.txt> for more
documentation.

Weblate Cloudron Package

Cloudron [https://cloudron.io/] is a platform for self-hosting web applications.
Weblate installed with Cloudron will be automatically kept up-to-date.
The package is maintained by the Cloudron team at their Weblate package repo [https://git.cloudron.io/cloudron/weblate-app].

[image: Install Weblate with Cloudron]
 [https://cloudron.io/button.html?app=org.weblate.cloudronapp]

Weblate in YunoHost

The self-hosting project YunoHost [https://yunohost.org/] provides a package
for Weblate. Once you have your YunoHost installation, you may install Weblate
as any other application. It will provide you with a fully working stack with backup
and restoration, but you may still have to edit your settings file for specific
usages.

You may use your administration interface, or this button (it will bring you to your server):

[image: Install Weblate with YunoHost]
 [https://install-app.yunohost.org/?app=weblate]It also is possible to use the commandline interface:

yunohost app install https://github.com/YunoHost-Apps/weblate_ynh

Upgrading Weblate

Docker image upgrades

The official Docker image (see Installing using Docker) has all upgrade steps
integrated. There are no manual step besides pulling latest version.

Generic upgrade instructions

Before upgrading, please check the current Software requirements as they might have
changed. Once all requirements are installed or updated, please adjust your
settings.py to match changes in the configuration (consult
settings_example.py for correct values).

Always check Version specific instructions before upgrade. In case you
are skipping some versions, please follow instructions for all versions you are
skipping in the upgrade. Sometimes it’s better to upgrade to some intermediate
version to ensure a smooth migration. Upgrading across multiple releases should
work, but is not as well tested as single version upgrades.

Note

It is recommended to perform a full database backup prior to upgrade so that you
can roll back the database in case upgrade fails, see Backing up and moving Weblate.

	Stop wsgi and Celery processes. The upgrade can perform incompatible changes in the
database, so it is always safer to avoid old processes running while upgrading.

	Upgrade Weblate code.

For pip installs it can be achieved by:

pip install -U Weblate

With Git checkout you need to fetch new source code and update your installation:

cd weblate-src
git pull
Update Weblate inside your virtualenv
. ~/weblate-env/bin/pip install -e .
Install dependencies directly when not using virtualenv
pip install --upgrade -r requirements.txt

	Upgrade configuration file, refer to settings_example.py or
Version specific instructions for needed steps.

	Upgrade database structure:

weblate migrate --noinput

	Collect updated static files (see Running server and Serving static files):

weblate collectstatic --noinput

	Compress JavaScript and CSS files (optional, see Compressing client assets):

weblate compress

	If you are running version from Git, you should also regenerate locale files
every time you are upgrading. You can do this by invoking:

weblate compilemessages

	Verify that your setup is sane (see also Production setup):

weblate check --deploy

	Restart celery worker (see Background tasks using Celery).

Version specific instructions

Upgrade from 2.x

If you are upgrading from 2.x release, always first upgrade to 3.0.1 and then
continue upgrading in the 3.x series. Upgrades skipping this step are not
supported and will break.

See also

Upgrade from 2.20 to 3.0 in Weblate 3.0 documentation [https://docs.weblate.org/en/weblate-3.0.1/admin/upgrade.html#upgrade-3]

Upgrade from 3.x

If you are upgrading from 3.x release, always first upgrade to 4.0.4 or 4.1.1
and then continue upgrading in the 4.x series. Upgrades skipping this step are
not supported and will break.

See also

Upgrade from 3.11 to 4.0 in Weblate 4.0 documentation [https://docs.weblate.org/en/weblate-4.0.4/admin/upgrade.html#upgrade-from-3-11-to-4-0]

Upgrade from 4.0 to 4.1

Please follow Generic upgrade instructions in order to perform update.

Notable configuration or dependencies changes:

	There are several changes in settings_example.py, most notable middleware changes, please adjust your settings accordingly.

	There are new file formats, you might want to include them in case you modified the WEBLATE_FORMATS.

	There are new quality checks, you might want to include them in case you modified the CHECK_LIST.

	There is change in DEFAULT_THROTTLE_CLASSES setting to allow reporting of rate limiting in the API.

	There are some new and updated requirements.

	There is a change in INSTALLED_APPS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS].

	The DeepL machine translation now defaults to v2 API, you might need to adjust MT_DEEPL_API_VERSION in case your current DeepL subscription does not support that.

See also

Generic upgrade instructions

Upgrade from 4.1 to 4.2

Please follow Generic upgrade instructions in order to perform update.

Notable configuration or dependencies changes:

	Upgrade from 3.x releases is not longer supported, please upgrade to 4.0 or 4.1 first.

	There are some new and updated requirements.

	There are several changes in settings_example.py, most notable new middleware and changed application ordering.

	The keys for JSON based formats no longer include leading dot. The strings are adjusted during the database migration, but external components might need adjustment in case you rely on keys in exports or API.

	The Celery configuration was changed to no longer use memory queue. Please adjust your startup scripts and CELERY_TASK_ROUTES setting.

	The Weblate domain is now configured in the settings, see SITE_DOMAIN (or WEBLATE_SITE_DOMAIN). You will have to configure it before running Weblate.

	The username and email fields on user database now should be case insensitive unique. It was mistakenly not enforced with PostgreSQL.

See also

Generic upgrade instructions

Upgrade from 4.2 to 4.3

Please follow Generic upgrade instructions in order to perform update.

Notable configuration or dependencies changes:

	There are some changes in quality checks, you might want to include them in case you modified the CHECK_LIST.

	The source language attribute was moved from project to a component what is exposed in the API. You will need to update Weblate Client in case you are using it.

	The database migration to 4.3 might take long depending on number of strings you are translating (expect around one hour of migration time per 100,000 source strings).

	There is a change in INSTALLED_APPS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS].

	There is a new setting SESSION_COOKIE_AGE_AUTHENTICATED which complements SESSION_COOKIE_AGE [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SESSION_COOKIE_AGE].

	In case you were using hub or lab to integrate with GitHub or GitLab, you will need to reconfigure this, see GITHUB_CREDENTIALS and GITLAB_CREDENTIALS.

Changed in version 4.3.1: 	The Celery configuration was changed to add memory queue. Please adjust your startup scripts and CELERY_TASK_ROUTES setting.

Changed in version 4.3.2: 	The post_update method of addons now takes extra skip_push parameter.

See also

Generic upgrade instructions

Upgrade from 4.3 to 4.4

Please follow Generic upgrade instructions in order to perform update.

Notable configuration or dependencies changes:

	There is a change in INSTALLED_APPS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS], weblate.configuration has to be added there.

	Django 3.1 is now required.

	In case you are using MySQL or MariaDB, the minimal required versions have increased, see MySQL and MariaDB.

Changed in version 4.4.1: 	Monolingual gettext now uses both msgid and msgctxt when present. This will change identification of translation strings in such files breaking links to Weblate extended data such as screenshots or review states. Please make sure you commit pending changes in such files prior upgrading and it is recommeded to force loading of affected component using loadpo.

	Increased minimal required version of translate-toolkit to address several file format issues.

See also

Generic upgrade instructions

Upgrade from 4.4 to 4.5

Please follow Generic upgrade instructions in order to perform update.

Notable configuration or dependencies changes:

	The migration might take considerable time if you had big glossaries.

	Glossaries are now stored as regular components.

	The glossary API is removed, use regular translation API to access glossaries.

	There is a change in INSTALLED_APPS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS] - weblate.metrics should be added.

Changed in version 4.5.1: 	There is a new dependency on the pyahocorasick module.

See also

Generic upgrade instructions

Upgrading from Python 2 to Python 3

Weblate no longer supports Python older than 3.5. In case you are still running
on older version, please perform migration to Python 3 first on existing
version and upgrade later. See Upgrading from Python 2 to Python 3 in the Weblate
3.11.1 documentation [https://docs.weblate.org/en/weblate-3.11.1/admin/upgrade.html#upgrading-from-python-2-to-python-3].

Migrating from other databases to PostgreSQL

If you are running Weblate on other dabatase than PostgreSQL, you should
migrate to PostgreSQL as that will be the only supported database backend in
the 4.0 release. The following steps will guide you in migrating your data
between the databases. Please remember to stop both web and Celery servers
prior to the migration, otherwise you might end up with inconsistent data.

Creating a database in PostgreSQL

It is usually a good idea to run Weblate in a separate database, and separate user account:

If PostgreSQL was not installed before, set the main password
sudo -u postgres psql postgres -c "\password postgres"

Create a database user called "weblate"
sudo -u postgres createuser -D -P weblate

Create the database "weblate" owned by "weblate"
sudo -u postgres createdb -O weblate weblate

Migrating using Django JSON dumps

The simplest approach for migration is to utilize Django JSON dumps. This works well for smaller installations. On bigger sites you might want to use pgloader instead, see Migrating to PostgreSQL using pgloader.

	Add PostgreSQL as additional database connection to the settings.py:

DATABASES = {
 "default": {
 # Database engine
 "ENGINE": "django.db.backends.mysql",
 # Database name
 "NAME": "weblate",
 # Database user
 "USER": "weblate",
 # Database password
 "PASSWORD": "password",
 # Set to empty string for localhost
 "HOST": "database.example.com",
 # Set to empty string for default
 "PORT": "",
 # Additional database options
 "OPTIONS": {
 # In case of using an older MySQL server, which has MyISAM as a default storage
 # 'init_command': 'SET storage_engine=INNODB',
 # Uncomment for MySQL older than 5.7:
 # 'init_command': "SET sql_mode='STRICT_TRANS_TABLES'",
 # If your server supports it, see the Unicode issues above
 "charset": "utf8mb4",
 # Change connection timeout in case you get MySQL gone away error:
 "connect_timeout": 28800,
 },
 },
 "postgresql": {
 # Database engine
 "ENGINE": "django.db.backends.postgresql",
 # Database name
 "NAME": "weblate",
 # Database user
 "USER": "weblate",
 # Database password
 "PASSWORD": "password",
 # Set to empty string for localhost
 "HOST": "database.example.com",
 # Set to empty string for default
 "PORT": "",
 },
}

	Run migrations and drop any data inserted into the tables:

weblate migrate --database=postgresql
weblate sqlflush --database=postgresql | weblate dbshell --database=postgresql

	Dump legacy database and import to PostgreSQL

weblate dumpdata --all --output weblate.json
weblate loaddata weblate.json --database=postgresql

	Adjust DATABASES [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DATABASES] to use just PostgreSQL database as default,
remove legacy connection.

Weblate should be now ready to run from the PostgreSQL database.

Migrating to PostgreSQL using pgloader

The pgloader [https://pgloader.io/] is a generic migration tool to migrate data to PostgreSQL. You can use it to migrate Weblate database.

	Adjust your settings.py to use PostgreSQL as a database.

	Migrate the schema in the PostgreSQL database:

weblate migrate
weblate sqlflush | weblate dbshell

	Run the pgloader to transfer the data. The following script can be used to migrate the database, but you might want to learn more about pgloader [https://pgloader.io/] to understand what it does and tweak it to match your setup:

LOAD DATABASE
 FROM mysql://weblate:password@localhost/weblate
 INTO postgresql://weblate:password@localhost/weblate

WITH include no drop, truncate, create no tables, create no indexes, no foreign keys, disable triggers, reset sequences, data only

ALTER SCHEMA 'weblate' RENAME TO 'public'
;

Migrating from Pootle

As Weblate was originally written as replacement from Pootle, it is supported
to migrate user accounts from Pootle. You can dump the users from Pootle and
import them using importusers.

Backing up and moving Weblate

Automated backup using BorgBackup

New in version 3.9.

Weblate has built-in support for creating service backups using BorgBackup [https://www.borgbackup.org/].
Borg creates space-effective encrypted backups which can be safely stored in
the cloud. The backups can be controlled in the management interface from the
Backups tab.

Changed in version 4.4.1: Both PostgreSQL and MySQL/MariaDB databases are included in the automated backups.

The backups using Borg are incremental and Weblate is configured to keep following backups:

	Daily backups for 14 days back

	Weekly backups for 8 weeks back

	Monthly backups for 6 months back

[image: ../_images/backups.png]

Borg encryption key

BorgBackup [https://www.borgbackup.org/] creates encrypted backups and you wouldn’t be able to restore them
without the passphrase. The passphrase is generated when adding a new
backup service and you should copy it and keep it in a secure place.

If you are using Weblate provisioned backup storage, please backup your private SSH key
too, as it’s used to access your backups.

See also

borg init [https://borgbackup.readthedocs.io/en/stable/usage/init.html]

Weblate provisioned backup storage

The easiest way of backing up your Weblate instance is purchasing the backup
service at weblate.org [https://weblate.org/support/#backup]. This
is how you get it running:

	Purchase the Backup service on https://weblate.org/support/#backup.

	Enter the obtained key in the management interface, see Integrating support.

	Weblate connects to the cloud service and obtains access info for the backups.

	Turn on the new backup configuration from the Backups tab.

	Backup your Borg credentials to be able to restore the backups, see Borg encryption key.

Hint

The manual step of turning everything on is there for your safety.
Without your consent no data is sent to the backup repository obtained
through the registration process.

Using custom backup storage

You can also use your own storage for the backups. SSH can be used to store
backups in the remote destination, the target server needs to have
BorgBackup [https://www.borgbackup.org/] installed.

See also

General [https://borgbackup.readthedocs.io/en/stable/usage/general.html] in the Borg documentation

Local filesystem

It is recommended to specify the absolute path for the local backup, for example
/path/to/backup. The directory has to be writable by the user running Weblate
(see Filesystem permissions). If it doesn’t exist, Weblate attempts
to create it but needs the appropriate permissions to do so.

Hint

When running Weblate in Docker, please ensure the backup location
is exposed as a volume from the Weblate container. Otherwise the backups
will be discarded by Docker upon restarting the container it is in.

One option is to place backups into an existing volume, for example
/app/data/borgbackup. This is an existing volume in the container.

You can also add a new container for the backups in the Docker Compose file
for example by using /borgbackup:

services:
 weblate:
 volumes:
 - /home/weblate/data:/app/data
 - /home/weblate/borgbackup:/borgbackup

The directory where backups will be stored have to be owned by UID 1000,
otherwise Weblate won’t be able to write the backups there.

Remote backups

In order to create the remote backups, you will have to install BorgBackup [https://www.borgbackup.org/]
onto another server that’s accessible via SSH. Make sure
that it accepts the Weblate’s client SSH key, i.e. the one it uses to connect
to other servers.

Hint

Weblate provisioned backup storage provides you automated remote backups.

See also

Weblate SSH key

Restoring from BorgBackup

	Restore access to your backup repository and prepare your backup passphrase.

	List all the backups on the server using borg list REPOSITORY.

	Restore the desired backup to the current directory using borg extract REPOSITORY::ARCHIVE.

	Restore the database from the SQL dump placed in the backup directory in the Weblate data dir (see Dumped data for backups).

	Copy the Weblate configuration (backups/settings.py, see Dumped data for backups) to the correct location, see Adjusting configuration.

	Copy the whole restored data dir to the location configured by DATA_DIR.

The Borg session might look like this:

$ borg list /tmp/xxx
Enter passphrase for key /tmp/xxx:
2019-09-26T14:56:08 Thu, 2019-09-26 14:56:08 [de0e0f13643635d5090e9896bdaceb92a023050749ad3f3350e788f1a65576a5]
$ borg extract /tmp/xxx::2019-09-26T14:56:08
Enter passphrase for key /tmp/xxx:

See also

borg list [https://borgbackup.readthedocs.io/en/stable/usage/list.html],
borg extract [https://borgbackup.readthedocs.io/en/stable/usage/extract.html]

Manual backup

Depending on what you want to save, back up the type of data Weblate stores in each respective place.

Hint

If you are doing the manual backups, you might want to
silence Weblate’s warning about a lack of backups by adding weblate.I028 to
SILENCED_SYSTEM_CHECKS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SILENCED_SYSTEM_CHECKS] in settings.py or
WEBLATE_SILENCED_SYSTEM_CHECKS for Docker.

SILENCED_SYSTEM_CHECKS.append("weblate.I028")

Database

The actual storage location depends on your database setup.

Hint

The database is the most important storage. Set up regular backups of your
database. Without the database, all the translations are gone.

Native database backup

The recommended approach is to save a dump of the database using database-native
tools such as pg_dump or mysqldump. It usually performs
better than Django backup, and it restores complete tables with all their data.

You can restore this backup in a newer Weblate release, it will perform all the
necessary migrations when running in migrate [https://docs.djangoproject.com/en/stable/ref/django-admin/#django-admin-migrate]. Please consult
Upgrading Weblate on more detailed info on how to upgrade between versions.

Django database backup

Alternatively, you can back up your database using Django’s dumpdata [https://docs.djangoproject.com/en/stable/ref/django-admin/#django-admin-dumpdata]
command. That way the backup is database agnostic and can be used in case you
want to change the database backend.

Prior to restoring the database you need to be running exactly the same Weblate
version the backup was made on. This is necessary as the database structure does
change between releases and you would end up corrupting the data in some way.
After installing the same version, run all database migrations using
migrate [https://docs.djangoproject.com/en/stable/ref/django-admin/#django-admin-migrate].

Afterwards some entries will already be created in the database and you
will have them in the database backup as well. The recommended approach is to
delete such entries manually using the management shell (see Invoking management commands):

weblate shell
>>> from weblate.auth.models import User
>>> User.objects.get(username='anonymous').delete()

Files

If you have enough backup space, simply back up the whole DATA_DIR. This
is a safe bet even if it includes some files you don’t want.
The following sections describe what you should back up and what you
can skip in detail.

Dumped data for backups

Stored in DATA_DIR /backups.

Weblate dumps various data here, and you can include these files for more complete
backups. The files are updated daily (requires a running Celery beats server, see
Background tasks using Celery). Currently, this includes:

	Weblate settings as settings.py (there is also expanded version in settings-expanded.py).

	PostgreSQL database backup as database.sql.

The database backups are saved as plain text by default, but they can also be compressed
or entirely skipped using DATABASE_BACKUP.

Version control repositories

Stored in DATA_DIR /vcs.

The version control repositories contain a copy of your upstream repositories
with Weblate changes. If you have Push on commit enabled for all your
translation components, all Weblate changes are included upstream. No need to
back up the repositories on the Weblate side as they can be cloned
again from the upstream location(s) with no data loss.

SSH and GPG keys

Stored in DATA_DIR /ssh and DATA_DIR /home.

If you are using SSH or GPG keys generated by Weblate, you should back up these
locations. Otherwise you will lose the private keys and you will have to
regenerate new ones.

User uploaded files

Stored in DATA_DIR /media.

You should back up all user uploaded files (e.g. Visual context for strings).

Celery tasks

The Celery task queue might contain some info, but is usually not needed
for a backup. At most you will lose updates not yet been processed to translation
memory. It is recommended to perform the fulltext or repository update upon
restoration anyhow, so there is no problem in losing these.

See also

Background tasks using Celery

Command line for manual backup

Using a cron job, you can set up a Bash command to be executed on a daily basis, for example:

$ XZ_OPT="-9" tar -Jcf ~/backup/weblate-backup-$(date -u +%Y-%m-%d_%H%M%S).xz backups vcs ssh home media fonts secret

The string between the quotes after XZ_OPT allows you to choose your xz options, for instance the amount of memory used for compression; see https://linux.die.net/man/1/xz

You can adjust the list of folders and files to your needs. To avoid saving the translation memory (in backups folder), you can use:

$ XZ_OPT="-9" tar -Jcf ~/backup/weblate-backup-$(date -u +%Y-%m-%d_%H%M%S).xz backups/database.sql backups/settings.py vcs ssh home media fonts secret

Restoring manual backup

	Restore all data you have backed up.

	Update all repositories using updategit.

weblate updategit --all

Moving a Weblate installation

Relocate your installation to a different system
by following the backing up and restoration instructions above.

See also

Upgrading from Python 2 to Python 3,
Migrating from other databases to PostgreSQL

Authentication

User registration

The default setup for Weblate is to use python-social-auth, a form on the website
to handle registration of new users. After confirming their e-mail a new user can
contribute or authenticate by using one of the third party services.

You can also turn off registration of new users using
REGISTRATION_OPEN.

The authentication attempts are subject to Rate limiting.

Authentication backends

The built-in solution of Django is used for authentication,
including various social options to do so.
Using it means you can import the user database of other Django-based projects
(see Migrating from Pootle).

Django can additionally be set up to authenticate against other means too.

See also

Authentication settings describes how to configure authentication in the official
Docker image.

Social authentication

Thanks to Welcome to Python Social Auth’s documentation! [https://python-social-auth.readthedocs.io/en/latest/index.html], Weblate support authentication using many third
party services such as GitLab, Ubuntu, Fedora, etc.

Please check their documentation for generic configuration instructions
in Django Framework [https://python-social-auth.readthedocs.io/en/latest/configuration/django.html].

Note

By default, Weblate relies on third-party authentication services to
provide a validated e-mail address. If some of the services you want to use
don’t support this, please enforce e-mail validation on the Weblate side
by configuring FORCE_EMAIL_VALIDATION for them. For example:

SOCIAL_AUTH_OPENSUSE_FORCE_EMAIL_VALIDATION = True

See also

Pipeline [https://python-social-auth.readthedocs.io/en/latest/pipeline.html]

Enabling individual backends is quite easy, it’s just a matter of adding an entry to
the AUTHENTICATION_BACKENDS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-AUTHENTICATION_BACKENDS] setting and possibly adding keys needed for a given
authentication method. Please note that some backends do not provide user e-mail by
default, you have to request it explicitly, otherwise Weblate will not be able
to properly credit contributions users make.

See also

Python Social Auth backend [https://python-social-auth.readthedocs.io/en/latest/backends/index.html]

OpenID authentication

For OpenID-based services it’s usually just a matter of enabling them. The following
section enables OpenID authentication for OpenSUSE, Fedora and Ubuntu:

Authentication configuration
AUTHENTICATION_BACKENDS = (
 "social_core.backends.email.EmailAuth",
 "social_core.backends.suse.OpenSUSEOpenId",
 "social_core.backends.ubuntu.UbuntuOpenId",
 "social_core.backends.fedora.FedoraOpenId",
 "weblate.accounts.auth.WeblateUserBackend",
)

See also

OpenID [https://python-social-auth.readthedocs.io/en/latest/backends/openid.html]

GitHub authentication

You need to register an OAuth application on GitHub and then tell Weblate all its secrets:

Authentication configuration
AUTHENTICATION_BACKENDS = (
 "social_core.backends.github.GithubOAuth2",
 "social_core.backends.email.EmailAuth",
 "weblate.accounts.auth.WeblateUserBackend",
)

Social auth backends setup
SOCIAL_AUTH_GITHUB_KEY = "GitHub Client ID"
SOCIAL_AUTH_GITHUB_SECRET = "GitHub Client Secret"
SOCIAL_AUTH_GITHUB_SCOPE = ["user:email"]

The GitHub should be configured to have callback URL as
https://example.com/accounts/complete/github/.

Note

Weblate provided callback URL during the authentication includes configured
domain. In case you get errors about URL mismatch, you might want to fix
this, see Set correct site domain.

See also

GitHub [https://python-social-auth.readthedocs.io/en/latest/backends/github.html]

Bitbucket authentication

You need to register an application on Bitbucket and then tell Weblate all its secrets:

Authentication configuration
AUTHENTICATION_BACKENDS = (
 "social_core.backends.bitbucket.BitbucketOAuth",
 "social_core.backends.email.EmailAuth",
 "weblate.accounts.auth.WeblateUserBackend",
)

Social auth backends setup
SOCIAL_AUTH_BITBUCKET_KEY = "Bitbucket Client ID"
SOCIAL_AUTH_BITBUCKET_SECRET = "Bitbucket Client Secret"
SOCIAL_AUTH_BITBUCKET_VERIFIED_EMAILS_ONLY = True

Note

Weblate provided callback URL during the authentication includes configured
domain. In case you get errors about URL mismatch, you might want to fix
this, see Set correct site domain.

See also

Bitbucket [https://python-social-auth.readthedocs.io/en/latest/backends/bitbucket.html]

Google OAuth 2

To use Google OAuth 2, you need to register an application on
<https://console.developers.google.com/> and enable the Google+ API.

The redirect URL is https://WEBLATE SERVER/accounts/complete/google-oauth2/

Authentication configuration
AUTHENTICATION_BACKENDS = (
 "social_core.backends.google.GoogleOAuth2",
 "social_core.backends.email.EmailAuth",
 "weblate.accounts.auth.WeblateUserBackend",
)

Social auth backends setup
SOCIAL_AUTH_GOOGLE_OAUTH2_KEY = "Client ID"
SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET = "Client secret"

Note

Weblate provided callback URL during the authentication includes configured
domain. In case you get errors about URL mismatch, you might want to fix
this, see Set correct site domain.

See also

Google [https://python-social-auth.readthedocs.io/en/latest/backends/google.html]

Facebook OAuth 2

As per usual with OAuth 2 services, you need to register your application with
Facebook. Once this is done, you can set up Weblate to use it:

The redirect URL is https://WEBLATE SERVER/accounts/complete/facebook/

Authentication configuration
AUTHENTICATION_BACKENDS = (
 "social_core.backends.facebook.FacebookOAuth2",
 "social_core.backends.email.EmailAuth",
 "weblate.accounts.auth.WeblateUserBackend",
)

Social auth backends setup
SOCIAL_AUTH_FACEBOOK_KEY = "key"
SOCIAL_AUTH_FACEBOOK_SECRET = "secret"
SOCIAL_AUTH_FACEBOOK_SCOPE = ["email", "public_profile"]

Note

Weblate provided callback URL during the authentication includes configured
domain. In case you get errors about URL mismatch, you might want to fix
this, see Set correct site domain.

See also

Facebook [https://python-social-auth.readthedocs.io/en/latest/backends/facebook.html]

GitLab OAuth 2

For using GitLab OAuth 2, you need to register an application on
<https://gitlab.com/profile/applications>.

The redirect URL is https://WEBLATE SERVER/accounts/complete/gitlab/ and
ensure you mark the read_user scope.

Authentication configuration
AUTHENTICATION_BACKENDS = (
 "social_core.backends.gitlab.GitLabOAuth2",
 "social_core.backends.email.EmailAuth",
 "weblate.accounts.auth.WeblateUserBackend",
)

Social auth backends setup
SOCIAL_AUTH_GITLAB_KEY = "Application ID"
SOCIAL_AUTH_GITLAB_SECRET = "Secret"
SOCIAL_AUTH_GITLAB_SCOPE = ["read_user"]

If you are using your own GitLab
SOCIAL_AUTH_GITLAB_API_URL = 'https://gitlab.example.com/'

Note

Weblate provided callback URL during the authentication includes configured
domain. In case you get errors about URL mismatch, you might want to fix
this, see Set correct site domain.

See also

GitLab [https://python-social-auth.readthedocs.io/en/latest/backends/gitlab.html]

Microsoft Azure Active Directory

Weblate can be configured to use common or specific tenants for authentication.

The redirect URL is https://WEBLATE SERVER/accounts/complete/azuread-oauth2/
for common and https://WEBLATE SERVER/accounts/complete/azuread-tenant-oauth2/
for tenant-specific authentication.

Azure AD common

Authentication configuration
AUTHENTICATION_BACKENDS = (
 "social_core.backends.azuread.AzureADOAuth2",
 "social_core.backends.email.EmailAuth",
 "weblate.accounts.auth.WeblateUserBackend",
)

OAuth2 keys
SOCIAL_AUTH_AZUREAD_OAUTH2_KEY = ""
SOCIAL_AUTH_AZUREAD_OAUTH2_SECRET = ""

Azure AD Tenant

Authentication configuration
AUTHENTICATION_BACKENDS = (
 "social_core.backends.azuread_tenant.AzureADTenantOAuth2",
 "social_core.backends.email.EmailAuth",
 "weblate.accounts.auth.WeblateUserBackend",
)

OAuth2 keys
SOCIAL_AUTH_AZUREAD_TENANT_OAUTH2_KEY = ""
SOCIAL_AUTH_AZUREAD_TENANT_OAUTH2_SECRET = ""
Tenant ID
SOCIAL_AUTH_AZUREAD_TENANT_OAUTH2_TENANT_ID = ""

Note

Weblate provided callback URL during the authentication includes configured
domain. In case you get errors about URL mismatch, you might want to fix
this, see Set correct site domain.

See also

Microsoft Azure Active Directory [https://python-social-auth.readthedocs.io/en/latest/backends/azuread.html]

Slack

For using Slack OAuth 2, you need to register an application on
<https://api.slack.com/apps>.

The redirect URL is https://WEBLATE SERVER/accounts/complete/slack/.

Authentication configuration
AUTHENTICATION_BACKENDS = (
 "social_core.backends.slack.SlackOAuth2",
 "social_core.backends.email.EmailAuth",
 "weblate.accounts.auth.WeblateUserBackend",
)

Social auth backends setup
SOCIAL_AUTH_SLACK_KEY = ""
SOCIAL_AUTH_SLACK_SECRET = ""

Note

Weblate provided callback URL during the authentication includes configured
domain. In case you get errors about URL mismatch, you might want to fix
this, see Set correct site domain.

See also

Slack [https://python-social-auth.readthedocs.io/en/latest/backends/slack.html]

Turning off password authentication

E-mail and password authentication can be turned off by removing
social_core.backends.email.EmailAuth from
AUTHENTICATION_BACKENDS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-AUTHENTICATION_BACKENDS]. Always keep
weblate.accounts.auth.WeblateUserBackend there, it is needed for core
Weblate functionality.

Tip

You can still use password authentication for the admin interface, for users you
manually create there. Just navigate to /admin/.

For example authentication using only the openSUSE Open ID provider can be achieved
using the following:

Authentication configuration
AUTHENTICATION_BACKENDS = (
 "social_core.backends.suse.OpenSUSEOpenId",
 "weblate.accounts.auth.WeblateUserBackend",
)

Password authentication

The default settings.py comes with a reasonable set of
AUTH_PASSWORD_VALIDATORS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-AUTH_PASSWORD_VALIDATORS]:

	Passwords can’t be too similar to your other personal info.

	Passwords must contain at least 10 characters.

	Passwords can’t be a commonly used password.

	Passwords can’t be entirely numeric.

	Passwords can’t consist of a single character or only whitespace.

	Passwords can’t match a password you have used in the past.

You can customize this setting to match your password policy.

Additionally you can also install
django-zxcvbn-password [https://pypi.org/project/django-zxcvbn-password/]
which gives quite realistic estimates of password difficulty and allows rejecting
passwords below a certain threshold.

SAML authentication

New in version 4.1.1.

Please follow the Python Social Auth instructions for configuration. Notable differences:

	Weblate supports single IDP which has to be called weblate in
SOCIAL_AUTH_SAML_ENABLED_IDPS.

	The SAML XML metadata URL is /accounts/metadata/saml/.

	Following settings are automatically filled in:
SOCIAL_AUTH_SAML_SP_ENTITY_ID, SOCIAL_AUTH_SAML_TECHNICAL_CONTACT,
SOCIAL_AUTH_SAML_SUPPORT_CONTACT

Example configuration:

Authentication configuration
AUTHENTICATION_BACKENDS = (
 "social_core.backends.email.EmailAuth",
 "social_core.backends.saml.SAMLAuth",
 "weblate.accounts.auth.WeblateUserBackend",
)

Social auth backends setup
SOCIAL_AUTH_SAML_SP_PUBLIC_CERT = "-----BEGIN CERTIFICATE-----"
SOCIAL_AUTH_SAML_SP_PRIVATE_KEY = "-----BEGIN PRIVATE KEY-----"
SOCIAL_AUTH_SAML_ENABLED_IDPS = {
 "weblate": {
 "entity_id": "https://idp.testshib.org/idp/shibboleth",
 "url": "https://idp.testshib.org/idp/profile/SAML2/Redirect/SSO",
 "x509cert": "MIIEDjCCAvagAwIBAgIBADA ... 8Bbnl+ev0peYzxFyF5sQA==",
 "attr_name": "full_name",
 "attr_username": "username",
 "attr_email": "email",
 }
}

See also

Configuring SAML in Docker,
SAML [https://python-social-auth.readthedocs.io/en/latest/backends/saml.html]

LDAP authentication

LDAP authentication can be best achieved using the django-auth-ldap package. You
can install it via usual means:

Using PyPI
pip install django-auth-ldap>=1.3.0

Using apt-get
apt-get install python-django-auth-ldap

Warning

With django-auth-ldap older than 1.3.0 the Automatic group assignments will not work
properly for newly created users.

Note

There are some incompatibilities in the Python LDAP 3.1.0 module, which might
prevent you from using that version. If you get error AttributeError:
’module’ object has no attribute ’_trace_level’ [https://github.com/python-ldap/python-ldap/issues/226], downgrading
python-ldap to 3.0.0 might help.

Once you have the package installed, you can hook it into the Django authentication:

Add LDAP backed, keep Django one if you want to be able to sign in
even without LDAP for admin account
AUTHENTICATION_BACKENDS = (
 "django_auth_ldap.backend.LDAPBackend",
 "weblate.accounts.auth.WeblateUserBackend",
)

LDAP server address
AUTH_LDAP_SERVER_URI = "ldaps://ldap.example.net"

DN to use for authentication
AUTH_LDAP_USER_DN_TEMPLATE = "cn=%(user)s,o=Example"
Depending on your LDAP server, you might use a different DN
like:
AUTH_LDAP_USER_DN_TEMPLATE = 'ou=users,dc=example,dc=com'

List of attributes to import from LDAP upon sign in
Weblate stores full name of the user in the full_name attribute
AUTH_LDAP_USER_ATTR_MAP = {
 "full_name": "name",
 # Use the following if your LDAP server does not have full name
 # Weblate will merge them later
 # 'first_name': 'givenName',
 # 'last_name': 'sn',
 # Email is required for Weblate (used in VCS commits)
 "email": "mail",
}

Hide the registration form
REGISTRATION_OPEN = False

Note

You should remove 'social_core.backends.email.EmailAuth' from the
AUTHENTICATION_BACKENDS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-AUTHENTICATION_BACKENDS] setting, otherwise users will be able to set
their password in Weblate, and authenticate using that. Keeping
'weblate.accounts.auth.WeblateUserBackend' is still needed in order to
make permissions and facilitate anonymous users. It will also allow you
to sign in using a local admin account, if you have created it (e.g. by using
createadmin).

Using bind password

If you can not use direct bind for authentication, you will need to use search,
and provide a user to bind for the search. For example:

import ldap
from django_auth_ldap.config import LDAPSearch

AUTH_LDAP_BIND_DN = ""
AUTH_LDAP_BIND_PASSWORD = ""
AUTH_LDAP_USER_SEARCH = LDAPSearch(
 "ou=users,dc=example,dc=com", ldap.SCOPE_SUBTREE, "(uid=%(user)s)"
)

Active Directory integration

import ldap
from django_auth_ldap.config import LDAPSearch, NestedActiveDirectoryGroupType

AUTH_LDAP_BIND_DN = "CN=ldap,CN=Users,DC=example,DC=com"
AUTH_LDAP_BIND_PASSWORD = "password"

User and group search objects and types
AUTH_LDAP_USER_SEARCH = LDAPSearch(
 "CN=Users,DC=example,DC=com", ldap.SCOPE_SUBTREE, "(sAMAccountName=%(user)s)"
)

Make selected group a superuser in Weblate
AUTH_LDAP_USER_FLAGS_BY_GROUP = {
 # is_superuser means user has all permissions
 "is_superuser": "CN=weblate_AdminUsers,OU=Groups,DC=example,DC=com",
}

Map groups from AD to Weblate
AUTH_LDAP_GROUP_SEARCH = LDAPSearch(
 "OU=Groups,DC=example,DC=com", ldap.SCOPE_SUBTREE, "(objectClass=group)"
)
AUTH_LDAP_GROUP_TYPE = NestedActiveDirectoryGroupType()
AUTH_LDAP_FIND_GROUP_PERMS = True

Optionally enable group mirroring from LDAP to Weblate
AUTH_LDAP_MIRROR_GROUPS = True

See also

Django Authentication Using LDAP [https://django-auth-ldap.readthedocs.io/en/latest/index.html], Authentication [https://django-auth-ldap.readthedocs.io/en/latest/authentication.html]

CAS authentication

CAS authentication can be achieved using a package such as django-cas-ng.

Step one is disclosing the e-mail field of the user via CAS. This has to be
configured on the CAS server itself, and requires you run at least CAS v2 since
CAS v1 doesn’t support attributes at all.

Step two is updating Weblate to use your CAS server and attributes.

To install django-cas-ng:

pip install django-cas-ng

Once you have the package installed you can hook it up to the Django
authentication system by modifying the settings.py file:

Add CAS backed, keep the Django one if you want to be able to sign in
even without LDAP for the admin account
AUTHENTICATION_BACKENDS = (
 "django_cas_ng.backends.CASBackend",
 "weblate.accounts.auth.WeblateUserBackend",
)

CAS server address
CAS_SERVER_URL = "https://cas.example.net/cas/"

Add django_cas_ng somewhere in the list of INSTALLED_APPS
INSTALLED_APPS = (..., "django_cas_ng")

Finally, a signal can be used to map the e-mail field to the user object. For
this to work you have to import the signal from the django-cas-ng package and
connect your code with this signal. Doing this in settings file can
cause problems, therefore it’s suggested to put it:

	In your app config’s django.apps.AppConfig.ready() [https://docs.djangoproject.com/en/stable/ref/applications/#django.apps.AppConfig.ready] method

	In the project’s urls.py file (when no models exist)

from django_cas_ng.signals import cas_user_authenticated
from django.dispatch import receiver

@receiver(cas_user_authenticated)
def update_user_email_address(sender, user=None, attributes=None, **kwargs):
 # If your CAS server does not always include the email attribute
 # you can wrap the next two lines of code in a try/catch block.
 user.email = attributes["email"]
 user.save()

See also

Django CAS NG [https://github.com/django-cas-ng/django-cas-ng]

Configuring third party Django authentication

Generally any Django authentication plugin should work with Weblate. Just
follow the instructions for the plugin, just remember to keep the Weblate user backend
installed.

See also

LDAP authentication,
CAS authentication

Typically the installation will consist of adding an authentication backend to
AUTHENTICATION_BACKENDS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-AUTHENTICATION_BACKENDS] and installing an authentication app (if
there is any) into INSTALLED_APPS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS]:

AUTHENTICATION_BACKENDS = (
 # Add authentication backend here
 "weblate.accounts.auth.WeblateUserBackend",
)

INSTALLED_APPS += (
 # Install authentication app here
)

Access control

Changed in version 3.0: Before Weblate 3.0, the privilege system was based on Django, but is now
specifically built for Weblate. If you are using anything older, please consult
the documentation for the specific version you are using.

Weblate comes with a fine-grained privilege system to assign user permissions
for the whole instance, or in a limited scope.

The permission system is based on groups and roles, where roles define a set of
permissions, and groups assign them to users and translations, see
Users, roles, groups and permissions for more details.

After installation a default set of groups are created, and you can use those
to assign users roles for the whole instance (see Default groups and roles). Additionally when
Project access control is turned on, you can assign users to specific translation projects.
More fine-grained configuration can be achieved using Custom access control.

Common setups

Locking down Weblate

To completely lock down your Weblate, you can use REQUIRE_LOGIN to
force users to sign in and REGISTRATION_OPEN to prevent new
registrations.

Site wide permissions

To manage permissions for a whole instance, just add users to Users (this is done
by default using the Automatic group assignments), Reviewers and Managers groups. Keep
all projects configured as Public (see Project access control).

Per project permissions

Note

This feature is unavailable for the projects running Libre plan on Hosted Weblate.

Set your projects to Protected or Private, and manage users per
project in the Weblate interface.

Custom permissions for languages, components or projects

Note

This feature is unavailable for the projects running Libre plan on Hosted Weblate.

Members are granted any permissions assigned to groups they are in, so you can
grant the user multiple permissions at once. Create groups and attach them to a project,
component, or language. You can put users in multiple groups, and permissions
can overlap between them.

Granting any selected permissions based on project, component or language
set. To achieve this, create a new group (e.g. Czech translators) and
configure it for a given resource. Any assigned permissions will be granted to
members of that group for selected resources.

This will work just fine without additional setup, if using per project
permissions. For permissions on the whole instance, you will probably also want to remove
these permissions from the Users group, or change automatic assignment of all
users to that group (see Automatic group assignments).

See also

Permission checking

Project access control

Note

By turning on access control, all users are prohibited from accessing anything
within a given project, unless you add the permissions for them to do just that.

Note

This feature is unavailable for the projects running Libre plan on Hosted Weblate.

Limit user’s access to individual projects by selecting a different access
control variation on the Access tab in the Settings of
each respective project. This automatically creates several groups for the
project in question, see Predefined groups.

Access control can be set to:

	Public
	Publicly visible, translatable for all logged-in users

	Protected
	Publicly visible, but translatable only for selected users

	Private
	Visible and translatable only for selected users

	Custom
	Django admin manages users instead of Weblate, see Custom access control.

[image: ../_images/project-access.png]
Grant access to a project by adding the privilege either directly to an user,
or group of users in the Django admin-interface, or by using user management on
the project page, as described in Managing per-project access control.

Note

Even with access control turned on, some info will be available about your
project:

	Statistics for the whole instance, including counts for all projects.

	Language summary for the whole instance, including counts for all projects.

Automatic group assignments

From the Authentication in the Django admin interface,
users can be assigned to groups [you want this for] automatically based
on their e-mail addresses. This only happens upon account creation.

Note

Automatic group assignment to Users and Viewers is always
recreated during migrations. If you want to turn it
off, set the regular expression to ^$ (which will never match).

Users, roles, groups and permissions

The authentication models consist of several objects:

	Permission
	Individual permissions defined by Weblate. Permissions can not be
assigned to users. This can only be done through assignment of roles.

	Role
	A Role defines a set of permissions. This allows reuse of these sets in
several places, making the administration easier.

	User
	Users can belong to several groups.

	Group
	Groups connect roles, users and authentication objects (projects,
languages and component lists).

graph auth {

 "User" -- "Group";
 "Group" -- "Role";
 "Role" -- "Permission";
 "Group" -- "Project";
 "Group" -- "Language";
 "Group" -- "Components";
 "Group" -- "Component list";
}

Permission checking

Whenever a permission is checked to decide whether one is able to perform a
given action, the check is carried out according to scope, and the following
checks are performed in this order:

	The group Component list is matched against accessed component or project (for project-level access).

	The group Components is matched against accessed component or project (for project-level access).

	The group Projects is matched against accessed project.

Thus, granting access to a component gives the user access to the project it is in too.

Note

Only the first rule will be used. So if you set all of
Component list, Components and Project,
only Component list will be applied.

An additional step is performed if checking permission for the translation:

	The group Languages is matched against accessed translations, it is ignored for component- or project-level access.

Hint

Use Language selection or Project selection
to automate inclusion of all languages or projects.

Checking access to a project

A user has to be a member of a group linked to the project, or any component
inside that project. Having membership is enough, no specific permissions are needed to
access the project (this is used in the default Viewers group, see
Default groups and roles).

Checking access to a component

A user can access the unrestricted component once able to access the containing
project. With Restricted access turned on, access to the component
requires explicit permission to that component (or a component list it is in).

Managing users and groups

All users and the various groups they are in can be managed using the
Django admin interface available, which you can get to by appending
/admin/ to the Weblate site URL.

Managing per-project access control

Note

This feature only works for projects using access control, see Project access control.

Users with the Manage project access privilege (see
Access control) can also manage users in projects with access control
turned on through the project page. The interface allows you to:

	Add existing users to the project

	Invite new users to the project

	Change user permissions

	Revoke user access

New in version 3.11.

	Resend the e-mail for user invitations (invalidating any previously sent invitation)

User management is available in the Manage menu of any project:

[image: ../_images/manage-users.png]

See also

Project access control

Predefined groups

Weblate comes with a predefined set of groups for a project, wherefrom you can assign
users.

	
Translate

	Can translate the project, and upload translations made offline.

	
Sources

	Can edit source strings in Monolingual components and source string info.

	
Languages

	Can manage translated languages (add or remove translations).

	
Glossary

	Can manage glossary (add or remove entries, or upload).

	
Memory

	Can manage translation memory.

	
Screenshots

	Can manage screenshots (add or remove them, and associate them to source
strings).

	
Review

	Can approve translations during review.

	
VCS

	Can manage VCS and access the exported repository.

	
Administration

	Has all permissions available in the project.

	
Billing

	Can access billing info (see Billing).

Custom access control

To gain more access control adjustments in a project, you can set
Access control to Custom to switch over to
using the Django admin-interface instead of the one in Weblate.

If you want to do this by default for all current and new projects, configure the
DEFAULT_ACCESS_CONTROL to administrate all permissions and relations using
the Django admin interface.

Warning

By turning this on, Weblate will remove all Project access control it has created for
this project. If you are doing this without admin permission from the instance, you
will instantly lose your access to manage the project.

Default groups and roles

These roles and groups are created upon installation. The built-in roles are always
kept up to date by the database migration when upgrading.
Custom changes are not lost. Please define a new role if you want to define your
own set of permissions.

List of privileges

	Billing (see Billing)
	View billing info [Administration, Billing]

	Changes
	Download changes [Administration]

	Comments
	Post comment [Administration, Edit source, Power user, Review strings, Translate]

Delete comment [Administration]

	Component
	Edit component settings [Administration]

Lock component, preventing translations [Administration]

	Glossary
	Add glossary entry [Administration, Manage glossary, Power user]

Edit glossary entry [Administration, Manage glossary, Power user]

Delete glossary entry [Administration, Manage glossary, Power user]

Upload glossary entries [Administration, Manage glossary, Power user]

	Automatic suggestions
	Use automatic suggestions [Administration, Edit source, Power user, Review strings, Translate]

	Translation memory
	Edit translation memory [Administration, Manage translation memory]

Delete translation memory [Administration, Manage translation memory]

	Projects
	Edit project settings [Administration]

Manage project access [Administration]

	Reports
	Download reports [Administration]

	Screenshots
	Add screenshot [Administration, Manage screenshots]

Edit screenshot [Administration, Manage screenshots]

Delete screenshot [Administration, Manage screenshots]

	Source strings
	Edit additional string info [Administration, Edit source]

	Strings
	Add new string [Administration]

Remove a string [Administration]

Ignore failing check [Administration, Edit source, Power user, Review strings, Translate]

Edit strings [Administration, Edit source, Power user, Review strings, Translate]

Review strings [Administration, Review strings]

Edit string when suggestions are enforced [Administration, Review strings]

Edit source strings [Administration, Edit source, Power user]

	Suggestions
	Accept suggestion [Administration, Edit source, Power user, Review strings, Translate]

Add suggestion [Administration, Edit source, Add suggestion, Power user, Review strings, Translate]

Delete suggestion [Administration, Power user]

Vote on suggestion [Administration, Edit source, Power user, Review strings, Translate]

	Translations
	Add language for translation [Administration, Power user, Manage languages]

Perform automatic translation [Administration, Manage languages]

Delete existing translation [Administration, Manage languages]

Add several languages for translation [Administration, Manage languages]

	Uploads
	Define author of uploaded translation [Administration]

Overwrite existing strings with upload [Administration, Edit source, Power user, Review strings, Translate]

Upload translations [Administration, Edit source, Power user, Review strings, Translate]

	VCS
	Access the internal repository [Administration, Access repository, Power user, Manage repository]

Commit changes to the internal repository [Administration, Manage repository]

Push change from the internal repository [Administration, Manage repository]

Reset changes in the internal repository [Administration, Manage repository]

View upstream repository location [Administration, Access repository, Power user, Manage repository]

Update the internal repository [Administration, Manage repository]

	Site wide privileges
	Use management interface

Add new projects

Add language definitions

Manage language definitions

Manage groups

Manage users

Manage roles

Manage announcements

Manage translation memory

Manage component lists

Note

Site-wide privileges are not granted to any default role. These are
powerful and quite close to superuser status. Most of them affect all projects
in your Weblate installation.

List of groups

The following groups are created upon installation (or after executing
setupgroups) and you are free to modify them. The migration will
however re-create them if you delete or rename them.

	Guests
	Defines permissions for non-authenticated users.

This group only contains anonymous users (see ANONYMOUS_USER_NAME).

You can remove roles from this group to limit permissions for
non-authenticated users.

Default roles: Add suggestion, Access repository

	Viewers
	This role ensures visibility of public projects for all users. By default
all users are members of this group.

By default Automatic group assignments makes all new accounts members of this group when they join.

Default roles: none

	Users
	Default group for all users.

By default Automatic group assignments makes all new accounts members of this group when they join.

Default roles: Power user

	Reviewers
	Group for reviewers (see Translation workflows).

Default roles: Review strings

	Managers
	Group for administrators.

Default roles: Administration

Warning

Never remove the predefined Weblate groups and users, as this can lead to
unexpected problems. If you have no use for them, you can removing all their
privileges instead.

Translation projects

Translation organization

Weblate organizes translatable VCS content of project/components into a tree-like structure.

	The bottom level object is Project configuration, which should hold all translations belonging
together (for example translation of an application in several versions
and/or accompanying documentation).

	On the level above, Component configuration, which is
actually the component to translate, you define the VCS repository to use, and
the mask of files to translate.

	Above Component configuration there are individual translations, handled automatically by Weblate as translation
files (which match File mask defined in Component configuration) appear in the VCS repository.

Weblate supports a wide range of translation formats (both bilingual and
monolingual ones) supported by Translate Toolkit, see Supported file formats.

Note

You can share cloned VCS repositories using Weblate internal URLs.
Using this feature is highly recommended when you have many
components sharing the same VCS. It improves performance and decreases
required disk space.

Adding translation projects and components

Changed in version 3.2: An interface for adding projects and components is included,
and you no longer have to use The Django admin interface.

Changed in version 3.4: The process of adding components is now multi staged,
with automated discovery of most parameters.

Based on your permissions, new translation projects and components can be
created. It is always permitted for users with the Add new projects
permission, and if your instance uses billing (e.g. like
https://hosted.weblate.org/ see Billing), you can also create those
based on your plans allowance from the user account that manages billing.

You can view your current billing plan on a separate page:

[image: ../_images/user-billing.png]
The project creation can be initiated from there, or using the menu in the navigation
bar, filling in basic info about the translation project to complete addition of it:

[image: ../_images/user-add-project.png]
After creating the project, you are taken directly to the project page:

[image: ../_images/user-add-project-done.png]
Creating a new translation component can be initiated via a single click there.
The process of creating a component is multi-staged and automatically detects most
translation parameters. There are several approaches to creating component:

	From version control
	Creates component from remote version control repository.

	From existing component
	Creates additional component to existing one by choosing different files.

	Additional branch
	Creates additional component to existing one, just for different branch.

	Upload translations files
	Upload translation files to Weblate in case you do not have version control
or do not want to integrate it with Weblate. You can later update the
content using the web interface or API [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/api/index.html#api].

	Translate document
	Upload single document and translate that.

	Start from scratch
	Create blank translation project and add strings manually.

Once you have existing translation components, you can also easily add new ones
for additional files or branches using same repository.

First you need to fill in name and repository location:

[image: ../_images/user-add-component-init.png]
On the next page, you are presented with a list of discovered translatable resources:

[image: ../_images/user-add-component-discovery.png]
As a last step, you review the translation component info and fill in optional details:

[image: ../_images/user-add-component.png]

See also

The Django admin interface,
Project configuration,
Component configuration

Project configuration

Create a translation project and then add a new component for translation in it.
The project is like a shelf, in which real translations are stacked. All
components in the same project share suggestions and their dictionary; the
translations are also automatically propagated through all components in a single
project (unless turned off in the component configuration), see Memory Management [https://docs.python.org/3.7/c-api/memory.html#memory].

See also

Integrating with Weblate

These basic attributes set up and inform translators of a project:

Project name

Verbose project name, used to display the project name.

Project slug

Project name suitable for URLs.

Project website

URL where translators can find more info about the project.

Mailing list

Mailing list where translators can discuss or comment translations.

Translation instructions

URL to more site with more detailed instructions for translators.

Set Language-Team header

Whether Weblate should manage the Language-Team header (this is a
GNU gettext only feature right now).

Use shared translation memory

Whether to use shared translation memory, see Shared translation memory for more details.

Contribute to shared translation memory

Whether to contribute to shared translation memory, see Shared translation memory for more details.

Access control

Configure per project access control, see Project access control for more details.

Default value can be changed by DEFAULT_ACCESS_CONTROL.

Enable reviews

Enable review workflow for translations, see Dedicated reviewers.

Enable source reviews

Enable review workflow for source strings, see Source strings reviews.

See also

Receiving source string feedback,
Comments

Enable hooks

Whether unauthenticated Notification hooks are to be used for this repository.

See also

Intermediate language file,
Quality gateway for the source strings,
Bilingual and monolingual formats,
Language definitions

Language aliases

Define language codes mapping when importing translations into Weblate. Use
this when language codes are inconsistent in your repositories and you want to
get a consistent view in Weblate or in case you want to use non-standard naming
of your translation files.

The typical use case might be mapping American English to English: en_US:en

Multiple mappings to be separated by comma: en_GB:en,en_US:en

Using non standard code: ia_FOO:ia

Hint

The language codes are mapped when matching the translation files and the
matches are case sensitive, so make sure you use the source language codes
in same form as used in the filenames.

See also

Parsing language codes

Component configuration

A component is a grouping of something for translation. You enter a VCS repository location
and file mask for which files you want translated, and Weblate automatically fetches from this VCS,
and finds all matching translatable files.

See also

Integrating with Weblate

You can find some examples of typical configurations in the Supported file formats.

Note

It is recommended to keep translation components to a reasonable size - split
the translation by anything that makes sense in your case (individual
apps or addons, book chapters or websites).

Weblate easily handles translations with 10000s of strings, but it is harder
to split work and coordinate among translators with such large translation components.

Should the language definition for a translation be missing, an empty definition is
created and named as «cs_CZ (generated)». You should adjust the definition and
report this back to the Weblate authors, so that the missing languages can be included in
next release.

The component contains all important parameters for working with the VCS, and
for getting translations out of it:

Component name

Verbose component name, used to display the component name.

Component slug

Component name suitable for URLs.

Component project

Project configuration where the component belongs.

Version control system

VCS to use, see Version control integration for details.

See also

Pushing changes from Weblate

Source code repository

VCS repository used to pull changes.

See also

See Accessing repositories for more details on specifying URLs.

Hint

This can either be a real VCS URL or weblate://project/component
indicating that the repository should be shared with another component.
See Weblate internal URLs for more details.

Repository push URL

Repository URL used for pushing. This setting is used only for Git
and Mercurial and push support is turned off for these when this is
empty.

See also

See Accessing repositories for more details on how to specify a repository URL and
Pushing changes from Weblate for more details on pushing changes from Weblate.

Repository browser

URL of repository browser used to display source files (location of used messages).
When empty, no such links will be generated. You can use Template markup.

For example on GitHub, use something like:
https://github.com/WeblateOrg/hello/blob/{{branch}}/{{filename}}#L{{line}}

In case your paths are relative to different folder, you might want to strip leading
directory by parentdir filter (see Template markup):
https://github.com/WeblateOrg/hello/blob/{{branch}}/{{filename|parentdir}}#L{{line}}

Exported repository URL

URL where changes made by Weblate are exported. This is important when
Continuous localization is not used, or when there is a need to manually
merge changes. You can use Git exporter to automate this for Git
repositories.

Repository branch

Which branch to checkout from the VCS, and where to look for translations.

Push branch

Branch for pushing changes, leave empty to use Repository branch.

Note

This is currently only supported for Git, GitLab and GitHub, it is ignored
for other VCS integrations.

See also

Pushing changes from Weblate

File mask

Mask of files to translate, including path. It should include one «*»
replacing language code (see Language definitions for info on how this is
processed). In case your repository contains more than one translation
file (e.g. more gettext domains), you need to create a component for
each of them.

For example po/*.po or locale/*/LC_MESSAGES/django.po.

In case your filename contains special characters such as [,], these need
to be escaped as [[] or []].

See also

Bilingual and monolingual formats,
What does mean «There are more files for the single language (en)»?

Monolingual base language file

Base file containing string definitions for Monolingual components.

See also

Bilingual and monolingual formats,
What does mean «There are more files for the single language (en)»?

Edit base file

Whether to allow editing the base file for Monolingual components.

Intermediate language file

Intermediate language file for Monolingual components. In most cases this is a
translation file provided by developers and is used when creating actual source
strings.

When set, the source strings are based on this file, but all other languages
are based on Monolingual base language file. In case the string is not translated
into the source langugage, translating to other languages is prohibited. This
provides Quality gateway for the source strings.

See also

Quality gateway for the source strings,
Bilingual and monolingual formats,
What does mean «There are more files for the single language (en)»?

Template for new translations

Base file used to generate new translations, e.g. .pot file with gettext.

Hint

In many monolingual formats Weblate starts with blank file by default. Use
this in case you want to have all strings present with empty value when
creating new translation.

See also

Adding new translations,
Adding new translation,
Bilingual and monolingual formats,
What does mean «There are more files for the single language (en)»?

File format

Translation file format, see also Supported file formats.

Source string bug reporting address

Email address used for reporting upstream bugs. This address will also receive
notification about any source string comments made in Weblate.

Allow translation propagation

You can turn off propagation of translations to this component from other
components within same project. This really depends on what you are
translating, sometimes it’s desirable to have make use of a translation more than once.

It’s usually a good idea to turn this off for monolingual translations, unless
you are using the same IDs across the whole project.

Default value can be changed by DEFAULT_TRANSLATION_PROPAGATION.

Enable suggestions

Whether translation suggestions are accepted for this component.

Suggestion voting

Turns on vote casting for suggestions, see Suggestion voting.

Autoaccept suggestions

Automatically accept voted suggestions, see Suggestion voting.

Translation flags

Customization of quality checks and other Weblate behavior, see Customizing behavior using flags.

Enforced checks

List of checks which can not be ignored, see Enforcing checks.

Note

Enforcing the check does not automatically enable it, you still should
enabled it using Customizing behavior using flags in Translation flags or
Additional info on source strings.

Translation license

License of the translation (does not need to be the same as the source code license).

Contributor agreement

User agreement which needs to be approved before a user can translate this
component.

Adding new translation

How to handle requests for creation of new languages. Available options:

	Contact maintainers
	User can select desired language and the project maintainers will receive a
notification about this. It is up to them to add (or not) the language to the
repository.

	Point to translation instructions URL
	User is presented a link to page which describes process of starting new
translations. Use this in case more formal process is desired (for example
forming a team of people before starting actual translation).

	Create new language file
	User can select language and Weblate automatically creates the file for it
and translation can begin.

	Disable adding new translations
	There will be no option for user to start new translation.

See also

Adding new translations.

Manage strings

New in version 4.5.

Configures whether users in Weblate will be allowed to add new strings and
remove existing ones. Adjust this to match your localization workflow - how the
new strings are supposed to be introduced.

For bilingual formats, the strings are typically extracted from the source code
(for example by using xgettext) and adding new strings in Weblate
should be disabled (they would be discarded next time you update the
translation files). In Weblate you can manage strings for every translation and
it does not enforce the strings in all translations to be consistent.

For monolingual formats, the strings are managed only on source language and
are automatically added or removed in the translations. The strings appear in
the translation files once they are translated.

See also

Bilingual and monolingual formats,
Adding new strings,
POST /api/translations/(string:project)/(string:component)/(string:language)/units/

Language code style

Customize language code used to generate the filename for translations
created by Weblate.

See also

Adding new translations,
Language code,
Parsing language codes

Merge style

You can configure how updates from the upstream repository are handled.
This might not be supported for some VCSs. See Merge or rebase for
more details.

Default value can be changed by DEFAULT_MERGE_STYLE.

Commit, add, delete, merge and addon messages

Message used when committing a translation, see Template markup.

Default value can be changed by DEFAULT_ADD_MESSAGE,
DEFAULT_ADDON_MESSAGE, DEFAULT_COMMIT_MESSAGE,
DEFAULT_DELETE_MESSAGE, DEFAULT_MERGE_MESSAGE.

Committer name

Name of the committer used for Weblate commits, the author will always be the
real translator. On some VCSs this might be not supported.

Default value can be changed by DEFAULT_COMMITER_NAME.

Committer e-mail

Email of committer used for Weblate commits, the author will always be the
real translator. On some VCSs this might be not supported. The default value
can be changed in DEFAULT_COMMITER_EMAIL.

Push on commit

Whether committed changes should be automatically pushed to the upstream
repository. When enabled, the push is initiated once Weblate commits
changes to its internal repository (see Lazy commits). To actually
enable pushing Repository push URL has to be configured as
well.

Age of changes to commit

Sets how old changes (in hours) are to get before they are committed by
background task or commit_pending management command. All
changes in a component are committed once there is at least one older than
this period.

Default value can be changed by COMMIT_PENDING_HOURS.

Hint

There are other situations where pending changes might be committed, see
Lazy commits.

Lock on error

Enables locking the component on repository error (failed pull, push or merge).
Locking in this situation avoids adding another conflict which would have to be
resolved manually.

The component will be automatically unlocked once there are no repository
errors left.

Source language

Language used for source strings. Change this if you are translating from
something else than English.

Hint

In case you are translating bilingual files from English, but want to be
able to do fixes in the English translation as well, you might want to
choose English (Developer) as a source language to avoid
conflict between name of the source language and existing translation.

For monolingual translations, you can use intermediate translation in this
case, see Intermediate language file.

Language filter

Regular expression used to filter the translation when scanning for filemask.
This can be used to limit the list of languages managed by Weblate.

Note

You need to list language codes as they appear in the filename.

Some examples of filtering:

	Filter description

	Regular expression

	Selected languages only

	^(cs|de|es)$

	Exclude languages

	^(?!(it|fr)$).+$

	Filter two letter codes only

	^..$

	Exclude non language files

	^(?!(blank)$).+$

	Include all files (default)

	^[^.]+$

Variants regular expression

Regular expression used to determine the variants of a string, see
String variants.

Note

Most of the fields can be edited by project owners or managers, in the
Weblate interface.

See also

Does Weblate support other VCSes than Git and Mercurial?, Translation component alerts

Priority

Components with higher priority are offered first to translators.

Restricted access

By default the component is visible to anybody who has access to the project,
even if the person can not perform any changes in the component. This makes it
easier to keep translation consistency within the project.

Enable this in case you want to grant access to this component explicitly -
the project level permissions will not apply and you will have to specify
component or component list level permission in order to grant access.

Default value can be changed by DEFAULT_RESTRICTED_COMPONENT.

Hint

This applies to project managers as well - please make sure you will not
loose access to the component after toggling the status.

Share in projects

You can choose additional projects where the component will be visible. This
can be useful for shared libraries which you use in several projects.

Note

Sharing component doesn’t change its access control. It makes it only
visible when browsing other projects. User still need to have access to the
actual component in order to be able to browse or translate it.

Use as a glossary

New in version 4.5.

Allows using this component as a glossary. You can configure how it will be
listed using Glossary color.

The glossary will be accessible in all projects defined by Share in projects.

It is recommended to enable Manage strings on glossaries in
order to allow adding new words to them.

See also

Glossary

Glossary color

Display color for a glossary used when showing word matches.

Template markup

Weblate uses simple markup language in several places where text rendering is
needed. It is based on The Django template language [https://docs.djangoproject.com/en/stable/ref/templates/language/], so it can be quite
powerful.

Currently it is used in:

	Commit message formatting, see Component configuration

	
	Several addons
	
	Component discovery

	Statistics generator

	Executing scripts from addon

There following variables are available in the component templates:

	{{ language_code }}
	Language code

	{{ language_name }}
	Language name

	{{ component_name }}
	Component name

	{{ component_slug }}
	Component slug

	{{ project_name }}
	Project name

	{{ project_slug }}
	Project slug

	{{ url }}
	Translation URL

	{{ filename }}
	Translation filename

	{{ stats }}
	Translation stats, this has further attributes, examples below.

	{{ stats.all }}
	Total strings count

	{{ stats.fuzzy }}
	Count of strings needing review

	{{ stats.fuzzy_percent }}
	Percent of strings needing review

	{{ stats.translated }}
	Translated strings count

	{{ stats.translated_percent }}
	Translated strings percent

	{{ stats.allchecks }}
	Number of strings with failing checks

	{{ stats.allchecks_percent }}
	Percent of strings with failing checks

	{{ author }}
	Author of current commit, available only in the commit scope.

	{{ addon_name }}
	Name of currently executed addon, available only in the addon commit message.

The following variables are available in the repository browser or editor templates:

	{{branch}}
	current branch

	{{line}}
	line in file

	{{filename}}
	filename, you can also strip leading parts using the parentdir filter, for example {{filename|parentdir}}

You can combine them with filters:

{{ component|title }}

You can use conditions:

{% if stats.translated_percent > 80 %}Well translated!{% endif %}

There is additional tag available for replacing characters:

{% replace component "-" " " %}

You can combine it with filters:

{% replace component|capfirst "-" " " %}

There are also additional filter to manipulate with filenames:

Directory of a file: {{ filename|dirname }}
File without extension: {{ filename|stripext }}
File in parent dir: {{ filename|parentdir }}
It can be used multiple times: {{ filename|parentdir|parentdir }}

…and other Django template features.

Importing speed

Fetching VCS repository and importing translations to Weblate can be a lengthy
process, depending on size of your translations. Here are some tips:

Optimize configuration

The default configuration is useful for testing and debugging Weblate, while
for a production setup, you should do some adjustments. Many of them have quite
a big impact on performance. Please check Production setup for more details,
especially:

	Configure Celery for executing background tasks (see Background tasks using Celery)

	Enable caching

	Use a powerful database engine

	Disable debug mode

Check resource limits

If you are importing huge translations or repositories, you might be hit by
resource limitations of your server.

	Check the amount of free memory, having translation files cached by the operating system will greatly improve performance.

	Disk operations might be bottleneck if there is a lot of strings to process—the disk is pushed by both Weblate and the database.

	Additional CPU cores might help improve performance of background tasks (see Background tasks using Celery).

Disable unneeded checks

Some quality checks can be quite expensive, and if not needed,
can save you some time during import if omitted. See CHECK_LIST for
info on configuration.

Automatic creation of components

In case your project has dozen of translation files (e.g. for different
gettext domains, or parts of Android apps), you might want to import them
automatically. This can either be achieved from the command line by using
import_project or import_json, or by installing the
Component discovery addon.

To use the addon, you first need to create a component for one translation
file (choose the one that is the least likely to be renamed or removed in future),
and install the addon on this component.

For the management commands, you need to create a project which will contain all
components and then run import_project or
import_json.

See also

Management commands,
Component discovery

Language definitions

To present different translations properly, info about language name,
text direction, plural definitions and language code is needed.

Parsing language codes

While parsing translations, Weblate attempts to map language code
(usually the ISO 639-1 one) to any existing language object.

You can further adjust this mapping at project level by Language aliases.

If no exact match can be found, an attempt will be made
to best fit it into an existing language. Following steps are tried:

	Case insensitive lookups.

	Normalizing underscores and dashes.

	Looking up built in language aliases.

	Looking up by language name.

	Ignoring the default country code for a given language—choosing cs instead of cs_CZ.

Should that also fail, a new language definition will be created using the
defaults (left to right text direction, one plural). The automatically created
language with code xx_XX will be named as xx_XX (generated).
You might want to change this in the admin interface later, (see
Changing language definitions) and report it to the issue tracker (see
Contributing to Weblate), so that the proper definition can be added to the
upcoming Weblate release.

Hint

In case you see something unwanted as a language, you might want to adjust
Language filter to ignore such file when parsing
translations.

See also

Language code,
Adding new translations

Changing language definitions

You can change language definitions in the languages interface
(/languages/ URL).

While editing, make sure all fields are correct (especially plurals and
text direction), otherwise translators will be unable to properly edit
those translations.

Built-in language definitions

Definitions for more than 550 languages are included in Weblate and the list is
extended in every release. Whenever Weblate is upgraded (more specifically
whenever weblate migrate is executed, see
Generic upgrade instructions) the database of languages is updated to
include all language definitions shipped in Weblate.

This feature can be disable using UPDATE_LANGUAGES. You can also
enforce updating the database to match Weblate built-in data using
setuplang.

Ambiguous language codes and macrolanguages

In many cases it is not a good idea to use macro language code for a
translation. The typical problematic case might be Kurdish language, which
might be written in Arabic or Latin script, depending on actual variant. To get
correct behavior in Weblate, it is recommended to use individual language codes
only and avoid macro languages.

See also

Macrolanguages definition [https://iso639-3.sil.org/about/scope#Macrolanguages],
List of macrolanguages [https://iso639-3.sil.org/code_tables/macrolanguage_mappings/data]

Language definitions

Each language consists of following fields:

Language code

Code identifying the language. Weblate prefers two letter codes as defined by
ISO 639-1 [https://en.wikipedia.org/wiki/ISO_639-1], but uses ISO 639-2 [https://en.wikipedia.org/wiki/ISO_639-2] or ISO 639-3 [https://en.wikipedia.org/wiki/ISO_639-3] codes for languages that do not
have two letter code. It can also support extended codes as defined by BCP 47 [https://tools.ietf.org/html/bcp47].

See also

Parsing language codes,
Adding new translations

Language name

Visible name of the language. The language names included in Weblate are also being localized depending on user interface language.

Text direction

Determines whether language is written right to left or left to right. This
property is autodetected correctly for most of the languages.

Plural number

Number of plurals used in the language.

Plural formula

Gettext compatible plural formula used to determine which plural form is used for given count.

See also

Plurals,
GNU gettext utilities: Plural forms [https://www.gnu.org/software/gettext/manual/html_node/Plural-forms.html],
Language Plural Rules by the Unicode Consortium [https://unicode-org.github.io/cldr-staging/charts/37/supplemental/language_plural_rules.html]

Adding new translations

Changed in version 2.18: In versions prior to 2.18 the behaviour of adding new translations was file
format specific.

Weblate can automatically start new translation for all of the file
formats.

Some formats expect to start with an empty file and only translated
strings to be included (for example Android string resources), while others expect to have all
keys present (for example GNU gettext). In some situations this really doesn’t depend
on the format, but rather on the framework you use to handle the translation (for example with
JSON files).

When you specify Template for new translations in Component configuration, Weblate will
use this file to start new translations. Any exiting translations will be
removed from the file when doing so.

When Template for new translations is empty and the file format
supports it, an empty file is created where new strings will be added once they are
translated.

The Language code style allows you to customize language code used
in generated filenames:

	Default based on the file format
	Dependent on file format, for most of them POSIX is used.

	POSIX style using underscore as a separator
	Typically used by gettext and related tools, produces language codes like
pt_BR.

	POSIX style using underscore as a separator, including country code
	POSIX style language code including the country code even when not necessary
(for example cs_CZ).

	BCP style using hyphen as a separator
	Typically used on web platforms, produces language codes like
pt-BR.

	BCP style using hyphen as a separator, including country code
	BCP style language code including the country code even when not necessary
(for example cs-CZ).

	Android style
	Only used in Android apps, produces language codes like
pt-rBR.

	Java style
	Used by Java—mostly BCP with legacy codes for Chinese.

Additionally, any mappings defined in Language aliases are
applied in reverse.

Note

Weblate recognizes any of these when parsing translation files, the above
settings only influences how new files are created.

See also

Language code,
Parsing language codes

Continuous localization

There is infrastructure in place so that your translation closely follows
development. This way translators can work on translations the entire time,
instead of working through huge amount of new text just prior to release.

See also

Integrating with Weblate describes basic ways to integrate your development
with Weblate.

This is the process:

	Developers make changes and push them to the VCS repository.

	Optionally the translation files are updated (this depends on the file format, see Why does Weblate still show old translation strings when I’ve updated the template?).

	Weblate pulls changes from the VCS repository, see Updating repositories.

	Once Weblate detects changes in translations, translators are notified based on their subscription settings.

	Translators submit translations using the Weblate web interface, or upload offline changes.

	Once the translators are finished, Weblate commits the changes to the local repository (see Lazy commits) and pushes them back if it has permissions to do so (see Pushing changes from Weblate).

digraph translations {
 graph [fontname = "sans-serif", fontsize=10];
 node [fontname = "sans-serif", fontsize=10, margin=0.1, height=0];
 edge [fontname = "sans-serif", fontsize=10];

 "Developers" [shape=box, fillcolor="#144d3f", fontcolor=white, style=filled];
 "Translators" [shape=box, fillcolor="#144d3f", fontcolor=white, style=filled];

 "Developers" -> "VCS repository" [label=" 1. Push "];

 "VCS repository" -> "VCS repository" [label=" 2. Updating translations ", style=dotted];

 "VCS repository" -> "Weblate" [label=" 3. Pull "];

 "Weblate" -> "Translators" [label=" 4. Notification "];

 "Translators" -> "Weblate" [label=" 5. Translate "];

 "Weblate" -> "VCS repository" [label=" 6. Push "];
}

Updating repositories

You should set up some way of updating backend repositories from their
source.

	Use Notification hooks to integrate with most of common code hosting services

	Manually trigger update either in the repository management or using API [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/api/index.html#api] or Weblate Client

	Enable AUTO_UPDATE to automatically update all components on your Weblate instance

	Execute updategit (with selection of project or –all to update all)

Whenever Weblate updates the repository, the post-update addons will be
triggered, see Addons.

Avoiding merge conflicts

The merge conflicts from Weblate arise when same file was changed both in
Weblate and outside it. There are two approaches to deal with that - avoid
edits outside Weblate or integrate Weblate into your updating process, so that
it flushes changes prior to updating the files outside Weblate.

The first approach is easy with monolingual files - you can add new strings
within Weblate and leave whole editing of the files there. For bilingual files,
there is usually some kind of message extraction process to generate
translatable files from the source code. In some cases this can be split into
two parts - one for the extraction generates template (for example gettext POT
is generated using xgettext) and then further process merges it into
actual translations (the gettext PO files are updated using
msgmerge). You can perform the second step within Weblate and it
will make sure that all pending changes are included prior to this operation.

The second approach can be achieved by using API [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/api/index.html#api] to force Weblate to
push all pending changes and lock the translation while you are doing changes
on your side.

The script for doing updates can look like this:

Lock Weblate translation
wlc lock
Push changes from Weblate to upstream repository
wlc push
Pull changes from upstream repository to your local copy
git pull
Update translation files, this example is for Django
./manage.py makemessages --keep-pot -a
git commit -m 'Locale updates' -- locale
Push changes to upstream repository
git push
Tell Weblate to pull changes (not needed if Weblate follows your repo
automatically)
wlc pull
Unlock translations
wlc unlock

If you have multiple components sharing same repository, you need to lock them
all separately:

wlc lock foo/bar
wlc lock foo/baz
wlc lock foo/baj

Note

The example uses Weblate Client, which needs configuration (API keys) to be
able to control Weblate remotely. You can also achieve this using any HTTP
client instead of wlc, e.g. curl, see API [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/api/index.html#api].

Automatically receiving changes from GitHub

Weblate comes with native support for GitHub.

If you are using Hosted Weblate, the recommended approach is to install the
Weblate app [https://github.com/apps/weblate], that way you will get the
correct setup without having to set much up. It can also be used for pushing
changes back.

To receive notifications on every push to a GitHub repository,
add the Weblate Webhook in the repository settings (Webhooks)
as shown on the image below:

[image: ../_images/github-settings.png]
For the payload URL, append /hooks/github/ to your Weblate URL, for example
for the Hosted Weblate service, this is https://hosted.weblate.org/hooks/github/.

You can leave other values at default settings (Weblate can handle both
content types and consumes just the push event).

See also

POST /hooks/github/, Accessing repositories from Hosted Weblate

Automatically receiving changes from Bitbucket

Weblate has support for Bitbucket webhooks, add a webhook
which triggers upon repository push, with destination to /hooks/bitbucket/ URL
on your Weblate installation (for example
https://hosted.weblate.org/hooks/bitbucket/).

[image: ../_images/bitbucket-settings.png]

See also

POST /hooks/bitbucket/, Accessing repositories from Hosted Weblate

Automatically receiving changes from GitLab

Weblate has support for GitLab hooks, add a project webhook
with destination to /hooks/gitlab/ URL on your Weblate installation
(for example https://hosted.weblate.org/hooks/gitlab/).

See also

POST /hooks/gitlab/, Accessing repositories from Hosted Weblate

Automatically receiving changes from Pagure

New in version 3.3.

Weblate has support for Pagure hooks, add a webhook
with destination to /hooks/pagure/ URL on your Weblate installation (for
example https://hosted.weblate.org/hooks/pagure/). This can be done in
Activate Web-hooks under Project options:

[image: ../_images/pagure-webhook.png]

See also

POST /hooks/pagure/, Accessing repositories from Hosted Weblate

Automatically receiving changes from Azure Repos

New in version 3.8.

Weblate has support for Azure Repos web hooks, add a webhook for
Code pushed event with destination to /hooks/azure/ URL on your
Weblate installation (for example https://hosted.weblate.org/hooks/azure/).
This can be done in Service hooks under Project
settings.

See also

Web hooks in Azure DevOps manual [https://docs.microsoft.com/en-us/azure/devops/service-hooks/services/webhooks?view=azure-devops],
POST /hooks/azure/, Accessing repositories from Hosted Weblate

Automatically receiving changes from Gitea Repos

New in version 3.9.

Weblate has support for Gitea webhooks, add a Gitea Webhook for
Push events event with destination to /hooks/gitea/ URL on your
Weblate installation (for example https://hosted.weblate.org/hooks/gitea/).
This can be done in Webhooks under repository Settings.

See also

Webhooks in Gitea manual [https://docs.gitea.io/en-us/webhooks/],
POST /hooks/gitea/, Accessing repositories from Hosted Weblate

Automatically receiving changes from Gitee Repos

New in version 3.9.

Weblate has support for Gitee webhooks, add a WebHook for
Push event with destination to /hooks/gitee/ URL on your
Weblate installation (for example https://hosted.weblate.org/hooks/gitee/).
This can be done in WebHooks under repository Management.

See also

Webhooks in Gitee manual [https://gitee.com/help/categories/40],
POST /hooks/gitee/, Accessing repositories from Hosted Weblate

Automatically updating repositories nightly

Weblate automatically fetches remote repositories nightly to improve
performance when merging changes later. You can optionally turn this into doing
nightly merges as well, by enabling AUTO_UPDATE.

Pushing changes from Weblate

Each translation component can have a push URL set up (see
Repository push URL), and in that case Weblate will be able to push change to
the remote repository. Weblate can be also be configured to automatically push
changes on every commit (this is default, see Push on commit).
If you do not want changes to be pushed automatically, you can do that manually
under Repository maintenance or using API via wlc push.

The push options differ based on the Version control integration used, more details are found in that chapter.

In case you do not want direct pushes by Weblate, there is support for
GitHub, GitLab, Pagure pull requests or
Gerrit reviews, you can activate these by choosing
GitHub, GitLab, Gerrit or
Pagure as Version control system in Component configuration.

Overall, following options are available with Git, GitHub and GitLab:

	Desired setup

	Version control system

	Repository push URL

	Push branch

	No push

	Git

	empty

	empty

	Push directly

	Git

	SSH URL

	empty

	Push to separate branch

	Git

	SSH URL

	Branch name

	GitHub pull request from fork

	GitHub

	empty

	empty

	GitHub pull request from branch

	GitHub

	SSH URL 1

	Branch name

	GitLab merge request from fork

	GitLab

	empty

	empty

	GitLab merge request from branch

	GitLab

	SSH URL 1

	Branch name

	Pagure merge request from fork

	Pagure

	empty

	empty

	Pagure merge request from branch

	Pagure

	SSH URL 1

	Branch name

	1(1,2,3)

	Can be empty in case Source code repository supports pushing.

Note

You can also enable automatic pushing of changes after Weblate commits, this can be done in
Push on commit.

See also

See Accessing repositories for setting up SSH keys, and Lazy commits for
info about when Weblate decides to commit changes.

Protected branches

If you are using Weblate on protected branch, you can configure it to use pull
requests and perform actual review on the translations (what might be
problematic for languages you do not know). An alternative approach is to waive
this limitation for the Weblate push user.

For example on GitHub this can be done in the repository configuration:

[image: ../_images/github-protected.png]

Merge or rebase

By default, Weblate merges the upstream repository into its own. This is the safest way
in case you also access the underlying repository by other means. In case you don’t
need this, you can enable rebasing of changes on upstream, which will produce
a history with fewer merge commits.

Note

Rebasing can cause you trouble in case of complicated merges, so carefully
consider whether or not you want to enable them.

Interacting with others

Weblate makes it easy to interact with others using its API.

See also

API [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/api/index.html#api]

Lazy commits

The behaviour of Weblate is to group commits from the same author into one
commit if possible. This greatly reduces the number of commits, however you
might need to explicitly tell it to do the commits in case you want to get the
VCS repository in sync, e.g. for merge (this is by default allowed for the Managers
group, see Access control).

The changes in this mode are committed once any of the following conditions are
fulfilled:

	Somebody else changes an already changed string.

	A merge from upstream occurs.

	An explicit commit is requested.

	Change is older than period defined as Age of changes to commit on Component configuration.

Hint

Commits are created for every component. So in case you have many components
you will still see lot of commits. You might utilize
Squash Git commits addon in that case.

If you want to commit changes more frequently and without checking of age, you
can schedule a regular task to perform a commit:

CELERY_BEAT_SCHEDULE = {
 # Unconditionally commit all changes every 2 minutes
 "commit": {
 "task": "weblate.trans.tasks.commit_pending",
 # Ommiting hours will honor per component settings,
 # otherwise components with no changes older than this
 # won't be committed
 "kwargs": {"hours": 0},
 # How frequently to execute the job in seconds
 "schedule": 120,
 }
}

Processing repository with scripts

The way to customize how Weblate interacts with the repository is
Addons. Consult Executing scripts from addon for info on how to execute
external scripts through addons.

Keeping translations same across components

Once you have multiple translation components, you might want to ensure that
the same strings have same translation. This can be achieved at several levels.

Translation propagation

With translation propagation enabled (what is the default, see
Component configuration), all new translations are automatically done in all
components with matching strings. Such translations are properly credited to
currently translating user in all components.

Note

The translation propagation requires the key to be match for monolingual
translation formats, so keep that in mind when creating translation keys.

Consistency check

The Inconsistent check fires whenever the strings are different.
You can utilize this to review such differences manually and choose the right
translation.

Automatic translation

Automatic translation based on different components can be way to synchronize
the translations across components. You can either trigger it manually (see
Automatic translation) or make it run automatically on repository update
using addon (see Automatic translation).

Licensing translations

You can specify which license translations are contributed under.
This is especially important to do if translations are
open to the public, to stipulate what they can be used for.

You should specify Component configuration license info.
You should avoid requiring a contributor license agreement, though it is possible.

License info

Upon specifying license info (license name and URL), this info is
shown in the translation info section of the respective Component configuration.

Usually this is best place to post licensing info if no explicit consent is required.
If your project or translation is not libre you most probably need prior consent.

Contributor agreement

If you specify a contributor license agreement, only users who have agreed to it will
be able to contribute. This is a clearly visible step when accessing the translation:

[image: ../_images/contributor-agreement.png]
The entered text is formatted into paragraphs and external links can be included.
HTML markup can not be used.

User licenses

Any user can review all translation licenses of all public projects on the instance from their profile:

[image: ../_images/profile-licenses.png]

Translation process

Suggestion voting

Everyone can add suggestions by default, to be accepted by signed in users.
Suggestion voting can be used to make use of a string when more than one signed-in
user agrees, by setting up the Component configuration configuration with
Suggestion voting to turn on voting, and Autoaccept suggestions
to set a threshold for accepted suggestions (this includes a vote from the user
making the suggestion if it is cast).

Note

Once automatic acceptance is set up, normal users lose the privilege to
directly save translations or accept suggestions. This can be overridden
with the Edit string when suggestions are enforced privilege
(see Access control).

You can combine these with Access control into one of the following setups:

	Users suggest and vote for suggestions and a limited group controls what is
accepted.
- Turn on voting.
- Turn off automatic acceptance.
- Don’t let users save translations.

	Users suggest and vote for suggestions with automatic acceptance
once the defined number of them agree.
- Turn on voting.
- Set the desired number of votes for automatic acceptance.

	Optional voting for suggestions. (Can optionally be used by users when they are unsure about
a translation by making multiple suggestions.)
- Only turn on voting.

Additional info on source strings

Enhance the translation process by adding additional info to the strings
including explanations, string priorities, check flags and visual context. Some
of that info may be extracted from the translation files and some may be added
by editing the additional string info:

[image: ../_images/source-review-edit.png]
Access this directly from the translation interface by clicking the
«Edit» icon next to Screenshot context or Flags.

[image: ../_images/source-information.png]

Strings prioritization

New in version 2.0.

String priority can be changed to offer higher priority strings for translation earlier by
using the priority flag.

Hint

This can be used to order the flow of translation in a logical manner.

See also

Quality checks

Translation flags

New in version 2.4.

Changed in version 3.3: Previously called Quality checks flags, it no
longer configures only checks.

The default set of translation flags is determined by the translation
Component configuration and the translation file. However, you might want to use it
to customize this per source string.

See also

Quality checks

Explanation

Changed in version 4.1: In previous versions this has been called Extra context.

Use the explanation to clarify scope or usage of the translation. You can use
Markdown to include links and other markup.

Visual context for strings

New in version 2.9.

You can upload a screenshot showing a given source string in use within your
program. This helps translators understand where it is used, and how it should
be translated.

The uploaded screenshot is shown in the translation context sidebar:

[image: ../_images/screenshot-context.png]
In addition to Additional info on source strings, screenshots have a separate management
interface under the Tools menu.
Upload screenshots, assign them to source strings manually, or use
optical character recognition to do so.

Once a screenshot is uploaded, this interface handles
management and source string association:

[image: ../_images/screenshot-ocr.png]

Checks and fixups

Custom automatic fixups

You can also implement your own automatic fixup in addition to the standard ones and
include them in AUTOFIX_LIST.

The automatic fixes are powerful, but can also cause damage; be careful when
writing one.

For example, the following automatic fixup would replace every occurrence of the string
foo in a translation with bar:

#
Copyright © 2012 - 2021 Michal Čihař <michal@cihar.com>
#
This file is part of Weblate <https://weblate.org/>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
#

from django.utils.translation import gettext_lazy as _

from weblate.trans.autofixes.base import AutoFix

class ReplaceFooWithBar(AutoFix):
 """Replace foo with bar."""

 name = _("Foobar")

 def fix_single_target(self, target, source, unit):
 if "foo" in target:
 return target.replace("foo", "bar"), True
 return target, False

To install custom checks, provide a fully-qualified path to the Python class
in the AUTOFIX_LIST, see Custom quality checks, addons and auto-fixes.

Customizing behavior using flags

You can fine-tune the behavior of Weblate (mostly checks) for each source
string (in source strings review, see Additional info on source strings) or in the
Component configuration (Translation flags). Some file formats also allow
to specify flags directly in the format (see Supported file formats).

The flags are comma-separated, the parameters are separated with colon. You can
use quotes to include whitespace or special chars in the string. For example:

placeholders:"special:value":"other value", regex:.*

Here is a list of flags currently accepted:

	rst-text
	Treat a text as an reStructuredText document, affects Unchanged translation.

	md-text
	Treat text as a Markdown document.

	dos-eol
	Uses DOS end-of-line markers instead of Unix ones (\r\n instead of \n).

	url
	The string should consist of only a URL.

	safe-html
	The string should be HTML safe, see Unsafe HTML.

	read-only
	The string is read-only and should not be edited in Weblate, see Read only strings.

	priority:N
	Priority of the string. Higher priority strings are presented first for translation.
The default priority is 100, the higher priority a string has, the earlier it is
offered for translation.

	max-length:N
	Limit the maximal length for a string to N characters, see Maximum length of translation.

	xml-text
	Treat text as XML document, affects XML syntax and XML markup.

	font-family:NAME
	Define font-family for rendering checks, see Managing fonts.

	font-weight:WEIGHT
	Define font-weight for rendering checks, see Managing fonts.

	font-size:SIZE
	Define font-size for rendering checks, see Managing fonts.

	font-spacing:SPACING
	Define letter spacing for rendering checks, see Managing fonts.

	placeholders:NAME:NAME2:...
	Placeholder strings expected in translation, see Placeholders.

	replacements:FROM:TO:FROM2:TO2...
	Replacements to perform when checking resulting text parameters (for
example in Maximum size of translation or Maximum length of translation). The typical
use case for this is to expand placeables to ensure that the text fits even
with long values, for example: replacements:%s:"John Doe".

	variants:SOURCE
	Mark this string as a variant of string with matching source. See String variants.

	regex:REGEX
	Regular expression to match translation, see Regular expression.

	forbidden
	Indicates forbidden translation in a glossary, see Forbidden translations.

	python-format, c-format, php-format, python-brace-format, javascript-format, c-sharp-format, java-format, java-messageformat, lua-format, auto-java-messageformat, qt-format, qt-plural-format, ruby-format, vue-format
	Treats all strings like format strings, affects Formatted strings,
Formatted strings, Formatted strings,
Formatted strings, Formatted strings, Formatted strings, Formatted strings,
Formatted strings, Formatted strings,
Formatted strings, Formatted strings,
Formatted strings, Formatted strings, Unchanged translation.

	strict-same
	Make «Unchanged translation» avoid using built-in words blacklist, see Unchanged translation.

	check-glossary
	Enable the «Does not follow glossary» quality check.

	ignore-bbcode
	Skip the «BBcode markup» quality check.

	ignore-duplicate
	Skip the «Consecutive duplicated words» quality check.

	ignore-check-glossary
	Skip the «Does not follow glossary» quality check.

	ignore-double-space
	Skip the «Double space» quality check.

	ignore-angularjs-format
	Skip the «AngularJS interpolation string» quality check.

	ignore-c-format
	Skip the «C format» quality check.

	ignore-c-sharp-format
	Skip the «C# format» quality check.

	ignore-es-format
	Skip the «ECMAScript template literals» quality check.

	ignore-i18next-interpolation
	Skip the «i18next interpolation» quality check.

	ignore-java-format
	Skip the «Java format» quality check.

	ignore-java-messageformat
	Skip the «Java MessageFormat» quality check.

	ignore-javascript-format
	Skip the «JavaScript format» quality check.

	ignore-lua-format
	Skip the «Lua format» quality check.

	ignore-percent-placeholders
	Skip the «Percent placeholders» quality check.

	ignore-perl-format
	Skip the «Perl format» quality check.

	ignore-php-format
	Skip the «PHP format» quality check.

	ignore-python-brace-format
	Skip the «Python brace format» quality check.

	ignore-python-format
	Skip the «Python format» quality check.

	ignore-qt-format
	Skip the «Qt format» quality check.

	ignore-qt-plural-format
	Skip the «Qt plural format» quality check.

	ignore-ruby-format
	Skip the «Ruby format» quality check.

	ignore-vue-format
	Skip the «Vue I18n formatting» quality check.

	ignore-translated
	Skip the «Has been translated» quality check.

	ignore-inconsistent
	Skip the «Inconsistent» quality check.

	ignore-kashida
	Skip the «Kashida letter used» quality check.

	ignore-md-link
	Skip the «Markdown links» quality check.

	ignore-md-reflink
	Skip the «Markdown references» quality check.

	ignore-md-syntax
	Skip the «Markdown syntax» quality check.

	ignore-max-length
	Skip the «Maximum length of translation» quality check.

	ignore-max-size
	Skip the «Maximum size of translation» quality check.

	ignore-escaped-newline
	Skip the «Mismatched n» quality check.

	ignore-end-colon
	Skip the «Mismatched colon» quality check.

	ignore-end-ellipsis
	Skip the «Mismatched ellipsis» quality check.

	ignore-end-exclamation
	Skip the «Mismatched exclamation mark» quality check.

	ignore-end-stop
	Skip the «Mismatched full stop» quality check.

	ignore-end-question
	Skip the «Mismatched question mark» quality check.

	ignore-end-semicolon
	Skip the «Mismatched semicolon» quality check.

	ignore-newline-count
	Skip the «Mismatching line breaks» quality check.

	ignore-plurals
	Skip the «Missing plurals» quality check.

	ignore-placeholders
	Skip the «Placeholders» quality check.

	ignore-punctuation-spacing
	Skip the «Punctuation spacing» quality check.

	ignore-regex
	Skip the «Regular expression» quality check.

	ignore-same-plurals
	Skip the «Same plurals» quality check.

	ignore-begin-newline
	Skip the «Starting newline» quality check.

	ignore-begin-space
	Skip the «Starting spaces» quality check.

	ignore-end-newline
	Skip the «Trailing newline» quality check.

	ignore-end-space
	Skip the «Trailing space» quality check.

	ignore-same
	Skip the «Unchanged translation» quality check.

	ignore-safe-html
	Skip the «Unsafe HTML» quality check.

	ignore-url
	Skip the «URL» quality check.

	ignore-xml-tags
	Skip the «XML markup» quality check.

	ignore-xml-invalid
	Skip the «XML syntax» quality check.

	ignore-zero-width-space
	Skip the «Zero-width space» quality check.

	ignore-ellipsis
	Skip the «Ellipsis» quality check.

	ignore-long-untranslated
	Skip the «Long untranslated» quality check.

	ignore-multiple-failures
	Skip the «Multiple failing checks» quality check.

	ignore-unnamed-format
	Skip the «Multiple unnamed variables» quality check.

	ignore-optional-plural
	Skip the «Unpluralised» quality check.

Note

Generally the rule is named ignore-* for any check, using its
identifier, so you can use this even for your custom checks.

These flags are understood both in Component configuration settings, per source string
settings and in the translation file itself (for example in GNU gettext).

Enforcing checks

New in version 3.11.

You can configure a list of checks which can not be ignored by setting
Enforced checks in Component configuration. Each listed check can not
be ignored in the user interface and any string failing this check is marked as
Needs editing (see Translation states).

Managing fonts

New in version 3.7.

Hint

Fonts uploaded into Weblate are used purely for purposes of the
Maximum size of translation check, they do not have an effect in Weblate user
interface.

The Maximum size of translation check used to calculate dimensions of the rendered
text needs font to be loaded into Weblate and selected using a translation flag
(see Customizing behavior using flags).

Weblate font management tool in Fonts under the Manage
menu of your translation project provides interface to upload and manage fonts.
TrueType or OpenType fonts can be uploaded, set up font-groups and use those in
the check.

The font-groups allow you to define different fonts for different languages,
which is typically needed for non-latin languages:

[image: ../_images/font-group-edit.png]
The font-groups are identified by name, which can not contain whitespace or
special characters, so that it can be easily used in the check definition:

[image: ../_images/font-group-list.png]
Font-family and style is automatically recognized after uploading them:

[image: ../_images/font-edit.png]
You can have a number of fonts loaded into Weblate:

[image: ../_images/font-list.png]
To use the fonts for checking the string length, pass it the appropriate
flags (see Customizing behavior using flags). You will probably need the following ones:

	max-size:500
	Defines maximal width.

	font-family:ubuntu
	Defines font group to use by specifying its identifier.

	font-size:22
	Defines font size.

Writing own checks

A wide range of quality checks are built-in, (see Quality checks), though
they might not cover everything you want to check. The list of performed checks
can be adjusted using CHECK_LIST, and you can also add custom checks.

	Subclass the weblate.checks.Check

	Set a few attributes.

	Implement either the check (if you want to deal with plurals in your code) or
the check_single method (which does it for you).

Some examples:

To install custom checks, provide a fully-qualified path to the Python class
in the CHECK_LIST, see Custom quality checks, addons and auto-fixes.

Checking translation text does not contain «foo»

This is a pretty simple check which just checks whether the translation is missing
the string «foo».

#
Copyright © 2012 - 2021 Michal Čihař <michal@cihar.com>
#
This file is part of Weblate <https://weblate.org/>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
#
"""Simple quality check example."""

from django.utils.translation import gettext_lazy as _

from weblate.checks.base import TargetCheck

class FooCheck(TargetCheck):

 # Used as identifier for check, should be unique
 # Has to be shorter than 50 characters
 check_id = "foo"

 # Short name used to display failing check
 name = _("Foo check")

 # Description for failing check
 description = _("Your translation is foo")

 # Real check code
 def check_single(self, source, target, unit):
 return "foo" in target

Checking that Czech translation text plurals differ

Check using language info to verify the two plural forms in Czech
language are not same.

#
Copyright © 2012 - 2021 Michal Čihař <michal@cihar.com>
#
This file is part of Weblate <https://weblate.org/>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
#
"""Quality check example for Czech plurals."""

from django.utils.translation import gettext_lazy as _

from weblate.checks.base import TargetCheck

class PluralCzechCheck(TargetCheck):

 # Used as identifier for check, should be unique
 # Has to be shorter than 50 characters
 check_id = "foo"

 # Short name used to display failing check
 name = _("Foo check")

 # Description for failing check
 description = _("Your translation is foo")

 # Real check code
 def check_target_unit(self, sources, targets, unit):
 if self.is_language(unit, ("cs",)):
 return targets[1] == targets[2]
 return False

 def check_single(self, source, target, unit):
 """We don't check target strings here."""
 return False

Machine translation

Built-in support for several machine translation services and can be turned on
by the administrator using MT_SERVICES for each one. They come subject
to their terms of use, so ensure you are allowed to use them how you want.

The source language can be configured at Project configuration.

amaGama

Special installation of tmserver run by the authors of Virtaal.

Turn on this service by adding weblate.machinery.tmserver.AmagamaTranslation to
MT_SERVICES.

See also

Installing amaGama [https://docs.translatehouse.org/projects/amagama/en/latest/installation.html#installation],
Amagama [http://docs.translatehouse.org/projects/virtaal/en/latest/amagama.html],
amaGama Translation Memory [https://amagama.translatehouse.org/]

Apertium

A libre software machine translation platform providing translations to
a limited set of languages.

The recommended way to use Apertium is to run your own Apertium-APy server.

Turn on this service by adding weblate.machinery.apertium.ApertiumAPYTranslation to
MT_SERVICES and set MT_APERTIUM_APY.

See also

MT_APERTIUM_APY, Apertium website [https://www.apertium.org/],
Apertium APy documentation [https://wiki.apertium.org/wiki/Apertium-apy]

AWS

New in version 3.1.

Amazon Translate is a neural machine translation service for translating text
to and from English across a breadth of supported languages.

1. Turn on this service by adding weblate.machinery.aws.AWSTranslation to
MT_SERVICES.

	Install the boto3 module.

	Configure Weblate.

See also

MT_AWS_REGION, MT_AWS_ACCESS_KEY_ID, MT_AWS_SECRET_ACCESS_KEY
Amazon Translate Documentation [https://docs.aws.amazon.com/translate/]

Baidu API machine translation

New in version 3.2.

Machine translation service provided by Baidu.

This service uses an API and you need to obtain an ID and API key from Baidu to use it.

Turn on this service by adding weblate.machinery.baidu.BaiduTranslation to
MT_SERVICES and set MT_BAIDU_ID and
MT_BAIDU_SECRET.

See also

MT_BAIDU_ID,
MT_BAIDU_SECRET
Baidu Translate API [https://api.fanyi.baidu.com/api/trans/product/index]

DeepL

New in version 2.20.

DeepL is paid service providing good machine translation for a few languages.
You need to purchase DeepL API subscription or you can use legacy
DeepL Pro (classic) plan.

Turn on this service by adding weblate.machinery.deepl.DeepLTranslation to
MT_SERVICES and set MT_DEEPL_KEY.

Hint

In case you have subscription for CAT tools, you are supposed to use «v1
API» instead of default «v2» used by Weblate (it is not really an API
version in this case). You can toggle this by MT_DEEPL_API_VERSION.

See also

MT_DEEPL_KEY,
MT_DEEPL_API_VERSION,
DeepL website [https://www.deepl.com/],
DeepL pricing [https://www.deepl.com/pro],
DeepL API documentation [https://www.deepl.com/api.html]

Glosbe

Free dictionary and translation memory for almost every living language.

The API is gratis to use, but subject to the used data source license. There is a limit
of calls that may be done from one IP in a set period of time, to prevent
abuse.

Turn on this service by adding weblate.machinery.glosbe.GlosbeTranslation to
MT_SERVICES.

See also

Glosbe website [https://glosbe.com/]

Google Translate

Machine translation service provided by Google.

This service uses the Google Translation API, and you need to obtain an API key and turn on
billing in the Google API console.

To turn on this service, add weblate.machinery.google.GoogleTranslation to
MT_SERVICES and set MT_GOOGLE_KEY.

See also

MT_GOOGLE_KEY,
Google translate documentation [https://cloud.google.com/translate/docs]

Google Translate API V3 (Advanced)

Machine translation service provided by Google Cloud services.

This service differs from the former one in how it authenticates.
To enable service, add weblate.machinery.googlev3.GoogleV3Translation to
MT_SERVICES and set

	MT_GOOGLE_CREDENTIALS

	MT_GOOGLE_PROJECT

If location fails, you may also need to specify MT_GOOGLE_LOCATION.

See also

MT_GOOGLE_CREDENTIALS, MT_GOOGLE_PROJECT, MT_GOOGLE_LOCATION
Google translate documentation [https://cloud.google.com/translate/docs]

Microsoft Cognitive Services Translator

New in version 2.10.

Machine translation service provided by Microsoft in Azure portal as a one of
Cognitive Services.

Weblate implements Translator API V3.

To enable this service, add weblate.machinery.microsoft.MicrosoftCognitiveTranslation to
MT_SERVICES and set MT_MICROSOFT_COGNITIVE_KEY.

Translator Text API V2

The key you use with Translator API V2 can be used with API 3.

Translator Text API V3

You need to register at Azure portal and use the key you obtain there.
With new Azure keys, you also need to set MT_MICROSOFT_REGION to locale of your service.

See also

MT_MICROSOFT_COGNITIVE_KEY, MT_MICROSOFT_REGION,
Cognitive Services - Text Translation API [https://azure.microsoft.com/en-us/services/cognitive-services/translator/],
Microsoft Azure Portal [https://portal.azure.com/]

Microsoft Terminology Service

New in version 2.19.

The Microsoft Terminology Service API allows you to programmatically access the
terminology, definitions and user interface (UI) strings available in the
Language Portal through a web service.

Turn this service on by adding weblate.machinery.microsoftterminology.MicrosoftTerminologyService to
MT_SERVICES.

See also

Microsoft Terminology Service API [https://www.microsoft.com/en-us/language/Microsoft-Terminology-API]

ModernMT

New in version 4.2.

Turn this service on by adding weblate.machinery.modernmt.ModernMTTranslation to
MT_SERVICES and configure MT_MODERNMT_KEY.

See also

ModernMT API [https://www.modernmt.com/api/translate/],
MT_MODERNMT_KEY,
MT_MODERNMT_URL

MyMemory

Huge translation memory with machine translation.

Free, anonymous usage is currently limited to 100 requests/day, or to 1000
requests/day when you provide a contact e-mail address in MT_MYMEMORY_EMAIL.
You can also ask them for more.

Turn on this service by adding weblate.machinery.mymemory.MyMemoryTranslation to
MT_SERVICES and set MT_MYMEMORY_EMAIL.

See also

MT_MYMEMORY_EMAIL,
MT_MYMEMORY_USER,
MT_MYMEMORY_KEY,
MyMemory website [https://mymemory.translated.net/]

NetEase Sight API machine translation

New in version 3.3.

Machine translation service provided by Netease.

This service uses an API, and you need to obtain key and secret from NetEase.

Turn on this service by adding weblate.machinery.youdao.NeteaseSightTranslation to
MT_SERVICES and set MT_NETEASE_KEY and
MT_NETEASE_SECRET.

See also

MT_NETEASE_KEY,
MT_NETEASE_SECRET
Netease Sight Translation Platform [https://sight.youdao.com/]

tmserver

You can run your own translation memory server by using the one bundled with
Translate-toolkit and let Weblate talk to it. You can also use it with an
amaGama server, which is an enhanced version of tmserver.

	First you will want to import some data to the translation memory:

2. Turn on this service by adding weblate.machinery.tmserver.TMServerTranslation to
MT_SERVICES.

build_tmdb -d /var/lib/tm/db -s en -t cs locale/cs/LC_MESSAGES/django.po
build_tmdb -d /var/lib/tm/db -s en -t de locale/de/LC_MESSAGES/django.po
build_tmdb -d /var/lib/tm/db -s en -t fr locale/fr/LC_MESSAGES/django.po

	Start tmserver to listen to your requests:

tmserver -d /var/lib/tm/db

	Configure Weblate to talk to it:

MT_TMSERVER = "http://localhost:8888/tmserver/"

See also

MT_TMSERVER,
tmserver [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/tmserver.html]
Installing amaGama [https://docs.translatehouse.org/projects/amagama/en/latest/installation.html#installation],
Amagama [http://docs.translatehouse.org/projects/virtaal/en/latest/amagama.html],
Amagama Translation Memory [https://amagama.translatehouse.org/]

Yandex Translate

Machine translation service provided by Yandex.

This service uses a Translation API, and you need to obtain an API key from Yandex.

Turn on this service by adding weblate.machinery.yandex.YandexTranslation to
MT_SERVICES, and set MT_YANDEX_KEY.

See also

MT_YANDEX_KEY,
Yandex Translate API [https://yandex.com/dev/translate/],
Powered by Yandex.Translate [https://translate.yandex.com/]

Youdao Zhiyun API machine translation

New in version 3.2.

Machine translation service provided by Youdao.

This service uses an API, and you need to obtain an ID and an API key from Youdao.

Turn on this service by adding weblate.machinery.youdao.YoudaoTranslation to
MT_SERVICES and set MT_YOUDAO_ID and
MT_YOUDAO_SECRET.

See also

MT_YOUDAO_ID,
MT_YOUDAO_SECRET
Youdao Zhiyun Natural Language Translation Service [https://ai.youdao.com/product-fanyi-text.s]

Weblate

Weblate can be the source of machine translations as well.
It is based on the Woosh fulltext engine, and provides both exact and inexact matches.

Turn on these services by adding weblate.machinery.weblatetm.WeblateTranslation to
MT_SERVICES.

Weblate Translation Memory

New in version 2.20.

The Translation Memory can be used as a source for machine translation
suggestions as well.

Turn on these services by adding weblate.memory.machine.WeblateMemory to
the MT_SERVICES. This service is turned on by
default.

SAP Translation Hub

Machine translation service provided by SAP.

You need to have a SAP account (and enabled the SAP Translation Hub in the SAP Cloud
Platform) to use this service.

Turn on this service by adding weblate.machinery.saptranslationhub.SAPTranslationHub to
MT_SERVICES and set the appropriate access to either
sandbox or the productive API.

Note

To access the Sandbox API, you need to set MT_SAP_BASE_URL
and MT_SAP_SANDBOX_APIKEY.

To access the productive API, you need to set MT_SAP_BASE_URL,
MT_SAP_USERNAME and MT_SAP_PASSWORD.

See also

MT_SAP_BASE_URL,
MT_SAP_SANDBOX_APIKEY,
MT_SAP_USERNAME,
MT_SAP_PASSWORD,
MT_SAP_USE_MT
SAP Translation Hub API [https://api.sap.com/shell/discover/contentpackage/SAPTranslationHub/api/translationhub]

Custom machine translation

You can also implement your own machine translation services using a few lines of
Python code. This example implements machine translation in a fixed list of
languages using dictionary Python module:

#
Copyright © 2012 - 2021 Michal Čihař <michal@cihar.com>
#
This file is part of Weblate <https://weblate.org/>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
#
"""Machine translation example."""

import dictionary

from weblate.machinery.base import MachineTranslation

class SampleTranslation(MachineTranslation):
 """Sample machine translation interface."""

 name = "Sample"

 def download_languages(self):
 """Return list of languages your machine translation supports."""
 return {"cs"}

 def download_translations(
 self,
 source,
 language,
 text: str,
 unit,
 user,
 search: bool,
 threshold: int = 75,
):
 """Return tuple with translations."""
 for t in dictionary.translate(text):
 yield {"text": t, "quality": 100, "service": self.name, "source": text}

You can list own class in MT_SERVICES and Weblate
will start using that.

Addons

New in version 2.19.

Addons provide ways to customize and automate the translation workflow.
Admins can add and mangage addons from the Manage ↓ Addons menu of each respective
translation component.

[image: ../_images/addons.png]

Built-in addons

Automatic translation

New in version 3.9.

Automatically translates strings using machine translation or other components.

Triggered automatically when new strings appear in a component.

See also

Automatic translation,
Keeping translations same across components

JavaScript localization CDN

New in version 4.2.

Publishes translations into content delivery network for use in JavaScript or
HTML localization.

Can be used to localize static HTML pages, or
to load localization in the JavaScript code.

Generates a unique URL for your component you can include in
HTML pages to localize them. See Translating HTML and JavaScript using Weblate CDN for more details.

See also

Configuring Weblate CDN addon,
Translating HTML and JavaScript using Weblate CDN,
String extraction for Weblate CDN,
HTML localization using Weblate CDN

Remove blank strings

New in version 4.4.

Removes strings without a translation from translation files.

Use this to not have any empty strings in translation files (for
example if your localization library displays them as missing instead
of falling back to the source string).

See also

Does Weblate update translation files besides translations?

Cleanup translation files

Update all translation files to match the monolingual base file. For most file
formats, this means removing stale translation keys no longer present in the
base file.

See also

Does Weblate update translation files besides translations?

Language consistency

Ensures all components within a project have translations for every added
translated language by creating empty translations in languages that have
unadded components.

Missing languages are checked once every 24 hours, and when new languages
are added in Weblate.

Unlike most others, this addon affects the whole project.

Hint

Auto-translate the newly added strings with
Automatic translation.

Component discovery

Automatically adds or removes project components based on file changes in the
version control system.

Triggered each time the VCS is updated, and otherwise similar to
the import_project management command. This way you can track
multiple translation components within one VCS.

The matching is done using regular expressions
enabling complex configuration, but some knowledge is required to do so.
Some examples for common use cases can be found in
the addon help section.

Once you hit Save, a preview of matching components will be presented,
from where you can check whether the configuration actually matches your needs:

[image: ../_images/addon-discovery.png]

Hint

Component discovery addon uses Weblate internal URLs. It’s a convenient way to share
VCS setup between multiple components. Linked components use the local repository of
the main component set up by filling weblate://project/main-component
into the Source code repository field (in Manage ↓ Settings ↓
Version control system) of each respective component.
This saves time with configuration and system resources too.

See also

Template markup

Bulk edit

New in version 3.11.

Bulk edit flags, labels, or states of strings.

Automate labeling by starting out with the search query NOT has:label
and add labels till all strings have all required labels.
Other automated operations for Weblate metadata can also be done.

Examples:

Label new strings automatically

	Search query

	NOT has:label

	Labels to add

	recent

Marking all App store metadata files changelog entries read-only

	Search query

	language:en AND key:changelogs/

	Translation flags to add

	read-only

See also

Bulk edit,
Customizing behavior using flags,
String labels

Flag unchanged translations as «Needs editing»

New in version 3.1.

Whenever a new translatable string is imported from the VCS and it matches a
source string, it is flagged as needing editing in Weblate. Especially useful
for file formats that include source strings for untranslated strings.

Hint

You might also want to tighthen the Unchanged translation check by adding
strict-same flag to Translation flags.

See also

Translation states

Flag new source strings as «Needs editing»

Whenever a new source string is imported from the VCS, it is flagged as needing
editing in Weblate. This way you can easily filter and edit source strings
written by the developers.

See also

Translation states

Flag new translations as «Needs editing»

Whenever a new translatable string is imported from the VCS, it is flagged as
needing editing in Weblate. This way you can easily filter and edit
translations created by the developers.

See also

Translation states

Statistics generator

Generates a file containing detailed info about the translation status.

You can use a Django template in both filename and content, see Template markup
for a detailed markup description.

For example generating a summary file for each translation:

	Name of generated file
	locale/{{ language_code }}.json

	Content
	{
 "language": "{{ language_code }}",
 "strings": "{{ stats.all }}",
 "translated": "{{ stats.translated }}",
 "last_changed": "{{ stats.last_changed }}",
 "last_author": "{{ stats.last_author }}",
}

See also

Template markup

Pseudolocale generation

Generates a translation by adding prefix and suffix to source strings
automatically.

Pseudolocales are useful to find strings that are not prepared for
localization. This is done by altering all translatable source strings
to make it easy to spot unaltered strings when running the application
in the pseudolocale language.

Finding strings whose localized counterparts might not fit the layout
is also possible.

Hint

You can use real languages for testing, but there are dedicated
pseudolocales available in Weblate - en_XA and ar_XB.

Contributors in comment

Updates the comment part of the PO file header to include contributor names
and years of contributions.

The PO file header will look like this:

Michal Čihař <michal@cihar.com>, 2012, 2018, 2019, 2020.
Pavel Borecki <pavel@example.com>, 2018, 2019.
Filip Hron <filip@example.com>, 2018, 2019.
anonymous <noreply@weblate.org>, 2019.

Update ALL_LINGUAS variable in the «configure» file

Updates the ALL_LINGUAS variable in configure, configure.in or any
configure.ac files, when a new translation is added.

Customize gettext output

Allows customization of gettext output behavior, for example line wrapping.

It offers the following options:

	Wrap lines at 77 characters and at newlines

	Only wrap lines at newlines

	No line wrapping

Note

By default gettext wraps lines at 77 characters and at newlines.
With the --no-wrap parameter, wrapping is only done at newlines.

Update LINGUAS file

Updates the LINGUAS file when a new translation is added.

Generate MO files

Automatically generates a MO file for every changed PO file.

The location of the generated MO file can be customized and the field for it uses Template markup.

Update PO files to match POT (msgmerge)

Updates all PO files (as configured by File mask) to match the
POT file (as configured by Template for new translations) using msgmerge.

Triggered whenever new changes are pulled from the upstream repository.
Most msgmerge command-line options can be set up through the addon
configuration.

See also

Does Weblate update translation files besides translations?

Squash Git commits

Squash Git commits prior to pushing changes.

Git commits can be squashed prior to pushing changes
in one of the following modes:

New in version 3.4.

	All commits into one

	Per language

	Per file

New in version 3.5.

	Per author

Original commit messages are kept, but authorship is lost unless Per author is selected, or
the commit message is customized to include it.

New in version 4.1.

The original commit messages can optionally be overridden with a custom commit message.

Trailers (commit lines like Co-authored-by: …) can optionally be removed
from the original commit messages and appended to the end of the squashed
commit message. This also generates proper Co-authored-by: credit for every
translator.

Customize JSON output

Allows adjusting JSON output behavior, for example indentation or sorting.

Formats the Java properties file

Sorts the Java properties file.

Stale comment removal

New in version 3.7.

Set a timeframe for removal of comments.

This can be useful to remove old
comments which might have become outdated. Use with care as comments
getting old does not mean they have lost their importance.

Stale suggestion removal

New in version 3.7.

Set a timeframe for removal of suggestions.

Can be very useful in connection with suggestion voting
(see Peer review) to remove suggestions which
don’t receive enough positive votes in a given timeframe.

Update RESX files

New in version 3.9.

Update all translation files to match the monolingual upstream base file.
Unused strings are removed, and new ones added as copies of the source string.

Hint

Use Cleanup translation files if you only want to remove stale
translation keys.

See also

Does Weblate update translation files besides translations?

Customize YAML output

New in version 3.10.2.

Allows adjusting YAML output behavior, for example line-length or newlines.

Customizing list of addons

The list of addons is configured by WEBLATE_ADDONS.
To add another addon, simply include the absolute class name in this setting.

Writing addon

You can write your own addons too, create a subclass of
weblate.addons.base.BaseAddon to define the addon metadata, and
then implement a callback to do the processing.

See also

Developing addons

Executing scripts from addon

Addons can also be used to execute external scripts. This used to be
integrated in Weblate, but now you have to write some code to wrap your
script with an addon.

#
Copyright © 2012 - 2021 Michal Čihař <michal@cihar.com>
#
This file is part of Weblate <https://weblate.org/>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
#
"""Example pre commit script."""

from django.utils.translation import gettext_lazy as _

from weblate.addons.events import EVENT_PRE_COMMIT
from weblate.addons.scripts import BaseScriptAddon

class ExamplePreAddon(BaseScriptAddon):
 # Event used to trigger the script
 events = (EVENT_PRE_COMMIT,)
 # Name of the addon, has to be unique
 name = "weblate.example.pre"
 # Verbose name and long descrption
 verbose = _("Execute script before commit")
 description = _("This addon executes a script.")

 # Script to execute
 script = "/bin/true"
 # File to add in commit (for pre commit event)
 # does not have to be set
 add_file = "po/{{ language_code }}.po"

For installation instructions see Custom quality checks, addons and auto-fixes.

The script is executed with the current directory set to the root of the VCS repository
for any given component.

Additionally, the following environment variables are available:

	
WL_VCS

	Version control system used.

	
WL_REPO

	Upstream repository URL.

	
WL_PATH

	Absolute path to VCS repository.

	
WL_BRANCH

	
New in version 2.11.

Repository branch configured in the current component.

	
WL_FILEMASK

	Filemask for current component.

	
WL_TEMPLATE

	Filename of template for monolingual translations (can be empty).

	
WL_NEW_BASE

	
New in version 2.14.

Filename of the file used for creating new translations (can be
empty).

	
WL_FILE_FORMAT

	File format used in current component.

	
WL_LANGUAGE

	Language of currently processed translation (not available for
component-level hooks).

	
WL_PREVIOUS_HEAD

	Previous HEAD after update (only available after running the post-update hook).

	
WL_COMPONENT_SLUG

	
New in version 3.9.

Component slug used to construct URL.

	
WL_PROJECT_SLUG

	
New in version 3.9.

Project slug used to construct URL.

	
WL_COMPONENT_NAME

	
New in version 3.9.

Component name.

	
WL_PROJECT_NAME

	
New in version 3.9.

Project name.

	
WL_COMPONENT_URL

	
New in version 3.9.

Component URL.

	
WL_ENGAGE_URL

	
New in version 3.9.

Project engage URL.

See also

Component configuration

Post-update repository processing

Can be used to update translation files when the VCS upstream source changes.
To achieve this, please remember Weblate only sees files committed to the VCS,
so you need to commit changes as a part of the script.

For example with Gulp you can do it using following code:

#! /bin/sh
gulp --gulpfile gulp-i18n-extract.js
git commit -m 'Update source strings' src/languages/en.lang.json

Pre-commit processing of translations

Use the commit script to automatically change a translation before it is committed
to the repository.

It is passed as a single parameter consisting of the filename of a current translation.

Translation Memory

New in version 2.20.

Weblate comes with a built-in translation memory consisting of the following:

	Manually imported translation memory (see User interface).

	Automatically stored translations performed in Weblate (depending on Translation memory scopes).

	Automatically imported past translations.

Content in the translation memory can be applied one of two ways:

	Manually, Automatic suggestions view while translating.

	Automatically, by translating strings using Automatic translation, or
Automatic translation addon.

For installation tips, see Weblate Translation Memory, which is
turned on by default.

Translation memory scopes

New in version 3.2: In earlier versions translation memory could be only loaded from a file
corresponding to the current imported translation memory scope.

The translation memory scopes are there to allow both privacy and sharing of
translations, to suit the desired behavior.

Imported translation memory

Importing arbitrary translation memory data using the import_memory
command makes memory content available to all users and projects.

Per user translation memory

Stores all user translations automatically in the personal translation memory of each respective user.

Per project translation memory

All translations within a project are automatically stored in a project
translation memory only available for this project.

Shared translation memory

All translation within projects with shared translation memory turned on
are stored in a shared translation memory available to all projects.

Please consider carefully whether to turn this feature on for shared Weblate
installations, as it can have severe implications:

	The translations can be used by anybody else.

	This might lead to disclosing secret information.

Managing translation memory

User interface

New in version 3.2.

In the basic user interface you can manage per user and per project translation
memories. It can be used to download, wipe or import translation memory.

Hint

Translation memory in JSON can be imported into Weblate, TMX is provided for
interoperability with other tools.

See also

Weblate Translation Memory Schema

[image: ../_images/memory.png]

Management interface

There are several management commands to manipulate the translation memory
content. These operate on the translation memory as whole, unfiltered by scopes (unless
requested by parameters):

	dump_memory
	Exports the memory into JSON

	import_memory
	Imports TMX or JSON files into the translation memory

Configuration

All settings are stored in settings.py (as is usual for Django).

Note

After changing any of these settings, you need to restart Weblate - both
WSGI and Celery processes.

In case it is run as mod_wsgi, you need to restart Apache to reload the
configuration.

See also

Please also check Django’s documentation [https://docs.djangoproject.com/en/stable/ref/settings/] for
parameters configuring Django itself.

AKISMET_API_KEY

Weblate can use Akismet to check incoming anonymous suggestions for spam.
Visit akismet.com [https://akismet.com/] to purchase an API key
and associate it with a site.

ANONYMOUS_USER_NAME

Username of users that are not signed in.

See also

Access control

AUDITLOG_EXPIRY

New in version 3.6.

How many days Weblate should keep audit logs, which contain info about account
activity.

Defaults to 180 days.

AUTH_LOCK_ATTEMPTS

New in version 2.14.

Maximum number of failed authentication attempts before rate limiting is applied.

This is currently applied in the following locations:

	Logins. Deletes the account password, preventing the user from signing in
without requesting a new password.

	Password resets. Prevents new e-mails from being sent, avoiding spamming
users with too many password reset attempts.

Defaults to 10.

See also

Rate limiting,

AUTO_UPDATE

New in version 3.2.

Changed in version 3.11: The original on/off option was changed to differentiate which strings are accepted.

Updates all repositories on a daily basis.

Hint

Useful if you are not using Notification hooks to update Weblate repositories automatically.

Note

On/off options exist in addition to string selection for backward compatibility.

Options are:

	"none"
	No daily updates.

	"remote" also False
	Only update remotes.

	"full" also True
	Update remotes and merge working copy.

Note

This requires that Background tasks using Celery is working, and will take effect after it is restarted.

AVATAR_URL_PREFIX

Prefix for constructing avatar URLs as:
${AVATAR_URL_PREFIX}/avatar/${MAIL_HASH}?${PARAMS}.
The following services are known to work:

	Gravatar (default), as per https://gravatar.com/
	AVATAR_URL_PREFIX = 'https://www.gravatar.com/'

	Libravatar, as per https://www.libravatar.org/
	AVATAR_URL_PREFIX = 'https://www.libravatar.org/'

See also

Avatar caching,
ENABLE_AVATARS,
Avatars

AUTH_TOKEN_VALID

New in version 2.14.

How long the authentication token and temporary password from password reset e-mails is valid for.
Set in number of seconds, defaulting to 172800 (2 days).

AUTH_PASSWORD_DAYS

New in version 2.15.

How many days using the same password should be allowed.

Note

Password changes made prior to Weblate 2.15 will not be accounted for in this policy.

Defaults to 180 days.

AUTOFIX_LIST

List of automatic fixes to apply when saving a string.

Note

Provide a fully-qualified path to the Python class that implementing the
autofixer interface.

Available fixes:

	weblate.trans.autofixes.whitespace.SameBookendingWhitespace
	Matches whitespace at the start and end of the string to the source.

	weblate.trans.autofixes.chars.ReplaceTrailingDotsWithEllipsis
	Replaces trailing dots (…) if the source string has a corresponding ellipsis (…).

	weblate.trans.autofixes.chars.RemoveZeroSpace
	Removes zero-width space characters if the source does not contain any.

	weblate.trans.autofixes.chars.RemoveControlChars
	Removes control characters if the source does not contain any.

	weblate.trans.autofixes.html.BleachHTML
	Removes unsafe HTML markup from strings flagged as safe-html (see Unsafe HTML).

You can select which ones to use:

AUTOFIX_LIST = (
 "weblate.trans.autofixes.whitespace.SameBookendingWhitespace",
 "weblate.trans.autofixes.chars.ReplaceTrailingDotsWithEllipsis",
)

See also

Automatic fixups, Custom automatic fixups

BASE_DIR

Base directory where Weblate sources are located.
Used to derive several other paths by default:

	DATA_DIR

Default value: Top level directory of Weblate sources.

BASIC_LANGUAGES

New in version 4.4.

List of languages to offer users for starting new translation. When not
specified built in list is used which includes all commonly used languages, but
without country specific variants.

This only limits non privileged users to add unwanted languages. The project
admins are still presented with full selection of languages defined in Weblate.

Note

This does not define new languages for Weblate, it only filters existing ones
in the database.

Example:

BASIC_LANGUAGES = {"cs", "it", "ja", "en"}

See also

Language definitions

CSP_SCRIPT_SRC, CSP_IMG_SRC, CSP_CONNECT_SRC, CSP_STYLE_SRC, CSP_FONT_SRC

Customize Content-Security-Policy header for Weblate. The header is
automatically generated based on enabled integrations with third-party services
(Matomo, Google Analytics, Sentry, …).

All these default to empty list.

Example:

Enable Cloudflare Javascript optimizations
CSP_SCRIPT_SRC = ["ajax.cloudflare.com"]

See also

Content security policy,
Content Security Policy (CSP) [https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP]

CHECK_LIST

List of quality checks to perform on a translation.

Note

Provide a fully-qualified path to the Python class implementing the check
interface.

Adjust the list of checks to include ones relevant to you.

All built-in Quality checks are turned on by default, from
where you can change these settings. By default they are commented out in Sample configuration
so that default values are used. New checks then carried out for each new Weblate version.

You can turn off all checks:

CHECK_LIST = ()

You can turn on only a few:

CHECK_LIST = (
 "weblate.checks.chars.BeginNewlineCheck",
 "weblate.checks.chars.EndNewlineCheck",
 "weblate.checks.chars.MaxLengthCheck",
)

Note

Changing this setting only affects newly changed translations, existing checks
will still be stored in the database. To also apply changes to the stored translations, run
updatechecks.

See also

Quality checks, Customizing behavior using flags

COMMENT_CLEANUP_DAYS

New in version 3.6.

Delete comments after a given number of days.
Defaults to None, meaning no deletion at all.

COMMIT_PENDING_HOURS

New in version 2.10.

Number of hours between committing pending changes by way of the background task.

See also

Component configuration,
Age of changes to commit,
Running maintenance tasks,
commit_pending

DATA_DIR

The folder Weblate stores all data in. It contains links to VCS repositories,
a fulltext index and various configuration files for external tools.

The following subdirectories usually exist:

	home
	Home directory used for invoking scripts.

	ssh
	SSH keys and configuration.

	static
	Default location for static Django files, specified by STATIC_ROOT.

	media
	Default location for Django media files, specified by MEDIA_ROOT.

	vcs
	Version control repositories.

	backups
	Daily backup data, please check Dumped data for backups for details.

Note

This directory has to be writable by Weblate. Running it as uWSGI means
the www-data user should have write access to it.

The easiest way to achieve this is to make the user the owner of the directory:

sudo chown www-data:www-data -R $DATA_DIR

Defaults to $BASE_DIR/data.

See also

BASE_DIR,
Backing up and moving Weblate

DATABASE_BACKUP

New in version 3.1.

Whether the database backups should be stored as plain text, compressed or skipped.
The authorized values are:

	"plain"

	"compressed"

	"none"

See also

Backing up and moving Weblate

DEFAULT_ACCESS_CONTROL

New in version 3.3.

The default access control setting for new projects:

	0
	Public

	1
	Protected

	100
	Private

	200
	Custom

Use Custom if you are managing ACL manually, which means not relying
on the internal Weblate management.

See also

Project access control,
Access control,
Access control

DEFAULT_AUTO_WATCH

New in version 4.5.

Configures whether Automatically watch projects on contribution
should be turned on for new users. Defaults to True.

See also

Notifications

DEFAULT_RESTRICTED_COMPONENT

New in version 4.1.

The default value for component restriction.

See also

Project access control,
Restricted access,
Access control

DEFAULT_ADD_MESSAGE, DEFAULT_ADDON_MESSAGE, DEFAULT_COMMIT_MESSAGE, DEFAULT_DELETE_MESSAGE, DEFAULT_MERGE_MESSAGE

Default commit messages for different operations, please check Component configuration for details.

See also

Template markup,
Component configuration,
Commit, add, delete, merge and addon messages

DEFAULT_ADDONS

Default addons to install on every created component.

Note

This setting affects only newly created components.

Example:

DEFAULT_ADDONS = {
 # Addon with no parameters
 "weblate.flags.target_edit": {},
 # Addon with parameters
 "weblate.autotranslate.autotranslate": {
 "mode": "suggest",
 "filter_type": "todo",
 "auto_source": "mt",
 "component": "",
 "engines": ["weblate-translation-memory"],
 "threshold": "80",
 },
}

See also

install_addon,
WEBLATE_ADDONS

DEFAULT_COMMITER_EMAIL

New in version 2.4.

Committer e-mail address for created translation components defaulting to noreply@weblate.org.

See also

DEFAULT_COMMITER_NAME,
Component configuration,
Committer e-mail

DEFAULT_COMMITER_NAME

New in version 2.4.

Committer name for created translation components defaulting to Weblate.

See also

DEFAULT_COMMITER_EMAIL,
Component configuration,
Committer name

DEFAULT_LANGUAGE

New in version 4.3.2.

Default source language to use for example in Source language.

Defaults to en. The matching language object needs to exist in the database.

See also

Language definitions,
Source language

DEFAULT_MERGE_STYLE

New in version 3.4.

Merge style for any new components.

	rebase - default

	merge

See also

Component configuration,
Merge style

DEFAULT_TRANSLATION_PROPAGATION

New in version 2.5.

Default setting for translation propagation, defaults to True.

See also

Component configuration,
Allow translation propagation

DEFAULT_PULL_MESSAGE

Title for new pull requests,
defaulting to 'Update from Weblate'.

ENABLE_AVATARS

Whether to turn on Gravatar-based avatars for users. By default this is on.

Avatars are fetched and cached on the server, lowering the risk of
leaking private info, speeding up the user experience.

See also

Avatar caching,
AVATAR_URL_PREFIX,
Avatars

ENABLE_HOOKS

Whether to enable anonymous remote hooks.

See also

Notification hooks

ENABLE_HTTPS

Whether to send links to Weblate as HTTPS or HTTP. This setting affects sent
e-mails and generated absolute URLs.

In the default configuration this is also used for several Django settings
related to HTTPS - it enables secure cookies, toggles HSTS or enables
redirection to HTTPS URL.

The HTTPS redirection might be problematic in some cases and you might hit
issue with infinite redirection in case you are using a reverse proxy doing SSL
termination which does not correctly pass protocol headers to Django. Please
tweak your reverse proxy configuration to emit X-Forwarded-Proto or
Forwarded headers or configure SECURE_PROXY_SSL_HEADER [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECURE_PROXY_SSL_HEADER] to
let Django correctly detect the SSL status.

See also

SESSION_COOKIE_SECURE [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SESSION_COOKIE_SECURE],
CSRF_COOKIE_SECURE [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-CSRF_COOKIE_SECURE],
SECURE_SSL_REDIRECT [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECURE_SSL_REDIRECT],
SECURE_PROXY_SSL_HEADER [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECURE_PROXY_SSL_HEADER]
Set correct site domain

ENABLE_SHARING

Turn on/off the Share menu so users can share translation progress on social networks.

GITLAB_CREDENTIALS

New in version 4.3.

List for credentials for GitLab servers.

Hint

Use this in case you want Weblate to interact with more of them, for single
GitLab endpoint stick with GITLAB_USERNAME and GITLAB_TOKEN.

GITLAB_CREDENTIALS = {
 "gitlab.com": {
 "username": "weblate",
 "token": "your-api-token",
 },
 "gitlab.example.com": {
 "username": "weblate",
 "token": "another-api-token",
 },
}

GITLAB_USERNAME

GitLab username used to send merge requests for translation updates.

See also

GITLAB_CREDENTIALS,
GitLab

GITLAB_TOKEN

New in version 4.3.

GitLab personal access token used to make API calls for translation updates.

See also

GITLAB_CREDENTIALS,
GitLab,
GitLab: Personal access token [https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html]

GITHUB_CREDENTIALS

New in version 4.3.

List for credentials for GitHub servers.

Hint

Use this in case you want Weblate to interact with more of them, for single
GitHub endpoint stick with GITHUB_USERNAME and GITHUB_TOKEN.

GITHUB_CREDENTIALS = {
 "api.github.com": {
 "username": "weblate",
 "token": "your-api-token",
 },
 "github.example.com": {
 "username": "weblate",
 "token": "another-api-token",
 },
}

GITHUB_USERNAME

GitHub username used to send pull requests for translation updates.

See also

GITHUB_CREDENTIALS,
GitHub

GITHUB_TOKEN

New in version 4.3.

GitHub personal access token used to make API calls to send pull requests for
translation updates.

See also

GITHUB_CREDENTIALS,
GitHub,
Creating a personal access token [https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token]

GOOGLE_ANALYTICS_ID

Google Analytics ID to turn on monitoring of Weblate using Google Analytics.

HIDE_REPO_CREDENTIALS

Hide repository credentials from the web interface. In case you have repository
URL with user and password, Weblate will hide it when related info is shown to
users.

For example instead of https://user:password@git.example.com/repo.git it
will show just https://git.example.com/repo.git. It tries to clean up VCS
error messages too in a similar manner.

Note

This is turned on by default.

HIDE_VERSION

New in version 4.3.1.

Hides version information from unauthenticated users. This also makes all
documentation links point to latest version instead of the documentation
matching currently installed version.

Hiding version is recommended security practice in some corporations, but it
doesn’t prevent attacker to figure out version by probing the behavior.

Note

This is turned off by default.

IP_BEHIND_REVERSE_PROXY

New in version 2.14.

Indicates whether Weblate is running behind a reverse proxy.

If set to True, Weblate gets IP address from a header defined by
IP_PROXY_HEADER.

Warning

Ensure you are actually using a reverse proxy and that it sets this header,
otherwise users will be able to fake the IP address.

Note

This is not on by default.

See also

Running behind reverse proxy,
Rate limiting,
IP_PROXY_HEADER,
IP_PROXY_OFFSET

IP_PROXY_HEADER

New in version 2.14.

Indicates which header Weblate should obtain the IP address from when
IP_BEHIND_REVERSE_PROXY is turned on.

Defaults to HTTP_X_FORWARDED_FOR.

See also

Running behind reverse proxy,
Rate limiting,
SECURE_PROXY_SSL_HEADER [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECURE_PROXY_SSL_HEADER],
IP_BEHIND_REVERSE_PROXY,
IP_PROXY_OFFSET

IP_PROXY_OFFSET

New in version 2.14.

Indicates which part of IP_PROXY_HEADER is used as client IP
address.

Depending on your setup, this header might consist of several IP addresses,
(for example X-Forwarded-For: a, b, client-ip) and you can configure
which address from the header is used as client IP address here.

Warning

Setting this affects the security of your installation, you should only
configure it to use trusted proxies for determining IP address.

Defaults to 0.

See also

Running behind reverse proxy,
Rate limiting,
SECURE_PROXY_SSL_HEADER [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECURE_PROXY_SSL_HEADER],
IP_BEHIND_REVERSE_PROXY,
IP_PROXY_HEADER

LEGAL_URL

New in version 3.5.

URL where your Weblate instance shows its legal documents.

Hint

Useful if you host your legal documents outside Weblate for embedding them inside Weblate,
please check Legal for details.

Example:

LEGAL_URL = "https://weblate.org/terms/"

LICENSE_EXTRA

Additional licenses to include in the license choices.

Note

Each license definition should be tuple of its short name, a long name and an URL.

For example:

LICENSE_EXTRA = [
 (
 "AGPL-3.0",
 "GNU Affero General Public License v3.0",
 "https://www.gnu.org/licenses/agpl-3.0-standalone.html",
),
]

LICENSE_FILTER

Changed in version 4.3: Setting this to blank value now disables license alert.

Filter list of licenses to show. This also disables the license alert when set
to empty.

Note

This filter uses the short license names.

For example:

LICENSE_FILTER = {"AGPL-3.0", "GPL-3.0-or-later"}

Following disables the license alert:

LICENSE_FILTER = set()

See also

Translation component alerts

LICENSE_REQUIRED

Defines whether the license attribute in Component configuration is required.

Note

This is off by default.

LIMIT_TRANSLATION_LENGTH_BY_SOURCE_LENGTH

Whether the length of a given translation should be limited.
The restriction is the length of the source string * 10 characters.

Hint

Set this to False to allow longer translations (up to 10.000 characters) irrespective of source string length.

Note

Defaults to True.

LOCALIZE_CDN_URL and LOCALIZE_CDN_PATH

These settings configure the JavaScript localization CDN addon.
LOCALIZE_CDN_URL defines root URL where the localization CDN is
available and LOCALIZE_CDN_PATH defines path where Weblate should
store generated files which will be served at the LOCALIZE_CDN_URL.

Hint

On Hosted Weblate, this uses https://weblate-cdn.com/.

See also

JavaScript localization CDN

LOGIN_REQUIRED_URLS

A list of URLs you want to require logging into. (Besides the standard rules built into Weblate).

Hint

This allows you to password protect a whole installation using:

LOGIN_REQUIRED_URLS = (r"/(.*)$",)
REST_FRAMEWORK["DEFAULT_PERMISSION_CLASSES"] = [
 "rest_framework.permissions.IsAuthenticated"
]

Hint

It is desirable to lock down API access as well, as shown in the above example.

See also

REQUIRE_LOGIN

LOGIN_REQUIRED_URLS_EXCEPTIONS

List of exceptions for LOGIN_REQUIRED_URLS.
If not specified, users are allowed to access the sign in page.

Some of exceptions you might want to include:

LOGIN_REQUIRED_URLS_EXCEPTIONS = (
 r"/accounts/(.*)$", # Required for sign in
 r"/static/(.*)$", # Required for development mode
 r"/widgets/(.*)$", # Allowing public access to widgets
 r"/data/(.*)$", # Allowing public access to data exports
 r"/hooks/(.*)$", # Allowing public access to notification hooks
 r"/api/(.*)$", # Allowing access to API
 r"/js/i18n/$", # JavaScript localization
)

MATOMO_SITE_ID

ID of a site in Matomo (formerly Piwik) you want to track.

Note

This integration does not support the Matomo Tag Manager.

See also

MATOMO_URL

MATOMO_URL

Full URL (including trailing slash) of a Matomo (formerly Piwik) installation you want
to use to track Weblate use. Please check <https://matomo.org/> for more details.

Hint

This integration does not support the Matomo Tag Manager.

For example:

MATOMO_SITE_ID = 1
MATOMO_URL = "https://example.matomo.cloud/"

See also

MATOMO_SITE_ID

MT_SERVICES

Changed in version 3.0: The setting was renamed from MACHINE_TRANSLATION_SERVICES to
MT_SERVICES to be consistent with other machine translation settings.

List of enabled machine translation services to use.

Note

Many of the services need additional configuration like API keys, please check
their documentation Machine translation for more details.

MT_SERVICES = (
 "weblate.machinery.apertium.ApertiumAPYTranslation",
 "weblate.machinery.deepl.DeepLTranslation",
 "weblate.machinery.glosbe.GlosbeTranslation",
 "weblate.machinery.google.GoogleTranslation",
 "weblate.machinery.microsoft.MicrosoftCognitiveTranslation",
 "weblate.machinery.microsoftterminology.MicrosoftTerminologyService",
 "weblate.machinery.mymemory.MyMemoryTranslation",
 "weblate.machinery.tmserver.AmagamaTranslation",
 "weblate.machinery.tmserver.TMServerTranslation",
 "weblate.machinery.yandex.YandexTranslation",
 "weblate.machinery.weblatetm.WeblateTranslation",
 "weblate.machinery.saptranslationhub.SAPTranslationHub",
 "weblate.memory.machine.WeblateMemory",
)

See also

Machine translation, Automatic suggestions

MT_APERTIUM_APY

URL of the Apertium-APy server, https://wiki.apertium.org/wiki/Apertium-apy

See also

Apertium, Machine translation, Automatic suggestions

MT_AWS_ACCESS_KEY_ID

Access key ID for Amazon Translate.

See also

AWS, Machine translation, Automatic suggestions

MT_AWS_SECRET_ACCESS_KEY

API secret key for Amazon Translate.

See also

AWS, Machine translation, Automatic suggestions

MT_AWS_REGION

Region name to use for Amazon Translate.

See also

AWS, Machine translation, Automatic suggestions

MT_BAIDU_ID

Client ID for the Baidu Zhiyun API, you can register at https://api.fanyi.baidu.com/api/trans/product/index

See also

Baidu API machine translation, Machine translation, Automatic suggestions

MT_BAIDU_SECRET

Client secret for the Baidu Zhiyun API, you can register at https://api.fanyi.baidu.com/api/trans/product/index

See also

Baidu API machine translation, Machine translation, Automatic suggestions

MT_DEEPL_API_VERSION

New in version 4.1.1.

API version to use with DeepL service. The version limits scope of usage:

	v1
	Is meant for CAT tools and is usable with user-based subscription.

	v2
	Is meant for API usage and the subscription is usage based.

Previously Weblate was classified as a CAT tool by DeepL, so it was supposed to
use the v1 API, but now is supposed to use the v2 API.
Therefore it defaults to v2, and you can change it to v1 in case you have
an existing CAT subscription and want Weblate to use that.

See also

DeepL, Machine translation, Automatic suggestions

MT_DEEPL_KEY

API key for the DeepL API, you can register at https://www.deepl.com/pro.html

See also

DeepL, Machine translation, Automatic suggestions

MT_GOOGLE_KEY

API key for Google Translate API v2, you can register at https://cloud.google.com/translate/docs

See also

Google Translate, Machine translation, Automatic suggestions

MT_GOOGLE_CREDENTIALS

API v3 JSON credentials file obtained in the Google cloud console. Please provide a full OS path.
Credentials are per service-account affiliated with certain project.
Please check https://cloud.google.com/docs/authentication/getting-started for more details.

MT_GOOGLE_PROJECT

Google Cloud API v3 project id with activated translation service and billing activated.
Please check https://cloud.google.com/appengine/docs/standard/nodejs/building-app/creating-project for more details

MT_GOOGLE_LOCATION

API v3 Google Cloud App Engine may be specific to a location.
Change accordingly if the default global fallback does not work for you.

Please check https://cloud.google.com/appengine/docs/locations for more details

See also

Google Translate API V3 (Advanced)

MT_MICROSOFT_BASE_URL

Region base URL domain as defined in the «Base URLs» section [https://docs.microsoft.com/en-us/azure/cognitive-services/translator/reference/v3-0-reference#base-urls].

Defaults to api.cognitive.microsofttranslator.com for Azure Global.

For Azure China, please use api.translator.azure.cn.

MT_MICROSOFT_COGNITIVE_KEY

Client key for the Microsoft Cognitive Services Translator API.

See also

Microsoft Cognitive Services Translator, Machine translation, Automatic suggestions,
Cognitive Services - Text Translation API [https://azure.microsoft.com/en-us/services/cognitive-services/translator/],
Microsoft Azure Portal [https://portal.azure.com/]

MT_MICROSOFT_REGION

Region prefix as defined in the «Authenticating with a Multi-service resource» [https://docs.microsoft.com/en-us/azure/cognitive-services/translator/reference/v3-0-reference#authenticating-with-a-multi-service-resource] section.

MT_MICROSOFT_ENDPOINT_URL

Region endpoint URL domain for access token as defined in the «Authenticating with an access token» section [https://docs.microsoft.com/en-us/azure/cognitive-services/translator/reference/v3-0-reference#authenticating-with-an-access-token].

Defaults to api.cognitive.microsoft.com for Azure Global.

For Azure China, please use your endpoint from the Azure Portal.

MT_MODERNMT_KEY

API key for the ModernMT machine translation engine.

See also

ModernMT
MT_MODERNMT_URL

MT_MODERNMT_URL

URL of ModernMT. It defaults to https://api.modernmt.com/ for the cloud
service.

See also

ModernMT
MT_MODERNMT_KEY

MT_MYMEMORY_EMAIL

MyMemory identification e-mail address. It permits 1000 requests per day.

See also

MyMemory, Machine translation, Automatic suggestions,
MyMemory: API technical specifications [https://mymemory.translated.net/doc/spec.php]

MT_MYMEMORY_KEY

MyMemory access key for private translation memory, use it with MT_MYMEMORY_USER.

See also

MyMemory, Machine translation, Automatic suggestions,
MyMemory: API key generator [https://mymemory.translated.net/doc/keygen.php]

MT_MYMEMORY_USER

MyMemory user ID for private translation memory, use it with MT_MYMEMORY_KEY.

See also

MyMemory, Machine translation, Automatic suggestions,
MyMemory: API key generator [https://mymemory.translated.net/doc/keygen.php]

MT_NETEASE_KEY

App key for NetEase Sight API, you can register at https://sight.youdao.com/

See also

NetEase Sight API machine translation, Machine translation, Automatic suggestions

MT_NETEASE_SECRET

App secret for the NetEase Sight API, you can register at https://sight.youdao.com/

See also

NetEase Sight API machine translation, Machine translation, Automatic suggestions

MT_TMSERVER

URL where tmserver is running.

See also

tmserver, Machine translation, Automatic suggestions,
tmserver [http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/tmserver.html]

MT_YANDEX_KEY

API key for the Yandex Translate API, you can register at https://yandex.com/dev/translate/

See also

Yandex Translate, Machine translation, Automatic suggestions

MT_YOUDAO_ID

Client ID for the Youdao Zhiyun API, you can register at https://ai.youdao.com/product-fanyi-text.s.

See also

Youdao Zhiyun API machine translation, Machine translation, Automatic suggestions

MT_YOUDAO_SECRET

Client secret for the Youdao Zhiyun API, you can register at https://ai.youdao.com/product-fanyi-text.s.

See also

Youdao Zhiyun API machine translation, Machine translation, Automatic suggestions

MT_SAP_BASE_URL

API URL to the SAP Translation Hub service.

See also

SAP Translation Hub, Machine translation, Automatic suggestions

MT_SAP_SANDBOX_APIKEY

API key for sandbox API usage

See also

SAP Translation Hub, Machine translation, Automatic suggestions

MT_SAP_USERNAME

Your SAP username

See also

SAP Translation Hub, Machine translation, Automatic suggestions

MT_SAP_PASSWORD

Your SAP password

See also

SAP Translation Hub, Machine translation, Automatic suggestions

MT_SAP_USE_MT

Whether to also use machine translation services, in addition to the term database.
Possible values: True or False

See also

SAP Translation Hub, Machine translation, Automatic suggestions

NEARBY_MESSAGES

How many strings to show around the currently translated string. This is just a default value, users can adjust this in User profile.

PAGURE_CREDENTIALS

New in version 4.3.2.

List for credentials for Pagure servers.

Hint

Use this in case you want Weblate to interact with more of them, for single
Pagure endpoint stick with PAGURE_USERNAME and PAGURE_TOKEN.

PAGURE_CREDENTIALS = {
 "pagure.io": {
 "username": "weblate",
 "token": "your-api-token",
 },
 "pagure.example.com": {
 "username": "weblate",
 "token": "another-api-token",
 },
}

PAGURE_USERNAME

New in version 4.3.2.

Pagure username used to send merge requests for translation updates.

See also

PAGURE_CREDENTIALS,
Pagure

PAGURE_TOKEN

New in version 4.3.2.

Pagure personal access token used to make API calls for translation updates.

See also

PAGURE_CREDENTIALS,
Pagure,
Pagure API [https://pagure.io/api/0/]

RATELIMIT_ATTEMPTS

New in version 3.2.

Maximum number of authentication attempts before rate limiting is applied.

Defaults to 5.

See also

Rate limiting,
RATELIMIT_WINDOW,
RATELIMIT_LOCKOUT

RATELIMIT_WINDOW

New in version 3.2.

How long authentication is accepted after rate limiting applies.

An amount of seconds defaulting to 300 (5 minutes).

See also

Rate limiting,
RATELIMIT_ATTEMPTS,
RATELIMIT_LOCKOUT

RATELIMIT_LOCKOUT

New in version 3.2.

How long authentication is locked after rate limiting applies.

An amount of seconds defaulting to 600 (10 minutes).

See also

Rate limiting,
RATELIMIT_ATTEMPTS,
RATELIMIT_WINDOW

REGISTRATION_ALLOW_BACKENDS

New in version 4.1.

List of authentication backends to allow registration from. This only limits
new registrations, users can still authenticate and add authentication using
all configured authentication backends.

It is recommended to keep REGISTRATION_OPEN enabled while limiting
registration backends, otherwise users will be able to register, but Weblate
will not show links to register in the user interface.

Example:

REGISTRATION_ALLOW_BACKENDS = ["azuread-oauth2", "azuread-tenant-oauth2"]

Hint

The backend names match names used in URL for authentication.

See also

REGISTRATION_OPEN,
Authentication

REGISTRATION_CAPTCHA

A value of either True or False indicating whether registration of new
accounts is protected by CAPTCHA. This setting is optional, and a default of
True will be assumed if it is not supplied.

If turned on, a CAPTCHA is added to all pages where a users enters their e-mail address:

	New account registration.

	Password recovery.

	Adding e-mail to an account.

	Contact form for users that are not signed in.

REGISTRATION_EMAIL_MATCH

New in version 2.17.

Allows you to filter which e-mail addresses can register.

Defaults to .*, which allows any e-mail address to be registered.

You can use it to restrict registration to a single e-mail domain:

REGISTRATION_EMAIL_MATCH = r"^.*@weblate\.org$"

REGISTRATION_OPEN

Whether registration of new accounts is currently permitted.
This optional setting can remain the default True, or changed to False.

This setting affects built-in authentication by e-mail address or through the
Python Social Auth (you can whitelist certain back-ends using
REGISTRATION_ALLOW_BACKENDS).

Note

If using third-party authentication methods such as LDAP authentication, it
just hides the registration form, but new users might still be able to sign
in and create accounts.

See also

REGISTRATION_ALLOW_BACKENDS,
REGISTRATION_EMAIL_MATCH,
Authentication

REPOSITORY_ALERT_THRESHOLD

New in version 4.0.2.

Threshold for triggering an alert for outdated repositories, or ones that
contain too many changes. Defaults to 25.

See also

Translation component alerts

REQUIRE_LOGIN

New in version 4.1.

This enables LOGIN_REQUIRED_URLS and configures REST framework to
require authentication for all API endpoints.

Note

This is implemented in the Sample configuration. For Docker, use
WEBLATE_REQUIRE_LOGIN.

SENTRY_DSN

New in version 3.9.

Sentry DSN to use for Collecting error reports.

See also

Django integration for Sentry [https://docs.sentry.io/platforms/python/guides/django/]

SESSION_COOKIE_AGE_AUTHENTICATED

New in version 4.3.

Set session expiry for authenticated users. This complements
SESSION_COOKIE_AGE [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SESSION_COOKIE_AGE] which is used for unauthenticated users.

See also

SESSION_COOKIE_AGE [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SESSION_COOKIE_AGE]

SIMPLIFY_LANGUAGES

Use simple language codes for default language/country combinations. For
example an fr_FR translation will use the fr language code. This is usually
the desired behavior, as it simplifies listing languages for these default
combinations.

Turn this off if you want to different translations for each variant.

SITE_DOMAIN

Configures site domain. This is necessary to produce correct absolute links in
many scopes (for example activation e-mails, notifications or RSS feeds).

In case Weblate is running on non-standard port, include it here as well.

Examples:

Production site with domain name
SITE_DOMAIN = "weblate.example.com"

Local development with IP address and port
SITE_DOMAIN = "127.0.0.1:8000"

Note

This setting should only contain the domain name. For configuring protocol,
(enabling and enforcing HTTPS) use ENABLE_HTTPS and for changing
URL, use URL_PREFIX.

Hint

On a Docker container, the site domain is configured through
WEBLATE_ALLOWED_HOSTS.

See also

Set correct site domain,
Allowed hosts setup,
Correctly configure HTTPS
WEBLATE_SITE_DOMAIN,
ENABLE_HTTPS

SITE_TITLE

Site title to be used for the website and sent e-mails.

SPECIAL_CHARS

Additional characters to include in the visual keyboard, Visual keyboard.

The default value is:

SPECIAL_CHARS = ("\t", "\n", "…")

SINGLE_PROJECT

New in version 3.8.

Redirects users directly to a project or component instead of showing
the dashboard. You can either set it to True and in this case it only works in
case there is actually only single project in Weblate. Alternatively set
the project slug, and it will redirect unconditionally to this project.

Changed in version 3.11: The setting now also accepts a project slug, to force displaying that
single project.

Example:

SINGLE_PROJECT = "test"

STATUS_URL

The URL where your Weblate instance reports its status.

SUGGESTION_CLEANUP_DAYS

New in version 3.2.1.

Automatically deletes suggestions after a given number of days.
Defaults to None, meaning no deletions.

UPDATE_LANGUAGES

New in version 4.3.2.

Controls whether languages database should be updated when running database
migration and is enabled by default. This setting has no effect on invocation
of setuplang.

See also

Built-in language definitions

URL_PREFIX

This setting allows you to run Weblate under some path (otherwise it relies on
being run from the webserver root).

Note

To use this setting, you also need to configure your server to strip this prefix.
For example with WSGI, this can be achieved by setting WSGIScriptAlias.

Hint

The prefix should start with a /.

Example:

URL_PREFIX = "/translations"

Note

This setting does not work with Django’s built-in server, you would have to
adjust urls.py to contain this prefix.

VCS_BACKENDS

Configuration of available VCS backends.

Note

Weblate tries to use all supported back-ends you have the tools for.

Hint

You can limit choices or add custom VCS back-ends by using this.

VCS_BACKENDS = ("weblate.vcs.git.GitRepository",)

See also

Version control integration

VCS_CLONE_DEPTH

New in version 3.10.2.

Configures how deep cloning of repositories Weblate should do.

Note

Currently this is only supported in Git. By default Weblate does shallow clones of the
repositories to make cloning faster and save disk space. Depending on your usage
(for example when using custom Addons), you might want to increase
the depth or turn off shallow clones completely by setting this to 0.

Hint

In case you get fatal: protocol error: expected old/new/ref, got 'shallow
<commit hash>' error when pushing from Weblate, turn off shallow clones completely by setting:

VCS_CLONE_DEPTH = 0

WEBLATE_ADDONS

List of addons available for use. To use them, they have to be enabled for
a given translation component. By default this includes all built-in addons, when
extending the list you will probably want to keep existing ones enabled, for
example:

WEBLATE_ADDONS = (
 # Built-in addons
 "weblate.addons.gettext.GenerateMoAddon",
 "weblate.addons.gettext.UpdateLinguasAddon",
 "weblate.addons.gettext.UpdateConfigureAddon",
 "weblate.addons.gettext.MsgmergeAddon",
 "weblate.addons.gettext.GettextCustomizeAddon",
 "weblate.addons.gettext.GettextAuthorComments",
 "weblate.addons.cleanup.CleanupAddon",
 "weblate.addons.consistency.LangaugeConsistencyAddon",
 "weblate.addons.discovery.DiscoveryAddon",
 "weblate.addons.flags.SourceEditAddon",
 "weblate.addons.flags.TargetEditAddon",
 "weblate.addons.flags.SameEditAddon",
 "weblate.addons.flags.BulkEditAddon",
 "weblate.addons.generate.GenerateFileAddon",
 "weblate.addons.json.JSONCustomizeAddon",
 "weblate.addons.properties.PropertiesSortAddon",
 "weblate.addons.git.GitSquashAddon",
 "weblate.addons.removal.RemoveComments",
 "weblate.addons.removal.RemoveSuggestions",
 "weblate.addons.resx.ResxUpdateAddon",
 "weblate.addons.autotranslate.AutoTranslateAddon",
 "weblate.addons.yaml.YAMLCustomizeAddon",
 "weblate.addons.cdn.CDNJSAddon",
 # Addon you want to include
 "weblate.addons.example.ExampleAddon",
)

Note

Removing the addon from the list does not uninstall it from the components.
Weblate will crash in that case. Please uninstall addon from all components
prior to removing it from this list.

See also

Addons,
DEFAULT_ADDONS

WEBLATE_EXPORTERS

New in version 4.2.

List of a available exporters offering downloading translations
or glossaries in various file formats.

See also

Supported file formats

WEBLATE_FORMATS

New in version 3.0.

List of file formats available for use.

Note

The default list already has the common formats.

See also

Supported file formats

WEBLATE_GPG_IDENTITY

New in version 3.1.

Identity used by Weblate to sign Git commits, for example:

WEBLATE_GPG_IDENTITY = "Weblate <weblate@example.com>"

The Weblate GPG keyring is searched for a matching key (home/.gnupg under
DATA_DIR). If not found, a key is generated, please check
Signing Git commits with GnuPG for more details.

See also

Signing Git commits with GnuPG

Sample configuration

The following example is shipped as weblate/settings_example.py with Weblate:

#
Copyright © 2012 - 2021 Michal Čihař <michal@cihar.com>
#
This file is part of Weblate <https://weblate.org/>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
#

import os
import platform
from logging.handlers import SysLogHandler

#
Django settings for Weblate project.
#

DEBUG = True

ADMINS = (
 # ("Your Name", "your_email@example.com"),
)

MANAGERS = ADMINS

DATABASES = {
 "default": {
 # Use "postgresql" or "mysql".
 "ENGINE": "django.db.backends.postgresql",
 # Database name.
 "NAME": "weblate",
 # Database user.
 "USER": "weblate",
 # Name of role to alter to set parameters in PostgreSQL,
 # use in case role name is different than user used for authentication.
 # "ALTER_ROLE": "weblate",
 # Database password.
 "PASSWORD": "",
 # Set to empty string for localhost.
 "HOST": "127.0.0.1",
 # Set to empty string for default.
 "PORT": "",
 # Customizations for databases.
 "OPTIONS": {
 # In case of using an older MySQL server,
 # which has MyISAM as a default storage
 # "init_command": "SET storage_engine=INNODB",
 # Uncomment for MySQL older than 5.7:
 # "init_command": "SET sql_mode='STRICT_TRANS_TABLES'",
 # Set emoji capable charset for MySQL:
 # "charset": "utf8mb4",
 # Change connection timeout in case you get MySQL gone away error:
 # "connect_timeout": 28800,
 },
 }
}

BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

Data directory
DATA_DIR = os.path.join(BASE_DIR, "data")

Local time zone for this installation. Choices can be found here:
http://en.wikipedia.org/wiki/List_of_tz_zones_by_name
although not all choices may be available on all operating systems.
In a Windows environment this must be set to your system time zone.
TIME_ZONE = "UTC"

Language code for this installation. All choices can be found here:
http://www.i18nguy.com/unicode/language-identifiers.html
LANGUAGE_CODE = "en-us"

LANGUAGES = (
 ("ar", "العربية"),
 ("az", "Azərbaycan"),
 ("be", "Беларуская"),
 ("be@latin", "Biełaruskaja"),
 ("bg", "Български"),
 ("br", "Brezhoneg"),
 ("ca", "Català"),
 ("cs", "Čeština"),
 ("da", "Dansk"),
 ("de", "Deutsch"),
 ("en", "English"),
 ("el", "Ελληνικά"),
 ("en-gb", "English (United Kingdom)"),
 ("es", "Español"),
 ("fi", "Suomi"),
 ("fr", "Français"),
 ("gl", "Galego"),
 ("he", "עברית"),
 ("hu", "Magyar"),
 ("hr", "Hrvatski"),
 ("id", "Indonesia"),
 ("is", "Íslenska"),
 ("it", "Italiano"),
 ("ja", "日本語"),
 ("kab", "Taqbaylit"),
 ("kk", "Қазақ тілі"),
 ("ko", "한국어"),
 ("nb", "Norsk bokmål"),
 ("nl", "Nederlands"),
 ("pl", "Polski"),
 ("pt", "Português"),
 ("pt-br", "Português brasileiro"),
 ("ru", "Русский"),
 ("sk", "Slovenčina"),
 ("sl", "Slovenščina"),
 ("sq", "Shqip"),
 ("sr", "Српски"),
 ("sr-latn", "Srpski"),
 ("sv", "Svenska"),
 ("tr", "Türkçe"),
 ("uk", "Українська"),
 ("zh-hans", "简体字"),
 ("zh-hant", "正體字"),
)

SITE_ID = 1

If you set this to False, Django will make some optimizations so as not
to load the internationalization machinery.
USE_I18N = True

If you set this to False, Django will not format dates, numbers and
calendars according to the current locale.
USE_L10N = True

If you set this to False, Django will not use timezone-aware datetimes.
USE_TZ = True

Type of automatic primary key, introduced in Django 3.2
DEFAULT_AUTO_FIELD = "django.db.models.AutoField"

URL prefix to use, please see documentation for more details
URL_PREFIX = ""

Absolute filesystem path to the directory that will hold user-uploaded files.
MEDIA_ROOT = os.path.join(DATA_DIR, "media")

URL that handles the media served from MEDIA_ROOT. Make sure to use a
trailing slash.
MEDIA_URL = f"{URL_PREFIX}/media/"

Absolute path to the directory static files should be collected to.
Don't put anything in this directory yourself; store your static files
in apps' "static/" subdirectories and in STATICFILES_DIRS.
STATIC_ROOT = os.path.join(DATA_DIR, "static")

URL prefix for static files.
STATIC_URL = f"{URL_PREFIX}/static/"

Additional locations of static files
STATICFILES_DIRS = (
 # Put strings here, like "/home/html/static" or "C:/www/django/static".
 # Always use forward slashes, even on Windows.
 # Don't forget to use absolute paths, not relative paths.
)

List of finder classes that know how to find static files in
various locations.
STATICFILES_FINDERS = (
 "django.contrib.staticfiles.finders.FileSystemFinder",
 "django.contrib.staticfiles.finders.AppDirectoriesFinder",
 "compressor.finders.CompressorFinder",
)

Make this unique, and don't share it with anybody.
You can generate it using weblate/examples/generate-secret-key
SECRET_KEY = ""

_TEMPLATE_LOADERS = [
 "django.template.loaders.filesystem.Loader",
 "django.template.loaders.app_directories.Loader",
]
if not DEBUG:
 _TEMPLATE_LOADERS = [("django.template.loaders.cached.Loader", _TEMPLATE_LOADERS)]
TEMPLATES = [
 {
 "BACKEND": "django.template.backends.django.DjangoTemplates",
 "OPTIONS": {
 "context_processors": [
 "django.contrib.auth.context_processors.auth",
 "django.template.context_processors.debug",
 "django.template.context_processors.i18n",
 "django.template.context_processors.request",
 "django.template.context_processors.csrf",
 "django.contrib.messages.context_processors.messages",
 "weblate.trans.context_processors.weblate_context",
],
 "loaders": _TEMPLATE_LOADERS,
 },
 }
]

GitHub username for sending pull requests.
Please see the documentation for more details.
GITHUB_USERNAME = None
GITHUB_TOKEN = None

GitLab username for sending merge requests.
Please see the documentation for more details.
GITLAB_USERNAME = None
GITLAB_TOKEN = None

Authentication configuration
AUTHENTICATION_BACKENDS = (
 "social_core.backends.email.EmailAuth",
 # "social_core.backends.google.GoogleOAuth2",
 # "social_core.backends.github.GithubOAuth2",
 # "social_core.backends.bitbucket.BitbucketOAuth",
 # "social_core.backends.suse.OpenSUSEOpenId",
 # "social_core.backends.ubuntu.UbuntuOpenId",
 # "social_core.backends.fedora.FedoraOpenId",
 # "social_core.backends.facebook.FacebookOAuth2",
 "weblate.accounts.auth.WeblateUserBackend",
)

Custom user model
AUTH_USER_MODEL = "weblate_auth.User"

Social auth backends setup
SOCIAL_AUTH_GITHUB_KEY = ""
SOCIAL_AUTH_GITHUB_SECRET = ""
SOCIAL_AUTH_GITHUB_SCOPE = ["user:email"]

SOCIAL_AUTH_BITBUCKET_KEY = ""
SOCIAL_AUTH_BITBUCKET_SECRET = ""
SOCIAL_AUTH_BITBUCKET_VERIFIED_EMAILS_ONLY = True

SOCIAL_AUTH_FACEBOOK_KEY = ""
SOCIAL_AUTH_FACEBOOK_SECRET = ""
SOCIAL_AUTH_FACEBOOK_SCOPE = ["email", "public_profile"]
SOCIAL_AUTH_FACEBOOK_PROFILE_EXTRA_PARAMS = {"fields": "id,name,email"}

SOCIAL_AUTH_GOOGLE_OAUTH2_KEY = ""
SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET = ""

Social auth settings
SOCIAL_AUTH_PIPELINE = (
 "social_core.pipeline.social_auth.social_details",
 "social_core.pipeline.social_auth.social_uid",
 "social_core.pipeline.social_auth.auth_allowed",
 "social_core.pipeline.social_auth.social_user",
 "weblate.accounts.pipeline.store_params",
 "weblate.accounts.pipeline.verify_open",
 "social_core.pipeline.user.get_username",
 "weblate.accounts.pipeline.require_email",
 "social_core.pipeline.mail.mail_validation",
 "weblate.accounts.pipeline.revoke_mail_code",
 "weblate.accounts.pipeline.ensure_valid",
 "weblate.accounts.pipeline.remove_account",
 "social_core.pipeline.social_auth.associate_by_email",
 "weblate.accounts.pipeline.reauthenticate",
 "weblate.accounts.pipeline.verify_username",
 "social_core.pipeline.user.create_user",
 "social_core.pipeline.social_auth.associate_user",
 "social_core.pipeline.social_auth.load_extra_data",
 "weblate.accounts.pipeline.cleanup_next",
 "weblate.accounts.pipeline.user_full_name",
 "weblate.accounts.pipeline.store_email",
 "weblate.accounts.pipeline.notify_connect",
 "weblate.accounts.pipeline.password_reset",
)
SOCIAL_AUTH_DISCONNECT_PIPELINE = (
 "social_core.pipeline.disconnect.allowed_to_disconnect",
 "social_core.pipeline.disconnect.get_entries",
 "social_core.pipeline.disconnect.revoke_tokens",
 "weblate.accounts.pipeline.cycle_session",
 "weblate.accounts.pipeline.adjust_primary_mail",
 "weblate.accounts.pipeline.notify_disconnect",
 "social_core.pipeline.disconnect.disconnect",
 "weblate.accounts.pipeline.cleanup_next",
)

Custom authentication strategy
SOCIAL_AUTH_STRATEGY = "weblate.accounts.strategy.WeblateStrategy"

Raise exceptions so that we can handle them later
SOCIAL_AUTH_RAISE_EXCEPTIONS = True

SOCIAL_AUTH_EMAIL_VALIDATION_FUNCTION = "weblate.accounts.pipeline.send_validation"
SOCIAL_AUTH_EMAIL_VALIDATION_URL = f"{URL_PREFIX}/accounts/email-sent/"
SOCIAL_AUTH_LOGIN_ERROR_URL = f"{URL_PREFIX}/accounts/login/"
SOCIAL_AUTH_EMAIL_FORM_URL = f"{URL_PREFIX}/accounts/email/"
SOCIAL_AUTH_NEW_ASSOCIATION_REDIRECT_URL = f"{URL_PREFIX}/accounts/profile/#account"
SOCIAL_AUTH_PROTECTED_USER_FIELDS = ("email",)
SOCIAL_AUTH_SLUGIFY_USERNAMES = True
SOCIAL_AUTH_SLUGIFY_FUNCTION = "weblate.accounts.pipeline.slugify_username"

Password validation configuration
AUTH_PASSWORD_VALIDATORS = [
 {
 "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator" # noqa: E501, pylint: disable=line-too-long
 },
 {
 "NAME": "django.contrib.auth.password_validation.MinimumLengthValidator",
 "OPTIONS": {"min_length": 10},
 },
 {"NAME": "django.contrib.auth.password_validation.CommonPasswordValidator"},
 {"NAME": "django.contrib.auth.password_validation.NumericPasswordValidator"},
 {"NAME": "weblate.accounts.password_validation.CharsPasswordValidator"},
 {"NAME": "weblate.accounts.password_validation.PastPasswordsValidator"},
 # Optional password strength validation by django-zxcvbn-password
 # {
 # "NAME": "zxcvbn_password.ZXCVBNValidator",
 # "OPTIONS": {
 # "min_score": 3,
 # "user_attributes": ("username", "email", "full_name")
 # }
 # },
]

Allow new user registrations
REGISTRATION_OPEN = True

Shortcut for login required setting
REQUIRE_LOGIN = False

Middleware
MIDDLEWARE = [
 "weblate.middleware.RedirectMiddleware",
 "weblate.middleware.ProxyMiddleware",
 "django.middleware.security.SecurityMiddleware",
 "django.contrib.sessions.middleware.SessionMiddleware",
 "django.middleware.csrf.CsrfViewMiddleware",
 "weblate.accounts.middleware.AuthenticationMiddleware",
 "django.contrib.messages.middleware.MessageMiddleware",
 "django.middleware.clickjacking.XFrameOptionsMiddleware",
 "social_django.middleware.SocialAuthExceptionMiddleware",
 "weblate.accounts.middleware.RequireLoginMiddleware",
 "weblate.api.middleware.ThrottlingMiddleware",
 "weblate.middleware.SecurityMiddleware",
]

ROOT_URLCONF = "weblate.urls"

Django and Weblate apps
INSTALLED_APPS = [
 # Weblate apps on top to override Django locales and templates
 "weblate.addons",
 "weblate.auth",
 "weblate.checks",
 "weblate.formats",
 "weblate.glossary",
 "weblate.machinery",
 "weblate.trans",
 "weblate.lang",
 "weblate_language_data",
 "weblate.memory",
 "weblate.screenshots",
 "weblate.fonts",
 "weblate.accounts",
 "weblate.configuration",
 "weblate.utils",
 "weblate.vcs",
 "weblate.wladmin",
 "weblate.metrics",
 "weblate",
 # Optional: Git exporter
 "weblate.gitexport",
 # Standard Django modules
 "django.contrib.auth",
 "django.contrib.contenttypes",
 "django.contrib.sessions",
 "django.contrib.messages",
 "django.contrib.staticfiles",
 "django.contrib.admin.apps.SimpleAdminConfig",
 "django.contrib.admindocs",
 "django.contrib.sitemaps",
 "django.contrib.humanize",
 # Third party Django modules
 "social_django",
 "crispy_forms",
 "compressor",
 "rest_framework",
 "rest_framework.authtoken",
 "django_filters",
]

Custom exception reporter to include some details
DEFAULT_EXCEPTION_REPORTER_FILTER = "weblate.trans.debug.WeblateExceptionReporterFilter"

Default logging of Weblate messages
- to syslog in production (if available)
- otherwise to console
- you can also choose "logfile" to log into separate file
after configuring it below

Detect if we can connect to syslog
HAVE_SYSLOG = False
if platform.system() != "Windows":
 try:
 handler = SysLogHandler(address="/dev/log", facility=SysLogHandler.LOG_LOCAL2)
 handler.close()
 HAVE_SYSLOG = True
 except OSError:
 HAVE_SYSLOG = False

if DEBUG or not HAVE_SYSLOG:
 DEFAULT_LOG = "console"
else:
 DEFAULT_LOG = "syslog"
DEFAULT_LOGLEVEL = "DEBUG" if DEBUG else "INFO"

A sample logging configuration. The only tangible logging
performed by this configuration is to send an email to
the site admins on every HTTP 500 error when DEBUG=False.
See http://docs.djangoproject.com/en/stable/topics/logging for
more details on how to customize your logging configuration.
LOGGING = {
 "version": 1,
 "disable_existing_loggers": True,
 "filters": {"require_debug_false": {"()": "django.utils.log.RequireDebugFalse"}},
 "formatters": {
 "syslog": {"format": "weblate[%(process)d]: %(levelname)s %(message)s"},
 "simple": {"format": "[%(asctime)s: %(levelname)s/%(process)s] %(message)s"},
 "logfile": {"format": "%(asctime)s %(levelname)s %(message)s"},
 "django.server": {
 "()": "django.utils.log.ServerFormatter",
 "format": "[%(server_time)s] %(message)s",
 },
 },
 "handlers": {
 "mail_admins": {
 "level": "ERROR",
 "filters": ["require_debug_false"],
 "class": "django.utils.log.AdminEmailHandler",
 "include_html": True,
 },
 "console": {
 "level": "DEBUG",
 "class": "logging.StreamHandler",
 "formatter": "simple",
 },
 "django.server": {
 "level": "INFO",
 "class": "logging.StreamHandler",
 "formatter": "django.server",
 },
 "syslog": {
 "level": "DEBUG",
 "class": "logging.handlers.SysLogHandler",
 "formatter": "syslog",
 "address": "/dev/log",
 "facility": SysLogHandler.LOG_LOCAL2,
 },
 # Logging to a file
 # "logfile": {
 # "level":"DEBUG",
 # "class":"logging.handlers.RotatingFileHandler",
 # "filename": "/var/log/weblate/weblate.log",
 # "maxBytes": 100000,
 # "backupCount": 3,
 # "formatter": "logfile",
 # },
 },
 "loggers": {
 "django.request": {
 "handlers": ["mail_admins", DEFAULT_LOG],
 "level": "ERROR",
 "propagate": True,
 },
 "django.server": {
 "handlers": ["django.server"],
 "level": "INFO",
 "propagate": False,
 },
 # Logging database queries
 # "django.db.backends": {
 # "handlers": [DEFAULT_LOG],
 # "level": "DEBUG",
 # },
 "weblate": {"handlers": [DEFAULT_LOG], "level": DEFAULT_LOGLEVEL},
 # Logging VCS operations
 "weblate.vcs": {"handlers": [DEFAULT_LOG], "level": DEFAULT_LOGLEVEL},
 # Python Social Auth
 "social": {"handlers": [DEFAULT_LOG], "level": DEFAULT_LOGLEVEL},
 # Django Authentication Using LDAP
 "django_auth_ldap": {"handlers": [DEFAULT_LOG], "level": DEFAULT_LOGLEVEL},
 # SAML IdP
 "djangosaml2idp": {"handlers": [DEFAULT_LOG], "level": DEFAULT_LOGLEVEL},
 },
}

Remove syslog setup if it's not present
if not HAVE_SYSLOG:
 del LOGGING["handlers"]["syslog"]

List of machine translations
MT_SERVICES = (
 # "weblate.machinery.apertium.ApertiumAPYTranslation",
 # "weblate.machinery.baidu.BaiduTranslation",
 # "weblate.machinery.deepl.DeepLTranslation",
 # "weblate.machinery.glosbe.GlosbeTranslation",
 # "weblate.machinery.google.GoogleTranslation",
 # "weblate.machinery.googlev3.GoogleV3Translation",
 # "weblate.machinery.microsoft.MicrosoftCognitiveTranslation",
 # "weblate.machinery.microsoftterminology.MicrosoftTerminologyService",
 # "weblate.machinery.modernmt.ModernMTTranslation",
 # "weblate.machinery.mymemory.MyMemoryTranslation",
 # "weblate.machinery.netease.NeteaseSightTranslation",
 # "weblate.machinery.tmserver.AmagamaTranslation",
 # "weblate.machinery.tmserver.TMServerTranslation",
 # "weblate.machinery.yandex.YandexTranslation",
 # "weblate.machinery.saptranslationhub.SAPTranslationHub",
 # "weblate.machinery.youdao.YoudaoTranslation",
 "weblate.machinery.weblatetm.WeblateTranslation",
 "weblate.memory.machine.WeblateMemory",
)

Machine translation API keys

URL of the Apertium APy server
MT_APERTIUM_APY = None

DeepL API key
MT_DEEPL_KEY = None

Microsoft Cognitive Services Translator API, register at
https://portal.azure.com/
MT_MICROSOFT_COGNITIVE_KEY = None
MT_MICROSOFT_REGION = None

ModernMT
MT_MODERNMT_KEY = None

MyMemory identification email, see
https://mymemory.translated.net/doc/spec.php
MT_MYMEMORY_EMAIL = None

Optional MyMemory credentials to access private translation memory
MT_MYMEMORY_USER = None
MT_MYMEMORY_KEY = None

Google API key for Google Translate API v2
MT_GOOGLE_KEY = None

Google Translate API3 credentials and project id
MT_GOOGLE_CREDENTIALS = None
MT_GOOGLE_PROJECT = None

Baidu app key and secret
MT_BAIDU_ID = None
MT_BAIDU_SECRET = None

Youdao Zhiyun app key and secret
MT_YOUDAO_ID = None
MT_YOUDAO_SECRET = None

Netease Sight (Jianwai) app key and secret
MT_NETEASE_KEY = None
MT_NETEASE_SECRET = None

API key for Yandex Translate API
MT_YANDEX_KEY = None

tmserver URL
MT_TMSERVER = None

SAP Translation Hub
MT_SAP_BASE_URL = None
MT_SAP_SANDBOX_APIKEY = None
MT_SAP_USERNAME = None
MT_SAP_PASSWORD = None
MT_SAP_USE_MT = True

Title of site to use
SITE_TITLE = "Weblate"

Site domain
SITE_DOMAIN = ""

Whether site uses https
ENABLE_HTTPS = False

Use HTTPS when creating redirect URLs for social authentication, see
documentation for more details:
https://python-social-auth-docs.readthedocs.io/en/latest/configuration/settings.html#processing-redirects-and-urlopen
SOCIAL_AUTH_REDIRECT_IS_HTTPS = ENABLE_HTTPS

Make CSRF cookie HttpOnly, see documentation for more details:
https://docs.djangoproject.com/en/1.11/ref/settings/#csrf-cookie-httponly
CSRF_COOKIE_HTTPONLY = True
CSRF_COOKIE_SECURE = ENABLE_HTTPS
Store CSRF token in session
CSRF_USE_SESSIONS = True
Customize CSRF failure view
CSRF_FAILURE_VIEW = "weblate.trans.views.error.csrf_failure"
SESSION_COOKIE_SECURE = ENABLE_HTTPS
SESSION_COOKIE_HTTPONLY = True
SSL redirect
SECURE_SSL_REDIRECT = ENABLE_HTTPS
Sent referrrer only for same origin links
SECURE_REFERRER_POLICY = "same-origin"
SSL redirect URL exemption list
SECURE_REDIRECT_EXEMPT = (r"healthz/$",) # Allowing HTTP access to health check
Session cookie age (in seconds)
SESSION_COOKIE_AGE = 1000
SESSION_COOKIE_AGE_AUTHENTICATED = 1209600
Increase allowed upload size
DATA_UPLOAD_MAX_MEMORY_SIZE = 50000000

Apply session coookie settings to language cookie as ewll
LANGUAGE_COOKIE_SECURE = SESSION_COOKIE_SECURE
LANGUAGE_COOKIE_HTTPONLY = SESSION_COOKIE_HTTPONLY
LANGUAGE_COOKIE_AGE = SESSION_COOKIE_AGE_AUTHENTICATED * 10

Some security headers
SECURE_BROWSER_XSS_FILTER = True
X_FRAME_OPTIONS = "DENY"
SECURE_CONTENT_TYPE_NOSNIFF = True

Optionally enable HSTS
SECURE_HSTS_SECONDS = 31536000 if ENABLE_HTTPS else 0
SECURE_HSTS_PRELOAD = ENABLE_HTTPS
SECURE_HSTS_INCLUDE_SUBDOMAINS = ENABLE_HTTPS

HTTPS detection behind reverse proxy
SECURE_PROXY_SSL_HEADER = None

URL of login
LOGIN_URL = f"{URL_PREFIX}/accounts/login/"

URL of logout
LOGOUT_URL = f"{URL_PREFIX}/accounts/logout/"

Default location for login
LOGIN_REDIRECT_URL = f"{URL_PREFIX}/"

Anonymous user name
ANONYMOUS_USER_NAME = "anonymous"

Reverse proxy settings
IP_PROXY_HEADER = "HTTP_X_FORWARDED_FOR"
IP_BEHIND_REVERSE_PROXY = False
IP_PROXY_OFFSET = 0

Sending HTML in mails
EMAIL_SEND_HTML = True

Subject of emails includes site title
EMAIL_SUBJECT_PREFIX = f"[{SITE_TITLE}] "

Enable remote hooks
ENABLE_HOOKS = True

By default the length of a given translation is limited to the length of
the source string * 10 characters. Set this option to False to allow longer
translations (up to 10.000 characters)
LIMIT_TRANSLATION_LENGTH_BY_SOURCE_LENGTH = True

Use simple language codes for default language/country combinations
SIMPLIFY_LANGUAGES = True

Render forms using bootstrap
CRISPY_TEMPLATE_PACK = "bootstrap3"

List of quality checks
CHECK_LIST = (
"weblate.checks.same.SameCheck",
"weblate.checks.chars.BeginNewlineCheck",
"weblate.checks.chars.EndNewlineCheck",
"weblate.checks.chars.BeginSpaceCheck",
"weblate.checks.chars.EndSpaceCheck",
"weblate.checks.chars.DoubleSpaceCheck",
"weblate.checks.chars.EndStopCheck",
"weblate.checks.chars.EndColonCheck",
"weblate.checks.chars.EndQuestionCheck",
"weblate.checks.chars.EndExclamationCheck",
"weblate.checks.chars.EndEllipsisCheck",
"weblate.checks.chars.EndSemicolonCheck",
"weblate.checks.chars.MaxLengthCheck",
"weblate.checks.chars.KashidaCheck",
"weblate.checks.chars.PunctuationSpacingCheck",
"weblate.checks.format.PythonFormatCheck",
"weblate.checks.format.PythonBraceFormatCheck",
"weblate.checks.format.PHPFormatCheck",
"weblate.checks.format.CFormatCheck",
"weblate.checks.format.PerlFormatCheck",
"weblate.checks.format.JavaScriptFormatCheck",
"weblate.checks.format.LuaFormatCheck",
"weblate.checks.format.CSharpFormatCheck",
"weblate.checks.format.JavaFormatCheck",
"weblate.checks.format.JavaMessageFormatCheck",
"weblate.checks.format.PercentPlaceholdersCheck",
"weblate.checks.format.VueFormattingCheck",
"weblate.checks.format.I18NextInterpolationCheck",
"weblate.checks.format.ESTemplateLiteralsCheck",
"weblate.checks.angularjs.AngularJSInterpolationCheck",
"weblate.checks.qt.QtFormatCheck",
"weblate.checks.qt.QtPluralCheck",
"weblate.checks.ruby.RubyFormatCheck",
"weblate.checks.consistency.PluralsCheck",
"weblate.checks.consistency.SamePluralsCheck",
"weblate.checks.consistency.ConsistencyCheck",
"weblate.checks.consistency.TranslatedCheck",
"weblate.checks.chars.EscapedNewlineCountingCheck",
"weblate.checks.chars.NewLineCountCheck",
"weblate.checks.markup.BBCodeCheck",
"weblate.checks.chars.ZeroWidthSpaceCheck",
"weblate.checks.render.MaxSizeCheck",
"weblate.checks.markup.XMLValidityCheck",
"weblate.checks.markup.XMLTagsCheck",
"weblate.checks.markup.MarkdownRefLinkCheck",
"weblate.checks.markup.MarkdownLinkCheck",
"weblate.checks.markup.MarkdownSyntaxCheck",
"weblate.checks.markup.URLCheck",
"weblate.checks.markup.SafeHTMLCheck",
"weblate.checks.placeholders.PlaceholderCheck",
"weblate.checks.placeholders.RegexCheck",
"weblate.checks.duplicate.DuplicateCheck",
"weblate.checks.source.OptionalPluralCheck",
"weblate.checks.source.EllipsisCheck",
"weblate.checks.source.MultipleFailingCheck",
"weblate.checks.source.LongUntranslatedCheck",
"weblate.checks.format.MultipleUnnamedFormatsCheck",
"weblate.checks.glossary.GlossaryCheck",
)

List of automatic fixups
AUTOFIX_LIST = (
"weblate.trans.autofixes.whitespace.SameBookendingWhitespace",
"weblate.trans.autofixes.chars.ReplaceTrailingDotsWithEllipsis",
"weblate.trans.autofixes.chars.RemoveZeroSpace",
"weblate.trans.autofixes.chars.RemoveControlChars",
)

List of enabled addons
WEBLATE_ADDONS = (
"weblate.addons.autotranslate.AutoTranslateAddon",
"weblate.addons.gettext.GenerateMoAddon",
"weblate.addons.gettext.UpdateLinguasAddon",
"weblate.addons.gettext.UpdateConfigureAddon",
"weblate.addons.gettext.MsgmergeAddon",
"weblate.addons.gettext.GettextCustomizeAddon",
"weblate.addons.gettext.GettextAuthorComments",
"weblate.addons.cleanup.CleanupAddon",
"weblate.addons.cleanup.RemoveBlankAddon",
"weblate.addons.consistency.LangaugeConsistencyAddon",
"weblate.addons.discovery.DiscoveryAddon",
"weblate.addons.autotranslate.AutoTranslateAddon",
"weblate.addons.flags.SourceEditAddon",
"weblate.addons.flags.TargetEditAddon",
"weblate.addons.flags.SameEditAddon",
"weblate.addons.flags.BulkEditAddon",
"weblate.addons.generate.GenerateFileAddon",
"weblate.addons.generate.PseudolocaleAddon",
"weblate.addons.json.JSONCustomizeAddon",
"weblate.addons.properties.PropertiesSortAddon",
"weblate.addons.git.GitSquashAddon",
"weblate.addons.removal.RemoveComments",
"weblate.addons.removal.RemoveSuggestions",
"weblate.addons.resx.ResxUpdateAddon",
"weblate.addons.yaml.YAMLCustomizeAddon",
"weblate.addons.cdn.CDNJSAddon",
)

E-mail address that error messages come from.
SERVER_EMAIL = "noreply@example.com"

Default email address to use for various automated correspondence from
the site managers. Used for registration emails.
DEFAULT_FROM_EMAIL = "noreply@example.com"

List of URLs your site is supposed to serve
ALLOWED_HOSTS = ["*"]

Configuration for caching
CACHES = {
 "default": {
 "BACKEND": "django_redis.cache.RedisCache",
 "LOCATION": "redis://127.0.0.1:6379/1",
 # If redis is running on same host as Weblate, you might
 # want to use unix sockets instead:
 # "LOCATION": "unix:///var/run/redis/redis.sock?db=1",
 "OPTIONS": {
 "CLIENT_CLASS": "django_redis.client.DefaultClient",
 "PARSER_CLASS": "redis.connection.HiredisParser",
 # If you set password here, adjust CELERY_BROKER_URL as well
 "PASSWORD": None,
 "CONNECTION_POOL_KWARGS": {},
 },
 "KEY_PREFIX": "weblate",
 },
 "avatar": {
 "BACKEND": "django.core.cache.backends.filebased.FileBasedCache",
 "LOCATION": os.path.join(DATA_DIR, "avatar-cache"),
 "TIMEOUT": 86400,
 "OPTIONS": {"MAX_ENTRIES": 1000},
 },
}

Store sessions in cache
SESSION_ENGINE = "django.contrib.sessions.backends.cache"
Store messages in session
MESSAGE_STORAGE = "django.contrib.messages.storage.session.SessionStorage"

REST framework settings for API
REST_FRAMEWORK = {
 # Use Django's standard `django.contrib.auth` permissions,
 # or allow read-only access for unauthenticated users.
 "DEFAULT_PERMISSION_CLASSES": [
 # Require authentication for login required sites
 "rest_framework.permissions.IsAuthenticated"
 if REQUIRE_LOGIN
 else "rest_framework.permissions.IsAuthenticatedOrReadOnly"
],
 "DEFAULT_AUTHENTICATION_CLASSES": (
 "rest_framework.authentication.TokenAuthentication",
 "weblate.api.authentication.BearerAuthentication",
 "rest_framework.authentication.SessionAuthentication",
),
 "DEFAULT_THROTTLE_CLASSES": (
 "weblate.api.throttling.UserRateThrottle",
 "weblate.api.throttling.AnonRateThrottle",
),
 "DEFAULT_THROTTLE_RATES": {"anon": "100/day", "user": "5000/hour"},
 "DEFAULT_PAGINATION_CLASS": ("rest_framework.pagination.PageNumberPagination"),
 "PAGE_SIZE": 20,
 "VIEW_DESCRIPTION_FUNCTION": "weblate.api.views.get_view_description",
 "UNAUTHENTICATED_USER": "weblate.auth.models.get_anonymous",
}

Fonts CDN URL
FONTS_CDN_URL = None

Django compressor offline mode
COMPRESS_OFFLINE = False
COMPRESS_OFFLINE_CONTEXT = [
 {"fonts_cdn_url": FONTS_CDN_URL, "STATIC_URL": STATIC_URL, "LANGUAGE_BIDI": True},
 {"fonts_cdn_url": FONTS_CDN_URL, "STATIC_URL": STATIC_URL, "LANGUAGE_BIDI": False},
]

Require login for all URLs
if REQUIRE_LOGIN:
 LOGIN_REQUIRED_URLS = (r"/(.*)$",)

In such case you will want to include some of the exceptions
LOGIN_REQUIRED_URLS_EXCEPTIONS = (
rf"{URL_PREFIX}/accounts/(.*)$", # Required for login
rf"{URL_PREFIX}/admin/login/(.*)$", # Required for admin login
rf"{URL_PREFIX}/static/(.*)$", # Required for development mode
rf"{URL_PREFIX}/widgets/(.*)$", # Allowing public access to widgets
rf"{URL_PREFIX}/data/(.*)$", # Allowing public access to data exports
rf"{URL_PREFIX}/hooks/(.*)$", # Allowing public access to notification hooks
rf"{URL_PREFIX}/healthz/$", # Allowing public access to health check
rf"{URL_PREFIX}/api/(.*)$", # Allowing access to API
rf"{URL_PREFIX}/js/i18n/$", # JavaScript localization
rf"{URL_PREFIX}/contact/$", # Optional for contact form
rf"{URL_PREFIX}/legal/(.*)$", # Optional for legal app
)

Silence some of the Django system checks
SILENCED_SYSTEM_CHECKS = [
 # We have modified django.contrib.auth.middleware.AuthenticationMiddleware
 # as weblate.accounts.middleware.AuthenticationMiddleware
 "admin.E408"
]

Celery worker configuration for testing
CELERY_TASK_ALWAYS_EAGER = True
CELERY_BROKER_URL = "memory://"
CELERY_TASK_EAGER_PROPAGATES = True
Celery worker configuration for production
CELERY_TASK_ALWAYS_EAGER = False
CELERY_BROKER_URL = "redis://localhost:6379"
CELERY_RESULT_BACKEND = CELERY_BROKER_URL

Celery settings, it is not recommended to change these
CELERY_WORKER_MAX_MEMORY_PER_CHILD = 200000
CELERY_BEAT_SCHEDULE_FILENAME = os.path.join(DATA_DIR, "celery", "beat-schedule")
CELERY_TASK_ROUTES = {
 "weblate.trans.tasks.auto_translate": {"queue": "translate"},
 "weblate.accounts.tasks.notify_*": {"queue": "notify"},
 "weblate.accounts.tasks.send_mails": {"queue": "notify"},
 "weblate.utils.tasks.settings_backup": {"queue": "backup"},
 "weblate.utils.tasks.database_backup": {"queue": "backup"},
 "weblate.wladmin.tasks.backup": {"queue": "backup"},
 "weblate.wladmin.tasks.backup_service": {"queue": "backup"},
 "weblate.memory.tasks.*": {"queue": "memory"},
}

Enable plain database backups
DATABASE_BACKUP = "plain"

Enable auto updating
AUTO_UPDATE = False

PGP commits signing
WEBLATE_GPG_IDENTITY = None

Third party services integration
MATOMO_SITE_ID = None
MATOMO_URL = None
GOOGLE_ANALYTICS_ID = None
SENTRY_DSN = None
AKISMET_API_KEY = None

Management commands

Note

Running management commands under a different user than the one running your
webserver can result in files getting wrong permissions, please check
Filesystem permissions for more details.

You will find basic management commands (available as ./manage.py in the Django sources,
or as an extended set in a script called weblate installable atop Weblate).

Invoking management commands

As mentioned before, invocation depends on how you installed Weblate.

If using virtualenv for Weblate, you can either specify the full path to
weblate, or activate the virtualenv prior to invoking it:

Direct invocation
~/weblate-env/bin/weblate

Activating virtualenv adds it to search path
. ~/weblate-env/bin/activate
weblate

If you are using source code directly (either from a tarball or Git checkout), the
management script is ./manage.py available in the Weblate sources.
To run it:

python ./manage.py list_versions

If you’ve installed Weblate using the pip or pip3 installer, or by using the ./setup.py
script, the weblate is installed to your path (or virtualenv path),
from where you can use it to control Weblate:

weblate list_versions

For the Docker image, the script is installed like above, and you can run it
using docker exec:

docker exec --user weblate <container> weblate list_versions

For docker-compose the process is similar, you just have to use
docker-compose exec:

docker-compose exec --user weblate weblate weblate list_versions

In case you need to pass it a file, you can temporary add a volume:

docker-compose exec --user weblate /tmp:/tmp weblate weblate importusers /tmp/users.json

See also

Installing using Docker,
Installing on Debian and Ubuntu,
Installing on SUSE and openSUSE,
Installing on RedHat, Fedora and CentOS,
Installing from sources

add_suggestions

	
weblate add_suggestions <project> <component> <language> <file>

	

New in version 2.5.

Imports a translation from the file to use as a suggestion for the given translation.
It skips duplicated translations; only different ones are added.

	
--author USER@EXAMPLE.COM

	E-mail of author for the suggestions. This user has to exist prior to importing
(you can create one in the admin interface if needed).

Example:

weblate --author michal@cihar.com add_suggestions weblate application cs /tmp/suggestions-cs.po

auto_translate

	
weblate auto_translate <project> <component> <language>

	

New in version 2.5.

Performs automatic translation based on other component translations.

	
--source PROJECT/COMPONENT

	Specifies the component to use as source available for translation.
If not specified all components in the project are used.

	
--user USERNAME

	Specify username listed as author of the translations.
«Anonymous user» is used if not specified.

	
--overwrite

	Whether to overwrite existing translations.

	
--inconsistent

	Whether to overwrite existing translations that are inconsistent (see
Inconsistent).

	
--add

	Automatically add language if a given translation does not exist.

	
--mt MT

	Use machine translation instead of other components as machine translations.

	
--threshold THRESHOLD

	Similarity threshold for machine translation, defaults to 80.

Example:

weblate auto_translate --user nijel --inconsistent --source weblate/application weblate website cs

See also

Automatic translation

celery_queues

	
weblate celery_queues

	

New in version 3.7.

Displays length of Celery task queues.

checkgit

	
weblate checkgit <project|project/component>

	

Prints current state of the back-end Git repository.

You can either define which project or component to update (for example
weblate/application), or use --all to update all existing components.

commitgit

	
weblate commitgit <project|project/component>

	

Commits any possible pending changes to the back-end Git repository.

You can either define which project or component to update (for example
weblate/application), or use --all to update all existing components.

commit_pending

	
weblate commit_pending <project|project/component>

	

Commits pending changes older than a given age.

You can either define which project or component to update (for example
weblate/application), or use --all to update all existing components.

	
--age HOURS

	Age in hours for committing. If not specified the value configured in
Component configuration is used.

Note

This is automatically performed in the background by Weblate, so there no
real need to invoke this manually, besides forcing an earlier commit than
specified by Component configuration.

See also

Running maintenance tasks,
COMMIT_PENDING_HOURS

cleanuptrans

	
weblate cleanuptrans

	

Cleans up orphaned checks and translation suggestions. There is normally no need to run this
manually, as the cleanups happen automatically in the background.

See also

Running maintenance tasks

createadmin

	
weblate createadmin

	

Creates an admin account with a random password, unless it is specified.

	
--password PASSWORD

	Provides a password on the command-line, to not generate a random one.

	
--no-password

	Do not set password, this can be useful with –update.

	
--username USERNAME

	Use the given name instead of admin.

	
--email USER@EXAMPLE.COM

	Specify the admin e-mail address.

	
--name

	Specify the admin name (visible).

	
--update

	Update the existing user (you can use this to change passwords).

Changed in version 2.9: Added parameters --username, --email, --name and --update.

dump_memory

	
weblate dump_memory

	

New in version 2.20.

Export a JSON file containing Weblate Translation Memory content.

See also

Translation Memory,
Weblate Translation Memory Schema

dumpuserdata

	
weblate dumpuserdata <file.json>

	

Dumps userdata to a file for later use by importuserdata

Hint

This comes in handy when migrating or merging Weblate instances.

import_demo

	
weblate import_demo

	

New in version 4.1.

Creates a demo project with components based on <https://github.com/WeblateOrg/demo>.

This can be useful when developing Weblate.

import_json

	
weblate import_json <json-file>

	

New in version 2.7.

Batch import of components based on JSON data.

The imported JSON file structure pretty much corresponds to the component
object (see GET /api/components/(string:project)/(string:component)/).
You have to include the name and filemask fields.

	
--project PROJECT

	Specifies where the components will be imported from.

	
--main-component COMPONENT

	Use the given VCS repository from this component for all of them.

	
--ignore

	Skip (already) imported components.

	
--update

	Update (already) imported components.

Changed in version 2.9: The parameters --ignore and --update are there to deal with already
imported components.

Example of JSON file:

[
 {
 "slug": "po",
 "name": "Gettext PO",
 "file_format": "po",
 "filemask": "po/*.po",
 "new_lang": "none"
 },
 {
 "name": "Android",
 "filemask": "android/values-*/strings.xml",
 "template": "android/values/strings.xml",
 "repo": "weblate://test/test",
 "file_format": "aresource"
 }
]

See also

import_memory

import_memory

	
weblate import_memory <file>

	

New in version 2.20.

Imports a TMX or JSON file into the Weblate translation memory.

	
--language-map LANGMAP

	Allows mapping languages in the TMX to the Weblate translation memory.
The language codes are mapped after normalization usually done by Weblate.

--language-map en_US:en will for example import all en_US strings
as en ones.

This can be useful in case your TMX file locales happen not to match what you
use in Weblate.

See also

Translation Memory,
Weblate Translation Memory Schema

import_project

	
weblate import_project <project> <gitrepo> <branch> <filemask>

	

Changed in version 3.0: The import_project command is now based on the
Component discovery addon, leading to some
changes in behavior and what parameters are accepted.

Batch imports components into project based on filemask.

<project> names an existing project, into which the components are to
be imported.

The <gitrepo> defines the Git repository URL to use, and <branch> signifies the
Git branch.
To import additional translation components from an existing Weblate component,
use a weblate://<project>/<component> URL for the <gitrepo>.

The <filemask> defines file discovery for the repository. It can be either
be made simple using wildcards, or it can use the full power of regular expressions.

The simple matching uses ** for component name and * for language, for
example: **/*.po

The regular expression has to contain groups named component and language.
For example: (?P<language>[^/]*)/(?P<component>[^-/]*)\.po

The import matches existing components based on files and adds the ones that
do not exist. It does not change already existing ones.

	
--name-template TEMPLATE

	Customize the name of a component using Django template syntax.

For example: Documentation: {{ component }}

	
--base-file-template TEMPLATE

	Customize the base file for monolingual translations.

For example: {{ component }}/res/values/string.xml

	
--new-base-template TEMPLATE

	Customize the base file for addition of new translations.

For example: {{ component }}/ts/en.ts

	
--file-format FORMAT

	You can also specify the file format to use (see Supported file formats), the default
is auto-detection.

	
--language-regex REGEX

	You can specify language filtering (see Component configuration) with this
parameter. It has to be a valid regular expression.

	
--main-component

	You can specify which component will be chosen as the main one—the one actually
containing the VCS repository.

	
--license NAME

	Specify the overall, project or component translation license.

	
--license-url URL

	Specify the URL where the translation license is to be found.

	
--vcs NAME

	In case you need to specify which version control system to use, you can do it
here. The default version control is Git.

To give you some examples, let’s try importing two projects.

First The Debian Handbook translations, where each language has
separate a folder with the translations of each chapter:

weblate import_project \
 debian-handbook \
 git://anonscm.debian.org/debian-handbook/debian-handbook.git \
 squeeze/master \
 '*/**.po'

Then the Tanaguru tool, where the file format needs be specified,
along with the base file template, and how all components and translations
are located in single folder:

weblate import_project \
 --file-format=properties \
 --base-file-template=web-app/tgol-web-app/src/main/resources/i18n/%s-I18N.properties \
 tanaguru \
 https://github.com/Tanaguru/Tanaguru \
 master \
 web-app/tgol-web-app/src/main/resources/i18n/**-I18N_*.properties

More complex example of parsing of filenames to get the correct component and
language out of a filename like
src/security/Numerous_security_holes_in_0.10.1.de.po:

weblate import_project \
 tails \
 git://git.tails.boum.org/tails master \
 'wiki/src/security/(?P<component>.*)\.(?P<language>[^.]*)\.po$'

Filtering only translations in a chosen language:

./manage import_project \
 --language-regex '^(cs|sk)$' \
 weblate \
 https://github.com/WeblateOrg/weblate.git \
 'weblate/locale/*/LC_MESSAGES/**.po'

Importing Sphinx documentation split to multiple files:

$ weblate import_project --name-template 'Documentation: %s' \
 --file-format po \
 project https://github.com/project/docs.git master \
 'docs/locale/*/LC_MESSAGES/**.po'

Importing Sphinx documentation split to multiple files and directories:

$ weblate import_project --name-template 'Directory 1: %s' \
 --file-format po \
 project https://github.com/project/docs.git master \
 'docs/locale/*/LC_MESSAGES/dir1/**.po'
$ weblate import_project --name-template 'Directory 2: %s' \
 --file-format po \
 project https://github.com/project/docs.git master \
 'docs/locale/*/LC_MESSAGES/dir2/**.po'

See also

More detailed examples can be found in the Starting with internationalization chapter,
alternatively you might want to use import_json.

importuserdata

	
weblate importuserdata <file.json>

	

Imports user data from a file created by dumpuserdata

importusers

	
weblate importusers --check <file.json>

	

Imports users from JSON dump of the Django auth_users database.

	
--check

	With this option it will just check whether a given file can be imported and
report possible conflicts arising from usernames or e-mails.

You can dump users from the existing Django installation using:

weblate dumpdata auth.User > users.json

install_addon

New in version 3.2.

	
weblate install_addon --addon ADDON <project|project/component>

	

Installs an addon to a set of components.

	
--addon ADDON

	Name of the addon to install. For example weblate.gettext.customize.

	
--configuration CONFIG

	JSON encoded configuration of an addon.

	
--update

	Update the existing addon configuration.

You can either define which project or component to install the addon in (for example
weblate/application), or use --all to include all existing components.

To install Customize gettext output for all components:

weblate install_addon --addon weblate.gettext.customize --config '{"width": -1}' --update --all

See also

Addons

list_languages

	
weblate list_languages <locale>

	

Lists supported languages in MediaWiki markup - language codes, English names
and localized names.

This is used to generate <https://wiki.l10n.cz/Slovn%C3%ADk_s_n%C3%A1zvy_jazyk%C5%AF>.

list_translators

	
weblate list_translators <project|project/component>

	

Lists translators by contributed language for the given project:

[French]
Jean Dupont <jean.dupont@example.com>
[English]
John Doe <jd@example.com>

	
--language-code

	List names by language code instead of language name.

You can either define which project or component to use (for example
weblate/application), or use --all to list translators from all existing
components.

list_versions

	
weblate list_versions

	

Lists all Weblate dependencies and their versions.

loadpo

	
weblate loadpo <project|project/component>

	

Reloads translations from disk (for example in case you have done some updates in the VCS
repository).

	
--force

	Force update, even if the files should be up-to-date.

	
--lang LANGUAGE

	Limit processing to a single language.

You can either define which project or component to update (for example
weblate/application), or use --all to update all existing components.

Note

You seldom need to invoke this, Weblate will automatically load changed
files for every VCS update. This is needed in case you manually changed an
underlying Weblate VCS repository or in some special cases following an upgrade.

lock_translation

	
weblate lock_translation <project|project/component>

	

Prevents further translation of a component.

Hint

Useful in case you want to do some maintenance on the underlying repository.

You can either define which project or component to update (for example
weblate/application), or use --all to update all existing components.

See also

unlock_translation

move_language

	
weblate move_language source target

	

New in version 3.0.

Allows you to merge language content. This is useful when updating to a new
version which contains aliases for previously unknown languages that have been
created with the (generated) suffix. It moves all content from the source
language to the target one.

Example:

weblate move_language cze cs

After moving the content, you should check whether there is anything left (this is
subject to race conditions when somebody updates the repository meanwhile) and
remove the (generated) language.

pushgit

	
weblate pushgit <project|project/component>

	

Pushes committed changes to the upstream VCS repository.

	
--force-commit

	Force commits any pending changes, prior to pushing.

You can either define which project or component to update (for example
weblate/application), or use --all to update all existing components.

Note

Weblate pushes changes automatically if Push on commit in
Component configuration is turned on, which is the default.

unlock_translation

	
weblate unlock_translation <project|project/component>

	

Unlocks a given component, making it available for translation.

Hint

Useful in case you want to do some maintenance on the underlying repository.

You can either define which project or component to update (for example
weblate/application), or use --all to update all existing components.

See also

lock_translation

setupgroups

	
weblate setupgroups

	

Configures default groups and optionally assigns all users to that default group.

	
--no-privs-update

	Turns off automatic updating of existing groups (only adds new ones).

	
--no-projects-update

	Prevents automatic updates of groups for existing projects. This allows adding newly
added groups to existing projects, see Project access control.

See also

Access control

setuplang

	
weblate setuplang

	

Updates list of defined languages in Weblate.

	
--no-update

	Turns off automatic updates of existing languages (only adds new ones).

updatechecks

	
weblate updatechecks <project|project/component>

	

Updates all checks for all strings.

Hint

Useful for upgrades which do major changes to checks.

You can either define which project or component to update (for example
weblate/application), or use --all to update all existing components.

updategit

	
weblate updategit <project|project/component>

	

Fetches remote VCS repositories and updates the internal cache.

You can either define which project or component to update (for example
weblate/application), or use --all to update all existing components.

Note

Usually it is better to configure hooks in the repository to trigger
Notification hooks, instead of regular polling by updategit.

Announcements

Changed in version 4.0: In prior releases this feature was called whiteboard messages.

Provide info to your translators by posting announcements, site-wide, per project, component, or language.

Announce the purpose, deadlines, status, or specify targets for translation.

The users will receive notification on the announcements for watched
projects (unless they opt out).

This can be useful for various things from announcing the purpose of the website to
specifying targets for translations.

The announcements can posted on each level in the Manage menu, using
Post announcement:

[image: Image showing a message that reads: "Translations will be used only if they reach 60%" atop the dashboard view.]
It can be also added using the admin interface:

[image: ../_images/announcement.png]
The announcements are then shown based on their specified context:

No context specified

Shown on dashboard (landing page).

Project specified

Shown within the project, including all its components and translations.

Component specified

Shown for a given component and all its translations.

Language specified

Shown on the language overview and all translations in that language.

This is how it looks on the language overview page:

[image: Image showing a message that reads: "Czech translators rock!" atop the Czech language overview.]

Component Lists

Specify multiple lists of components to appear as options on the user dashboard,
from which users can pick one as their default view.
See Dashboard to learn more.

Changed in version 2.20: A status will be presented for each component list presented on the dashboard.

The names and content of component lists can be specified in the admin
interface, in Component lists section. Each component list must
have a name that is displayed to the user, and a slug representing it in the
URL.

Changed in version 2.13: Change dashboard settings for anonymous users from the admin interface,
altering what dashboard is presented to unauthenticated users.

Automatic component lists

New in version 2.13.

Add components to the list automatically based on their slug by creating
Automatic component list assignment rules.

	Useful for maintaining component lists for large installations, or in case
you want to have one component list with all components on your Weblate installation.

Hint

Make a component list containing all the components of your Weblate installation.

1. Define Automatic component list assignment with ^.*$ as regular expression
in both the project and the component fields, as shown on this image:

[image: Image showing the Weblate administration panel with the above configuration filled in.]

Optional Weblate modules

Several optional modules are available for your setup.

Git exporter

New in version 2.10.

Provides you read-only access to the underlying Git repository using HTTP(S).

Installation

	Add weblate.gitexport to installed apps in settings.py:

INSTALLED_APPS += ("weblate.gitexport",)

	Export existing repositories by migrating your database after installation:

weblate migrate

Usage

The module automatically hooks into Weblate and sets the exported repository URL in
the Component configuration.
The repositories are accessible under the /git/ part of the Weblate URL, for example
https://example.org/git/weblate/master/.

Repositories for publicly available projects can be cloned without authentication:

git clone 'https://example.org/git/weblate/master/'

Access to the repositories with restricted access (using Project access control or when
REQUIRE_LOGIN is enabled) requires a API token which can be obtained
in your User profile:

git clone 'https://user:KEY@example.org/git/weblate/master/'

Hint

By default members or Users group and anonymous user have access
to the repositories for public projects via Access repository
and Power user roles.

Billing

New in version 2.4.

This is used on Hosted Weblate [https://weblate.org/hosting/] to define
billing plans, track invoices and usage limits.

Installation

1. Add weblate.billing to installed apps in
settings.py:

INSTALLED_APPS += ("weblate.billing",)

	Run the database migration to optionally install additional database structures for the module:

weblate migrate

Usage

After installation you can control billing in the admin interface. Users with
billing enabled will get new Billing tab in their
User profile.

The billing module additionally allows project admins to create new projects
and components without being superusers (see Adding translation projects and components). This is
possible when following conditions are met:

	The billing is in its configured limits (any overusage results in blocking
of project/component creation) and paid (if its price is non zero)

	The user is admin of existing project with billing or user is owner of
billing (the latter is necessary when creating new billing for users to be
able to import new projects).

Upon project creation user is able to choose which billing should be charged
for the project in case he has access to more of them.

Legal

New in version 2.15.

This is used on Hosted Weblate [https://weblate.org/hosting/] to provide required
legal documents. It comes provided with blank documents, and you are expected to fill out the
following templates in the documents:

	legal/documents/tos.html
	Terms of service document

	legal/documents/privacy.html
	Privacy policy document

	legal/documents/summary.html
	Short overview of the terms of service and privacy policy

Note

Legal documents for the Hosted Weblate service are available in this Git repository
<https://github.com/WeblateOrg/wllegal/tree/master/wllegal/templates/legal/documents>.

Most likely these will not be directly usable to you, but might come in handy
as a starting point if adjusted to meet your needs.

Installation

1. Add weblate.legal to installed apps in
settings.py:

INSTALLED_APPS += ("weblate.legal",)

Optional:

Social auth pipeline to confirm TOS upon registration/subsequent sign in
SOCIAL_AUTH_PIPELINE += ("weblate.legal.pipeline.tos_confirm",)

Middleware to enforce TOS confirmation of signed in users
MIDDLEWARE += [
 "weblate.legal.middleware.RequireTOSMiddleware",
]

	Run the database migration to optionally install additional database structures for the module:

weblate migrate

	Edit the legal documents in the weblate/legal/templates/legal/ folder to match your service.

Usage

After installation and editing, the legal documents are shown in the Weblate UI.

Avatars

Avatars are downloaded and cached server-side to reduce information leaks to the sites serving them
by default. The built-in support for fetching avatars from e-mails addresses configured for it can be
turned off using ENABLE_AVATARS.

Weblate currently supports:

	Gravatar [https://gravatar.com/]

	Libravatar [https://www.libravatar.org/]

See also

Avatar caching,
AVATAR_URL_PREFIX,
ENABLE_AVATARS

Spam protection

You can protect against spamming by users by using the Akismet [https://akismet.com/] service.

	Install the akismet Python module (this is already included in the official Docker image).

	Obtain the Akismet API key.

	Store it as AKISMET_API_KEY or WEBLATE_AKISMET_API_KEY in Docker.

Following content is sent to Akismet for checking:

	Suggestions from unauthenticated users

	Project and component descriptions and links

Note

This (among other things) relies on IP address of the client, please see
Running behind reverse proxy for properly configuring that.

See also

Running behind reverse proxy,
AKISMET_API_KEY,
WEBLATE_AKISMET_API_KEY

Signing Git commits with GnuPG

New in version 3.1.

All commits can be signed by the GnuPG key of the Weblate instance.

1. Turn on WEBLATE_GPG_IDENTITY. (Weblate will generate a GnuPG
key when needed and will use it to sign all translation commits.)

This feature needs GnuPG 2.1 or newer installed.

You can find the key in the DATA_DIR and the public key is shown on
the «About» page:

[image: ../_images/about-gpg.png]
2. Alternatively you can also import existing keys into Weblate, just set
HOME=$DATA_DIR/home when invoking gpg.

See also

WEBLATE_GPG_IDENTITY

Rate limiting

Changed in version 3.2: The rate limiting now accepts more fine-grained configuration.

Several operations in Weblate are rate limited. At most
RATELIMIT_ATTEMPTS attempts are allowed within RATELIMIT_WINDOW seconds.
The user is then blocked for RATELIMIT_LOCKOUT. There are also settings specific to scopes, for example RATELIMIT_CONTACT_ATTEMPTS or RATELIMIT_TRANSLATE_ATTEMPTS. The table below is a full list of available scopes.

The following operations are subject to rate limiting:

	Name

	Scope

	Allowed attempts

	Ratelimit window

	Lockout period

	Registration

	REGISTRATION

	5

	300

	600

	Sending message to admins

	MESSAGE

	5

	300

	600

	Password authentication on sign in

	LOGIN

	5

	300

	600

	Sitewide search

	SEARCH

	6

	60

	60

	Translating

	TRANSLATE

	30

	60

	600

	Adding to glossary

	GLOSSARY

	30

	60

	600

	Starting translation into a new
language

	LANGUAGE

	2

	300

	600

If a user fails to log in AUTH_LOCK_ATTEMPTS times, password authentication will be turned off on the account until having gone through the process of having its password reset.

The API has separate rate limiting settings, see API rate limiting.

See also

Rate limiting,
Running behind reverse proxy,
API rate limiting

Fedora Messaging integration

Fedora Messaging is AMQP-based publisher for all changes happening in Weblate.
You can hook additional services on changes happening in Weblate using this.

The Fedora Messaging integration is available as a separate Python module
weblate-fedora-messaging. Please see
<https://github.com/WeblateOrg/fedora_messaging/> for setup instructions.

Customizing Weblate

Extend and customize using Django and Python.
Contribute your changes upstream so that everybody can benefit. This reduces
your maintenance costs; code in Weblate is taken care of when changing internal
interfaces or refactoring the code.

Warning

Neither internal interfaces nor templates are considered a stable API.
Please review your own customizations for every upgrade, the interfaces or their
semantics might change without notice.

See also

Contributing to Weblate

Creating a Python module

If you are not familiar with Python, you might want to look into Python For
Beginners [https://www.python.org/about/gettingstarted/], explaining the
basics and pointing to further tutorials.

To write some custom Python code (called a module), a
place to store it is needed, either in the system path (usually something like
/usr/lib/python3.7/site-packages/) or in the Weblate directory, which
is also added to the interpreter search path.

Better yet, turn your customization into a proper Python package:

	Create a folder for your package (we will use weblate_customization).

	Within it, create a setup.py file to describe the package:

from setuptools import setup

setup(
 name="weblate_customization",
 version="0.0.1",
 author="Your name",
 author_email="yourname@example.com",
 description="Sample Custom check for Weblate.",
 license="GPLv3+",
 keywords="Weblate check example",
 packages=["weblate_customization"],
)

	Create a folder for the Python module (also called weblate_customization)
for the customization code.

	Within it, create a __init__.py file to make sure Python can import the module.

	This package can now be installed using pip install -e. More info to be found in “Editable” Installs [https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs].

	Once installed, the module can be used in the Weblate configuration
(for example weblate_customization.checks.FooCheck).

Your module structure should look like this:

weblate_customization
├── setup.py
└── weblate_customization
 ├── __init__.py
 ├── addons.py
 └── checks.py

You can find an example of customizing Weblate at
<https://github.com/WeblateOrg/customize-example>, it covers all the topics
described below.

Changing the logo

	Create a simple Django app containing the static files you want to overwrite
(see Creating a Python module).

Branding appears in the following files:

	icons/weblate.svg
	Logo shown in the navigation bar.

	logo-*.png
	Web icons depending on screen resolution and web-browser.

	favicon.ico
	Web icon used by legacy browsers.

	weblate-*.png
	Avatars for bots or anonymous users. Some web-browsers use these as shortcut icons.

	email-logo.png
	Used in notifications e-mails.

	Add it to INSTALLED_APPS [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS]:

INSTALLED_APPS = (
 # Add your customization as first
 "weblate_customization",
 # Weblate apps are here…
)

	Run weblate collectstatic --noinput, to collect static files served to
clients.

See also

Managing static files (e.g. images, JavaScript, CSS) [https://docs.djangoproject.com/en/stable/howto/static-files/],
Serving static files

Custom quality checks, addons and auto-fixes

To install your code for Custom automatic fixups, Writing own checks or
Writing addon in Weblate:

	Place the files into your Python module containing the Weblate customization
(see Creating a Python module).

	Add its fully-qualified path to the Python class in the dedicated settings
(WEBLATE_ADDONS, CHECK_LIST or AUTOFIX_LIST):

Checks
CHECK_LIST += ("weblate_customization.checks.FooCheck",)

Autofixes
AUTOFIX_LIST += ("weblate_customization.autofix.FooFixer",)

Addons
WEBLATE_ADDONS += ("weblate_customization.addons.ExamplePreAddon",)

See also

Custom automatic fixups, Writing own checks, Writing addon, Executing scripts from addon

Management interface

The management interface offer administration settings under the
/manage/ URL. It is available for users signed in with admin
privileges, accessible by using the wrench icon top right:

[image: ../_images/support.png]
It includes basic overview of your Weblate:

	Support status, see Getting support for Weblate

	Backups, see Backing up and moving Weblate

	Shared translation memory, see Translation Memory

	Performance report to review Weblate health and length of Celery queues

	SSH keys management, see SSH repositories

	Alerts overview for all components, see Translation component alerts

The Django admin interface

Warning

Will be removed in the future,
as its use is discouraged—most features can be managed directly in Weblate.

Here you can manage objects stored in the database, such as users, translations
and other settings:

[image: ../_images/admin.png]
In the Reports section, you can check the status of your site, tweak
it for Production setup, or manage SSH keys used to access Accessing repositories.

Manage database objects under any of the sections.
The most interesting one is probably Weblate translations,
where you can manage translatable projects, see Project configuration and Component configuration.

Weblate languages holds language definitions, explained further in
Language definitions.

Adding a project

Adding a project serves as container for all components.
Usually you create one project for one piece of software, or book
(See Project configuration for info on individual parameters):

[image: ../_images/add-project.png]

See also

Project configuration

Bilingual components

Once you have added a project, translation components can be added to it.
(See Component configuration for info regarding individual parameters):

[image: ../_images/add-component.png]

See also

Component configuration,
Bilingual and monolingual formats

Monolingual components

For easier translation of these, provide a template file containing the
mapping of message IDs to its respective source language (usually English).
(See Component configuration for info regarding individual parameters):

[image: ../_images/add-component-mono.png]

See also

Component configuration,
Bilingual and monolingual formats

Getting support for Weblate

Weblate is copylefted libre software with community support.
Subscribers receive priority support at no extra charge. Prepaid help packages are
available for everyone. You can find more info about current support
offerings at <https://weblate.org/support/>.

Integrating support

New in version 3.8.

Purchased support packages can optionally be integrated into your Weblate
subscription management [https://weblate.org/user/] interface, from where you will find a link to it.
Basic instance details about your installation are also reported back to Weblate this way.

[image: ../_images/support.png]

Data submitted to the Weblate

	URL where your Weblate instance is configured

	Your site title

	The Weblate version you are running

	Tallies of some objects in your Weblate database (projects, components, languages, source strings and users)

	The public SSH key of your instance

No other data is submitted.

Integration services

	See if your support package is still valid

	Weblate provisioned backup storage

Hint

Purchased support packages are already activated upon purchase, and can be used without integrating them.

Legal documents

Note

Herein you will find various legal information you might need to
operate Weblate in certain legal jurisdictions. It is provided as a means of guidance,
without any warranty of accuracy or correctness. It is ultimately your
responsibility to ensure that your use of Weblate complies with all applicable
laws and regulations.

ITAR and other export controls

Weblate can be run within your own datacenter or virtual private cloud. As
such, it can be used to store ITAR or other export-controlled information,
however, end users are responsible for ensuring such compliance.

The Hosted Weblate service has not been audited for compliance with ITAR or
other export controls, and does not currently offer the ability to restrict
translations access by country.

US encryption controls

Weblate does not contain any cryptographic code, but might be subject
export controls as it uses third party components utilizing cryptography
for authentication, data-integrity and -confidentiality.

Most likely Weblate would be classified as ECCN 5D002 or 5D992 and, as
publicly available libre software, it should not be subject to EAR (see
Encryption items NOT Subject to the EAR [https://www.bis.doc.gov/index.php/policy-guidance/encryption/1-encryption-items-not-subject-to-the-ear]).

Software components used by Weblate (listing only components related to
cryptographic function):

	Python [https://www.python.org/]
	See https://wiki.python.org/moin/PythonSoftwareFoundationLicenseFaq#Is_Python_subject_to_export_laws.3F

	GnuPG [https://www.gnupg.org/]
	Optionally used by Weblate

	Git [https://git-scm.com/]
	Optionally used by Weblate

	curl [https://curl.se/]
	Used by Git

	OpenSSL [https://www.openssl.org/]
	Used by Python and cURL

The strength of encryption keys depends on the configuration of Weblate and
the third party components it interacts with, but in any decent setup it will
include all export restricted cryptographic functions:

	In excess of 56 bits for a symmetric algorithm

	Factorisation of integers in excess of 512 bits for an asymmetric algorithm

	Computation of discrete logarithms in a multiplicative group of a finite field of size greater than 512 bits for an asymmetric algorithm

	Discrete logarithms in a group different than above in excess of 112 bits for an asymmetric algorithm

Weblate doesn’t have any cryptographic activation feature, but it can be
configured in a way where no cryptography code would be involved. The
cryptographic features include:

	Accessing remote servers using secure protocols (HTTPS)

	Generating signatures for code commits (PGP)

See also

Export Controls (EAR) on Open Source Software [https://www.magicsplat.com/blog/ear/]

Starting with internationalization

Have a project and want to translate it into several languages? This
guide will help you do so. Several typical situations are showcased, but
most of the examples are generic and can be applied to other scenarios as
well.

Before translating any software, you should realize that languages around the
world are really different and you should not make any assumption based on
your experience. For most of languages it will look weird if you try to
concatenate a sentence out of translated segments. You also should properly
handle plural forms because many languages have complex rules for that and the
internationalization framework you end up using should support this.

Last but not least, sometimes it might be necessary to add some context to the
translated string. Imagine a translator would get string Sun to translate.
Without context most people would translate that as our closest star, but it
might be actually used as an abbreviation for Sunday.

Choosing internationalization framework

Choose whatever is standard on your platform, try to avoid reinventing the
wheel by creating your own framework to handle localizations. Weblate supports
most of the widely used frameworks, see Supported file formats for more information
(especially Translation types capabilities).

Our personal recommendation for some platforms is in the following table. This
is based on our experience, but that can not cover all use cases, so always
consider your environment when doing the choice.

	Platform

	Recommended format

	Android

	Android string resources

	iOS

	Apple iOS strings

	Qt

	Qt Linguist .ts

	Python

	GNU gettext

	PHP

	GNU gettext 1

	C/C++

	GNU gettext

	C#

	.XML resource files

	Perl

	GNU gettext

	Ruby

	Ruby YAML files

	Web extensions

	WebExtension JSON

	Java

	XLIFF 2

	JavaScript

	JSON i18next files 3

	1

	The native Gettext support in PHP is buggy and often missing on Windows
builds, it is recommended to use third party library motranslator [https://github.com/phpmyadmin/motranslator] instead.

	2

	You can also use Java properties if plurals are not needed.

	3

	You can also use plain JSON files if plurals are not needed.

The more detailed workflow for some formats is described in following chapters:

	Translating software using GNU Gettext

	Translating documentation using Sphinx

	Translating HTML and JavaScript using Weblate CDN

See also

Integrating with Weblate,
Continuous localization

Integrating with Weblate

Weblate basics

Project and component structure

In Weblate translations are organized into projects and components. Each project
can contain number of components and those contain translations into individual
languages. The component corresponds to one translatable file (for example
GNU gettext or Android string resources). The projects are there to help you
organize component into logical sets (for example to group all translations
used within one application).

Internally, each project has translations to common strings propagated across
other components within it by default. This lightens the burden of repetitive
and multi version translation. The translation propagation can be disabled per
Component configuration using Allow translation propagation in case
the translations should diverge.

Importing localization project into Weblate

Weblate has been developed with VCS integration in mind as it’s core feature, so the easiest way is
to grant Weblate the access to your repository.
The import process will guide you through configuring your translations into components.

Alternatively, you can use Weblate to set up a local repository containing
all the translations without integration.

See also

Adding translation projects and components,
How can I limit Weblate access to only translations, without exposing source code to it?

Fetching updated translations from Weblate

To fetch updated strings from Weblate, you can simply fetch the underlying Git
repository (either from filesystem, or it can be made available through
Git exporter). Prior to this, you might want to commit any pending
changes (see Lazy commits). You can do so in the user interface
(in the Repository maintenance) or from the command line using Weblate Client.

This can be automated if you grant Weblate push access to your repository and
configure Repository push URL in the Component configuration, see Pushing changes from Weblate.

Alternatively, you can use Weblate’s REST API to update translations
to match their latest version.

See also

Continuous localization,
Pushing changes from Weblate,
Accessing repositories

Fetching remote changes into Weblate

To fetch the strings newly updated in your repository into Weblate, just let it pull from the upstream
repository. This can be achieved in the user interface (in the Repository
maintenance), or from the command line using Weblate Client.

This can be automated by setting a webhook in your repository to trigger
Weblate whenever there is a new commit, see Updating repositories for more details.

If you’re not using a VCS integration, you can use UI or Weblate’s REST API to update
translations to match your code base.

See also

Continuous localization,
Accessing repositories

Adding new strings

In case your translation files are stored in a VCS together with the code,
you most likely have an existing workflow for developers to introduce new strings.
Any way of adding strings will be picked up, but consider using
Quality gateway for the source strings to avoid introducing errors.

When the translation files are separate from the code, there are following ways to introduce
new strings into Weblate.

	Manually, using Add new translation string from Tools
menu in the language used as the source for translations.

	Programatically, using API POST /api/translations/(string:project)/(string:component)/(string:language)/units/.

	By uploading source file as Replace existing translation file
(this overwrites existing strings, so please make sure the file includes both
old and new strings) or Add new strings, see Import methods.

Note

Availability of adding strings in Weblate depends on Manage strings.

Updating target language files

For monolingual files (see Supported file formats) Weblate might add new translation
strings not present in the Monolingual base language file, and not in actual
translations. It does not however perform any automatic cleanup of stale
strings as that might have unexpected outcomes. If you want to do this, please
install Cleanup translation files addon which will handle the
cleanup according to your requirements.

Weblate also will not try to update bilingual files in any way, so if you need
po files being updated from pot, you need to do it yourself
using Update source strings Import methods or using
Update PO files to match POT (msgmerge) addon.

See also

Processing repository with scripts,
Cleanup translation files,
Remove blank strings,
Update RESX files,
Update PO files to match POT (msgmerge)

Translating software using GNU Gettext

GNU Gettext [https://www.gnu.org/software/gettext/] is one of the most widely used tool for internationalization of
free software. It provides a simple yet flexible way to localize the software.
It has great support for plurals, it can add further context to the translated
string and there are quite a lot of tools built around it. Of course it has
great support in Weblate (see GNU gettext file format description).

Note

If you are about to use it in proprietary software, please consult
licensing first, it might not be suitable for you.

GNU Gettext can be used from a variety of languages (C, Python, PHP, Ruby,
JavaScript and many more) and usually the UI frameworks already come with some
support for it. The standard usage is through the gettext() function call,
which is often aliased to _() to make the code simpler and easier to read.

Additionally it provides pgettext() call to provide additional context to
translators and ngettext() which can handle plural types as defined for
target language.

As a widely spread tool, it has many wrappers which make its usage really
simple, instead of manual invoking of Gettext described below, you might want
to try one of them, for example intltool [https://freedesktop.org/wiki/Software/intltool/].

Workflow overview

The GNU Gettext uses several files to manage the localization:

	PACKAGE.pot contains strings extracted from your source code, typically using xgettext [https://www.gnu.org/software/gettext/manual/html_node/xgettext-Invocation.html] or some high level wrappers such as intltool [https://freedesktop.org/wiki/Software/intltool/].

	LANGUAGE.po contains strings with a translation to single language. It has to be updated by msgmerge [https://www.gnu.org/software/gettext/manual/html_node/msgmerge-Invocation.html] once the PACKAGE.pot is updated. You can create new language files using msginit [https://www.gnu.org/software/gettext/manual/html_node/msginit-Invocation.html] or within Weblate.

	LANGUAGE.mo contains binary representation of LANGUAGE.po and is used at application runtime. Typically it is not kept under version control, but generated at compilation time using msgfmt [https://www.gnu.org/software/gettext/manual/html_node/msgfmt-Invocation.html]. In case you want to have it in the version control, you can generate it in Weblate using Generate MO files addon.

Overall the GNU Gettext workflow looks like this:

digraph translations {
 graph [fontname = "sans-serif", fontsize=10];
 node [fontname = "sans-serif", fontsize=10, shape=note, margin=0.1, height=0];
 edge [fontname = "monospace", fontsize=10];

 "Source code" -> "PACKAGE.pot" [label=" xgettext "];
 "PACKAGE.pot" -> "LANGUAGE.po" [label=" msgmerge "];
 "LANGUAGE.po" -> "LANGUAGE.mo" [label=" msgfmt "];
}

See also

Overview of GNU Gettext [https://www.gnu.org/software/gettext/manual/html_node/Overview.html]

Sample program

The simple program in C using Gettext might look like following:

#include <libintl.h>
#include <locale.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 int count = 1;
 setlocale(LC_ALL, "");
 bindtextdomain("hello", "/usr/share/locale");
 textdomain("hello");
 printf(
 ngettext(
 "Orangutan has %d banana.\n",
 "Orangutan has %d bananas.\n",
 count
),
 count
);
 printf("%s\n", gettext("Thank you for using Weblate."));
 exit(0);
}

Extracting translatable strings

Once you have code using the gettext calls, you can use xgettext [https://www.gnu.org/software/gettext/manual/html_node/xgettext-Invocation.html] to
extract messages from it and store them into a .pot [https://www.gnu.org/software/gettext/manual/gettext.html#index-files_002c-_002epot]:

$ xgettext main.c -o po/hello.pot

Note

There are alternative programs to extract strings from the code, for example
pybabel [http://babel.pocoo.org/].

This creates a template file, which you can use for starting new translations
(using msginit [https://www.gnu.org/software/gettext/manual/html_node/msginit-Invocation.html]) or updating existing ones after code change (you
would use msgmerge [https://www.gnu.org/software/gettext/manual/html_node/msgmerge-Invocation.html] for that). The resulting file is simply
a structured text file:

SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER
This file is distributed under the same license as the PACKAGE package.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2015-10-23 11:02+0200\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"Language: \n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=CHARSET\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=INTEGER; plural=EXPRESSION;\n"

#: main.c:14
#, c-format
msgid "Orangutan has %d banana.\n"
msgid_plural "Orangutan has %d bananas.\n"
msgstr[0] ""
msgstr[1] ""

#: main.c:20
msgid "Thank you for using Weblate."
msgstr ""

Each msgid line defines a string to translate, the special empty string
in the beginning is the file header containing metadata about the translation.

Starting new translation

With the template in place, we can start our first translation:

$ msginit -i po/hello.pot -l cs --no-translator -o po/cs.po
Created cs.po.

The just created cs.po already has some information filled in. Most
importantly it got the proper plural forms definition for chosen language and you
can see number of plurals have changed according to that:

Czech translations for PACKAGE package.
Copyright (C) 2015 THE PACKAGE'S COPYRIGHT HOLDER
This file is distributed under the same license as the PACKAGE package.
Automatically generated, 2015.
#
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2015-10-23 11:02+0200\n"
"PO-Revision-Date: 2015-10-23 11:02+0200\n"
"Last-Translator: Automatically generated\n"
"Language-Team: none\n"
"Language: cs\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=ASCII\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=3; plural=(n==1) ? 0 : (n>=2 && n<=4) ? 1 : 2;\n"

#: main.c:14
#, c-format
msgid "Orangutan has %d banana.\n"
msgid_plural "Orangutan has %d bananas.\n"
msgstr[0] ""
msgstr[1] ""
msgstr[2] ""

#: main.c:20
msgid "Thank you for using Weblate."
msgstr ""

This file is compiled into an optimized binary form, the .mo [https://www.gnu.org/software/gettext/manual/gettext.html#MO-Files]
file used by the GNU Gettext [https://www.gnu.org/software/gettext/] functions at runtime.

Updating strings

Once you add more strings or change some strings in your program, you execute again
xgettext [https://www.gnu.org/software/gettext/manual/html_node/xgettext-Invocation.html] which regenerates the template file:

$ xgettext main.c -o po/hello.pot

Then you can update individual translation files to match newly created templates
(this includes reordering the strings to match new template):

$ msgmerge --previous --update po/cs.po po/hello.pot

Importing to Weblate

To import such translation into Weblate, all you need to define are the following
fields when creating component (see Component configuration for detailed description
of the fields):

	Field

	Value

	Source code repository

	URL of the VCS repository with your project

	File mask

	po/*.po

	Template for new translations

	po/hello.pot

	File format

	Choose Gettext PO file

	New language

	Choose Create new language file

And that’s it, you’re now ready to start translating your software!

See also

You can find a Gettext example with many languages in the Weblate Hello project on
GitHub: <https://github.com/WeblateOrg/hello>.

Translating documentation using Sphinx

Sphinx [https://www.sphinx-doc.org/] is a tool for creating beautiful documentation. It uses simple
reStructuredText syntax and can generate output in many formats. If you’re
looking for an example, this documentation is also built using it. The very
useful companion for using Sphinx is the Read the Docs [https://readthedocs.org/] service, which will
build and publish your documentation for free.

I will not focus on writing documentation itself, if you need guidance with
that, just follow instructions on the Sphinx [https://www.sphinx-doc.org/] website. Once you have
documentation ready, translating it is quite easy as Sphinx comes with support
for this and it is quite nicely covered in their Internationalization [https://www.sphinx-doc.org/en/master/usage/advanced/intl.html#intl]. It’s
matter of few configuration directives and invoking of the sphinx-intl
tool.

If you are using Read the Docs service, you can start building translated
documentation on the Read the Docs. Their Localization of Documentation [https://docs.readthedocs.io/en/latest/localization.html] covers pretty
much everything you need - creating another project, set its language and link
it from main project as a translation.

Now all you need is translating the documentation content. Sphinx generates PO
file for each directory or top level file, what can lead to quite a lot of
files to translate (depending on gettext_compact [https://www.sphinx-doc.org/en/master/usage/configuration.html#confval-gettext_compact] settings).
You can import the index.po into Weblate as an initial component and
then configure Component discovery addon to automatically
discover all others.

Component configuration

	Component name

	Documentation

	File mask

	docs/locales/*/LC_MESSAGES/index.po

	Template for new translations

	docs/locales/index.pot

	File format

	gettext PO file

	Translation flags

	rst-text

Component discovery configuration

	Regular expression to match translation files against

	docs/locales/(?P<language>[^/.]*)/LC_MESSAGES/(?P<component>[^/]*)\.po

	Customize the component name

	Documentation: {{ component|title }}

	Define the base file for new translations

	docs/locales/{{ component }}.pot

Hint

Would you prefer Sphinx to generate just single PO file? Since Sphinx 3.3.0
you can achieve this using:

gettext_compact = "docs"

You can find several documentation projects being translated using this approach:

	Weblate documentation [https://docs.weblate.org/] (you are reading that now)

	Godot engine documentation [https://docs.godotengine.org/en/stable/]

	Gallette documentation [https://doc.galette.eu/]

	phpMyAdmin documentation [https://docs.phpmyadmin.net/]

Translating HTML and JavaScript using Weblate CDN

Starting with Weblate 4.2 it is possible to export localization to a CDN using
JavaScript localization CDN addon.

Note

This feature is configured on Hosted Weblate. It requires additional
configuration on your installation, see LOCALIZE_CDN_URL and
LOCALIZE_CDN_PATH.

Upon installation into your component it will push committed translations (see
Lazy commits) to the CDN and these can be used in your web pages to
localize them.

Creating component

First, you need to create a monolingual component which will hold your strings,
see Adding translation projects and components for generic instructions on that.

In case you have existing repository to start with (for example the one
containing HTML files), create an empty JSON file in the repository for the
source language (see Source language), for example
locales/en.json. The content should be {} to indicate an empty
object. Once you have that, the repository can be imported into Weblate and you
can start with an addon configuration.

Hint

In case you have existing translations, you can place them into the language
JSON files and those will be used in Weblate.

For those who do not want to use existing repository (or do not have one),
choose Start from scratch when creating component and choose JSON
file as a file format (it is okay to choose any monolingual format at this
point).

Configuring Weblate CDN addon

The JavaScript localization CDN addon provides few configuration options.

	Translation threshold
	Translations translated above this threshold will be included in the CDN.

	CSS selector
	Configures which strings from the HTML documents are translatable, see
String extraction for Weblate CDN and HTML localization using Weblate CDN.

	Language cookie name
	Name of cookie which contains user selected language. Used in the
JavaScript snippet for HTML localization using Weblate CDN.

	Extract strings from HTML files
	List of files in the repository or URLs where Weblate will look for
translatable strings and offer them for a translation, see
String extraction for Weblate CDN.

String extraction for Weblate CDN

The translation strings have to be present in Weblate. You can either manage
these manually, use API to create them or list files or URLs using
Extract strings from HTML files and Weblate will extract them
automatically. The files have to present in the repository or contain remote
URLs which will be download and parsed regularly by Weblate.

The default configuration for CSS selector extracts elements with
CSS class l10n, for example it would extract two strings from following
snippets:

<section class="content">
 <div class="row">
 <div class="wrap">
 <h1 class="section-title min-m l10n">Maintenance in progress</h1>
 <div class="page-desc">
 <p class="l10n">We're sorry, but this site is currently down for maintenance.</p>
 </div>
 </div>
 </div>
</section>

In case you don’t want to modify existing code, you can also use * as a
selector to process all elements.

Note

Right now, only text of the elements is extracted. This addon doesn’t support localization
of element attributes or elements with childs.

HTML localization using Weblate CDN

To localize a HTML document, you need to load the weblate.js script:

<script src="https://weblate-cdn.com/a5ba5dc29f39498aa734528a54b50d0a/weblate.js" async></script>

Upon loading, this will automatically find all matching translatable elements
(based on CSS selector configuration) and replace their text with a
translation.

The user language is detected from the configured cookie and falls back to user
preferred languages configured in the browser.

The Language cookie name can be useful for integration with other
applications (for example choose django_language when using Django).

JavaScript localization

The individual translations are exposed as bilingual JSON files under the CDN.
To fetch one you can use following code:

fetch(("https://weblate-cdn.com/a5ba5dc29f39498aa734528a54b50d0a/cs.json")
 .then(response => response.json())
 .then(data => console.log(data));

The actual localization logic needs to be implemented in this case.

Translation component alerts

Shows errors in the Weblate configuration or the translation project for any given translation component.
Guidance on how to address found issues is also offered.

Currently the following is covered:

	Duplicated source strings in translation files

	Duplicated languages within translations

	Merge or update failures in the source repository

	Unused new base in component settings

	Parse errors in the translation files

	Duplicate filemask used for linked components

	Broken URLs

	Missing licenses

Alerts are listed on each respective component page as Alerts.
If it is missing, the component clears all current checks. Alerts can not be ignored,
but will disappear once the underlying problem has been fixed.

A component with both duplicated strings and languages looks like this:

[image: ../_images/alerts.png]

See also

Using custom certificate authority

Building translators community

Community localization checklist

New in version 3.9.

The Community localization checklist which can be found in the
menu of each component can give you guidance to make your
localization process easy for community translators.

[image: ../_images/guide.png]

Managing translations

Adding new translations

New strings can be made available for translation when they appear in the base file,
called Template for new translations (see Component configuration).
If your file format doesn’t require such a file, as is the case with most monolingual
translation flows, you can start with blank files).

New languages can be added right away when requested by a user in Weblate, or a
notification will be sent to project admins for approval and manual addition.
This can be done using Adding new translation in Component configuration.

Note

If you add a language file in connected remote repository, respective
translation will be added to the component when Weblate updates local repository.

More info on the repository update settings can be found on the Updating repositories.

Removing existing translations

Languages, components, or the projects they are in, can be removed (deleted from Weblate
and remote repository if used) from the menu Manage ↓ Removal
of each project, component, or language.

Initiating the Removal action shows the list of components to be removed.
You have to enter the object’s slug to confirm the removal. The slug is the
project’s, language’s, or component’s pathname as it can be seen in the URL.

If you want to remove just some specific strings, there are following ways:

	Manually in the source file. They will be removed from the
translation project as well upon Weblate’s repository update.

New in version 4.5.

	In Weblate’s UI via button Tools ↓ Remove while editing the string.
This has differences between file formats, see: Manage strings

Note

If you delete a language file in connected remote repository, respective
translation will be removed from the component when Weblate updates local repository.

More info on the repository update settings can be found on the Updating repositories.

String variants

Variants are useful to group several strings together so that translators can
see all variants of the string at one place.

Hint

Abbreviations (shortened forms, contractions) are a good example of variants.

Automated key based variants

New in version 3.11.

You can define regular expression to group the strings based on the key of
monolignual translations in the Component configuration:

[image: ../_images/variants-settings.png]
In case the Key matches the expression, the matching part is
removed to generate root key of the variant. Then all the strings with the same
root key become part of a single variant group, also including the string with
the key exactly matching the root key.

The following table lists some usage examples:

	Use case

	Regular expression variant

	Matched translation keys

	Suffix identification

	(Short|Min)$

	monthShort, monthMin, month

	Inline identification

	#[SML]

	dial#S.key, dial#M.key, dial.key

Manual variants

New in version 4.5.

You can manually link specific strings using variant:SOURCE flag. This can
be useful for bilingual translations which do not have keys to group strings
automatically, or to group strings which keys are not matching, but
should be considered together when translating.

The additional variant for a string can also be added using the Tools while translating
(when Manage strings is turned on):

[image: ../_images/glossary-tools.png]

Note

There the variant source string has to at most 768 characters long. This is
technical limitation due to compatibility with MySQL database.

See also

Customizing behavior using flags,
Variants

Variants while translating

The variant is later grouped when translating:

[image: ../_images/variants-translate.png]

String labels

Split component translation strings into categories by text and colour in the project configuration.

[image: ../_images/labels.png]

Hint

Labels can be assigned to units in Additional info on source strings by bulk editing, or using the Bulk edit addon.

Reviewing strings

Activity reports

Activity reports check changes of translations, for projects, components or individual users.

The activity reports for a project or component is accessible from its dashboard, on the Insights
tab, selecting Activity.

[image: ../_images/activity.png]
More reports are accessible on the Insights
tab, selecting Translation reports.

The activity of the currently signed in user can be seen by clicking on
Profile from the user menu on the top right.

Source strings checks

There are many Quality checks, some of them focus on improving the
quality of source strings. Many failing checks suggest a hint to make source strings
easier to translate. All types of failing source checks are displayed on the Source
tab of every component.

Translation string checks

Erroneous failing translation string checks indicate the problem is with
the source string. Translators sometimes fix mistakes in the translation
instead of reporting it - a typical example is a missing full stop at the end of
a sentence.

Reviewing all failing checks can provide valuable feedback to improve its
source strings. To make source strings review easier, Weblate automatically
creates a translation for the source language and shows you source level checks
there:

[image: ../_images/source-review.png]
One of the most interesting checks here is the Multiple failing checks -
it is triggered whenever there is failure on multiple translations of a given string.
Usually this is something to look for, as this is a string which translators have
problems translating properly.

The detailed listing is a per language overview:

[image: ../_images/source-review-detail.png]

Receiving source string feedback

Translators can comment on both translation and source strings. Each
Component configuration can be configured to receive such comments to an e-mail
address (see Source string bug reporting address), and using the developers
mailing list is usually the best approach. This way you can keep an eye on
when problems arise in translation, take care of them, and fix them quickly.

See also

Comments

Promoting the translation

Weblate provides you widgets to share on your website or other sources to
promote the translation project. It also has a nice welcome page for new contributors
to give them basic information about the translation. Additionally you can
share information about translation using Facebook or Twitter. All these
possibilities can be found on the Share tab:

[image: ../_images/promote.png]
All these badges are provided with the link to simple page which explains users
how to translate using Weblate:

[image: ../_images/engage.png]

Translation progress reporting

Reporting features give insight into how a translation progresses over a given
period. A summary of contributions to any given component over time is
provided. The reporting tool is found in the Insights menu of any
translation component, project or on the dashboard:

[image: ../_images/reporting.png]
Several reporting tools are available on this page and all can produce output
in HTML, reStructuredText or JSON. The first two formats are suitable for
embedding statistics into existing documentation, while JSON is useful for further
processing of the data.

Translator credits

Generates a document usable for crediting translators - sorted by language
and lists all contributors to a given language:

* Czech

 * Michal Čihař <michal@cihar.com> (10)
 * John Doe <john@example.com> (5)

* Dutch

 * Jane Doe <jane@example.com> (42)

It will render as:

	Czech

	Michal Čihař <michal@cihar.com> (10)

	John Doe <john@example.com> (5)

	Dutch

	Jane Doe <jane@example.com> (42)

Hint

The number in parenthesis indicates number of contributions in given period.

Contributor stats

Generates the number of translated words and strings by translator name:

== == ========================
Name Email Count total Source words total Source chars total Target words total Target chars total Count new Source words new Source chars new Target words new Target chars new Count approved Source words approved Source chars approved Target words approved Target chars approved Count edited Source words edited Source chars edited Target words edited Target chars edited
== == ========================
Michal Čihař michal@cihar.com 1 3 24 3 21 1 3 24 3 21 0 0 0 0 0 0 0 0 0 0
Allan Nordhøy allan@example.com 2 5 25 4 28 2 3 24 3 21 0 0 0 0 0 0 0 0 0 0
== == ========================

And it will get rendered as:

	Name

	Email

	Count total

	Source words total

	Source chars total

	Target words total

	Target chars total

	Count new

	Source words new

	Source chars new

	Target words new

	Target chars new

	Count approved

	Source words approved

	Source chars approved

	Target words approved

	Target chars approved

	Count edited

	Source words edited

	Source chars edited

	Target words edited

	Target chars edited

	Michal Čihař

	michal@cihar.com

	1

	3

	24

	3

	21

	1

	3

	24

	3

	21

	0

	0

	0

	0

	0

	0

	0

	0

	0

	0

	Allan Nordhøy

	allan@example.com

	2

	5

	25

	4

	28

	2

	3

	24

	3

	21

	0

	0

	0

	0

	0

	0

	0

	0

	0

	0

It can be useful if you pay your translators based on amount of work, it gives
you various stats on translators work.

All stats are available in three variants:

	Total
	Overall number of edited strings.

	New
	Newly translated strings which didn’t have translation before.

	Approved
	Count for string approvals in review workflow (see Dedicated reviewers).

	Edited
	Edited strings which had translation before.

The following metrics are available for each:

	Count
	Number of strings.

	Edits
	Number of edits in the string, measured in Damerau–Levenshtein distance.

	Source words
	Number of words in the source string.

	Source characters
	Number of characters in the source string.

	Target words
	Number of words in the translated string.

	Target characters
	Number of characters in the translated string.

Contributing to Weblate

There are dozens of ways to contribute in Weblate. Any help is welcomed, be it
coding, graphics design, documentation or sponsorship:

	Reporting issues in Weblate

	Starting contributing code to Weblate

	Translating Weblate

	Funding Weblate development

Translating Weblate

Weblate is being translated [https://hosted.weblate.org/] using Weblate itself, feel
free to take part in the effort of making Weblate available in as many human languages
as possible.

Funding Weblate development

You can fund further Weblate development on the donate page [https://weblate.org/donate/]. Funds collected
there are used to fund gratis hosting for libre software projects, and further
development of Weblate. Please check the donate page for details, such
as funding goals and rewards you can get for being a funder.

Backers who have funded Weblate

List of Weblate supporters:

	Yashiro Ccs

	Cheng-Chia Tseng

	Timon Reinhard

	Cassidy James [https://cassidyjames.com/]

	Loic Dachary

	Marozed

	https://freedombox.org/

	GNU Solidario (GNU Health)

	BallotReady [https://www.ballotready.org]

	Richard Nespithal

Do you want to be in the list? Please see options on the Donate to Weblate [https://weblate.org/donate/].

Starting contributing code to Weblate

To understand Weblate source code, please first look into Weblate source code,
Weblate frontend and Weblate internals.

Starting with our codebase

If looking for some bugs to familiarize yourself with the Weblate
codebase, look for ones labelled good first issue [https://github.com/WeblateOrg/weblate/labels/good%20first%20issue].

Running Weblate locally

The most comfortable approach to get started with Weblate development is to
follow Installing from sources. It will get you a virtualenv with editable Weblate
sources.

	Clone Weblate source:

git clone https://github.com/WeblateOrg/weblate.git
cd weblate

	Create an virtualenv:

virtualenv .venv
.venv/bin/activate

	Install Weblate (this will need some system deps, see Installing from sources):

pip install -e .

	Install all dependencies useful for development:

pip install -r requirements-dev.txt

	Start a development server:

weblate runserver

	Depending on your configuration you might also want to start Celery workers:

./weblate/examples/celery start

	To run test (see Local testing for more details):

. scripts/test-database
./manage.py test

See also

Installing from sources

Running Weblate locally in Docker

If you have Docker and docker-compose installed, you can spin up the development
environment simply by running:

./rundev.sh

It will create development Docker image and start it. Weblate is running on
<http://127.0.0.1:8080/> and you can sign in with admin user and admin
password. The new installation is empty, so you might want to continue with
Adding translation projects and components.

The Dockerfile and docker-compose.yml for this are located in
dev-docker directory.

The script also accepts some parameters, to execute tests run it with test
parameter and then specify any test [https://docs.djangoproject.com/en/stable/ref/django-admin/#django-admin-test] parameters, for example:

./rundev.sh test --failfast weblate.trans

Note

Be careful that your Docker containers are up and running before running the
tests. You can check that by running the docker ps command.

To display the logs:

./rundev.sh logs

To stop the background containers run:

./rundev.sh stop

Running the script without args will recreate Docker container and restart it.

Note

This is not suitable setup for production, it includes several hacks which
are insecure, but make development easier.

Coding Weblate with PyCharm

PyCharm is a known IDE for Python, here’s some guidelines to help you setup Weblate
project in it.

Considering you have just cloned the GitHub repository, just open the folder in which
you cloned it in PyCharm. Once the IDE is open, the first step is to specify the
interpreter you want:

[image: ../_images/pycharm-1.png]
You can either choose to let PyCharm create the virtualenv for you, or select an already
existing one:

[image: ../_images/pycharm-2.png]
Don’t forget to install the dependencies once the interpreter is set: you
can do it, either through the console (the console from the IDE will directly use your
virtualenv by default), or through the interface when you get a warning about missing
dependencies.

The second step is to set the right information to use natively Django inside PyCharm:
the idea is to be able to immediately trigger the unit tests in the IDE.
For that you need to specify the root path of the Django project and the path to its settings:

[image: ../_images/pycharm-3.png]
Be careful, the Django project root is the root of the repository, not the weblate
sub-directory. About the settings, you could use the weblate/settings_test.py from the
repository, but you could create your own setting and set it there.

Last step is to be able to run the server and to put breakpoints on the code to be able
to debug it. This is done by creating a new Django Server configuration:

[image: ../_images/pycharm-4.png]
[image: ../_images/pycharm-5.png]

Hint

Be careful with the property called No reload: if you check it,
the server live reloads won’t happened when you modify files. This allows the
existing debugger breakpoints to persist as these would be discarded on
reload.

Bootstrapping your devel instance

You might want to use import_demo to create demo translations and
createadmin to create admin user.

Weblate source code

Weblate is developed on GitHub [https://github.com/WeblateOrg/weblate]. You
are welcome to fork the code and open pull requests. Patches in any other form
are welcome too.

See also

Check out Weblate internals to see how Weblate looks from inside.

Security by Design Principles

Any code for Weblate should be written with Security by Design Principles [https://wiki.owasp.org/index.php/Security_by_Design_Principles] in
mind.

Coding standard

The code should follow PEP-8 coding guidelines and should be formatted using
black code formatter.

To check the code quality, you can use flake8, the recommended
plugins are listed in .pre-commit-config.yaml and its configuration is
placed in setup.cfg.

The easiest approach to enforce all this is to install pre-commit [https://pre-commit.com/]. Weblate
repository contains configuration for it to verify the committed files are sane.
After installing it (it is already included in the
requirements-lint.txt) turn it on by running pre-commit install in
Weblate checkout. This way all your changes will be automatically checked.

You can also trigger check manually, to check all files run:

pre-commit run --all

Debugging Weblate

Bugs can behave as application crashes or as misbehavior.
You are welcome to collect info on any such issue and submit it to the issue tracker [https://github.com/WeblateOrg/weblate/issues].

Debug mode

Turning on debug mode will make the exceptions show in the browser. This is useful to
debug issues in the web interface, but not suitable for production environment
as it has performance consequences and might leak private data.

See also

Disable debug mode

Weblate logs

Weblate can produce detailed logs of what is going in the background. In
the default configuration it uses syslog and that makes the log appear either in
/var/log/messages or /var/log/syslog (depending on your syslog
daemon configuration).

The Celery process (see Background tasks using Celery) usually produces own logs as well. The
example system-wide setups log to several files under /var/log/celery/.

Docker containers log to their output (as usual in the Docker world), so
you can look at the logs using docker-compose logs.

See also

Sample configuration contains LOGGING [https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-LOGGING] configuration.

Not processing background tasks

Lot of things happen in background Celery workers. In case things like sending
out e-mails or component removal does not work, there might be some issue with
it.

Things to check in that case:

	Check Celery process is running, see Background tasks using Celery

	Check Celery queue status either in Management interface or using celery_queues

	Look into Celery logs for errors (see Weblate logs)

Not receiving e-mails from Weblate

You can verify whether outgoing e-mail is working correctly by using the
sendtestemail [https://docs.djangoproject.com/en/stable/ref/django-admin/#django-admin-sendtestemail] management command (see Invoking management commands
for instructions on how to invoke it in different environments) or using
Management interface under the Tools tab.

These send e-mail directly, so this verifies that your SMTP configuration is
correct (see Configuring outgoing e-mail). Most of the e-mails from Weblate are however
sent in the background and there might be some issues with Celery involved as
well, please see Not processing background tasks for debugging that.

Analyzing application crashes

In case the application crashes, it is useful to collect as much info about
the crash as possible. The easiest way to achieve this is by using third-party
services which can collect such info automatically. You can find
info on how to set this up in Collecting error reports.

Silent failures

Lots of tasks are offloaded to Celery for background processing.
Failures are not shown in the user interface, but appear in the Celery
logs. Configuring Collecting error reports helps you to notice such
failures easier.

Performance issues

In case Weblate performs badly in some situation, please collect the relevant logs
showing the issue, and anything that might help figuring out where the code might be
improved.

In case some requests take too long without any indication, you might
want to install dogslow [https://pypi.org/project/dogslow/] along with
Collecting error reports and get pinpointed and detailed tracebacks in
the error collection tool.

Weblate internals

Note

This chapter will give you basic overview of Weblate internals.

Weblate derives most of its code structure from, and is based on Django [https://www.djangoproject.com/].

Directory structure

Quick overview of directory structure of Weblate main repository:

	docs
	Source code for this documentation, which can be built using Sphinx [https://www.sphinx-doc.org/].

	dev-docker
	Docker code to run development server, see Running Weblate locally in Docker.

	weblate
	Source code of Weblate as a Django [https://www.djangoproject.com/] application, see Weblate internals.

	weblate/static
	Client files (CSS, Javascript and images), see Weblate frontend.

Modules

Weblate consists of several Django applications (some optional, see
Optional Weblate modules):

accounts

User account, profiles and notifications.

addons

Addons to tweak Weblate behavior, see Addons.

api

API based on Django REST framework [https://www.django-rest-framework.org/].

auth

Authentication and permissions.

billing

The optional Billing module.

checks

Translation string Quality checks module.

fonts

Font rendering checks module.

formats

File format abstraction layer based on translate-toolkit.

gitexport

The optional Git exporter module.

lang

Module defining language and plural models.

legal

The optional Legal module.

machinery

Integration of machine translation services.

memory

Built in translation memory, see Translation Memory.

screenshots

Screenshots management and OCR module.

trans

Main module handling translations.

utils

Various helper utilities.

vcs

Version control system abstraction.

wladmin

Django admin interface customization.

Developing addons

Addons are way to customize localization workflow in Weblate.

	
class weblate.addons.base.BaseAddon(storage=None)

	
	
classmethod can_install(component, user)

	Check whether addon is compatible with given component.

	
configure(settings)

	Save configuration.

	
daily(component)

	Hook triggered daily.

	
classmethod get_add_form(user, component, **kwargs)

	Return configuration form for adding new addon.

	
get_settings_form(user, **kwargs)

	Return configuration form for this addon.

	
post_add(translation)

	Hook triggered after new translation is added.

	
post_commit(component)

	Hook triggered after changes are committed to the repository.

	
post_push(component)

	Hook triggered after repository is pushed upstream.

	
post_update(component, previous_head: str [https://docs.python.org/3.7/library/stdtypes.html#str], skip_push: bool [https://docs.python.org/3.7/library/functions.html#bool])

	Hook triggered after repository is updated from upstream.

	Parameters

	
	previous_head (str [https://docs.python.org/3.7/library/stdtypes.html#str]) – HEAD of the repository prior to update, can
be blank on initial clone.

	skip_push (bool [https://docs.python.org/3.7/library/functions.html#bool]) – Whether the addon operation should skip pushing
changes upstream. Usually you can pass this to
underlying methods as commit_and_push or
commit_pending.

	
pre_commit(translation, author)

	Hook triggered before changes are committed to the repository.

	
pre_push(component)

	Hook triggered before repository is pushed upstream.

	
pre_update(component)

	Hook triggered before repository is updated from upstream.

	
save_state()

	Save addon state information.

	
stay_on_create = False

	Base class for Weblate addons.

	
store_post_load(translation, store)

	Hook triggered after a file is parsed.

It receives an instance of a file format class as a argument.

This is useful to modify file format class parameters, for example
adjust how the file will be saved.

	
unit_pre_create(unit)

	Hook triggered before new unit is created.

Here is an example addon:

#
Copyright © 2012 - 2021 Michal Čihař <michal@cihar.com>
#
This file is part of Weblate <https://weblate.org/>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
#

from django.utils.translation import gettext_lazy as _

from weblate.addons.base import BaseAddon
from weblate.addons.events import EVENT_PRE_COMMIT

class ExampleAddon(BaseAddon):
 # Filter for compatible components, every key is
 # matched against property of component
 compat = {"file_format": {"po", "po-mono"}}
 # List of events addon should receive
 events = (EVENT_PRE_COMMIT,)
 # Addon unique identifier
 name = "weblate.example.example"
 # Verbose name shown in the user interface
 verbose = _("Example addon")
 # Detailed addon description
 description = _("This addon does nothing it is just an example.")

 # Callback to implement custom behavior
 def pre_commit(self, translation, author):
 return

Weblate frontend

The frontend is currently built using Bootstrap, jQuery and few third party libraries.

Supported browsers

Weblate supports the latest, stable releases of all major browsers and
platforms.

Alternative browsers which use the latest version of WebKit, Blink, or Gecko,
whether directly or via the platform’s web view API, are not explicitly
supported. However, Weblate should (in most cases) display and function
correctly in these browsers as well.

Older browsers might work, but some features might be limited.

Dependency management

The yarn package manager is used to update third party libraries. The
configuration lives in scripts/yarn and there is a wrapper script
scripts/yarn-update to upgrade the libraries, build them and copy to
correct locations in weblate/static/vendor, where all third partly
frontend code is located.

Adding new third-party library typically consists of:

Add a yarn package
yarn --cwd scripts/yarn add PACKAGE
Edit the script to copy package to the static folder
edit scripts/yarn-update
Run the update script
./scripts/yarn-update
Add files to git
git add .

Coding style

Weblate relies on Prettier [https://prettier.io/] for the code formatting for both JavaScript and CSS files.

We also use ESLint [https://eslint.org/] to check the JavaScript code.

Localization

Should you need any user visible text in the frontend code, it should be
localizable. In most cases all you need is to wrap your text inside gettext
function, but there are more complex features available:

document.write(gettext('this is to be translated'));

var object_count = 1 // or 0, or 2, or 3, ...
s = ngettext('literal for the singular case',
 'literal for the plural case', object_count);

fmts = ngettext('There is %s object. Remaining: %s',
 'There are %s objects. Remaining: %s', 11);
s = interpolate(fmts, [11, 20]);
// s is 'There are 11 objects. Remaining: 20'

See also

Translation topic in the Django documentation [https://docs.djangoproject.com/en/stable/topics/i18n/translation/]

Icons

Weblate currently uses material design icons. In case you are looking for new
symbol, check Material Design Icons [https://materialdesignicons.com/] or Material Design Resources [https://material.io/resources/icons/].

Additionally, there is scripts/optimize-svg to reduce size of the SVG
as most of the icons are embedded inside the HTML to allow styling of the
paths.

Reporting issues in Weblate

Our issue tracker [https://github.com/WeblateOrg/weblate/issues] is hosted at GitHub:

Feel welcome to report any issues with, or suggest improvement of Weblate there.
If what you have found is a security issue in Weblate, please consult the «Security
issues» section below.

Security issues

In order to give the community time to respond and upgrade you are strongly urged to
report all security issues privately. HackerOne is used to handle
security issues, and can be reported directly at HackerOne [https://hackerone.com/weblate].

Alternatively, report to security@weblate.org, which ends up on
HackerOne as well.

If you don’t want to use HackerOne, for whatever reason, you can send the report
by e-mail to michal@cihar.com. You can choose to encrypt it using this PGP key
3CB 1DF1 EF12 CF2A C0EE 5A32 9C27 B313 42B7 511D. You can also get the PGP
key from Keybase [https://keybase.io/nijel].

Note

Weblate depends on third party components for many things. In case
you find a vulnerability affecting one of those components in general,
please report it directly to the respective project.

Some of these are:

	Django [https://docs.djangoproject.com/en/stable/internals/security/]

	Django REST framework [https://www.django-rest-framework.org/#security]

	Python Social Auth [https://github.com/python-social-auth]

Weblate testsuite and continuous integration

Testsuites exist for most of the current code, increase coverage by adding testcases for any new
functionality, and verify that it works.

Continuous integration

Current test results can be found on
GitHub Actions [https://github.com/WeblateOrg/weblate/actions] and coverage
is reported on Codecov [https://codecov.io/github/WeblateOrg/weblate].

There are several jobs to verify different aspects:

	Unit tests

	Documentation build and external links

	Migration testing from all supported releases

	Code linting

	Setup verification (ensures that generated dist files do not miss anything and can be tested)

The configuration for the CI is in .github/workflows directory. It
heavily uses helper scripts stored in ci directory. The scripts can be
also executed manually, but they require several environment variables, mostly
defining Django settings file to use and database connection. The example
definition of that is in scripts/test-database:

Simple way to configure test database from environment

Database backend to use postgresql / mysql / mariadb
export CI_DATABASE=${1:-postgresql}

Database server configuration
export CI_DB_USER=weblate
export CI_DB_PASSWORD=weblate
export CI_DB_HOST=127.0.0.1

Django settings module to use
export DJANGO_SETTINGS_MODULE=weblate.settings_test

The simple execution can look like:

. scripts/test-database
./ci/run-migrate
./ci/run-test
./ci/run-docs
./ci/run-setup

Local testing

To run a testsuite locally, use:

DJANGO_SETTINGS_MODULE=weblate.settings_test ./manage.py test

Hint

You will need a database (PostgreSQL) server to be used for tests. By
default Django creates separate database to run tests with test_ prefix,
so in case your settings is configured to use weblate, the tests will
use test_weblate database. See Database setup for Weblate for setup
instructions.

The weblate/settings_test.py is used in CI environment as well (see
Continuous integration) and can be tuned using environment variables:

Simple way to configure test database from environment

Database backend to use postgresql / mysql / mariadb
export CI_DATABASE=${1:-postgresql}

Database server configuration
export CI_DB_USER=weblate
export CI_DB_PASSWORD=weblate
export CI_DB_HOST=127.0.0.1

Django settings module to use
export DJANGO_SETTINGS_MODULE=weblate.settings_test

Prior to running tests you should collect static files as some tests rely on them being present:

DJANGO_SETTINGS_MODULE=weblate.settings_test ./manage.py collectstatic

You can also specify individual tests to run:

DJANGO_SETTINGS_MODULE=weblate.settings_test ./manage.py test weblate.gitexport

Hint

The tests can also be executed inside developer docker container, see Running Weblate locally in Docker.

See also

See Testing in Django [https://docs.djangoproject.com/en/stable/topics/testing/] for more info on running and
writing tests for Django.

Data schemas

Weblate uses JSON Schema [https://json-schema.org/] to define layout of external JSON files.

Weblate Translation Memory Schema

	https://weblate.org/schemas/weblate-memory.schema.json

	type

	array

	items

	The Translation Memory Item

	type

	object

	properties

	
	category

	The String Category

	1 is global, 2 is shared, 10000000+ are project specific, 20000000+ are user specific

	type

	integer

	examples

	1

	minimum

	0

	default

	1

	
	origin

	The String Origin

	Filename or component name

	type

	string

	examples

	test.tmx

	project/component

	default

	

	
	source

	The Source String

	type

	string

	examples

	Hello

	minLength

	1

	default

	

	
	source_language

	The Source Language

	ISO 639-1 / ISO 639-2 / IETF BCP 47

	type

	string

	examples

	en

	pattern

	^[^]+$

	default

	

	
	target

	The Target String

	type

	string

	examples

	Ahoj

	minLength

	1

	default

	

	
	target_language

	The Target Language

	ISO 639-1 / ISO 639-2 / IETF BCP 47

	type

	string

	examples

	cs

	pattern

	^[^]+$

	default

	

	additionalProperties

	False

	definitions

See also

Translation Memory,
dump_memory,
import_memory

Weblate user data export

	https://weblate.org/schemas/weblate-userdata.schema.json

	type

	object

	properties

	
	basic

	Basic

	type

	object

	properties

	
	username

	Username

	type

	string

	examples

	admin

	default

	

	
	full_name

	Full name

	type

	string

	examples

	Weblate Admin

	default

	

	
	email

	E-mail

	type

	string

	examples

	noreply@example.com

	default

	

	
	date_joined

	Date joined

	type

	string

	examples

	2019-11-18T18:53:54.862Z

	default

	

	
	profile

	Profile

	type

	object

	properties

	
	language

	Language

	type

	string

	examples

	cs

	pattern

	^.*$

	default

	

	
	suggested

	Number of suggested strings

	type

	integer

	examples

	1

	default

	0

	
	translated

	Number of translated strings

	type

	integer

	examples

	24

	default

	0

	
	uploaded

	Number of uploaded screenshots

	type

	integer

	examples

	1

	default

	0

	
	hide_completed

	Hide completed translations on the dashboard

	type

	boolean

	examples

	False

	default

	True

	
	secondary_in_zen

	Show secondary translations in the Zen mode

	type

	boolean

	examples

	True

	default

	True

	
	hide_source_secondary

	Hide source if a secondary translation exists

	type

	boolean

	examples

	False

	default

	True

	
	editor_link

	Editor link

	type

	string

	examples

	

	pattern

	^.*$

	default

	

	
	translate_mode

	Translation editor mode

	type

	integer

	examples

	0

	default

	0

	
	zen_mode

	Zen editor mode

	type

	integer

	examples

	0

	default

	0

	
	special_chars

	Special characters

	type

	string

	examples

	

	pattern

	^.*$

	default

	

	
	dashboard_view

	Default dashboard view

	type

	integer

	examples

	1

	default

	0

	
	dashboard_component_list

	Default component list

	default

	null

	anyOf

	type

	null

	type

	integer

	
	languages

	Translated languages

	type

	array

	default

	

	items

	Language code

	type

	string

	examples

	cs

	pattern

	^.*$

	default

	

	
	secondary_languages

	Secondary languages

	type

	array

	default

	

	items

	Language code

	type

	string

	examples

	sk

	pattern

	^.*$

	default

	

	
	watched

	Watched projects

	type

	array

	default

	

	items

	Project slug

	type

	string

	examples

	weblate

	pattern

	^.*$

	default

	

	
	auditlog

	Audit log

	type

	array

	default

	

	items

	Items

	type

	object

	properties

	
	address

	IP address

	type

	string

	examples

	127.0.0.1

	pattern

	^.*$

	default

	

	
	user_agent

	User agent

	type

	string

	examples

	PC / Linux / Firefox 70.0

	pattern

	^.*$

	default

	

	
	timestamp

	Timestamp

	type

	string

	examples

	2019-11-18T18:58:30.845Z

	pattern

	^.*$

	default

	

	
	activity

	Activity

	type

	string

	examples

	login

	pattern

	^.*$

	default

	

	definitions

See also

User profile,
dumpuserdata

Releasing Weblate

Releasing schedule

Weblate has two month release cycle for releases (x.y). These are usually
followed by a bunch of bugfix releases to fix issues which slip into them
(x.y.z).

The change in the major version indicates that the upgrade process can not skip
this version - you always have to upgrade to x.0 before upgrading to higher x.y
releases.

See also

Upgrading Weblate

Release planning

The features for upcoming releases are collected using GitHub milestones, you
can see our roadmap at <https://github.com/WeblateOrg/weblate/milestones>.

Release process

Things to check prior to release:

	Check newly translated languages by ./scripts/list-translated-languages.

	Set final version by ./scripts/prepare-release.

	Make sure screenshots are up to date make -C docs update-screenshots.

Perform the release:

	Create a release ./scripts/create-release --tag (see below for requirements).

Post release manual steps:

	Update Docker image.

	Close GitHub milestone.

	Once the Docker image is tested, add a tag and push it.

	Update Helm chart to new version.

	Include new version in .github/workflows/migrations.yml to cover it in migration testing.

	Increase version in the repository by ./scripts/set-version.

To create tags using the ./scripts/create-release script you will need following:

	GnuPG with private key used to sign the release

	Push access to Weblate git repositories (it pushes tags)

	Configured hub tool and access to create releases on the Weblate repo

	SSH access to Weblate download server (the Website downloads are copied there)

Security and privacy

Tip

At Weblate, security maintains an environment that values the privacy of our users.

Weblate development follows the Best Practices of the Linux Foundation’s Core Infrastructure Initiative [https://bestpractices.coreinfrastructure.org/projects/552].

Tracking dependencies for vulnerabilities

We do monitor security issues in our dependencies using Dependabot [https://dependabot.com/]. This covers Python and JavaScript libraries and
latest stable release should have adjusted dependencies to avoid
vulnerabilities.

Hint

There might be vulnerabilities in third-party libraries which do not affect
Weblate, and we do not address these in a bugfix release.

Docker containers security

The Docker containers are scanned using Anchore [https://anchore.com/] and
Trivy [https://github.com/aquasecurity/trivy].

This allows us to detect vulnerabilities early and release an updated version
of the container containing fixes.

You can get the results of these scans at GitHub - they are stored as artifacts
on our CI as Static Analysis Results Interchange Format (SARIF).

See also

Continuous integration

About Weblate

Project goals

Web-based continuous localization tool with tight Version control integration supporting a wide range of
Supported file formats, making it easy for translators to contribute.

Project name

«Weblate» is a portmanteau of the words «web» and «translate».

Project website

The landing page is <https://weblate.org/> and a cloud hosted service at
<https://hosted.weblate.org/>. This documentation can be found on
<https://docs.weblate.org/>.

Project logos

The project logos and other graphics is available in
<https://github.com/WeblateOrg/graphics/> repository.

Leadership

This project is maintained by Michal Čihař <michal@cihar.com>.

Authors

Weblate was started by Michal Čihař <michal@cihar.com>. Since its inception in
2012, thousands of people have contributed.

License

Copyright (C) 2012 - 2021 Michal Čihař <michal@cihar.com>

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program. If not, see <https://www.gnu.org/licenses/>.

Weblate 4.5.1

Released on March 05th 2021.

	Fixed editing of glossary flags in some corner cases.

	Extend metrics usage to improve performance of several pages.

	Store correct source language in TMX files.

	Better handling for uploads of monolingual PO using API.

	Improved alerts behavior glossaries.

	Improved Markdown link checks.

	Indicate glossary and source language in breadcrumbs.

	Paginated component listing of huge projects.

	Improved performance of translation, component or project removal.

	Improved bulk edit performance.

	Fixed preserving «Needs editing» and «Approved» states for ODF files.

	Improved interface for customizing translation-file downloads

Weblate 4.5

Released on February 19th 2021.

	Added support for lua-format used in gettext PO.

	Added support for sharing a component between projects.

	Fixed multiple unnamed variables check behavior with multiple format flags.

	Dropped mailing list field on the project in favor of generic instructions for translators.

	Added pseudolocale generation addon.

	Added support for TermBase eXchange files.

	Added support for manually defining string variants using a flag.

	Improved performance of consistency checks.

	Improved performance of translation memory for long strings.

	Added support for searching in explanations.

	Strings can now be added and removed in bilingual formats as well.

	Extend list of supported languages in Amazon Translate machine translation.

	Automatically enable Java MessageFormat checks for Java Properties.

	Added a new upload method to add new strings to a translation.

	Added a simple interface to browse translation.

	Glossaries are now stored as regular components.

	Dropped specific API for glossaries as component API is used now.

	Added simplified interface to toggle some of the flags.

	Added support for non-translatable or forbidden terms in the glossary.

	Added support for defining terminology in a glossary.

	Moved text direction toggle to get more space for the visual keyboard.

	Added option to automatically watch projects user-contributed to.

	Added check whether translation matches the glossary.

	Added support for customizing navigation text color.

Weblate 4.4.2

Released on January 14th 2021.

	Fixed corruption of one distributed MO file.

Weblate 4.4.1

Released on January 13th 2021.

	Fixed reverting plural changes.

	Fixed displaying help for project settings.

	Improved administration of users.

	Improved handling of context in monolingual PO files.

	Fixed cleanup addon behavior with HTML, ODF, IDML and Windows RC formats.

	Fixed parsing of location from CSV files.

	Use content compression for file downloads.

	Improved user experience on importing from ZIP file.

	Improved detection of file format for uploads.

	Avoid duplicate pull requests on Pagure.

	Improved performance when displaying ghost translations.

	Reimplemented translation editor to use native browser textarea.

	Fixed cleanup addon breaking adding new strings.

	Added API for addons.

Weblate 4.4

Released on December 15th 2020.

	Improved validation when creating a component.

	Weblate now requires Django 3.1.

	Added support for appearance customization in the management interface.

	Fixed read-only state handling in bulk edit.

	Improved CodeMirror integration.

	Added addon to remove blank strings from translation files.

	The CodeMirror editor is now used for translations.

	Syntax highlighting in translation editor for XML, HTML, Markdown and reStructuredText.

	Highlight placeables in translation editor.

	Improved support for non-standard language codes.

	Added alert when using ambiguous language codes.

	The user is now presented with a filtered list of languages when adding a new translation.

	Extended search capabilities for changes in history.

	Improved billing detail pages and libre hosting workflow.

	Extended translation statistics API.

	Improved «other translations» tab while translating.

	Added tasks API.

	Improved performance of file upload.

	Improved display of user defined special characters.

	Improved performance of auto-translation.

	Several minor improvements in the user interface.

	Improved naming of ZIP downloads.

	Added option for getting notifications on unwatched projects.

Weblate 4.3.2

Released on November 4th 2020.

	Fixed crash on certain component filemasks.

	Improved accuracy of the consecutive duplicated words check.

	Added support for Pagure pull requests.

	Improved error messages for failed registrations.

	Reverted rendering developer comments as Markdown.

	Simplified setup of Git repositories with different default branch than «master».

	Newly created internal repositories now use main as the default branch.

	Reduced false positives rate of unchanged translation while translating reStructuredText.

	Fixed CodeMirror display issues in some situations.

	Renamed Template group to «Sources» to clarify its meaning.

	Fixed GitLab pull requests on repositories with longer paths.

Weblate 4.3.1

Released on October 21st 2020.

	Improved auto-translation performance.

	Fixed session expiry for authenticated users.

	Add support for hiding version information.

	Improve hooks compatibility with Bitbucket Server.

	Improved performance of translation memory updates.

	Reduced memory usage.

	Improved performance of Matrix view.

	Added confirmation before removing a user from a project.

Weblate 4.3

Released on October 15th 2020.

	Include user stats in the API.

	Fixed component ordering on paginated pages.

	Define source language for a glossary.

	Rewritten support for GitHub and GitLab pull requests.

	Fixed stats counts after removing suggestion.

	Extended public user profile.

	Fixed configuration of enforced checks.

	Improve documentation about built-in backups.

	Moved source language attribute from project to a component.

	Add Vue I18n formatting check.

	Generic placeholders check now supports regular expressions.

	Improved look of Matrix mode.

	Machinery is now called automatic suggestions.

	Added support for interacting with multiple GitLab or GitHub instances.

	Extended API to cover project updates, unit updates and removals and glossaries.

	Unit API now properly handles plural strings.

	Component creation can now handle ZIP file or document upload.

	Consolidated API response status codes.

	Support Markdown in contributor agreement.

	Improved source strings tracking.

	Improved JSON, YAML and CSV formats compatibility.

	Added support for removing strings.

	Improved performance of file downloads.

	Improved repository management view.

	Automatically enable java-format for Android.

	Added support for localized screenshots.

	Added support for Python 3.9.

	Fixed translating HTML files under certain conditions.

Weblate 4.2.2

Released on September 2nd 2020.

	Fixed matching of source strings for JSON formats.

	Fixed login redirect for some authentication configurations.

	Fixed LDAP authentication with group sync.

	Fixed crash in reporting automatic translation progress.

	Fixed Git commit squashing with trailers enabled.

	Fixed creating local VCS components using API.

Weblate 4.2.1

Released on August 21st 2020.

	Fixed saving plurals for some locales in Android resources.

	Fixed crash in the cleanup addon for some XLIFF files.

	Allow setting up localization CDN in Docker image.

Weblate 4.2

Released on August 18th 2020.

	Improved user pages and added listing of users.

	Dropped support for migrating from 3.x releases, migrate through 4.1 or 4.0.

	Added exports into several monolingual formats.

	Improved activity charts.

	Number of displayed nearby strings can be configured.

	Added support for locking components experiencing repository errors.

	Simplified main navigation (replaced buttons with icons).

	Improved language code handling in Google Translate integration.

	The Git squash addon can generate Co-authored-by: trailers.

	Improved query search parser.

	Improved user feedback from format strings checks.

	Improved performance of bulk state changes.

	Added compatibility redirects after project or component renaming.

	Added notifications for strings approval, component locking and license change.

	Added support for ModernMT.

	Allow to avoid overwriting approved translations on file upload.

	Dropped support for some compatibility URL redirects.

	Added check for ECMAScript template literals.

	Added option to watch a component.

	Removed leading dot from JSON unit keys.

	Removed separate Celery queue for translation memory.

	Allow translating all components a language at once.

	Allow to configure Content-Security-Policy HTTP headers.

	Added support for aliasing languages at project level.

	New addon to help with HTML or JavaScript localization, see JavaScript localization CDN.

	The Weblate domain is now configured in the settings, see SITE_DOMAIN.

	Add support for searching by component and project.

Weblate 4.1.1

Released on June 19th 2020.

	Fixed changing autofix or addons configuration in Docker.

	Fixed possible crash in «About» page.

	Improved installation of byte-compiled locale files.

	Fixed adding words to glossary.

	Fixed keyboard shortcuts for machinery.

	Removed debugging output causing discarding log events in some setups.

	Fixed lock indication on project listing.

	Fixed listing GPG keys in some setups.

	Added option for which DeepL API version to use.

	Added support for acting as SAML Service Provider, see SAML authentication.

Weblate 4.1

Released on June 15th 2020.

	Added support for creating new translations with included country code.

	Added support for searching source strings with screenshot.

	Extended info available in the stats insights.

	Improved search editing on «Translate» pages.

	Improve handling of concurrent repository updates.

	Include source language in project creation form.

	Include changes count in credits.

	Fixed UI language selection in some cases.

	Allow to whitelist registration methods with registrations closed.

	Improved lookup of related terms in glossary.

	Improved translation memory matches.

	Group same machinery results.

	Add direct link to edit screenshot from translate page.

	Improved removal confirmation dialog.

	Include templates in ZIP download.

	Add support for Markdown and notification configuration in announcements.

	Extended details in check listings.

	Added support for new file formats: Laravel PHP strings, HTML files, OpenDocument Format, IDML Format, Windows RC files, INI translations, Inno Setup INI translations, GWT properties, go-i18n JSON files, ARB File.

	Consistently use dismissed as state of dismissed checks.

	Add support for configuring default addons to enable.

	Fixed editor keyboard shortcut to dismiss checks.

	Improved machine translation of strings with placeholders.

	Show ghost translation for user languages to ease starting them.

	Improved language code parsing.

	Show translations in user language first in the list.

	Renamed shapings to more generic name variants.

	Added new quality checks: Multiple unnamed variables, Long untranslated, Consecutive duplicated words.

	Reintroduced support for wiping translation memory.

	Fixed option to ignore source checks.

	Added support for configuring different branch for pushing changes.

	API now reports rate limiting status in the HTTP headers.

	Added support for Google Translate V3 API (Advanced).

	Added ability to restrict access on component level.

	Added support for whitespace and other special chars in translation flags, see Customizing behavior using flags.

	Always show rendered text check if enabled.

	API now supports filtering of changes.

	Added support for sharing glossaries between projects.

Weblate 4.0.4

Released on May 07th 2020.

	Fixed testsuite execution on some Python 3.8 environments.

	Typo fixes in the documentation.

	Fixed creating components using API in some cases.

	Fixed JavaScript errors breaking mobile navigation.

	Fixed crash on displaying some checks.

	Fixed screenshots listing.

	Fixed monthly digest notifications.

	Fixed intermediate translation behavior with units non existing in translation.

Weblate 4.0.3

Released on May 02nd 2020.

	Fixed possible crash in reports.

	User mentions in comments are now case insensitive.

	Fixed PostgreSQL migration for non superusers.

	Fixed changing the repository URL while creating component.

	Fixed crash when upstream repository is gone.

Weblate 4.0.2

Released on April 27th 2020.

	Improved performance of translation stats.

	Improved performance of changing labels.

	Improved bulk edit performance.

	Improved translation memory performance.

	Fixed possible crash on component deletion.

	Fixed displaying of translation changes in some corner cases.

	Improved warning about too long celery queue.

	Fixed possible false positives in the consistency check.

	Fixed deadlock when changing linked component repository.

	Included edit distance in changes listing and CSV and reports.

	Avoid false positives of punctuation spacing check for Canadian French.

	Fixed XLIFF export with placeholders.

	Fixed false positive with zero width check.

	Improved reporting of configuration errors.

	Fixed bilingual source upload.

	Automatically detect supported languages for DeepL machine translation.

	Fixed progress bar display in some corner cases.

	Fixed some checks triggering on non translated strings.

Weblate 4.0.1

Released on April 16th 2020.

	Fixed package installation from PyPI.

Weblate 4.0

Released on April 16th 2020.

	Weblate now requires Python 3.6 or newer.

	Added management overview of component alerts.

	Added component alert for broken repository browser URLs.

	Improved sign in and registration pages.

	Project access control and workflow configuration integrated to project settings.

	Added check and highlighter for i18next interpolation and nesting.

	Added check and highlighter for percent placeholders.

	Display suggestions failing checks.

	Record source string changes in history.

	Upgraded Microsoft Translator to version 3 API.

	Reimplemented translation memory backend.

	Added support for several is: lookups in Searching.

	Allow to make Unchanged translation avoid internal blacklist.

	Improved comments extraction from monolingual po files.

	Renamed whiteboard messages to announcements.

	Fixed occasional problems with registration mails.

	Improved LINGUAS update addon to handle more syntax variants.

	Fixed editing monolingual XLIFF source file.

	Added support for exact matching in Searching.

	Extended API to cover screenshots, users, groups, componentlists and extended creating projects.

	Add support for source upload on bilingual translations.

	Added support for intermediate language from developers.

	Added support for source strings review.

	Extended download options for platform wide translation memory.

Weblate 3.x series

Weblate 3.11.3

Released on March 11th 2020.

	Fixed searching for fields with certain priority.

	Fixed predefined query for recently added strings.

	Fixed searching returning duplicate matches.

	Fixed notifications rendering in Gmail.

	Fixed reverting changes from the history.

	Added links to events in digest notifications.

	Fixed email for account removal confirmation.

	Added support for Slack authentication in Docker container.

	Avoid sending notifications for not subscribed languages.

	Include Celery queues in performance overview.

	Fixed documentation links for addons.

	Reduced false negatives for unchanged translation check.

	Raised bleach dependency to address CVE-2020-6802.

	Fixed listing project level changes in history.

	Fixed stats invalidation in some corner cases.

	Fixed searching for certain string states.

	Improved format string checks behavior on missing percent.

	Fixed authentication using some third party providers.

Weblate 3.11.2

Released on February 22nd 2020.

	Fixed rendering of suggestions.

	Fixed some strings wrongly reported as having no words.

Weblate 3.11.1

Released on February 20th 2020.

	Documented Celery setup changes.

	Improved filename validation on component creation.

	Fixed minimal versions of some dependencies.

	Fixed adding groups with certain Django versions.

	Fixed manual pushing to upstream repository.

	Improved glossary matching.

Weblate 3.11

Released on February 17th 2020.

	Allow using VCS push URL during component creation via API.

	Rendered width check now shows image with the render.

	Fixed links in notifications e-mails.

	Improved look of plaintext e-mails.

	Display ignored checks and allow to make them active again.

	Display nearby keys on monolingual translations.

	Added support for grouping string shapings.

	Recommend upgrade to new Weblate versions in the system checks.

	Provide more detailed analysis for duplicate language alert.

	Include more detailed license info on the project pages.

	Automatically unshallow local copies if needed.

	Fixed download of strings needing action.

	New alert to warn about using the same filemask twice.

	Improve XML placeables extraction.

	The SINGLE_PROJECT can now enforce redirection to chosen project.

	Added option to resolve comments.

	Added bulk editing of flags.

	Added support for String labels.

	Added bulk edit addon.

	Added option for Enforcing checks.

	Increased default validity of confirmation links.

	Improved Matomo integration.

	Fixed Has been translated to correctly handle source string change.

	Extended automatic updates configuration by AUTO_UPDATE.

	LINGUAS addons now do full sync of translations in Weblate.

Weblate 3.10.3

Released on January 18th 2020.

	Support for translate-toolkit 2.5.0.

Weblate 3.10.2

Released on January 18th 2020.

	Add lock indication to projects.

	Fixed CSS bug causing flickering in some web browsers.

	Fixed searching on systems with non-English locales.

	Improved repository matching for GitHub and Bitbucket hooks.

	Fixed data migration on some Python 2.7 installations.

	Allow configuration of Git shallow cloning.

	Improved background notification processing.

	Fixed broken form submission when navigating back in web browser.

	New addon to configure YAML formatting.

	Fixed same plurals check to not fire on single plural form languages.

	Fixed regex search on some fields.

Weblate 3.10.1

Released on January 9th 2020.

	Extended API with translation creation.

	Fixed several corner cases in data migrations.

	Compatibility with Django 3.0.

	Improved data clean-up performance.

	Added support for customizable security.txt.

	Improved breadcrumbs in changelog.

	Improved translations listing on dashboard.

	Improved HTTP responses for webhooks.

	Added support for GitLab merge requests in Docker container.

Weblate 3.10

Released on December 20th 2019.

	Improved application user interface.

	Added doublespace check.

	Fixed creating new languages.

	Avoid sending auditlog notifications to deleted e-mails.

	Added support for read only strings.

	Added support for Markdown in comments.

	Allow placing translation instruction text in project info.

	Add copy to clipboard for secondary languages.

	Improved support for Mercurial.

	Improved Git repository fetching performance.

	Add search lookup for age of string.

	Show source language for all translations.

	Show context for nearby strings.

	Added support for notifications on repository operations.

	Improved translation listings.

	Extended search capabilities.

	Added support for automatic translation strings marked for editing.

	Avoid sending duplicate notifications for linked component alerts.

	Improve default merge request message.

	Better indicate string state in Zen mode.

	Added support for more languages in Yandex Translate.

	Improved look of notification e-mails.

	Provide choice for translation license.

Weblate 3.9.1

Released on October 28th 2019.

	Remove some unneeded files from backups.

	Fixed potential crash in reports.

	Fixed cross database migration failure.

	Added support for force pushing Git repositories.

	Reduced risk of registration token invalidation.

	Fixed account removal hitting rate limiter.

	Added search based on priority.

	Fixed possible crash on adding strings to JSON file.

	Safe HTML check and fixup now honor source string markup.

	Avoid sending notifications to invited and deleted users.

	Fix SSL connection to redis in Celery in Docker container.

Weblate 3.9

Released on October 15th 2019.

	Include Weblate metadata in downloaded files.

	Improved UI for failing checks.

	Indicate missing strings in format checks.

	Separate check for French punctuation spacing.

	Add support for fixing some of quality checks errors.

	Add separate permission to create new projects.

	Extend stats for char counts.

	Improve support for Java style language codes.

	Added new generic check for placeholders.

	Added support for WebExtension JSON placeholders.

	Added support for flat XML format.

	Extended API with project, component and translation removal and creation.

	Added support for Gitea and Gitee webhooks.

	Added new custom regex based check.

	Allow to configure contributing to shared translation memory.

	Added ZIP download for more translation files.

	Make XLIFF standard compliant parsing of maxwidth and font.

	Added new check and fixer for safe HTML markup for translating web applications.

	Add component alert on unsupported configuration.

	Added automatic translation addon to bootstrap translations.

	Extend automatic translation to add suggestions.

	Display addon parameters on overview.

	Sentry is now supported through modern Sentry SDK instead of Raven.

	Changed example settings to be better fit for production environment.

	Added automated backups using BorgBackup.

	Split cleanup addon for RESX to avoid unwanted file updates.

	Added advanced search capabilities.

	Allow users to download their own reports.

	Added localization guide to help configuring components.

	Added support for GitLab merge requests.

	Improved display of repository status.

	Perform automated translation in the background.

Weblate 3.8

Released on August 15th 2019.

	Added support for simplified creating of similar components.

	Added support for parsing translation flags from the XML based file formats.

	Log exceptions into Celery log.

	Improve performance of repository scoped addons.

	Improved look of notification e-mails.

	Fixed password reset behavior.

	Improved performance on most of translation pages.

	Fixed listing of languages not known to Weblate.

	Add support for cloning addons to discovered components.

	Add support for replacing file content with uploaded.

	Add support for translating non VCS based content.

	Added OpenGraph widget image to use on social networks.

	Added support for animated screenshots.

	Improved handling of monolingual XLIFF files.

	Avoid sending multiple notifications for single event.

	Add support for filtering changes.

	Extended predefined periods for reporting.

	Added webhook support for Azure Repos.

	New opt-in notifications on pending suggestions or untranslated strings.

	Add one click unsubscribe link to notification e-mails.

	Fixed false positives with Has been translated check.

	New management interface for admins.

	String priority can now be specified using flags.

	Added language management views.

	Add checks for Qt library and Ruby format strings.

	Added configuration to better fit single project installations.

	Notify about new string on source string change on monolingual translations.

	Added separate view for translation memory with search capability.

Weblate 3.7.1

Released on June 28th 2019.

	Documentation updates.

	Fixed some requirements constraints.

	Updated language database.

	Localization updates.

	Various user interface tweaks.

	Improved handling of unsupported but discovered translation files.

	More verbosely report missing file format requirements.

Weblate 3.7

Released on June 21st 2019.

	Added separate Celery queue for notifications.

	Use consistent look with application for API browsing.

	Include approved stats in the reports.

	Report progress when updating translation component.

	Allow to abort running background component update.

	Extend template language for filename manipulations.

	Use templates for editor link and repository browser URL.

	Indicate max length and current characters count when editing translation.

	Improved handling of abbreviations in unchanged translation check.

	Refreshed landing page for new contributors.

	Add support for configuring msgmerge addon.

	Delay opening SMTP connection when sending notifications.

	Improved error logging.

	Allow custom location in MO generating addon.

	Added addons to cleanup old suggestions or comments.

	Added option to enable horizontal mode in the Zen editor.

	Improved import performance with many linked components.

	Fixed examples installation in some cases.

	Improved rendering of alerts in changes.

	Added new horizontal stats widget.

	Improved format strings check on plurals.

	Added font management tool.

	New check for rendered text dimensions.

	Added support for subtitle formats.

	Include overall completion stats for languages.

	Added reporting at project and global scope.

	Improved user interface when showing translation status.

	New Weblate logo and color scheme.

	New look of bitmap badges.

Weblate 3.6.1

Released on April 26th 2019.

	Improved handling of monolingual XLIFF files.

	Fixed digest notifications in some corner cases.

	Fixed addon script error alert.

	Fixed generating MO file for monolingual PO files.

	Fixed display of uninstalled checks.

	Indicate administered projects on project listing.

	Allow update to recover from missing VCS repository.

Weblate 3.6

Released on April 20th 2019.

	Add support for downloading user data.

	Addons are now automatically triggered upon installation.

	Improved instructions for resolving merge conflicts.

	Cleanup addon is now compatible with app store metadata translations.

	Configurable language code syntax when adding new translations.

	Warn about using Python 2 with planned termination of support in April 2020.

	Extract special characters from the source string for visual keyboard.

	Extended contributor stats to reflect both source and target counts.

	Admins and consistency addons can now add translations even if disabled for users.

	Fixed description of toggle disabling Language-Team header manipulation.

	Notify users mentioned in comments.

	Removed file format autodetection from component setup.

	Fixed generating MO file for monolingual PO files.

	Added digest notifications.

	Added support for muting component notifications.

	Added notifications for new alerts, whiteboard messages or components.

	Notifications for administered projects can now be configured.

	Improved handling of three letter language codes.

Weblate 3.5.1

Released on March 10th 2019.

	Fixed Celery systemd unit example.

	Fixed notifications from HTTP repositories with login.

	Fixed race condition in editing source string for monolingual translations.

	Include output of failed addon execution in the logs.

	Improved validation of choices for adding new language.

	Allow to edit file format in component settings.

	Update installation instructions to prefer Python 3.

	Performance and consistency improvements for loading translations.

	Make Microsoft Terminology service compatible with current Zeep releases.

	Localization updates.

Weblate 3.5

Released on March 3rd 2019.

	Improved performance of built-in translation memory.

	Added interface to manage global translation memory.

	Improved alerting on bad component state.

	Added user interface to manage whiteboard messages.

	Addon commit message now can be configured.

	Reduce number of commits when updating upstream repository.

	Fixed possible metadata loss when moving component between projects.

	Improved navigation in the Zen mode.

	Added several new quality checks (Markdown related and URL).

	Added support for app store metadata files.

	Added support for toggling GitHub or Gerrit integration.

	Added check for Kashida letters.

	Added option to squash commits based on authors.

	Improved support for XLSX file format.

	Compatibility with Tesseract 4.0.

	Billing addon now removes projects for unpaid billings after 45 days.

Weblate 3.4

Released on January 22nd 2019.

	Added support for XLIFF placeholders.

	Celery can now utilize multiple task queues.

	Added support for renaming and moving projects and components.

	Include characters counts in reports.

	Added guided adding of translation components with automatic detection of translation files.

	Customizable merge commit messages for Git.

	Added visual indication of component alerts in navigation.

	Improved performance of loading translation files.

	New addon to squash commits prior to push.

	Improved displaying of translation changes.

	Changed default merge style to rebase and made that configurable.

	Better handle private use subtags in language code.

	Improved performance of fulltext index updates.

	Extended file upload API to support more parameters.

Weblate 3.3

Released on November 30th 2018.

	Added support for component and project removal.

	Improved performance for some monolingual translations.

	Added translation component alerts to highlight problems with a translation.

	Expose XLIFF string resname as context when available.

	Added support for XLIFF states.

	Added check for non writable files in DATA_DIR.

	Improved CSV export for changes.

Weblate 3.2.2

Released on October 20th 2018.

	Remove no longer needed Babel dependency.

	Updated language definitions.

	Improve documentation for addons, LDAP and Celery.

	Fixed enabling new dos-eol and auto-java-messageformat flags.

	Fixed running setup.py test from PyPI package.

	Improved plurals handling.

	Fixed translation upload API failure in some corner cases.

	Fixed updating Git configuration in case it was changed manually.

Weblate 3.2.1

Released on October 10th 2018.

	Document dependency on backports.csv on Python 2.7.

	Fix running tests under root.

	Improved error handling in gitexport module.

	Fixed progress reporting for newly added languages.

	Correctly report Celery worker errors to Sentry.

	Fixed creating new translations with Qt Linguist.

	Fixed occasional fulltext index update failures.

	Improved validation when creating new components.

	Added support for cleanup of old suggestions.

Weblate 3.2

Released on October 6th 2018.

	Add install_addon management command for automated addon installation.

	Allow more fine grained ratelimit settings.

	Added support for export and import of Excel files.

	Improve component cleanup in case of multiple component discovery addons.

	Rewritten Microsoft Terminology machine translation backend.

	Weblate now uses Celery to offload some processing.

	Improved search capabilities and added regular expression search.

	Added support for Youdao Zhiyun API machine translation.

	Added support for Baidu API machine translation.

	Integrated maintenance and cleanup tasks using Celery.

	Improved performance of loading translations by almost 25%.

	Removed support for merging headers on upload.

	Removed support for custom commit messages.

	Configurable editing mode (zen/full).

	Added support for error reporting to Sentry.

	Added support for automated daily update of repositories.

	Added support for creating projects and components by users.

	Built in translation memory now automatically stores translations done.

	Users and projects can import their existing translation memories.

	Better management of related strings for screenshots.

	Added support for checking Java MessageFormat.

See 3.2 milestone on GitHub [https://github.com/WeblateOrg/weblate/milestone/36?closed=1]
for detailed list of addressed issues.

Weblate 3.1.1

Released on July 27th 2018.

	Fix testsuite failure on some setups.

Weblate 3.1

Released on July 27th 2018.

	Upgrades from older version than 3.0.1 are not supported.

	Allow to override default commit messages from settings.

	Improve webhooks compatibility with self hosted environments.

	Added support for Amazon Translate.

	Compatibility with Django 2.1.

	Django system checks are now used to diagnose problems with installation.

	Removed support for soon shutdown libravatar service.

	New addon to mark unchanged translations as needing edit.

	Add support for jumping to specific location while translating.

	Downloaded translations can now be customized.

	Improved calculation of string similarity in translation memory matches.

	Added support by signing Git commits by GnuPG.

Weblate 3.0.1

Released on June 10th 2018.

	Fixed possible migration issue from 2.20.

	Localization updates.

	Removed obsolete hook examples.

	Improved caching documentation.

	Fixed displaying of admin documentation.

	Improved handling of long language names.

Weblate 3.0

Released on June 1st 2018.

	Rewritten access control.

	Several code cleanups that lead to moved and renamed modules.

	New addon for automatic component discovery.

	The import_project management command has now slightly different parameters.

	Added basic support for Windows RC files.

	New addon to store contributor names in PO file headers.

	The per component hook scripts are removed, use addons instead.

	Add support for collecting contributor agreements.

	Access control changes are now tracked in history.

	New addon to ensure all components in a project have same translations.

	Support for more variables in commit message templates.

	Add support for providing additional textual context.

Weblate 2.x series

Weblate 2.20

Released on April 4th 2018.

	Improved speed of cloning subversion repositories.

	Changed repository locking to use third party library.

	Added support for downloading only strings needing action.

	Added support for searching in several languages at once.

	New addon to configure gettext output wrapping.

	New addon to configure JSON formatting.

	Added support for authentication in API using RFC 6750 compatible Bearer authentication.

	Added support for automatic translation using machine translation services.

	Added support for HTML markup in whiteboard messages.

	Added support for mass changing state of strings.

	Translate-toolkit at least 2.3.0 is now required, older versions are no longer supported.

	Added built in translation memory.

	Added componentlists overview to dashboard and per component list overview pages.

	Added support for DeepL machine translation service.

	Machine translation results are now cached inside Weblate.

	Added support for reordering committed changes.

Weblate 2.19.1

Released on February 20th 2018.

	Fixed migration issue on upgrade from 2.18.

	Improved file upload API validation.

Weblate 2.19

Released on February 15th 2018.

	Fixed imports across some file formats.

	Display human friendly browser information in audit log.

	Added TMX exporter for files.

	Various performance improvements for loading translation files.

	Added option to disable access management in Weblate in favor of Django one.

	Improved glossary lookup speed for large strings.

	Compatibility with django_auth_ldap 1.3.0.

	Configuration errors are now stored and reported persistently.

	Honor ignore flags in whitespace autofixer.

	Improved compatibility with some Subversion setups.

	Improved built in machine translation service.

	Added support for SAP Translation Hub service.

	Added support for Microsoft Terminology service.

	Removed support for advertisement in notification e-mails.

	Improved translation progress reporting at language level.

	Improved support for different plural formulas.

	Added support for Subversion repositories not using stdlayout.

	Added addons to customize translation workflows.

Weblate 2.18

Released on December 15th 2017.

	Extended contributor stats.

	Improved configuration of special characters virtual keyboard.

	Added support for DTD file format.

	Changed keyboard shortcuts to less likely collide with browser/system ones.

	Improved support for approved flag in XLIFF files.

	Added support for not wrapping long strings in gettext PO files.

	Added button to copy permalink for current translation.

	Dropped support for Django 1.10 and added support for Django 2.0.

	Removed locking of translations while translating.

	Added support for adding new strings to monolingual translations.

	Added support for translation workflows with dedicated reviewers.

Weblate 2.17.1

Released on October 13th 2017.

	Fixed running testsuite in some specific situations.

	Locales updates.

Weblate 2.17

Released on October 13th 2017.

	Weblate by default does shallow Git clones now.

	Improved performance when updating large translation files.

	Added support for blocking certain e-mails from registration.

	Users can now delete their own comments.

	Added preview step to search and replace feature.

	Client side persistence of settings in search and upload forms.

	Extended search capabilities.

	More fine grained per project ACL configuration.

	Default value of BASE_DIR has been changed.

	Added two step account removal to prevent accidental removal.

	Project access control settings is now editable.

	Added optional spam protection for suggestions using Akismet.

Weblate 2.16

Released on August 11th 2017.

	Various performance improvements.

	Added support for nested JSON format.

	Added support for WebExtension JSON format.

	Fixed git exporter authentication.

	Improved CSV import in certain situations.

	Improved look of Other translations widget.

	The max-length checks is now enforcing length of text in form.

	Make the commit_pending age configurable per component.

	Various user interface cleanups.

	Fixed component/project/site wide search for translations.

Weblate 2.15

Released on June 30th 2017.

	Show more related translations in other translations.

	Add option to see translations of current string to other languages.

	Use 4 plural forms for Lithuanian by default.

	Fixed upload for monolingual files of different format.

	Improved error messages on failed authentication.

	Keep page state when removing word from glossary.

	Added direct link to edit secondary language translation.

	Added Perl format quality check.

	Added support for rejecting reused passwords.

	Extended toolbar for editing RTL languages.

Weblate 2.14.1

Released on May 24th 2017.

	Fixed possible error when paginating search results.

	Fixed migrations from older versions in some corner cases.

	Fixed possible CSRF on project watch and unwatch.

	The password reset no longer authenticates user.

	Fixed possible CAPTCHA bypass on forgotten password.

Weblate 2.14

Released on May 17th 2017.

	Add glossary entries using AJAX.

	The logout now uses POST to avoid CSRF.

	The API key token reset now uses POST to avoid CSRF.

	Weblate sets Content-Security-Policy by default.

	The local editor URL is validated to avoid self-XSS.

	The password is now validated against common flaws by default.

	Notify users about important activity with their account such as password change.

	The CSV exports now escape potential formulas.

	Various minor improvements in security.

	The authentication attempts are now rate limited.

	Suggestion content is stored in the history.

	Store important account activity in audit log.

	Ask for password confirmation when removing account or adding new associations.

	Show time when suggestion has been made.

	There is new quality check for trailing semicolon.

	Ensure that search links can be shared.

	Included source string information and screenshots in the API.

	Allow to overwrite translations through API upload.

Weblate 2.13.1

Released on Apr 12th 2017.

	Fixed listing of managed projects in profile.

	Fixed migration issue where some permissions were missing.

	Fixed listing of current file format in translation download.

	Return HTTP 404 when trying to access project where user lacks privileges.

Weblate 2.13

Released on Apr 12th 2017.

	Fixed quality checks on translation templates.

	Added quality check to trigger on losing translation.

	Add option to view pending suggestions from user.

	Add option to automatically build component lists.

	Default dashboard for unauthenticated users can be configured.

	Add option to browse 25 random strings for review.

	History now indicates string change.

	Better error reporting when adding new translation.

	Added per language search within project.

	Group ACLs can now be limited to certain permissions.

	The per project ALCs are now implemented using Group ACL.

	Added more fine grained privileges control.

	Various minor UI improvements.

Weblate 2.12

Released on Mar 3rd 2017.

	Improved admin interface for groups.

	Added support for Yandex Translate API.

	Improved speed of site wide search.

	Added project and component wide search.

	Added project and component wide search and replace.

	Improved rendering of inconsistent translations.

	Added support for opening source files in local editor.

	Added support for configuring visual keyboard with special characters.

	Improved screenshot management with OCR support for matching source strings.

	Default commit message now includes translation information and URL.

	Added support for Joomla translation format.

	Improved reliability of import across file formats.

Weblate 2.11

Released on Jan 31st 2017.

	Include language detailed information on language page.

	Mercurial backend improvements.

	Added option to specify translation component priority.

	More consistent usage of Group ACL even with less used permissions.

	Added WL_BRANCH variable to hook scripts.

	Improved developer documentation.

	Better compatibility with various Git versions in Git exporter addon.

	Included per project and component stats.

	Added language code mapping for better support of Microsoft Translate API.

	Moved fulltext cleanup to background job to make translation removal faster.

	Fixed displaying of plural source for languages with single plural form.

	Improved error handling in import_project.

	Various performance improvements.

Weblate 2.10.1

Released on Jan 20th 2017.

	Do not leak account existence on password reset form (CVE-2017-5537).

Weblate 2.10

Released on Dec 15th 2016.

	Added quality check to check whether plurals are translated differently.

	Fixed GitHub hooks for repositories with authentication.

	Added optional Git exporter module.

	Support for Microsoft Cognitive Services Translator API.

	Simplified project and component user interface.

	Added automatic fix to remove control characters.

	Added per language overview to project.

	Added support for CSV export.

	Added CSV download for stats.

	Added matrix view for quick overview of all translations.

	Added basic API for changes and strings.

	Added support for Apertium APy server for machine translations.

Weblate 2.9

Released on Nov 4th 2016.

	Extended parameters for createadmin management command.

	Extended import_json to be able to handle with existing components.

	Added support for YAML files.

	Project owners can now configure translation component and project details.

	Use «Watched» instead of «Subscribed» projects.

	Projects can be watched directly from project page.

	Added multi language status widget.

	Highlight secondary language if not showing source.

	Record suggestion deletion in history.

	Improved UX of languages selection in profile.

	Fixed showing whiteboard messages for component.

	Keep preferences tab selected after saving.

	Show source string comment more prominently.

	Automatically install Gettext PO merge driver for Git repositories.

	Added search and replace feature.

	Added support for uploading visual context (screenshots) for translations.

Weblate 2.8

Released on Aug 31st 2016.

	Documentation improvements.

	Translations.

	Updated bundled javascript libraries.

	Added list_translators management command.

	Django 1.8 is no longer supported.

	Fixed compatibility with Django 1.10.

	Added Subversion support.

	Separated XML validity check from XML mismatched tags.

	Fixed API to honor HIDE_REPO_CREDENTIALS settings.

	Show source change in Zen mode.

	Alt+PageUp/PageDown/Home/End now works in Zen mode as well.

	Add tooltip showing exact time of changes.

	Add option to select filters and search from translation page.

	Added UI for translation removal.

	Improved behavior when inserting placeables.

	Fixed auto locking issues in Zen mode.

Weblate 2.7

Released on Jul 10th 2016.

	Removed Google web translate machine translation.

	Improved commit message when adding translation.

	Fixed Google Translate API for Hebrew language.

	Compatibility with Mercurial 3.8.

	Added import_json management command.

	Correct ordering of listed translations.

	Show full suggestion text, not only a diff.

	Extend API (detailed repository status, statistics, …).

	Testsuite no longer requires network access to test repositories.

Weblate 2.6

Released on Apr 28th 2016.

	Fixed validation of components with language filter.

	Improved support for XLIFF files.

	Fixed machine translation for non English sources.

	Added REST API.

	Django 1.10 compatibility.

	Added categories to whiteboard messages.

Weblate 2.5

Released on Mar 10th 2016.

	Fixed automatic translation for project owners.

	Improved performance of commit and push operations.

	New management command to add suggestions from command line.

	Added support for merging comments on file upload.

	Added support for some GNU extensions to C printf format.

	Documentation improvements.

	Added support for generating translator credits.

	Added support for generating contributor stats.

	Site wide search can search only in one language.

	Improve quality checks for Armenian.

	Support for starting translation components without existing translations.

	Support for adding new translations in Qt TS.

	Improved support for translating PHP files.

	Performance improvements for quality checks.

	Fixed site wide search for failing checks.

	Added option to specify source language.

	Improved support for XLIFF files.

	Extended list of options for import_project.

	Improved targeting for whiteboard messages.

	Support for automatic translation across projects.

	Optimized fulltext search index.

	Added management command for auto translation.

	Added placeables highlighting.

	Added keyboard shortcuts for placeables, checks and machine translations.

	Improved translation locking.

	Added quality check for AngularJS interpolation.

	Added extensive group based ACLs.

	Clarified terminology on strings needing edit (formerly fuzzy).

	Clarified terminology on strings needing action and not translated strings.

	Support for Python 3.

	Dropped support for Django 1.7.

	Dropped dependency on msginit for creating new gettext PO files.

	Added configurable dashboard views.

	Improved notifications on parse errors.

	Added option to import components with duplicate name to import_project.

	Improved support for translating PHP files.

	Added XLIFF export for dictionary.

	Added XLIFF and gettext PO export for all translations.

	Documentation improvements.

	Added support for configurable automatic group assignments.

	Improved adding of new translations.

Weblate 2.4

Released on Sep 20th 2015.

	Improved support for PHP files.

	Ability to add ACL to anonymous user.

	Improved configurability of import_project command.

	Added CSV dump of history.

	Avoid copy/paste errors with whitespace characters.

	Added support for Bitbucket webhooks.

	Tighter control on fuzzy strings on translation upload.

	Several URLs have changed, you might have to update your bookmarks.

	Hook scripts are executed with VCS root as current directory.

	Hook scripts are executed with environment variables describing current component.

	Add management command to optimize fulltext index.

	Added support for error reporting to Rollbar.

	Projects now can have multiple owners.

	Project owners can manage themselves.

	Added support for javascript-format used in gettext PO.

	Support for adding new translations in XLIFF.

	Improved file format autodetection.

	Extended keyboard shortcuts.

	Improved dictionary matching for several languages.

	Improved layout of most of pages.

	Support for adding words to dictionary while translating.

	Added support for filtering languages to be managed by Weblate.

	Added support for translating and importing CSV files.

	Rewritten handling of static files.

	Direct login/registration links to third-party service if that’s the only one.

	Commit pending changes on account removal.

	Add management command to change site name.

	Add option to configure default committer.

	Add hook after adding new translation.

	Add option to specify multiple files to add to commit.

Weblate 2.3

Released on May 22nd 2015.

	Dropped support for Django 1.6 and South migrations.

	Support for adding new translations when using Java Property files.

	Allow to accept suggestion without editing.

	Improved support for Google OAuth 2.0.

	Added support for Microsoft .resx files.

	Tuned default robots.txt to disallow big crawling of translations.

	Simplified workflow for accepting suggestions.

	Added project owners who always receive important notifications.

	Allow to disable editing of monolingual template.

	More detailed repository status view.

	Direct link for editing template when changing translation.

	Allow to add more permissions to project owners.

	Allow to show secondary language in Zen mode.

	Support for hiding source string in favor of secondary language.

Weblate 2.2

Released on Feb 19th 2015.

	Performance improvements.

	Fulltext search on location and comments fields.

	New SVG/javascript based activity charts.

	Support for Django 1.8.

	Support for deleting comments.

	Added own SVG badge.

	Added support for Google Analytics.

	Improved handling of translation filenames.

	Added support for monolingual JSON translations.

	Record component locking in a history.

	Support for editing source (template) language for monolingual translations.

	Added basic support for Gerrit.

Weblate 2.1

Released on Dec 5th 2014.

	Added support for Mercurial repositories.

	Replaced Glyphicon font by Awesome.

	Added icons for social authentication services.

	Better consistency of button colors and icons.

	Documentation improvements.

	Various bugfixes.

	Automatic hiding of columns in translation listing for small screens.

	Changed configuration of filesystem paths.

	Improved SSH keys handling and storage.

	Improved repository locking.

	Customizable quality checks per source string.

	Allow to hide completed translations from dashboard.

Weblate 2.0

Released on Nov 6th 2014.

	New responsive UI using Bootstrap.

	Rewritten VCS backend.

	Documentation improvements.

	Added whiteboard for site wide messages.

	Configurable strings priority.

	Added support for JSON file format.

	Fixed generating mo files in certain cases.

	Added support for GitLab notifications.

	Added support for disabling translation suggestions.

	Django 1.7 support.

	ACL projects now have user management.

	Extended search possibilities.

	Give more hints to translators about plurals.

	Fixed Git repository locking.

	Compatibility with older Git versions.

	Improved ACL support.

	Added buttons for per language quotes and other special characters.

	Support for exporting stats as JSONP.

Weblate 1.x series

Weblate 1.9

Released on May 6th 2014.

	Django 1.6 compatibility.

	No longer maintained compatibility with Django 1.4.

	Management commands for locking/unlocking translations.

	Improved support for Qt TS files.

	Users can now delete their account.

	Avatars can be disabled.

	Merged first and last name attributes.

	Avatars are now fetched and cached server side.

	Added support for shields.io badge.

Weblate 1.8

Released on November 7th 2013.

	Please check manual for upgrade instructions.

	Nicer listing of project summary.

	Better visible options for sharing.

	More control over anonymous users privileges.

	Supports login using third party services, check manual for more details.

	Users can login by e-mail instead of username.

	Documentation improvements.

	Improved source strings review.

	Searching across all strings.

	Better tracking of source strings.

	Captcha protection for registration.

Weblate 1.7

Released on October 7th 2013.

	Please check manual for upgrade instructions.

	Support for checking Python brace format string.

	Per component customization of quality checks.

	Detailed per translation stats.

	Changed way of linking suggestions, checks and comments to strings.

	Users can now add text to commit message.

	Support for subscribing on new language requests.

	Support for adding new translations.

	Widgets and charts are now rendered using Pillow instead of Pango + Cairo.

	Add status badge widget.

	Dropped invalid text direction check.

	Changes in dictionary are now logged in history.

	Performance improvements for translating view.

Weblate 1.6

Released on July 25th 2013.

	Nicer error handling on registration.

	Browsing of changes.

	Fixed sorting of machine translation suggestions.

	Improved support for MyMemory machine translation.

	Added support for Amagama machine translation.

	Various optimizations on frequently used pages.

	Highlights searched phrase in search results.

	Support for automatic fixups while saving the message.

	Tracking of translation history and option to revert it.

	Added support for Google Translate API.

	Added support for managing SSH host keys.

	Various form validation improvements.

	Various quality checks improvements.

	Performance improvements for import.

	Added support for voting on suggestions.

	Cleanup of admin interface.

Weblate 1.5

Released on April 16th 2013.

	Please check manual for upgrade instructions.

	Added public user pages.

	Better naming of plural forms.

	Added support for TBX export of glossary.

	Added support for Bitbucket notifications.

	Activity charts are now available for each translation, language or user.

	Extended options of import_project admin command.

	Compatible with Django 1.5.

	Avatars are now shown using libravatar.

	Added possibility to pretty print JSON export.

	Various performance improvements.

	Indicate failing checks or fuzzy strings in progress bars for projects or languages as well.

	Added support for custom pre-commit hooks and committing additional files.

	Rewritten search for better performance and user experience.

	New interface for machine translations.

	Added support for monolingual po files.

	Extend amount of cached metadata to improve speed of various searches.

	Now shows word counts as well.

Weblate 1.4

Released on January 23rd 2013.

	Fixed deleting of checks/comments on string deletion.

	Added option to disable automatic propagation of translations.

	Added option to subscribe for merge failures.

	Correctly import on projects which needs custom ttkit loader.

	Added sitemaps to allow easier access by crawlers.

	Provide direct links to string in notification e-mails or feeds.

	Various improvements to admin interface.

	Provide hints for production setup in admin interface.

	Added per language widgets and engage page.

	Improved translation locking handling.

	Show code snippets for widgets in more variants.

	Indicate failing checks or fuzzy strings in progress bars.

	More options for formatting commit message.

	Fixed error handling with machine translation services.

	Improved automatic translation locking behaviour.

	Support for showing changes from previous source string.

	Added support for substring search.

	Various quality checks improvements.

	Support for per project ACL.

	Basic code coverage by unit tests.

Weblate 1.3

Released on November 16th 2012.

	Compatibility with PostgreSQL database backend.

	Removes languages removed in upstream git repository.

	Improved quality checks processing.

	Added new checks (BB code, XML markup and newlines).

	Support for optional rebasing instead of merge.

	Possibility to relocate Weblate (for example to run it under /weblate path).

	Support for manually choosing file type in case autodetection fails.

	Better support for Android resources.

	Support for generating SSH key from web interface.

	More visible data exports.

	New buttons to enter some special characters.

	Support for exporting dictionary.

	Support for locking down whole Weblate installation.

	Checks for source strings and support for source strings review.

	Support for user comments for both translations and source strings.

	Better changes log tracking.

	Changes can now be monitored using RSS.

	Improved support for RTL languages.

Weblate 1.2

Released on August 14th 2012.

	Weblate now uses South for database migration, please check upgrade instructions if you are upgrading.

	Fixed minor issues with linked git repos.

	New introduction page for engaging people with translating using Weblate.

	Added widgets which can be used for promoting translation projects.

	Added option to reset repository to origin (for privileged users).

	Project or component can now be locked for translations.

	Possibility to disable some translations.

	Configurable options for adding new translations.

	Configuration of git commits per project.

	Simple antispam protection.

	Better layout of main page.

	Support for automatically pushing changes on every commit.

	Support for e-mail notifications of translators.

	List only used languages in preferences.

	Improved handling of not known languages when importing project.

	Support for locking translation by translator.

	Optionally maintain Language-Team header in po file.

	Include some statistics in about page.

	Supports (and requires) django-registration 0.8.

	Caching counts of strings with failing checks.

	Checking of requirements during setup.

	Documentation improvements.

Weblate 1.1

Released on July 4th 2012.

	Improved several translations.

	Better validation while creating component.

	Added support for shared git repositories across components.

	Do not necessary commit on every attempt to pull remote repo.

	Added support for offloading indexing.

Weblate 1.0

Released on May 10th 2012.

	Improved validation while adding/saving component.

	Experimental support for Android component files (needs patched ttkit).

	Updates from hooks are run in background.

	Improved installation instructions.

	Improved navigation in dictionary.

Weblate 0.x series

Weblate 0.9

Released on April 18th 2012.

	Fixed import of unknown languages.

	Improved listing of nearby messages.

	Improved several checks.

	Documentation updates.

	Added definition for several more languages.

	Various code cleanups.

	Documentation improvements.

	Changed file layout.

	Update helper scripts to Django 1.4.

	Improved navigation while translating.

	Better handling of po file renames.

	Better validation while creating component.

	Integrated full setup into syncdb.

	Added list of recent changes to all translation pages.

	Check for not translated strings ignores format string only messages.

Weblate 0.8

Released on April 3rd 2012.

	Replaced own full text search with Whoosh.

	Various fixes and improvements to checks.

	New command updatechecks.

	Lot of translation updates.

	Added dictionary for storing most frequently used terms.

	Added /admin/report/ for overview of repositories status.

	Machine translation services no longer block page loading.

	Management interface now contains also useful actions to update data.

	Records log of changes made by users.

	Ability to postpone commit to Git to generate less commits from single user.

	Possibility to browse failing checks.

	Automatic translation using already translated strings.

	New about page showing used versions.

	Django 1.4 compatibility.

	Ability to push changes to remote repo from web interface.

	Added review of translations done by others.

Weblate 0.7

Released on February 16th 2012.

	Direct support for GitHub notifications.

	Added support for cleaning up orphaned checks and translations.

	Displays nearby strings while translating.

	Displays similar strings while translating.

	Improved searching for string.

Weblate 0.6

Released on February 14th 2012.

	Added various checks for translated messages.

	Tunable access control.

	Improved handling of translations with new lines.

	Added client side sorting of tables.

	Please check upgrading instructions in case you are upgrading.

Weblate 0.5

Released on February 12th 2012.

	
	Support for machine translation using following online services:
	
	Apertium

	Microsoft Translator

	MyMemory

	Several new translations.

	Improved merging of upstream changes.

	Better handle concurrent git pull and translation.

	Propagating works for fuzzy changes as well.

	Propagating works also for file upload.

	Fixed file downloads while using FastCGI (and possibly others).

Weblate 0.4

Released on February 8th 2012.

	Added usage guide to documentation.

	Fixed API hooks not to require CSRF protection.

Weblate 0.3

Released on February 8th 2012.

	Better display of source for plural translations.

	New documentation in Sphinx format.

	Displays secondary languages while translating.

	Improved error page to give list of existing projects.

	New per language stats.

Weblate 0.2

Released on February 7th 2012.

	Improved validation of several forms.

	Warn users on profile upgrade.

	Remember URL for login.

	Naming of text areas while entering plural forms.

	Automatic expanding of translation area.

Weblate 0.1

Released on February 6th 2012.

	Initial release.

 HTTP Routing Table

 / |
 /api |
 /api/addons |
 /api/changes |
 /api/component-lists |
 /api/components |
 /api/groups |
 /api/languages |
 /api/projects |
 /api/roles |
 /api/screenshots |
 /api/tasks |
 /api/translations |
 /api/units |
 /api/users |
 /exports |
 /hooks

 		 	

 		
 /	

 	
 	
 ANY /	

 		 	

 		
 /api	

 	
 	
 GET /api/	

 		 	

 		
 /api/addons	

 	
 	
 GET /api/addons/	

 	
 	
 GET /api/addons/(int:id)/	

 	
 	
 PUT /api/addons/(int:id)/	

 	
 	
 DELETE /api/addons/(int:id)/	

 	
 	
 PATCH /api/addons/(int:id)/	

 		 	

 		
 /api/changes	

 	
 	
 GET /api/changes/	

 	
 	
 GET /api/changes/(int:id)/	

 		 	

 		
 /api/component-lists	

 	
 	
 GET /api/component-lists/	

 	
 	
 GET /api/component-lists/(str:slug)/	

 	
 	
 POST /api/component-lists/(str:slug)/components/	

 	
 	
 PUT /api/component-lists/(str:slug)/	

 	
 	
 DELETE /api/component-lists/(str:slug)/	

 	
 	
 DELETE /api/component-lists/(str:slug)/components/(str:component_slug)	

 	
 	
 PATCH /api/component-lists/(str:slug)/	

 		 	

 		
 /api/components	

 	
 	
 GET /api/components/	

 	
 	
 GET /api/components/(string:project)/(string:component)/	

 	
 	
 GET /api/components/(string:project)/(string:component)/changes/	

 	
 	
 GET /api/components/(string:project)/(string:component)/links/	

 	
 	
 GET /api/components/(string:project)/(string:component)/lock/	

 	
 	
 GET /api/components/(string:project)/(string:component)/monolingual_base/	

 	
 	
 GET /api/components/(string:project)/(string:component)/new_template/	

 	
 	
 GET /api/components/(string:project)/(string:component)/repository/	

 	
 	
 GET /api/components/(string:project)/(string:component)/screenshots/	

 	
 	
 GET /api/components/(string:project)/(string:component)/statistics/	

 	
 	
 GET /api/components/(string:project)/(string:component)/translations/	

 	
 	
 POST /api/components/(string:project)/(string:component)/addons/	

 	
 	
 POST /api/components/(string:project)/(string:component)/links/	

 	
 	
 POST /api/components/(string:project)/(string:component)/lock/	

 	
 	
 POST /api/components/(string:project)/(string:component)/repository/	

 	
 	
 POST /api/components/(string:project)/(string:component)/translations/	

 	
 	
 PUT /api/components/(string:project)/(string:component)/	

 	
 	
 DELETE /api/components/(string:project)/(string:component)/	

 	
 	
 DELETE /api/components/(string:project)/(string:component)/links/(string:project_slug)/	

 	
 	
 PATCH /api/components/(string:project)/(string:component)/	

 		 	

 		
 /api/groups	

 	
 	
 GET /api/groups/	

 	
 	
 GET /api/groups/(int:id)/	

 	
 	
 POST /api/groups/	

 	
 	
 POST /api/groups/(int:id)/componentlists/	

 	
 	
 POST /api/groups/(int:id)/components/	

 	
 	
 POST /api/groups/(int:id)/languages/	

 	
 	
 POST /api/groups/(int:id)/projects/	

 	
 	
 POST /api/groups/(int:id)/roles/	

 	
 	
 PUT /api/groups/(int:id)/	

 	
 	
 DELETE /api/groups/(int:id)/	

 	
 	
 DELETE /api/groups/(int:id)/componentlists/(int:component_list_id)	

 	
 	
 DELETE /api/groups/(int:id)/components/(int:component_id)	

 	
 	
 DELETE /api/groups/(int:id)/languages/(string:language_code)	

 	
 	
 DELETE /api/groups/(int:id)/projects/(int:project_id)	

 	
 	
 PATCH /api/groups/(int:id)/	

 		 	

 		
 /api/languages	

 	
 	
 GET /api/languages/	

 	
 	
 GET /api/languages/(string:language)/	

 	
 	
 GET /api/languages/(string:language)/statistics/	

 	
 	
 POST /api/languages/	

 	
 	
 PUT /api/languages/(string:language)/	

 	
 	
 DELETE /api/languages/(string:language)/	

 	
 	
 PATCH /api/languages/(string:language)/	

 		 	

 		
 /api/projects	

 	
 	
 GET /api/projects/	

 	
 	
 GET /api/projects/(string:project)/	

 	
 	
 GET /api/projects/(string:project)/changes/	

 	
 	
 GET /api/projects/(string:project)/components/	

 	
 	
 GET /api/projects/(string:project)/languages/	

 	
 	
 GET /api/projects/(string:project)/repository/	

 	
 	
 GET /api/projects/(string:project)/statistics/	

 	
 	
 POST /api/projects/	

 	
 	
 POST /api/projects/(string:project)/components/	

 	
 	
 POST /api/projects/(string:project)/repository/	

 	
 	
 PUT /api/projects/(string:project)/	

 	
 	
 DELETE /api/projects/(string:project)/	

 	
 	
 PATCH /api/projects/(string:project)/	

 		 	

 		
 /api/roles	

 	
 	
 GET /api/roles/	

 	
 	
 GET /api/roles/(int:id)/	

 	
 	
 POST /api/roles/	

 	
 	
 PUT /api/roles/(int:id)/	

 	
 	
 DELETE /api/roles/(int:id)/	

 	
 	
 PATCH /api/roles/(int:id)/	

 		 	

 		
 /api/screenshots	

 	
 	
 GET /api/screenshots/	

 	
 	
 GET /api/screenshots/(int:id)/	

 	
 	
 GET /api/screenshots/(int:id)/file/	

 	
 	
 POST /api/screenshots/	

 	
 	
 POST /api/screenshots/(int:id)/file/	

 	
 	
 POST /api/screenshots/(int:id)/units/	

 	
 	
 PUT /api/screenshots/(int:id)/	

 	
 	
 DELETE /api/screenshots/(int:id)/	

 	
 	
 DELETE /api/screenshots/(int:id)/units/(int:unit_id)	

 	
 	
 PATCH /api/screenshots/(int:id)/	

 		 	

 		
 /api/tasks	

 	
 	
 GET /api/tasks/	

 	
 	
 GET /api/tasks/(str:uuid)/	

 		 	

 		
 /api/translations	

 	
 	
 GET /api/translations/	

 	
 	
 GET /api/translations/(string:project)/(string:component)/(string:language)/	

 	
 	
 GET /api/translations/(string:project)/(string:component)/(string:language)/changes/	

 	
 	
 GET /api/translations/(string:project)/(string:component)/(string:language)/file/	

 	
 	
 GET /api/translations/(string:project)/(string:component)/(string:language)/repository/	

 	
 	
 GET /api/translations/(string:project)/(string:component)/(string:language)/statistics/	

 	
 	
 GET /api/translations/(string:project)/(string:component)/(string:language)/units/	

 	
 	
 POST /api/translations/(string:project)/(string:component)/(string:language)/autotranslate/	

 	
 	
 POST /api/translations/(string:project)/(string:component)/(string:language)/file/	

 	
 	
 POST /api/translations/(string:project)/(string:component)/(string:language)/repository/	

 	
 	
 POST /api/translations/(string:project)/(string:component)/(string:language)/units/	

 	
 	
 DELETE /api/translations/(string:project)/(string:component)/(string:language)/	

 		 	

 		
 /api/units	

 	
 	
 GET /api/units/	

 	
 	
 GET /api/units/(int:id)/	

 	
 	
 PUT /api/units/(int:id)/	

 	
 	
 DELETE /api/units/(int:id)/	

 	
 	
 PATCH /api/units/(int:id)/	

 		 	

 		
 /api/users	

 	
 	
 GET /api/users/	

 	
 	
 GET /api/users/(str:username)/	

 	
 	
 GET /api/users/(str:username)/notifications/	

 	
 	
 GET /api/users/(str:username)/notifications/(int:subscription_id)/	

 	
 	
 GET /api/users/(str:username)/statistics/	

 	
 	
 POST /api/users/	

 	
 	
 POST /api/users/(str:username)/groups/	

 	
 	
 POST /api/users/(str:username)/notifications/	

 	
 	
 PUT /api/users/(str:username)/	

 	
 	
 PUT /api/users/(str:username)/notifications/(int:subscription_id)/	

 	
 	
 DELETE /api/users/(str:username)/	

 	
 	
 DELETE /api/users/(str:username)/notifications/(int:subscription_id)/	

 	
 	
 PATCH /api/users/(str:username)/	

 	
 	
 PATCH /api/users/(str:username)/notifications/(int:subscription_id)/	

 		 	

 		
 /exports	

 	
 	
 GET /exports/rss/	

 	
 	
 GET /exports/rss/(string:project)/	

 	
 	
 GET /exports/rss/(string:project)/(string:component)/	

 	
 	
 GET /exports/rss/(string:project)/(string:component)/(string:language)/	

 	
 	
 GET /exports/rss/language/(string:language)/	

 	
 	
 GET /exports/stats/(string:project)/(string:component)/	

 		 	

 		
 /hooks	

 	
 	
 GET /hooks/update/(string:project)/	

 	
 	
 GET /hooks/update/(string:project)/(string:component)/	

 	
 	
 POST /hooks/azure/	

 	
 	
 POST /hooks/bitbucket/	

 	
 	
 POST /hooks/gitea/	

 	
 	
 POST /hooks/gitee/	

 	
 	
 POST /hooks/github/	

 	
 	
 POST /hooks/gitlab/	

 	
 	
 POST /hooks/pagure/	

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 wlc	
 Weblate API

 	
 	
 wlc.config	
 Configuration parsing

 	
 	
 wlc.main	
 Command-line interface

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

Symbols

 	
 	
 --add

 	auto_translate command line option

 	
 --addon ADDON

 	install_addon command line option

 	
 --age HOURS

 	commit_pending command line option

 	
 --author USER@EXAMPLE.COM

 	add_suggestions command line option

 	
 --base-file-template TEMPLATE

 	import_project command line option

 	
 --check

 	importusers command line option

 	
 --config PATH

 	wlc command line option

 	
 --config-section SECTION

 	wlc command line option

 	
 --configuration CONFIG

 	install_addon command line option

 	
 --convert

 	wlc command line option

 	
 --email USER@EXAMPLE.COM

 	createadmin command line option

 	
 --file-format FORMAT

 	import_project command line option

 	
 --force

 	loadpo command line option

 	
 --force-commit

 	pushgit command line option

 	
 --format {csv,json,text,html}

 	wlc command line option

 	
 --ignore

 	import_json command line option

 	
 --inconsistent

 	auto_translate command line option

 	
 --input

 	wlc command line option

 	
 --key KEY

 	wlc command line option

 	
 --lang LANGUAGE

 	loadpo command line option

 	
 --language-code

 	list_translators command line option

 	
 --language-map LANGMAP

 	import_memory command line option

 	
 --language-regex REGEX

 	import_project command line option

 	
 --license NAME

 	import_project command line option

 	
 	
 --license-url URL

 	import_project command line option

 	
 --main-component

 	import_project command line option

 	
 --main-component COMPONENT

 	import_json command line option

 	
 --mt MT

 	auto_translate command line option

 	
 --name

 	createadmin command line option

 	
 --name-template TEMPLATE

 	import_project command line option

 	
 --new-base-template TEMPLATE

 	import_project command line option

 	
 --no-password

 	createadmin command line option

 	
 --no-privs-update

 	setupgroups command line option

 	
 --no-projects-update

 	setupgroups command line option

 	
 --no-update

 	setuplang command line option

 	
 --output

 	wlc command line option

 	
 --overwrite

 	auto_translate command line option

 	wlc command line option

 	
 --password PASSWORD

 	createadmin command line option

 	
 --project PROJECT

 	import_json command line option

 	
 --source PROJECT/COMPONENT

 	auto_translate command line option

 	
 --threshold THRESHOLD

 	auto_translate command line option

 	
 --update

 	createadmin command line option

 	import_json command line option

 	install_addon command line option

 	
 --url URL

 	wlc command line option

 	
 --user USERNAME

 	auto_translate command line option

 	
 --username USERNAME

 	createadmin command line option

 	
 --vcs NAME

 	import_project command line option

 	
 .XML resource file

 	file format

A

 	
 	
 add_suggestions

 	weblate admin command

 	
 add_suggestions command line option

 	--author USER@EXAMPLE.COM

 	
 ADMINS

 	setting

 	
 AKISMET_API_KEY

 	setting

 	
 ALLOWED_HOSTS

 	setting

 	
 Android

 	file format

 	
 ANONYMOUS_USER_NAME

 	setting

 	API, [1], [2]

 	
 Apple strings

 	file format

 	
 ARB

 	file format

 	
 AUDITLOG_EXPIRY

 	setting

 	
 	
 AUTH_LOCK_ATTEMPTS

 	setting

 	
 AUTH_TOKEN_VALID

 	setting

 	
 auto_translate

 	weblate admin command

 	
 auto_translate command line option

 	--add

 	--inconsistent

 	--mt MT

 	--overwrite

 	--source PROJECT/COMPONENT

 	--threshold THRESHOLD

 	--user USERNAME

 	
 AUTO_UPDATE

 	setting

 	
 AUTOFIX_LIST

 	setting

 	
 AVATAR_URL_PREFIX

 	setting

B

 	
 	
 BASE_DIR

 	setting

 	BaseAddon (class in weblate.addons.base)

 	
 	
 BASIC_LANGUAGES

 	setting

 	
 bilingual

 	translation

C

 	
 	can_install() (weblate.addons.base.BaseAddon class method)

 	
 celery_queues

 	weblate admin command

 	
 changes

 	wlc command line option

 	
 CHECK_LIST

 	setting

 	
 checkgit

 	weblate admin command

 	
 cleanup

 	wlc command line option

 	
 cleanuptrans

 	weblate admin command

 	
 Comma separated values

 	file format

 	Command (class in wlc.main)

 	
 COMMENT_CLEANUP_DAYS

 	setting

 	
 commit

 	wlc command line option

 	
 commit_pending

 	weblate admin command

 	
 commit_pending command line option

 	--age HOURS

 	
 COMMIT_PENDING_HOURS

 	setting

 	
 	
 commitgit

 	weblate admin command

 	configure() (weblate.addons.base.BaseAddon method)

 	
 createadmin

 	weblate admin command

 	
 createadmin command line option

 	--email USER@EXAMPLE.COM

 	--name

 	--no-password

 	--password PASSWORD

 	--update

 	--username USERNAME

 	
 CSP_CONNECT_SRC

 	setting

 	
 CSP_FONT_SRC

 	setting

 	
 CSP_IMG_SRC

 	setting

 	
 CSP_SCRIPT_SRC

 	setting

 	
 CSP_STYLE_SRC

 	setting

 	
 CSV

 	file format

D

 	
 	daily() (weblate.addons.base.BaseAddon method)

 	
 DATA_DIR

 	setting

 	
 DATABASE_BACKUP

 	setting

 	
 DATABASES

 	setting

 	
 DEBUG

 	setting

 	
 DEFAULT_ACCESS_CONTROL

 	setting

 	
 DEFAULT_ADD_MESSAGE

 	setting

 	
 DEFAULT_ADDON_MESSAGE

 	setting

 	
 DEFAULT_ADDONS

 	setting

 	
 DEFAULT_AUTO_WATCH

 	setting

 	
 DEFAULT_COMMIT_MESSAGE

 	setting

 	
 DEFAULT_COMMITER_EMAIL

 	setting

 	
 DEFAULT_COMMITER_NAME

 	setting

 	
 	
 DEFAULT_DELETE_MESSAGE

 	setting

 	
 DEFAULT_FROM_EMAIL

 	setting

 	
 DEFAULT_LANGUAGE

 	setting

 	
 DEFAULT_MERGE_MESSAGE

 	setting

 	
 DEFAULT_MERGE_STYLE

 	setting

 	
 DEFAULT_PULL_MESSAGE

 	setting

 	
 DEFAULT_RESTRICTED_COMPONENT

 	setting

 	
 DEFAULT_TRANSLATION_PROPAGATION

 	setting

 	
 download

 	wlc command line option

 	
 DTD

 	file format

 	
 dump_memory

 	weblate admin command

 	
 dumpuserdata

 	weblate admin command

E

 	
 	
 ENABLE_AVATARS

 	setting

 	
 ENABLE_HOOKS

 	setting

 	
 ENABLE_HTTPS

 	setting

 	
 ENABLE_SHARING

 	setting

 	
 environment variable

 	CELERY_BACKUP_OPTIONS

 	CELERY_BEAT_OPTIONS

 	CELERY_MAIN_OPTIONS

 	CELERY_MEMORY_OPTIONS

 	CELERY_NOTIFY_OPTIONS

 	CELERY_TRANSLATE_OPTIONS

 	POSTGRES_ALTER_ROLE

 	POSTGRES_DATABASE

 	POSTGRES_HOST

 	POSTGRES_PASSWORD

 	POSTGRES_PORT

 	POSTGRES_SSL_MODE

 	POSTGRES_USER

 	REDIS_DB

 	REDIS_HOST

 	REDIS_PASSWORD

 	REDIS_PORT

 	REDIS_TLS

 	REDIS_VERIFY_SSL

 	ROLLBAR_ENVIRONMENT

 	ROLLBAR_KEY

 	SENTRY_DSN

 	SENTRY_ENVIRONMENT

 	SOCIAL_AUTH_SLACK_SECRET

 	UWSGI_WORKERS

 	WEBLATE_ADD_ADDONS

 	WEBLATE_ADD_APPS

 	WEBLATE_ADD_AUTOFIX

 	WEBLATE_ADD_CHECK

 	WEBLATE_ADD_LOGIN_REQUIRED_URLS_EXCEPTIONS

 	WEBLATE_ADMIN_EMAIL, [1], [2], [3], [4]

 	WEBLATE_ADMIN_NAME, [1], [2], [3]

 	WEBLATE_ADMIN_PASSWORD, [1], [2], [3], [4], [5], [6], [7]

 	WEBLATE_AKISMET_API_KEY, [1], [2]

 	WEBLATE_ALLOWED_HOSTS, [1], [2], [3], [4]

 	WEBLATE_AUTH_LDAP_BIND_DN

 	WEBLATE_AUTH_LDAP_BIND_PASSWORD

 	WEBLATE_AUTH_LDAP_CONNECTION_OPTION_REFERRALS

 	WEBLATE_AUTH_LDAP_SERVER_URI

 	WEBLATE_AUTH_LDAP_USER_ATTR_MAP

 	WEBLATE_AUTH_LDAP_USER_DN_TEMPLATE

 	WEBLATE_AUTH_LDAP_USER_SEARCH

 	WEBLATE_AUTH_LDAP_USER_SEARCH_FILTER

 	WEBLATE_AUTH_LDAP_USER_SEARCH_UNION

 	WEBLATE_AUTH_LDAP_USER_SEARCH_UNION_DELIMITER

 	WEBLATE_BASIC_LANGUAGES

 	WEBLATE_CSP_CONNECT_SRC

 	WEBLATE_CSP_FONT_SRC

 	WEBLATE_CSP_IMG_SRC

 	WEBLATE_CSP_SCRIPT_SRC

 	WEBLATE_CSP_STYLE_SRC

 	WEBLATE_DATABASE_BACKUP

 	WEBLATE_DEBUG

 	WEBLATE_DEFAULT_ACCESS_CONTROL

 	WEBLATE_DEFAULT_AUTO_WATCH

 	WEBLATE_DEFAULT_COMMITER_EMAIL

 	WEBLATE_DEFAULT_COMMITER_NAME

 	WEBLATE_DEFAULT_FROM_EMAIL

 	WEBLATE_DEFAULT_RESTRICTED_COMPONENT

 	WEBLATE_DEFAULT_TRANSLATION_PROPAGATION

 	WEBLATE_EMAIL_BACKEND

 	WEBLATE_EMAIL_HOST

 	WEBLATE_EMAIL_HOST_PASSWORD

 	WEBLATE_EMAIL_HOST_USER

 	WEBLATE_EMAIL_PORT, [1], [2], [3]

 	WEBLATE_EMAIL_USE_SSL, [1], [2], [3]

 	WEBLATE_EMAIL_USE_TLS, [1], [2], [3]

 	WEBLATE_ENABLE_HTTPS

 	WEBLATE_GITHUB_TOKEN

 	WEBLATE_GITHUB_USERNAME

 	WEBLATE_GITLAB_TOKEN

 	WEBLATE_GITLAB_USERNAME

 	WEBLATE_GOOGLE_ANALYTICS_ID

 	WEBLATE_GPG_IDENTITY

 	WEBLATE_HIDE_VERSION

 	WEBLATE_IP_PROXY_HEADER

 	WEBLATE_LICENSE_FILTER

 	WEBLATE_LOCALIZE_CDN_PATH, [1]

 	WEBLATE_LOCALIZE_CDN_URL

 	WEBLATE_LOGIN_REQUIRED_URLS_EXCEPTIONS

 	WEBLATE_LOGLEVEL

 	WEBLATE_MT_APERTIUM_APY

 	WEBLATE_MT_AWS_ACCESS_KEY_ID

 	WEBLATE_MT_AWS_REGION

 	WEBLATE_MT_AWS_SECRET_ACCESS_KEY

 	WEBLATE_MT_DEEPL_API_VERSION

 	WEBLATE_MT_DEEPL_KEY

 	WEBLATE_MT_GLOSBE_ENABLED

 	WEBLATE_MT_GOOGLE_KEY

 	WEBLATE_MT_MICROSOFT_BASE_URL

 	WEBLATE_MT_MICROSOFT_COGNITIVE_KEY

 	WEBLATE_MT_MICROSOFT_ENDPOINT_URL

 	WEBLATE_MT_MICROSOFT_REGION

 	WEBLATE_MT_MICROSOFT_TERMINOLOGY_ENABLED

 	WEBLATE_MT_MODERNMT_KEY

 	WEBLATE_MT_MYMEMORY_ENABLED

 	WEBLATE_MT_SAP_BASE_URL

 	WEBLATE_MT_SAP_PASSWORD

 	WEBLATE_MT_SAP_SANDBOX_APIKEY

 	WEBLATE_MT_SAP_USE_MT

 	WEBLATE_MT_SAP_USERNAME

 	WEBLATE_NO_EMAIL_AUTH

 	WEBLATE_PAGURE_TOKEN

 	WEBLATE_PAGURE_USERNAME

 	WEBLATE_REGISTRATION_ALLOW_BACKENDS

 	WEBLATE_REGISTRATION_OPEN

 	WEBLATE_REMOVE_ADDONS

 	WEBLATE_REMOVE_APPS

 	WEBLATE_REMOVE_AUTOFIX

 	WEBLATE_REMOVE_CHECK

 	WEBLATE_REMOVE_LOGIN_REQUIRED_URLS_EXCEPTIONS

 	WEBLATE_REQUIRE_LOGIN, [1]

 	WEBLATE_SAML_IDP_ENTITY_ID

 	WEBLATE_SAML_IDP_URL

 	WEBLATE_SAML_IDP_X509CERT

 	WEBLATE_SECURE_PROXY_SSL_HEADER, [1]

 	WEBLATE_SERVER_EMAIL

 	WEBLATE_SILENCED_SYSTEM_CHECKS, [1]

 	WEBLATE_SIMPLIFY_LANGUAGES

 	WEBLATE_SITE_DOMAIN, [1], [2], [3]

 	WEBLATE_SITE_TITLE

 	WEBLATE_SOCIAL_AUTH_AZUREAD_OAUTH2_KEY

 	WEBLATE_SOCIAL_AUTH_AZUREAD_OAUTH2_SECRET

 	WEBLATE_SOCIAL_AUTH_AZUREAD_TENANT_OAUTH2_KEY

 	WEBLATE_SOCIAL_AUTH_AZUREAD_TENANT_OAUTH2_SECRET

 	WEBLATE_SOCIAL_AUTH_AZUREAD_TENANT_OAUTH2_TENANT_ID

 	WEBLATE_SOCIAL_AUTH_BITBUCKET_KEY

 	WEBLATE_SOCIAL_AUTH_BITBUCKET_SECRET

 	WEBLATE_SOCIAL_AUTH_FACEBOOK_KEY

 	WEBLATE_SOCIAL_AUTH_FACEBOOK_SECRET

 	WEBLATE_SOCIAL_AUTH_FEDORA

 	WEBLATE_SOCIAL_AUTH_GITHUB_KEY

 	WEBLATE_SOCIAL_AUTH_GITHUB_SECRET

 	WEBLATE_SOCIAL_AUTH_GITLAB_API_URL

 	WEBLATE_SOCIAL_AUTH_GITLAB_KEY

 	WEBLATE_SOCIAL_AUTH_GITLAB_SECRET

 	WEBLATE_SOCIAL_AUTH_GOOGLE_OAUTH2_KEY

 	WEBLATE_SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET

 	WEBLATE_SOCIAL_AUTH_GOOGLE_OAUTH2_WHITELISTED_DOMAINS

 	WEBLATE_SOCIAL_AUTH_GOOGLE_OAUTH2_WHITELISTED_EMAILS

 	WEBLATE_SOCIAL_AUTH_KEYCLOAK_ACCESS_TOKEN_URL

 	WEBLATE_SOCIAL_AUTH_KEYCLOAK_ALGORITHM

 	WEBLATE_SOCIAL_AUTH_KEYCLOAK_AUTHORIZATION_URL

 	WEBLATE_SOCIAL_AUTH_KEYCLOAK_KEY

 	WEBLATE_SOCIAL_AUTH_KEYCLOAK_PUBLIC_KEY

 	WEBLATE_SOCIAL_AUTH_KEYCLOAK_SECRET

 	WEBLATE_SOCIAL_AUTH_OPENSUSE

 	WEBLATE_SOCIAL_AUTH_SLACK_KEY

 	WEBLATE_SOCIAL_AUTH_UBUNTU

 	WEBLATE_TIME_ZONE

 	WEBLATE_URL_PREFIX

 	WL_BRANCH

 	WL_COMPONENT_NAME

 	WL_COMPONENT_SLUG

 	WL_COMPONENT_URL

 	WL_ENGAGE_URL

 	WL_FILE_FORMAT

 	WL_FILEMASK

 	WL_LANGUAGE

 	WL_NEW_BASE

 	WL_PATH

 	WL_PREVIOUS_HEAD

 	WL_PROJECT_NAME

 	WL_PROJECT_SLUG

 	WL_REPO

 	WL_TEMPLATE

 	WL_VCS

F

 	
 	
 file format

 	.XML resource file

 	Android

 	Apple strings

 	ARB

 	Comma separated values

 	CSV

 	DTD

 	gettext

 	go-i18n

 	GWT properties

 	i18next

 	INI translations, [1]

 	Java properties

 	Joomla translations

 	JSON

 	PHP strings

 	PO

 	Qt

 	RC

 	RESX

 	Ruby YAML

 	Ruby YAML Ain't Markup Language

 	string resources

 	TS

 	XLIFF

 	XML

 	YAML

 	YAML Ain't Markup Language

G

 	
 	get() (wlc.Weblate method)

 	get_add_form() (weblate.addons.base.BaseAddon class method)

 	get_settings_form() (weblate.addons.base.BaseAddon method)

 	
 gettext

 	file format

 	
 GITHUB_CREDENTIALS

 	setting

 	
 GITHUB_TOKEN

 	setting

 	
 GITHUB_USERNAME

 	setting

 	
 	
 GITLAB_CREDENTIALS

 	setting

 	
 GITLAB_TOKEN

 	setting

 	
 GITLAB_USERNAME

 	setting

 	
 go-i18n

 	file format

 	
 GOOGLE_ANALYTICS_ID

 	setting

 	
 GWT properties

 	file format

H

 	
 	
 HIDE_REPO_CREDENTIALS

 	setting

 	
 	
 HIDE_VERSION

 	setting

I

 	
 	
 i18next

 	file format

 	
 import_demo

 	weblate admin command

 	
 import_json

 	weblate admin command

 	
 import_json command line option

 	--ignore

 	--main-component COMPONENT

 	--project PROJECT

 	--update

 	
 import_memory

 	weblate admin command

 	
 import_memory command line option

 	--language-map LANGMAP

 	
 import_project

 	weblate admin command

 	
 import_project command line option

 	--base-file-template TEMPLATE

 	--file-format FORMAT

 	--language-regex REGEX

 	--license NAME

 	--license-url URL

 	--main-component

 	--name-template TEMPLATE

 	--new-base-template TEMPLATE

 	--vcs NAME

 	
 	
 importuserdata

 	weblate admin command

 	
 importusers

 	weblate admin command

 	
 importusers command line option

 	--check

 	
 INI translations

 	file format, [1]

 	
 install_addon

 	weblate admin command

 	
 install_addon command line option

 	--addon ADDON

 	--configuration CONFIG

 	--update

 	
 IP_BEHIND_REVERSE_PROXY

 	setting

 	
 IP_PROXY_HEADER

 	setting

 	
 IP_PROXY_OFFSET

 	setting

 	
 iPad

 	translation

 	
 iPhone

 	translation

J

 	
 	
 Java properties

 	file format

 	
 Joomla translations

 	file format

 	
 	
 JSON

 	file format

L

 	
 	
 LEGAL_URL

 	setting

 	
 LICENSE_EXTRA

 	setting

 	
 LICENSE_FILTER

 	setting

 	
 LICENSE_REQUIRED

 	setting

 	
 LIMIT_TRANSLATION_LENGTH_BY_SOURCE_LENGTH

 	setting

 	
 list-components

 	wlc command line option

 	
 list-languages

 	wlc command line option

 	
 list-projects

 	wlc command line option

 	
 list-translations

 	wlc command line option

 	
 list_languages

 	weblate admin command

 	
 list_translators

 	weblate admin command

 	
 list_translators command line option

 	--language-code

 	
 	
 list_versions

 	weblate admin command

 	load() (wlc.config.WeblateConfig method)

 	
 loadpo

 	weblate admin command

 	
 loadpo command line option

 	--force

 	--lang LANGUAGE

 	
 LOCALIZE_CDN_PATH

 	setting

 	
 LOCALIZE_CDN_URL

 	setting

 	
 lock

 	wlc command line option

 	
 lock-status

 	wlc command line option

 	
 lock_translation

 	weblate admin command

 	
 LOGIN_REQUIRED_URLS

 	setting

 	
 LOGIN_REQUIRED_URLS_EXCEPTIONS

 	setting

 	
 ls

 	wlc command line option

M

 	
 	
 MACHINE_TRANSLATION_SERVICES

 	setting

 	main() (in module wlc.main)

 	
 MATOMO_SITE_ID

 	setting

 	
 MATOMO_URL

 	setting

 	
 module

 	wlc

 	wlc.config

 	wlc.main

 	
 monolingual

 	translation

 	
 move_language

 	weblate admin command

 	
 MT_APERTIUM_APY

 	setting

 	
 MT_AWS_ACCESS_KEY_ID

 	setting

 	
 MT_AWS_REGION

 	setting

 	
 MT_AWS_SECRET_ACCESS_KEY

 	setting

 	
 MT_BAIDU_ID

 	setting

 	
 MT_BAIDU_SECRET

 	setting

 	
 MT_DEEPL_API_VERSION

 	setting

 	
 MT_DEEPL_KEY

 	setting

 	
 MT_GOOGLE_CREDENTIALS

 	setting

 	
 MT_GOOGLE_KEY

 	setting

 	
 MT_GOOGLE_LOCATION

 	setting

 	
 MT_GOOGLE_PROJECT

 	setting

 	
 MT_MICROSOFT_BASE_URL

 	setting

 	
 	
 MT_MICROSOFT_COGNITIVE_KEY

 	setting

 	
 MT_MICROSOFT_ENDPOINT_URL

 	setting

 	
 MT_MICROSOFT_REGION

 	setting

 	
 MT_MODERNMT_KEY

 	setting

 	
 MT_MODERNMT_URL

 	setting

 	
 MT_MYMEMORY_EMAIL

 	setting

 	
 MT_MYMEMORY_KEY

 	setting

 	
 MT_MYMEMORY_USER

 	setting

 	
 MT_NETEASE_KEY

 	setting

 	
 MT_NETEASE_SECRET

 	setting

 	
 MT_SAP_BASE_URL

 	setting

 	
 MT_SAP_PASSWORD

 	setting

 	
 MT_SAP_SANDBOX_APIKEY

 	setting

 	
 MT_SAP_USE_MT

 	setting

 	
 MT_SAP_USERNAME

 	setting

 	
 MT_SERVICES

 	setting

 	
 MT_TMSERVER

 	setting

 	
 MT_YANDEX_KEY

 	setting

 	
 MT_YOUDAO_ID

 	setting

 	
 MT_YOUDAO_SECRET

 	setting

N

 	
 	
 NEARBY_MESSAGES

 	setting

P

 	
 	
 PAGURE_CREDENTIALS

 	setting

 	
 PAGURE_TOKEN

 	setting

 	
 PAGURE_USERNAME

 	setting

 	
 PHP strings

 	file format

 	
 PIWIK_SITE_ID

 	setting

 	
 PIWIK_URL

 	setting

 	
 PO

 	file format

 	post() (wlc.Weblate method)

 	
 	post_add() (weblate.addons.base.BaseAddon method)

 	post_commit() (weblate.addons.base.BaseAddon method)

 	post_push() (weblate.addons.base.BaseAddon method)

 	post_update() (weblate.addons.base.BaseAddon method)

 	pre_commit() (weblate.addons.base.BaseAddon method)

 	pre_push() (weblate.addons.base.BaseAddon method)

 	pre_update() (weblate.addons.base.BaseAddon method)

 	
 pull

 	wlc command line option

 	
 push

 	wlc command line option

 	
 pushgit

 	weblate admin command

 	
 pushgit command line option

 	--force-commit

 	Python

Q

 	
 	
 Qt

 	file format

R

 	
 	
 RATELIMIT_ATTEMPTS

 	setting

 	
 RATELIMIT_LOCKOUT

 	setting

 	
 RATELIMIT_WINDOW

 	setting

 	
 RC

 	file format

 	register_command() (in module wlc.main)

 	
 REGISTRATION_ALLOW_BACKENDS

 	setting

 	
 REGISTRATION_CAPTCHA

 	setting

 	
 REGISTRATION_EMAIL_MATCH

 	setting

 	
 REGISTRATION_OPEN

 	setting

 	
 	
 repo

 	wlc command line option

 	
 REPOSITORY_ALERT_THRESHOLD

 	setting

 	
 REQUIRE_LOGIN

 	setting

 	
 reset

 	wlc command line option

 	REST

 	
 RESX

 	file format

 	
 RFC

 	RFC 4646

 	
 Ruby YAML

 	file format

 	
 Ruby YAML Ain't Markup Language

 	file format

S

 	
 	save_state() (weblate.addons.base.BaseAddon method)

 	
 SECRET_KEY

 	setting

 	
 SENTRY_DSN

 	setting

 	
 SERVER_EMAIL

 	setting

 	
 SESSION_COOKIE_AGE_AUTHENTICATED

 	setting

 	
 SESSION_ENGINE

 	setting

 	
 setting

 	ADMINS

 	AKISMET_API_KEY

 	ALLOWED_HOSTS

 	ANONYMOUS_USER_NAME

 	AUDITLOG_EXPIRY

 	AUTH_LOCK_ATTEMPTS

 	AUTH_TOKEN_VALID

 	AUTO_UPDATE

 	AUTOFIX_LIST

 	AVATAR_URL_PREFIX

 	BASE_DIR

 	BASIC_LANGUAGES

 	CHECK_LIST

 	COMMENT_CLEANUP_DAYS

 	COMMIT_PENDING_HOURS

 	CSP_CONNECT_SRC

 	CSP_FONT_SRC

 	CSP_IMG_SRC

 	CSP_SCRIPT_SRC

 	CSP_STYLE_SRC

 	DATA_DIR

 	DATABASE_BACKUP

 	DATABASES

 	DEBUG

 	DEFAULT_ACCESS_CONTROL

 	DEFAULT_ADD_MESSAGE

 	DEFAULT_ADDON_MESSAGE

 	DEFAULT_ADDONS

 	DEFAULT_AUTO_WATCH

 	DEFAULT_COMMIT_MESSAGE

 	DEFAULT_COMMITER_EMAIL

 	DEFAULT_COMMITER_NAME

 	DEFAULT_DELETE_MESSAGE

 	DEFAULT_FROM_EMAIL

 	DEFAULT_LANGUAGE

 	DEFAULT_MERGE_MESSAGE

 	DEFAULT_MERGE_STYLE

 	DEFAULT_PULL_MESSAGE

 	DEFAULT_RESTRICTED_COMPONENT

 	DEFAULT_TRANSLATION_PROPAGATION

 	ENABLE_AVATARS

 	ENABLE_HOOKS

 	ENABLE_HTTPS

 	ENABLE_SHARING

 	GITHUB_CREDENTIALS

 	GITHUB_TOKEN

 	GITHUB_USERNAME

 	GITLAB_CREDENTIALS

 	GITLAB_TOKEN

 	GITLAB_USERNAME

 	GOOGLE_ANALYTICS_ID

 	HIDE_REPO_CREDENTIALS

 	HIDE_VERSION

 	IP_BEHIND_REVERSE_PROXY

 	IP_PROXY_HEADER

 	IP_PROXY_OFFSET

 	LEGAL_URL

 	LICENSE_EXTRA

 	LICENSE_FILTER

 	LICENSE_REQUIRED

 	LIMIT_TRANSLATION_LENGTH_BY_SOURCE_LENGTH

 	LOCALIZE_CDN_PATH

 	LOCALIZE_CDN_URL

 	LOGIN_REQUIRED_URLS

 	LOGIN_REQUIRED_URLS_EXCEPTIONS

 	MACHINE_TRANSLATION_SERVICES

 	MATOMO_SITE_ID

 	MATOMO_URL

 	MT_APERTIUM_APY

 	MT_AWS_ACCESS_KEY_ID

 	MT_AWS_REGION

 	MT_AWS_SECRET_ACCESS_KEY

 	MT_BAIDU_ID

 	MT_BAIDU_SECRET

 	MT_DEEPL_API_VERSION

 	MT_DEEPL_KEY

 	MT_GOOGLE_CREDENTIALS

 	MT_GOOGLE_KEY

 	MT_GOOGLE_LOCATION

 	MT_GOOGLE_PROJECT

 	MT_MICROSOFT_BASE_URL

 	MT_MICROSOFT_COGNITIVE_KEY

 	MT_MICROSOFT_ENDPOINT_URL

 	MT_MICROSOFT_REGION

 	MT_MODERNMT_KEY

 	MT_MODERNMT_URL

 	MT_MYMEMORY_EMAIL

 	MT_MYMEMORY_KEY

 	MT_MYMEMORY_USER

 	MT_NETEASE_KEY

 	MT_NETEASE_SECRET

 	MT_SAP_BASE_URL

 	MT_SAP_PASSWORD

 	MT_SAP_SANDBOX_APIKEY

 	MT_SAP_USE_MT

 	MT_SAP_USERNAME

 	MT_SERVICES

 	MT_TMSERVER

 	MT_YANDEX_KEY

 	MT_YOUDAO_ID

 	MT_YOUDAO_SECRET

 	NEARBY_MESSAGES

 	PAGURE_CREDENTIALS

 	PAGURE_TOKEN

 	PAGURE_USERNAME

 	PIWIK_SITE_ID

 	PIWIK_URL

 	RATELIMIT_ATTEMPTS

 	RATELIMIT_LOCKOUT

 	RATELIMIT_WINDOW

 	REGISTRATION_ALLOW_BACKENDS

 	REGISTRATION_CAPTCHA

 	REGISTRATION_EMAIL_MATCH

 	REGISTRATION_OPEN

 	REPOSITORY_ALERT_THRESHOLD

 	REQUIRE_LOGIN

 	SECRET_KEY

 	SENTRY_DSN

 	SERVER_EMAIL

 	SESSION_COOKIE_AGE_AUTHENTICATED

 	SESSION_ENGINE

 	SIMPLIFY_LANGUAGES

 	SINGLE_PROJECT

 	SITE_DOMAIN

 	SITE_TITLE

 	SPECIAL_CHARS

 	STATUS_URL

 	SUGGESTION_CLEANUP_DAYS

 	UPDATE_LANGUAGES

 	URL_PREFIX

 	VCS_BACKENDS

 	VCS_CLONE_DEPTH

 	WEBLATE_ADDONS

 	WEBLATE_EXPORTERS

 	WEBLATE_FORMATS

 	WEBLATE_GPG_IDENTITY

 	
 	
 setupgroups

 	weblate admin command

 	
 setupgroups command line option

 	--no-privs-update

 	--no-projects-update

 	
 setuplang

 	weblate admin command

 	
 setuplang command line option

 	--no-update

 	
 show

 	wlc command line option

 	
 SIMPLIFY_LANGUAGES

 	setting

 	
 SINGLE_PROJECT

 	setting

 	
 SITE_DOMAIN

 	setting

 	
 SITE_TITLE

 	setting

 	
 SPECIAL_CHARS

 	setting

 	
 statistics

 	wlc command line option

 	
 STATUS_URL

 	setting

 	stay_on_create (weblate.addons.base.BaseAddon attribute)

 	store_post_load() (weblate.addons.base.BaseAddon method)

 	
 string resources

 	file format

 	
 SUGGESTION_CLEANUP_DAYS

 	setting

T

 	
 	
 translation

 	bilingual

 	iPad

 	iPhone

 	monolingual

 	
 	
 TS

 	file format

U

 	
 	unit_pre_create() (weblate.addons.base.BaseAddon method)

 	
 unlock

 	wlc command line option

 	
 unlock_translation

 	weblate admin command

 	
 UPDATE_LANGUAGES

 	setting

 	
 	
 updatechecks

 	weblate admin command

 	
 updategit

 	weblate admin command

 	
 upload

 	wlc command line option

 	
 URL_PREFIX

 	setting

V

 	
 	
 VCS_BACKENDS

 	setting

 	
 VCS_CLONE_DEPTH

 	setting

 	
 	
 version

 	wlc command line option

W

 	
 	Weblate (class in wlc)

 	
 weblate admin command

 	add_suggestions

 	auto_translate

 	celery_queues

 	checkgit

 	cleanuptrans

 	commit_pending

 	commitgit

 	createadmin

 	dump_memory

 	dumpuserdata

 	import_demo

 	import_json

 	import_memory

 	import_project

 	importuserdata

 	importusers

 	install_addon

 	list_languages

 	list_translators

 	list_versions

 	loadpo

 	lock_translation

 	move_language

 	pushgit

 	setupgroups

 	setuplang

 	unlock_translation

 	updatechecks

 	updategit

 	
 WEBLATE_ADDONS

 	setting

 	WEBLATE_ADMIN_EMAIL, [1], [2], [3]

 	WEBLATE_ADMIN_NAME, [1], [2]

 	WEBLATE_ADMIN_PASSWORD, [1], [2], [3], [4], [5], [6]

 	WEBLATE_AKISMET_API_KEY, [1]

 	WEBLATE_ALLOWED_HOSTS, [1], [2], [3]

 	WEBLATE_EMAIL_PORT, [1], [2]

 	WEBLATE_EMAIL_USE_SSL, [1], [2]

 	WEBLATE_EMAIL_USE_TLS, [1], [2]

 	
 WEBLATE_EXPORTERS

 	setting

 	
 WEBLATE_FORMATS

 	setting

 	
 	
 WEBLATE_GPG_IDENTITY

 	setting

 	WEBLATE_LOCALIZE_CDN_PATH

 	WEBLATE_REQUIRE_LOGIN

 	WEBLATE_SECURE_PROXY_SSL_HEADER

 	WEBLATE_SILENCED_SYSTEM_CHECKS

 	WEBLATE_SITE_DOMAIN, [1], [2]

 	WeblateConfig (class in wlc.config)

 	WeblateException

 	wlc

 	module

 	
 wlc command line option

 	--config PATH

 	--config-section SECTION

 	--convert

 	--format {csv,json,text,html}

 	--input

 	--key KEY

 	--output

 	--overwrite

 	--url URL

 	changes

 	cleanup

 	commit

 	download

 	list-components

 	list-languages

 	list-projects

 	list-translations

 	lock

 	lock-status

 	ls

 	pull

 	push

 	repo

 	reset

 	show

 	statistics

 	unlock

 	upload

 	version

 	
 wlc.config

 	module

 	
 wlc.main

 	module

X

 	
 	
 XLIFF

 	file format

 	
 	
 XML

 	file format

Y

 	
 	
 YAML

 	file format

 	
 	
 YAML Ain't Markup Language

 	file format

The Weblate Manual

User docs

User docs

	Weblate basics

	Registration and user profile

	Translating using Weblate

	Downloading and uploading translations

	Glossary

	Checks and fixups

	Searching

	Translation workflows

	Frequently Asked Questions

	Supported file formats

	Version control integration

	Weblate’s REST API

	Weblate Client

	Weblate’s Python API

Administrator docs

Administrator docs

	Configuration instructions

	Weblate deployments

	Upgrading Weblate

	Backing up and moving Weblate

	Authentication

	Access control

	Translation projects

	Language definitions

	Continuous localization

	Licensing translations

	Translation process

	Checks and fixups

	Machine translation

	Addons

	Translation Memory

	Configuration

	Sample configuration

	Management commands

	Announcements

	Component Lists

	Optional Weblate modules

	Customizing Weblate

	Management interface

	Getting support for Weblate

	Legal documents

Contributor docs

Contributor docs

	Contributing to Weblate

	Starting contributing code to Weblate

	Weblate source code

	Debugging Weblate

	Weblate internals

	Developing addons

	Weblate frontend

	Reporting issues in Weblate

	Weblate testsuite and continuous integration

	Data schemas

	Releasing Weblate

	Security and privacy

	About Weblate

	License

Change History

Change history

	Weblate 4.5.1

	Weblate 4.5

	Weblate 4.4.2

	Weblate 4.4.1

	Weblate 4.4

	Weblate 4.3.2

	Weblate 4.3.1

	Weblate 4.3

	Weblate 4.2.2

	Weblate 4.2.1

	Weblate 4.2

	Weblate 4.1.1

	Weblate 4.1

	Weblate 4.0.4

	Weblate 4.0.3

	Weblate 4.0.2

	Weblate 4.0.1

	Weblate 4.0

	Weblate 3.x series

	Weblate 2.x series

	Weblate 1.x series

	Weblate 0.x series

Administrator docs

	Configuration instructions

	Weblate deployments

	Upgrading Weblate

	Backing up and moving Weblate

	Authentication

	Access control

	Translation projects

	Language definitions

	Continuous localization

	Licensing translations

	Translation process

	Checks and fixups

	Machine translation

	Addons

	Translation Memory

	Configuration

	Sample configuration

	Management commands

	Announcements

	Component Lists

	Optional Weblate modules

	Customizing Weblate

	Management interface

	Getting support for Weblate

	Legal documents

Change history

	Weblate 4.5.1

	Weblate 4.5

	Weblate 4.4.2

	Weblate 4.4.1

	Weblate 4.4

	Weblate 4.3.2

	Weblate 4.3.1

	Weblate 4.3

	Weblate 4.2.2

	Weblate 4.2.1

	Weblate 4.2

	Weblate 4.1.1

	Weblate 4.1

	Weblate 4.0.4

	Weblate 4.0.3

	Weblate 4.0.2

	Weblate 4.0.1

	Weblate 4.0

	Weblate 3.x series

	Weblate 2.x series

	Weblate 1.x series

	Weblate 0.x series

Contributor docs

	Contributing to Weblate

	Starting contributing code to Weblate

	Weblate source code

	Debugging Weblate

	Weblate internals

	Developing addons

	Weblate frontend

	Reporting issues in Weblate

	Weblate testsuite and continuous integration

	Data schemas

	Releasing Weblate

	Security and privacy

	About Weblate

	License

Application developer guide

	Starting with internationalization

	Integrating with Weblate

	Translating software using GNU Gettext

	Translating documentation using Sphinx

	Translating HTML and JavaScript using Weblate CDN

	Translation component alerts

	Building translators community

	Managing translations

	Reviewing strings

	Promoting the translation

	Translation progress reporting

User docs

	Weblate basics

	Registration and user profile

	Translating using Weblate

	Downloading and uploading translations

	Glossary

	Checks and fixups

	Searching

	Translation workflows

	Frequently Asked Questions

	Supported file formats

	Version control integration

	Weblate’s REST API

	Weblate Client

	Weblate’s Python API

	Name

	Email

	Count total

	Source words total

	Source chars total

	Target words total

	Target chars total

	Count new

	Source words new

	Source chars new

	Target words new

	Target chars new

	Count approved

	Source words approved

	Source chars approved

	Target words approved

	Target chars approved

	Count edited

	Source words edited

	Source chars edited

	Target words edited

	Target chars edited

	Michal Čihař

	michal@cihar.com

	1

	3

	24

	3

	21

	1

	3

	24

	3

	21

	0

	0

	0

	0

	0

	0

	0

	0

	0

	0

	Allan Nordhøy

	allan@example.com

	2

	5

	25

	4

	28

	2

	3

	24

	3

	21

	0

	0

	0

	0

	0

	0

	0

	0

	0

	0

Weblate basics

Project and component structure

In Weblate translations are organized into projects and components. Each project
can contain number of components and those contain translations into individual
languages. The component corresponds to one translatable file (for example
GNU gettext or Android string resources). The projects are there to help you
organize component into logical sets (for example to group all translations
used within one application).

Internally, each project has translations to common strings propagated across
other components within it by default. This lightens the burden of repetitive
and multi version translation. The translation propagation can be disabled per
Component configuration using Allow translation propagation in case
the translations should diverge.

Note

This feature is unavailable for the projects running Libre plan on Hosted Weblate.

Note

Weblate provided callback URL during the authentication includes configured
domain. In case you get errors about URL mismatch, you might want to fix
this, see Set correct site domain.

 _images/user-add-component-init.png
Q) Weblate

Create component

Upload transiationsfiles Translate document Start from scratch

Create a new translation component from remote version control system repository.
Component name
Language names
Display name
URL slug
language-names
Name used in URLs and filenames,
() use asa glossary
Project

WeblateOrg v

Source language

English v
Language used for source strings inall components
Version control system

Git v
Version control system to use to access your repository with translations.

Source code repository

https://github.com/WeblateOrg /demo.git|

URL of a repository, use weblate;//project/component for sharing with other component.

Repository branch

Repository branch to translate

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/user-add-component.png
Q) Weblate

Create component

Add new translation component fo)
Project
WeblateOrg v

Component name
Language names
Display name
URLslug
language-names
Name used in URLs and filenames,
Version control system
Git v

Version control system to use to access your repository containing translations. You can also choose additional integration with third party providers to submit
merge requests.

Source code repository
https;//github.com/WeblateOrg /demo.git
URL of a repository, use weblate;//project/component to share it with other component,

Repository branch

Repository branch to translate

Repository push URL

URL of a push repository, pushing is turned off if empty.

Pushbranch

Branch for pushing changes, leave empty to use repository branch
Repository browser
https://github.com/WeblateOrg /demo/blob/{{branchy/{{filename}}#L{{line}}
Link to repository browser, use {{branch}} for branch, {filename}} and {{line}} as filename and line placeholders.
File format
gettext PO file v
Filemask
weblate/langdata/locale/*/LC_MESSAGES/django.po
Path of files to translate relative to repository root, use * instead of language code, for example: po/*.po or locale/*/LC_MESSAGES/django.po.

Monolingual base language file

Filename of translation base file, containing all strings and their source; it is recommended for monolingual translation formats.

Edit base file

Whether users will be able to edit the base file for monolingual translations.

Intermediate language file

Filename of intermediate translation file. In most cases this is a translation file provided by developers and is used when creating actual source strings
Template for new translations
weblate/langdata/locale/django.pot
Filename of file used for creating new translations. For gettext choose pot file.
Translationlicense

GNU General Public License v3.0 or later v

Adding new translation

Create new language file v
How to handle requests for creating new translations
Language code style

Default based on the file format v
Customize language code used to generate the filename for translations created by Weblate.

Language filter

A(cslhe]hu)s|

Regular expression used to filter translation files when scanning for filemask.
Source language
English v

Language used for source strings inall components

(O Use asa glossary

Youwill be able to edit more options in the component settings after creating it

Save

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/user-add-component-discovery.png
Q) Weblate

Create component
Add new translation component

Choose translation files to import

specify configuration manually

File format Android String Resource , Filemask app/src/main/res/values—+/strings.xnl
ile format gettext PO file,Filemask weblate/langdata/locale/+/LC_MESSAGES/django.po

le format gettext PO file,Filemask weblate/locale/+/LC_MESSAGES/django. po

le format gettext PO file,Filemask weblate/locale/+/LC_MESSAGES/djangojs.po

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/user-add-project-done.png
Q) Weblate

100°

WeblateOrg

Languages Info Search insights~ Fles- Tools~ Manage- Share~ © Watching -
Add new translation componen

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/user-add-project.png
Q) Weblate

Create project
Add new translation project [}

Project name
WeblateOrg
Display name
URL slug
weblateorg
Name used in URLs and filenames,
Project website
https://weblate.org/
Main website of translated project.

Translation instructions

https;//weblate.org/contribute/

You can use Markdown and mention users by @username.
Billing

Weblate Test (Basic plan) v

Save

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/strings-to-check.png
Q) Weblate

WeblateOrg | Django | Czech

o search msights- Fies- Tools~ Mamage~ Share © Wetching -

Translation status

26 Strings N 96% TN
183 Words (e 93% -
Strings status fo)
26 Allstrings — 183 words Browse Edit Zen
25 @ Translatedstrings —171words Browse Edit Zen
1 @ Strings needing action — 12 words Browse Edit Zen
1 @ Nottranslatedstrings — 12 words Browse Edit Zen
1 @ Strings needing action without suggestions — 12 words Browse Edit Zen
3 @ Stringswithanyfailing checks — 11 words Browse Edit Zen
3 @ Translated strings with any failing checks — 11 words Browse Edit Zen
1 @ Failedcheck Unchanged translation — 4words Browse Edit Zen
1 @ Failedcheck Mismatched full stop — 4words Browse Edit Zen
1 @ Failedcheck Python format —3words Browse Edit Zen
Other components

Component Translated Untranslated Untranslatedwords ~ Checks Suggestions Comments
s Androidwc>. 76% 3 3
Y —————————————————————————————————————
, Languagenamesw i) v
s B B v
s+ Djangojsw e
, Diangojsw v

Browse all components

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/support.png
Q) Weblate

Manage

UECEIREIEXIN Backups Translationmemory Performancereport — SSHkeys Alerts Repositories Users Appearance

Tools Billing

Weblate support status [)
Support status Community support
Purchase support package Donate to Weblate
Activate support package [)

The support packages include priority e-mail support, or cloud backups of your Weblate installation.

Activation token

Please enter the activation token obtained when making the subscription.

ate Purchase support package

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/ssh-keys-added.png
Q) Weblate

Manage | SSH keys
Added host key for github.com with fingerprint nThbg6kXUpJWGI7ELIGOCSpRomTxdCARLVIKWESSYS (ssh-rsa), please verify that it is correct

Weblate status ~ Backups Translationmemory ~ Performancereport [NESIISSCMM Alerts Repositories Users Appearance

Tools Billing

Public SSH key)

Weblate currentlyuses this SSH key:

ssh-rsa
|AAAAB3N zaC1yc2EAAAADAQABAAACAQCYTco4pjU2fBtsul MN9xy6I8Hu+us| 2KAmISw3dt 2uqQ21UGARYAVIPSXuNuVFn8CAihoHitqdH8MyBMz//KOtre UAIECFEKBSYFY |

Download private key

Known host keys)
Hostname Key type Fingerprint
github.com ssh-rsa nThbg6KKUpJWGI7ELIGOCspRomTHACARLVIKWGESSYS

Add host key)

To access SSH hosts, its host key needs to be verified. You can get the host key by entering a domain name or IP for the host in the form below.

Hostname github.com Port Port

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/ssh-keys.png
Q) Weblate

Manage | SSH keys

Weblate status Backups Translationmemory ~ Performancereport [NESIISYCMM Alerts Repositories Users Appearance

Tools Billing

Public SSH key [)

Weblate currentlyuses this SSH key:

ssh-rsa
|AAAAB3N zaC1yc2EAAAADAQABAAACAQCYTco4pjU2fBtsul MN9xy6I8Hu+us| 2KAmISw3dt 2uqQz1UGARYAVIPSXuNuVFn8CAihoHitqdH8MyBMz//KOtre UAIECFdEKBSYFY |

Download private key

Known host keys [)
Hostname Key type Fingerprint

github.com ssh-rsa nThbg6kKUpJWGI7ELIGOCspRomTHACARLVIKWGESSYS

Add host key [)

To access SSH hosts, its host key needs to be verified. You can get the host key by entering a domain name or IP for the host in the form below.

Hostname Hostname Port Port

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_static/widget-images/287x66-grey.png

_static/widget-images/287x66-black.png

_static/widget-images/88x31-black.png

_static/widget-images/287x66-white.png

_static/widget-images/88x31-white.png

_static/widget-images/88x31-grey.png

_static/widget-images/open-graph.png
Q) wesiare
. o

and join the community

_images/github-protected.png
(¥ Require pull request reviews before merging
When enabled, all commits must be made to a non-protected branch and subitted via a pull request with the
required number of approving reviews and no changes requested before t can be merged into a branch that
maiches this rue.

Required approving reviews: 1~

(] Dismiss stale pull request approvals when new commits are pushed
New reviewable commits pushed to a matching branch wil dismiss pull request review approvals.

() Require review from Code Owners
Require an approved review in pull requests including files with a designated code owner.

(/ Restrict who can dismiss pull request reviews
Specify people or teams allowed to dismiss pull request reviews.

People and teams that can dismiss reviews.

n Organization and repository administrators
These members can aways dismiss.

weblate
Weblate push user

_images/github-settings.png
[J WeblateOrg / hello
Code Pull requests 0
options

Collaborators & teams
Branches

Webhooks
Integrations & services
Deploy keys

Alerts.

©2018Gitub, Inc. Terms Privacy Security Status Help.

Pull requests Issue

Marketplace Explore

@Umatch~ 2| gUnstar 7 | gFork 20

Projects 0 Insights £ Settings.

Webhooks / Add webhook

We'll send a POST request to the URL below with details of any subscribed events. You can also specify which
data format you'd like to receive (JSON, x-ww- Forn-urlencoded, efc). More information can be found in our
developer documentation

Payload URL *
hips://hosted weblate.org/hooks/github/

Content type

application/x-www-form-urlencoded &

Secret

1By detaut, we very SSL cericates when deliverng payloads. Disabe SSL verfication

Which events would you like to trigger this webhook?
) Just the push event.

Send me everything.

Let me select individual events.

(& Active
We willdeliver event details when this hook s tiggered.

Add webhool

ContactGitHub APl Training Shop Blog About

_images/font-list.png
Q) Weblate

WeblateOrg | Fonts

R - |

Font family Font style

Droid Sans Fallback Regular

Source Sans Pro Bold @

Add font

Font file
| Choose File | No file chosen
OpenType and TrueType fonts are supported.

Upload

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/format-highlight.png
Q) Weblate

WeblateOrg | Django | Czech | Translate ra
1K <Y1 >l Customssearch~ | "% (count)s word" Position and priority ~ ¥zen 3
Translation © Glossary Vd
English English czech

singular No related strings found in the

% (count)s word [a] glossary.

Plural @ Add term to glossary

% (count)s words D
Czech, one 5 clone source | (5|« [nes || [].[]-]-

Source information @
9%(count)s slovo
4 Screenshot context Ve
Noscreenshot currently
Czech, Few) Clone source | [% [« nes ... <. ||| - associated.
9% (count)s slova Explanation /
4 No explanation currently
provided.
Czech, Other 5 Clone source | (5|« [ngs ||, [+][]| -
Labels Ve
9%(count)s slov Nolabels currently set.
4
Plural fermula; (n==1)70: (n>=28&n<=4)71:2 N
Flags /
Needs editing python-format
Source string location
B Suggest m weblate/templates/translation.ht
mi1a9
string age
Nearby strings Comments Automatic suggestions Other languages History e ago
No matching activity found Source string age

15 seconds ago
Browse all component changes

Translation file
weblate/locale/cs/LC_MESSAGES
Jdjango po, string 5

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/glossary-tools.png
Q) Weblate

WeblateOrg

K < 2/20 > >l

Glossary term

English
project

Czech
projekt

() Needs editing

Glossary WeblateOrg

Czech | Translate

Mark as read-only
Nearby strings [EJ Comments Automatic suggestions Other langua
Markas forbidden translation

Key English
machine translation

project

Source string ~

©

) Clone source |[5| « | nBs DROEE

Delete string

Add variant of this string

Czech -
strojovy pieklad (]
projekt (]

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

tra 100%
¥ Zen T

Glossary Vs

English Czech

project projekt weblsteors g

@ Addtermto glossary

Source information [)

string age
4seconds ago

Source string age
4seconds ago

Translation file
cs.tbx, string 2

_images/glossary-browse.png
WeblateOrg | Glossary WeblateOrg /= Czech | Browse

K| < 11 > >l Allstrings Source string ~ @ Add new translation string
Key English Czech State

machine translation strojovy pieklad (]

project projekt (]

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/glossary-component.png
Q) Weblate

WeblateOrg | Glossary WeblateOrg = Czech

Info Search Insights~ Files~ Tools~ Share~ ® Notwatching ~

Translation status

2 Strings S 100% p ~ <
(" Addnew translation string)(Browse)
3 Words CEEEEEE 100% - - -

Strings status fo)
2 Allstrings —3words Browse Edit Zen
2 @ Translatedstrings —3words Browse Edit Zen

Other components

Component Translated Untranslated Untranslated words Checks Suggestions Comments
, DiangooB 96% 1 12 3
, Language namesdl v

Browse all components

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_static/email-logo.png

_static/file.png

_static/logo-128.png

_static/logo-1024.png

_images/your-translations.png
Q) Weblate

Dashboard

UEIEIEEIEIEEREEY 13 [l suggested translations Insights ~ Search

Translated Untranslated Untranslatedwords ~ Checks Suggestions

Component

 WeblateOrg/Android — Czech 76% 3 3

, Weblateorg/Django — Czechwc> 96% 1 12 4

, Weblateorg/Django — Hungarian we> 69% 8 109 1
——————————————— —

 WeblateOrg/Django — Hebrewwc> 92% 2 15

s Weblateorg/Djangojs — Czech

 WeblateOrg/Djangojs — Hebreww c> v

e ——————————————————————
 WeblateOrg/Djangojs — Hungarianw/c> 96% 2 6

e ——————————————————————
, Weblateorg/Language names — Czech Wl v

e ——————————————————————
, Weblateorg/Language names — Hebrew Wl v

e ——————————————————————
, WeblateOrg/Language names — Hungarian Wl 81% 4 5

—————————————————————————————————
 WeblateOrg/WeblateOrg — Hungarian w/E) v

e ——————————————————————
 WeblateOrg/WeblateOrg — Hebreww) v

s+ WeblateOrg/WeblateOrg — Czech w3

AN

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_static/email-logo-footer.png
kw WEBLATE

_images/labels.png
Q) Weblate

WeblateOrg | Labels

Label name Color

Add label

Label name

color

[+] ot JECNEY ove | crecn UL CORLSM ARSI wea | oo | rechaia | rurie ot | o

Save

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/manage-users.png
Q) Weblate

WeblateOrg | Access control
[- R
Users
Full Last

Username name E-mail login

testuser ~ Weblate weblate@exampleorg 24 [m] [m]
Test seconds
ago

Once allits permissions are removed, the user will be removed from the project.

Add a user

User to add

Please type in an existing Weblate account name or e-mail address.

Weblate 45,1 AboutWeblate Legal

6]

Administration Billing Glossary Languages Memory Screenshots Sources Translate VCS

Invite new user

Username

Username may only contain letters, numbers or the following characters: @

Full name

Invite

Contact Documentation Donate to Weblate

_images/guide.png
Q) Weblate

WeblateOrg | Duplicates ' Community localization checklist 37%
Community localization checklist
Here you can find guidance to make your localization project attractive to the community.

Version control integration

A\ Configure repository hooks for automated flow of updates to Weblate. Configure

A Configure push URL for automated flow of translations from Weblate. Configure

Building community

A\ Define translation instructions to give translators a guideline. Configure

A Make your translations available under a libre license. Configure

A Fixthis component to clear its alerts Configure

Provide context to the translators

A Addscreenshots to show where strings are being used, Configure

A Useflags to indicate special strings in your translation. Configure

Workflow customization

A Enable addon: Update LINGUAS file

onfigure
Updates the LINGUAS file when a new translation is added. E

A Enable addon: Update ALL_LINGUAS variable in the "configure" file

Updates the ALL_LINGUAS variable in "configure, "configure.in” or "configure.ac” files, when a new translation is added

Return to the compone

Configure

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/install-with-yunohost.png

_images/plurals.png
WeblateOrg | Django | Czech | Translate
K< 11> 0l Customsearch~ | '%(count)s word"
Translation

English

singular

3 (count)s word
Plural
8 (count)s words

Czech, One) Clone source

%(count)s slovo

Czech, Few &) clone source

%(count)s slova

Czech, Other) Clone source
9% (count)s slov

20: (n>=28&n<=4)71:2

Plural fermula: (

() Needs editing

Nearby strings Comments Automatic suggestions

History
New comment

Comment on this string for fellow translators and developers to read.
Scope
Translation comment, discussions with other translators

Is your comment specific to this translation or generic for all of them?

New comment

You can use Markdown and mention users by @username.
Save

Weblate 451 About Weblate Legal

Other languages

¥ Zen
Position and priority ~
o Glossary
English Cczech
No related strings found in the
(=] glossary.
@ Addterm to glossary
s}
o nes L[]-]-
Sourceinformation @
Screenshot context ,‘
No screenshot currently
wla s [L - associated.
Explanation
No explanation currently
provided.
o nes L[]-]-
Labels

Nolabels currently set.

Flags
python-format

Source string location
weblate/templates/translationh
tml:149

string age
14seconds ago

Source string age
15 seconds ago

Translation file
‘weblate/locale/cs/LC_MESSAGE
s/django.po, string 5

Contact Documentation Donate to Weblate

_images/profile-licenses.png
Q) Weblate

Your profile
Languages Preferences Notifications ~ Account Profile Auditlog APlaccess
Licenses

Please pay attention to the licensing info, as this specifies how translations can be used.

By registering you agree to use your name and e-mail in the commits, and provide your contribution under the license defined by each
localization project

You have agreed to the following as a contributor.

« WeblateOrg/Language names

Licenses for individual translations

GNU General Public License v3.0 or later
WeblateOrg/WeblateOrg WeblateOrg/Djangojs WeblateOrg/Django WeblateOrg/Language names
MIT License

WeblateOrg /Android

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/memory.png
Q) Weblate

testuser | Translation memory

Translation memory status)
Number of your entries Bl Download as JSON Download as TMX
Total number of entries 0

Import translation memory

[Choose File | No file chosen
You canupload a TMX or JSON file.

Upload

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/pagure-webhook.png
fedora

PAGURE

1] nijel-test

<»Source @ lIssues @ © PullRequests @ L~ Stats o Settings

Project Settings
Project Detalls
Default Branch
Private Web Hook Key
API Keys

Project Options
Public Notifications
Users & Groups
Deploy Keys

Hooks

Priorities

Roadmap

Close Status
Custom Issue Fields
Reports

Tags

Quick Replies
Regenerate Repos
Give Project

Delete Project

Project Options

(O Activate always merge

(D Activate disable non fast-forward merges

(D Activate Enforce signed-off commits in pull-request
[¥ Activate fedmsg notifications

(¥ Activate issue tracker

(O Activate issue tracker read only

(O Activate issues default to private

Activate Minimum score to merge pull-request ;
(O Activate notify on commit flag.

(O Activate notify on pull-request flag

(D Activate Only assignee can merge pull-request
(D Activate open metadata access to all

(O Activate project documentation

(D Activate pull request access only

[¥ Activate pull requests

[¥ Activate stomp notifications

https://hosted.weblate.org

Activate Web-hooks : /hooks/pagure/

Learn more about
* Flags
« Tracker read-only
« Pull-request access only
« Roadmap on Issue page
 fedmsg notifications

Browse

create - B -

© New ssue

© Open PR -

¥ Fork

B Clone -

_images/profile-subscriptions.png
Q) Weblate

Your profile
Languages Preferences [EUNUISUNUBM Account Profile Licenses Auditlog APlaccess
Watched projects ®

Automatically watch projects on contribution

Whenever you translate a string in a project, you will start watching it

Watched projects

Search
Available: Chosen:
WeblateOrg WeblateOrg

You can receive notifications for watched projects and they are shown on the dashboard by default

Addall projects youwant to translate to see them as watched projects on the dashboard.

Save

Notification settings [)

otherprojects [ENUENSIIETIICGEM Managed projects

Component wide notifi

Youwill receive a notification for every such event in your watched projects.

Repository failure Do not notify v

Repository operation Do not notify v

Component locking Do not notify v

Changed license Do not notify v

Parse error Do not notify v

Comment on own Instant notification v
translation

Mentioned in comment Instant notification v

New language Do not notify v

New translation component Do not notify v

New announcement Instant notification v

New alert Do not notify v

Translation notifications

Youwill only receive these notifications for your translated languages in your watched projects,

New string Do not notify v

New contributor Do not notify v

New suggestion Do not notify v

New comment Do not notify v
Changed string Do not notify v
Translated string Do not notify v
Approved string Do not notify v
Pending suggestions Do not notify v
Strings needing action Do not notify v

Save

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/variants-settings.png
Q) Weblate

WeblateOrg /| Android | Settings

Basic |[ERICUNEVEUMN Versioncontrol Commitmessages Files

Suggestions

Turn on suggestions
Whetherto allow translation suggestions at all.

[suggestion voting

Users can only vote for suggestions and can’t make direct translations,

Autoaccept suggestions
0
Automatically accept suggestions with this number of votes, use 0 to turn it off

Translation settings
Allow translation propagation
Whether translation updates in other components will cause automatic translation in this one

() Manage strings
Enables adding and removing strings straight from Weblate. If your strings are extracted from the source code or managed externally you probably want to keep it
disabled.

Translation flags

Additional comma-separated flags to influence quality checks. Possible values can be found in the documentation.

Variants regular expression

_(short|min)¢|

Regular expression used to determine variants of a string
Enforced checks

Search.

Available: Chosen:
AngularJ$ interpolation string

BBcode markup

Cformat

C# format

Consecutive duplicated words >
List of checks which can not be ignored

Save

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/user-billing.png
Q) Weblate

Your profile | Billing

Billing plan Invoices
Currentplan Basic plan (Active) Invoice period Invoice amount Download invoice
Monthly 19EUR 03/04/2021 - 03/06/2021 190EUR Not available
price

Yearlyprice 199 EUR
strings limit Used0

Languages Used0
limit

Lastinvoice 2021-03-04- 2021-03-06

I || (<)

Projects Used0of 1

limit

Projects No projects currently Add new translation project
assigned!

Terminate billing plan

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/visual-keyboard.png
Q) Weblate

WeblateOrg | Django | Hebrew | Translate

IK | < 1/26 > > Allstrings ~ ¥ Zen

Position and priority | =l

Translation © Glossary

English English Hebrew

Files =] Norelated strings found in the
glossary.

Hebrew ZWNJ | ZwJ [LRM [RLM | LRE | RLE | PDF | LRO | RLO

) Clone source | (% < [ngs ...~ |~ T[] ©ddtermtoglossary

o

Sourceinformation @

(O Needs editing RTL| TR
Screenshot context
Noscreenshot currently

= O

Explanation
No explanation currently

Nearby strings [Comments Automatic suggestions. Other languages provided.

History Labels

Nolabels currently set.

Language Status Translation Edit
Flags

Czech (V] Soubory @ No flags currently set.

Hungarian o Fajlok Source string location
weblate/templates/translation.h
tml4s

English & flles @ weblate/trans/forms py:1404

string age
29seconds ago

Source string age
30seconds ago

Translation file
weblate/locale/he/LC_MESSAGE
s/django.po, string 1

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/variants-translate.png
Q) Weblate

WeblateOrg Android

>l

Source string

Key

English
Monday

() Needs editing

Englishge | Translate

Customsearch~ | Monday

) Clone source |[

Nearby strings

Key
dow_monday
dow_monday_min

dow_monday_short

Nearby keys

variants [E)

Comments

English
Monday
M

Mon

Weblate 45.1 AboutWeblate Legal

Position and priority ~

«[nes|..[-]"

Other languages [J

State

[
o
9

Contact Documentation

=

History

Donate to Weblate

trai

¥ Zen

Things to check

LQlvariants

There are 3 variants of this string.

Glossary

/

English English

Norelated strings found in the glossary.

@ Addtermto glossary

Source information

Screenshot context
Noscreenshot currently associated.

Explanation
No explanation currently provided.

Key

Labels
Nolabels currently set.

Flags
java-format

String age
15 seconds ago

Source string age
15 seconds ago

Translation file
app/src/mainjres/values/strings.xml,
string 11

_images/pycharm-1.png
Weblate [/tmp/Weblate] - .../weblate/celery. py - PyCharm a_@ox
lew Navigate Code Refactor Run Tools VCS Window Help

Weblate | 5 weblate . i% celery.py. Add Configuratior

= Project + I & — @celery.py
api Package requirements ‘celerylredis]>=4.2.0,<4. i .6.0.1=4.6.4,1=4.6.5' are not s... Install requirements Ignore requirements £
auth o
(,“'fs @task_failure. connect
def handle_task_failure(exception=None, **kwargs):

fexarvmles from weblate.utils.errors import report error
onts

formats
gitexport
lang
langdata
legal
locale
machinery

aseqeieq

report_error(
exception,
extra_data=kwargs,
prefix="Failure while executing task’,
skip_sentry=True,
print_tb=True,
Togger=LOGGER,

memory
screenshots
static @app.on_after_configure. connect

templates def configure_error_handling(sender, **kargs):
trans ollbar and Sentry integration

utils
ves
wladmin

Based on

https://wss. matt Laynan. con/blog/2017/django-celery-rollbar/.

2: Favorites

if not bool(0s. environ. get (" CELERY_WORKER_RUNNING', False)):
b celery.py. return
% logger.py @, Python 3.8 (weblate-
o::dddeliw':yre-w from weblate.utils.errors import init_error_collection @ Python 3.8
& y

 runner.py
B Terminal @ Python Console = 6 TODO
Dockerfile detection: You may setup Docker deployment run configuration for the following file(s): dev-docker/Dockerfile // Do not ask again (today 13:43) 11 LF UTF& 4spaces Git:master Python3.8 & @

Project Interpreter

Structure

z

Interpreter Settings...

_images/pycharm-2.png
<} Add Python Interpreter

VIS © New environment

Conda Environment. Location: [tmp/Weblate/.venv

@ System Interpreter Base interpreter: | < /usrjbin/python3

Pipeny Envi t
@ Pipenv Environmen [Inherit global site-packages

(] Make available to all projects
V Vagrant () Existing environment
& Docker

SSH Interpreter

Interpreter: | <No interpreter>
Docker Compose

Make available to all projects

oK

_images/project-workflow.png
Q) Weblate

WeblateOrg | Settings

soic s [components

Set"Language-Team" header

Lets Weblate update the "Language-Team" file header of your project.

Use shared translation memory

Uses the pool of shared translations between projects.

Contribute to shared translation memory

Contributes to the pool of shared translations between projects

Enable hooks
Whether to allow updating this repository by remote hooks,

Language aliases

Comma-separated list of language code mappings, for example: en_GB:en,en_USien

() Enable reviews

Requires dedicated reviewers to approve translations.

() Enable source reviews

Requires dedicated reviewers to approve source strings.

Save

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/promote.png
Q) Weblate

WeblateOrg | Widgets

Promoting translation projects

You can point newcomers to the introduction page at http;//localhost:36693/engage/weblateorg/.

Promoting specific translations

Besides promoting the whole translation project, you can also choose a specific language or component to promote: [All languages
Allcomponents |

Image widgets

You can use the following widgets to promote translation of your project. They can increase the visibility of your translation projects and bring in new

contributors.
37 85%

statusbadge Vertical language bar chart Horizontal language bar chart Big status badge smallstatus badge

transiated [EB

Project WeblateOrg

Colorvariants:

HTML code v

Transl

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/pycharm-5.png
<} Run/Debug Configurations A X

+ - B F L] Name: Unnamed [Share through vcs 2 [[] Allow parallelrun
Add New Configuration
® App Engine server Configuration Logs
3 Attach to Node js/Chrome
B Behave leste xwikitest | | HOSE: localhost Port: | 8000
3 Compound lests xwiki test_ onal options:
ests.test_formaf
E Django tests ests.test_formal (] Run browser: http://localhost:8000/
& Docker » sts.IntegrationT
@ Firefox Remote ' e
 Flask server (7] custom run command:
Gruntjs
g S] Test server
%4 HTTP Request Ncleicad
= Javascript Debug > BT
& Jest
& Lettuce Environment variables: IONUNBUFFERED=1;DJANGO_SETTINGS_MODULE=weblate.settings_test
0 npm i o
o Python interpreter: @, Project Default (Python 3.8 (weblate)) ~/Gitnb/weblate/ venv/bin/pyihon +
s
& Protractor o
Pyramid server
@ Python Working directory:
[Python docs >
) Python Remote Debug (") Add content roots to PYTHONPATH
% Python tests > Add source roots to PYTHONPATH
- React Native
Shell script ~ Before launch: Activate tool window
 tox +

There are no tasks to run before launch

o IR

_images/query-dropdown.png
WeblateOrg | Django | Czech | Translate
K < 11>l Customsearch~ '%(count)s word’

Not translated strings » state:enpty

Strings needing action » state:<translated

Translation
Translated strings « state:>=translated
English Strings marked for edit » state:needs-editing
Singular Strings with suggestions « has:suggestion

% (count)s word Strings with variants « has:variant

Plural Strings with labels « has:label

Bolcount)s words Strings with context « has:context

Czech, One

% (count)s slovo Strings with comments « has: comment

Strings with any failing checks « has:check
Approvedsstrings « state:approved

Czech, Few PP & ee)
Strings waiting for review » state:translated

%(count)s slova

Czech, Other) clone source | (%« [nes ... [[[.]]-]-

% (count)s slov

Plural formula: (n==1)70: (n>=2&&n<=4)71:2

Needs editing

Nearby strings Comments Automatic suggestions Other languages

History

New comment

Comment on this string for fellow translators and developers to read.
Scope
Translation comment, discussions with other translators v

Is your comment specific to this translation or generic for all of them?

New comment

You can use Markdown and mention users by @username.

Save

¥ Zen

nthe

sary

Strings needing action without suggestions « state:<translated AND NOT has:suggestion

Explanation
No explanation currently
provided.

Labels
Nolabels currently set.

Flags
python-format

Source string location
weblate/templates/translationh
tml149

string age
14seconds ago

Source string age
15 seconds ago

Translation file
weblate/locale/cs/LC_MESSAGE
s/django.po, string 5

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/pycharm-3.png
Languages & Frameworks

django Languages & Frameworks) Django For current project Reset
e Enable Django Support
Editor Django project root: Jmp/Weblate/
General
Settings: weblate/settings_test.py
Smart Keys
Do not use Django test runner:
HTML/CSS AP o
Color Scheme Manage.py tasks
Djangojjinja2 Template Manage scri manage.py
Inspections
X Environment variables:
Live Templates
Intentions migrations
_ . Folder pattern to track files:
Build, Execution, Deployment Separate several names with colon. Glob-style wildcards are supported
Console
Django Console Show structure

Settings. ~ X

_images/pycharm-4.png
@ Unnamed ~ | b # G G 5 Gitt @ Q f

Edit Configurations
A Save "Test: weblate.formats.tests.test_exporters.CSVExporterTest' Configuration

@ Unnamed

Test: weblate.formats.tests.test_exporters.CSVExporterTest

_static/weblate-32.png

_static/weblate-24.png

_static/weblate-80.png

_static/weblate-512.png

_images/project-access.png
Q) Weblate

WeblateOrg | Settings

Basic Worktlow components

Access control

o 0 2 o

Checkyour billing status

Save

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/project-overview.png
Q) Weblate

WeblateOrg
Languages mfo Search msghts~ Fles- Tools~ Manage- Share~ © Notwatching
Component Translated Untranslated Untranslated words Checks Suggestions Comments
[g Androidwe 79% 30 30 3
[g LanguagenameswEl 95% 4 5
o B A v

Add new translation componen

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/secondary-language.png
Q) Weblate

WeblateOrg

IK | < | 1/26
Translation
Hebrew

English
Files

Czech
Soubory

() Needs editing

Django

>

Czech

>l

Translate

Allstrings ~

) Clone source

Position and priority ~

©

ovap

5| o [nBs - I-

Glossary /
English czech

Norelated strings found in the
glossary.

@ Addtermto glossary

Sourceinformation @

Screenshot context
Noscreenshot currently

associated.
T

Explanation Vs

No explanation currently

provided.
Nearby strings [Comments Automatic suggestions Other languages

Labels Vs
History Nolabels currently set.

Flags
Language Status Translation Edit No flags currently set.
Hebrew (] oap

Source string location

. weblate/templates/translation h

Hungarian (] Fajlok @ las

weblate/trans/forms py:1404
English] Files @

String age

Weblate 45,1 AboutWeblate Legal

Contact Documentation

26 seconds ago

Source string age
27 seconds ago

Translation file
weblate/locale/cs/LC_MESSAGE
s/django.po, string 1

Donate to Weblate

_images/source-information.png
Q) Weblate

WeblateOrg | Django | Czech | Translate

1< | < [11726 0 > | >l Allstrings ~

Translation

Explanation
Help text for automatic translation tool

English

Position and priority ~

®

Automatic translation via machine translation uses active machine translation engines to get the best possible [[)

translations and applies them in this project

czech

Automaticky pieklad prostiednictvim strojového prekladu pouZiva aktivni enginy strojového prekladu pro ziska

nejlepsich moznjch pekladii a pouZije je na tento projekt.

() Needs editing

Nearby strings [E3 Comments Automatic suggestions

Context English
Files
Automatic translation

Add new translation string

Translation status
9 (count)s word
Other components
Translation file
Download

Browse all translation changes

Automatic translation takes existing translations in
this project and applies them to the current
component. It can be used to push translations toa
different branch, to fix inconsistent translations or
to translate a new component using translation
memory.

Automatic translation via machine translation uses
active machine translation engines to get the best
possible translations and applies them in this
project.

You can add new translation string here, it will
automatically appear in all translations.

The uploaded file will be merged with the current
translation. In case youwant to overwrite already
translated strings, don't forget to enable it

The uploaded file will be merged with the current
translation.

The fulltext search might not work properly as the
fulltext index for this translation is not yet up to
date.

Review

Review translations touched by other users,

Start review
Percent
Total

Failing check
Last activity
Last change
Last author

Questionfora What is %s?

mathematics-
based
CAPTCHA, the
%s is an
arithmetic
problem

The string uses three dots (..) instead of an ellipsis
character(...)

Weblate 45,1 AboutWeblate Legal

&) clone source |[5| « [ngs .., [<[,[*]-]-

Other languages History

Czech

@2

Soubory
Automaticky pieklad

Add new translation string

Stav prekladu
9(count)s slovo
Dalsi soucasti
Soubors piekladem
Stahnout

Prochazet viechny zményv piekladu

[NN <]

Automaticky pieklad pouZije stavajici
pieklady v projektu na tuto soucast. Miize
byt uiteény pro sloudeni prekladi z jiné
vétve, opravu nekonzistentnich prekladd
nebo preklad nové sougsti pomoci
piekladové paméti

Automaticky pieklad prostrednictvim
strojového prekladu pouZivé aktivni enginy
strojového prekladu pro ziskani nejlepsich
moznych prekladd a pouzije je na tento
projekt

Zde mizete piidat novy fetézec k prekladu,
automaticky se objevive viech jazycich

Nahranj soubor bude sloucen se stavajicimi
pieklady. Pokud cheete prepsat jiz
pieloZené fetézce, nezapomeite to
povolit.

Nahranj soubor bude sloucen se stavajicimi
pieklady.

(<]

Fulltextové vyhledavani nemusi fungovat
spravé, protoZe fulltextovy index pro tento
preklad jeté neni piné zpracovan

Kontrola

Zkontrolovat preklady od ostatnich
uzivateld

Zatit kontrolu
Procenta

Celkem
Nedsp&snych kontrol
Posledni aktivita
Posledni zména
Posledni autor

Kolik to je?

POOAAAAAI Q0

Contact Documentation Donate to Weblate

2l ¥ Zen T
Glossary 7
English Czech
machine strojovj weblateors
translation preklad
project projekt weblateors

@ Addtermto glossary

Source information ®

Screenshot context
Noscreenshot currently associated.

Explanation /

Help text for automatic translation
tool

Labels /
Nolabels currently set.

Flags /
Noflags currently set.

Source string location
weblate/templates/translation html:212

string age
3 seconds ago

Source string age
4seconds ago

Translation file
weblate/locale/cs/LC_MESSAGES/djan
g0.po, string 11

_images/screenshot-ocr.png
Q) Weblate

WeblateOrg Screenshots | Automatic translation

Screenshot has been uploaded, you can now assign it to source strings.

Assigned source strings

Source string Context Location Assigned screenshots Actions
No source strings are currently assigned!

Screenshot is shown to add visual context for all listed source strings.

Assign source strings

Source string Context Location Assigned screenshots Actions

No new matching source strings found

Image
Source string

Hello, world!e:

one
Orangutan has %d banana.«

Other
Orangutan has %d bananas.«

Try Weblate at <http://demo weblate.org/>!<

Thank you for using Weblate

Screenshot is shown to add visual context for alllisted source strings.

Edit screenshot

Screenshot name
Automatic translation
Image

Currently: screenshots/screenshot.png
Change:

Choose File | No file chosen

Upload JPEG or PNG images up to 2000x2000 pixels

Save

Screenshot details

Created now
Uploaded by @tsstussr
Language English

Delete screenshot

Deleting screenshot will remove it from all associated source strings.

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/search.png
Q) Weblate

Dashboard

Watched translations [[J Suggested translations [[fJ Insights ~ w

Search
Allstrings ~
Advanced query builder
Source strings~ | Search for O Exact
String changed after~ | mm/dd/yyyy B Add
Query examples

Review strings changed by other users
Translated strings

Strings with comments.

strings with any failing checks

Strings with suggestions from others
Approved strings with suggestions
Alluntranslated strings added the past month

Translated strings ina certain language

SortBy~ |zl

String has suggestion~ | Add

changed:>=2021-02-02 AND NOT changed_by: testuser
state:>=translated

has: comment

has:check

has:suggestion AND NOT suggestion_author: testuser

state:approved AND has:suggestion

added:>=2021-02-02 AND state;

needs-editing

ds:translated AND language:cs

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

Add

Add

Add

Add

Add

Add

Add

Add

_images/source-review.png
Q) Weblate

WeblateOrg | Android | Englishg®

Info Search Insights~ Files~ Tools~ Manage~ Share~ ® Notwatching

Source strings
13 Strings IS 100% TN

(Browse)(ERUZLEE
46 Words . 100% e

This translation is being used as source strings within this component.

© '

Strings status

13 Allstrings — 46 words Browse Edit Zen
13 @ Translatedstrings — 46 words Browse Edit Zen
13 Strings without a label — 46 words Browse Edit Zen

Other components

Component Translated Untranslated Untranslated words Checks Suggestions Comments
, Language namesw3 @l
s BB
, Diangowpon v 1

Browse all components

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/source-review-detail.png
Q) Weblate

WeblateOrg | Android

/3| > >l

Source string

Key

English

Englishgs | Translate

Customsearch~ | Monday

) Clone source |[

Position and priority ~

«[nes|..[-]"

=

‘ [Monday

() Needs editing

Nearby strings [[E] [CEIOTEE Variants Comments Otherlanguages [History

Key
auth_activity_title
auth_hint_password
auth_hint_pin
auth_msg_authenticate
auth_msg_confirm_encryption
auth_button_unlock
auth_toast_password_missing
auth_toast_pin_missing
auth_toast_password_again
auth_toast_pin_again
dow_monday
dow_monday_short

dow_monday_min

English
Authenticate
Password
PIN

Please authenticate to start andOTP!

Please confirm your authentication to generate the new encryption key!

Unlock
Please set a password in the Settings!
Please seta PIN in the Settings!
Wrong password, please try again!

Wrong PIN, please try again!

Monday

Mon

M

Weblate 45,1 AboutWeblate ~Legal

Contact Documentation

State

Q000000000000

Donate to Weblate

= T00%
¥zen =
Things to check

LQlvariants

There are 3 variants of this string.

Glossary /

English English

Norelated strings found in the glossary.

@ Addtermto glossary

Source information [)

Screenshot context
Noscreenshot currently associated.

Explanation
No explanation currently provided.

Key

Labels
Nolabels currently set.

Flags
java-format

string age
15 seconds ago

Source string age
15 seconds ago

Translation file
app/src/mainjres/values/strings.xml,
string 11

_images/source-review-edit.png
Edit additional string info

Explanation

Additional explanation to clarify meaning or usage of the string.

Labels

Next sprint

Additional labels can be defined in the p
Translation flags

Additional comma-separated flags to influence quality checks. Possible values can
be found in the documentation.

Save

_static/weblate-128.png

_static/weblate-150.png

_static/weblate-144.png

_static/weblate-192.png

_static/weblate-180.png

_static/logo-32.png

_static/logo-16.png

_static/plus.png

_static/minus.png

_images/reporting.png
Q) Weblate

WeblateOrg | Language names tra

Translations Info Alerts Search m Files~ Tools~ Manage~ Share~ ® Watching
History

Credits Activity ®

Lists all translators contributing to this compona DWnload statistics (CSV)

and generate feedback to them, Download statistics (JSON)

srinclusion in documentation or the app itself, to thank translators

Report format
reStructuredText v

Choose file format for the report

Report period

As specified v

Starting date

mm/dd/yyyy o
Ending date

mm/dd/yyyy o
Contributor stats fo)

Reports the number of strings and words translated by each translator.
Report format

reStructuredText v
Choose file format for the report
Report period

As specified v

Starting date

mm/dd/yyyy o
Ending date

mm/dd/yyyy o

Generate

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/screenshot-context.png
Q) Weblate

WeblateOrg | Django | Czech | Translate
IK | < 11/26 > > Allstrings ~
Translation
Explanation

Help text for automatic translation tool

English

Position and priority ~

©

Automatic translation via machine translation uses active machine translation engines to get the best possible [

translations and applies them in this project

czech

) Clone source |[

« [nBs

Automaticky pieklad prostrednictvim strojového prekladu pouZiva aktivni enginy strojového prekladu pro ziskani

nejlepsich moznjch pekladiia pouZije je na tento projekt.

() Needs editing

Comments Automatic suggestions Other languages History

Nearby strings

Translation memory
Translation

Automaticky pieklad
prostrednictvim
strojového prekladu
pouzivé aktivni enginy
strojového prekladu
pro ziskani nejlepsich
moznych prekladd a
pouzije je na tento
projekt

Source

Automatic
translation via
machine
translation uses
active machine
translation
engines to get the
best possible
translations and
applies them in
this project.

Origin Similarity

Weblate

—
(WeblateOrg/Django) 2% 2%

Weblate Translation
Memory (Project;
weblateorg/django)
Weblate Translation
Memory (Shared:
weblateorg/django)

Weblate 45,1 AboutWeblate ~Legal

Contact Documentation

Donate to Weblate

¥ Zen
Glossary Vs
English Czech
machine strojovy wat Vi
translation preklad
project projekt Vi
@ Addtermto glossary
Source information fo)
Screenshot context ,‘
Explanation 7

Help text for automatic translation tool

Labels
Nolabels currently set.

Flags
Noflags currently set.

Source string location
weblate/templates/translation html:212

String age
11 seconds ago

Source string age
12 seconds ago

Translation file
weblate/locale/cs/LC_MESSAGES/djan
go.po, string 11

_images/query-sort.png
WeblateOrg | Django | Czech | Translate

K| < 11> >l Not translated strings~ | state:empty ¥ Zen
‘ Position and priority | =1
Translation Position and priority
Position
English Czech
Priorit
The string uses three dots (..) instead of an ellipsis character (...) Y s found in the
Labels
Czech - B
) Clone source “[mes|...], Source string
toglossary
Translated string
Age of string
Needs editin;
€ Number of words fmation ©
Numberof comments P
B Suggest » Skip Number of failing checks rurrently
Key
Nearby strings [SYINEITE Automatic suggestions Other languages [Explanation
vstine: 60 e susses B o plaation ety
provided.
History
Labels
New comment No labels currently set.
Flags
Comment on this string for fellow translators and developers to read, Noflags currently set.
Scope
Source string location
Translation comment, discussions with other translators v weblate/checks/source py:54
Is your comment specific to this translation or generic for all of them?
String age
New comment 18 seconds ago

Source string age
19seconds ago

You can use Markdown and mention users by @username. Translation file

weblate/locale/cs/LC_MESSAGE
Save

s/django.po, string 26

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/Logo-Darktext-borders.png

nav.xhtml

 Table of Contents

 		
 Support

 		
 Weblate basics

 		
 Project and component structure

 		
 Registration and user profile

 		
 Registration

 		
 Dashboard

 		
 User profile

 		
 Translated languages

 		
 Secondary languages

 		
 Default dashboard view

 		
 Public profile

 		
 Editor link

 		
 Notifications

 		
 Account

 		
 API access

 		
 Audit log

 		
 Translating using Weblate

 		
 Translation projects

 		
 Translation links

 		
 Suggestions

 		
 Comments

 		
 Variants

 		
 Labels

 		
 Translating

 		
 Plurals

 		
 Keyboard shortcuts

 		
 Visual keyboard

 		
 Translation context

 		
 Translation history

 		
 Translated string length

 		
 Automatic suggestions

 		
 Automatic translation

 		
 Rate limiting

 		
 Search and replace

 		
 Bulk edit

 		
 Downloading and uploading translations

 		
 Downloading translations

 		
 Uploading translations

 		
 Supported file formats

 		
 Import methods

 		
 Conflicts handling

 		
 Strings needing edit

 		
 Overriding authorship

 		
 Glossary

 		
 Managing glossaries

 		
 Glossary terms

 		
 Not translatable terms

 		
 Forbidden translations

 		
 Terminology

 		
 Variants

 		
 Checks and fixups

 		
 Automatic fixups

 		
 Quality checks

 		
 Translation checks

 		
 BBcode markup

 		
 Consecutive duplicated words

 		
 Does not follow glossary

 		
 Double space

 		
 Formatted strings

 		
 Has been translated

 		
 Inconsistent

 		
 Kashida letter used

 		
 Markdown links

 		
 Markdown references

 		
 Markdown syntax

 		
 Maximum length of translation

 		
 Maximum size of translation

 		
 Mismatched \n

 		
 Mismatched colon

 		
 Mismatched ellipsis

 		
 Mismatched exclamation mark

 		
 Mismatched full stop

 		
 Mismatched question mark

 		
 Mismatched semicolon

 		
 Mismatching line breaks

 		
 Missing plurals

 		
 Placeholders

 		
 Punctuation spacing

 		
 Regular expression

 		
 Same plurals

 		
 Starting newline

 		
 Starting spaces

 		
 Trailing newline

 		
 Trailing space

 		
 Unchanged translation

 		
 Unsafe HTML

 		
 URL

 		
 XML markup

 		
 XML syntax

 		
 Zero-width space

 		
 Source checks

 		
 Ellipsis

 		
 Long untranslated

 		
 Multiple failing checks

 		
 Multiple unnamed variables

 		
 Unpluralised

 		
 Searching

 		
 Simple search

 		
 Fields

 		
 Boolean operators

 		
 Field operators

 		
 Exact operators

 		
 Searching for changes

 		
 Regular expressions

 		
 Predefined queries

 		
 Ordering the results

 		
 Translation workflows

 		
 Translation access

 		
 Translation states

 		
 Direct translation

 		
 Peer review

 		
 Dedicated reviewers

 		
 Turning on reviews

 		
 Quality gateway for the source strings

 		
 Source strings reviews

 		
 Frequently Asked Questions

 		
 Configuration

 		
 How to create an automated workflow?

 		
 How to access repositories over SSH?

 		
 How to fix merge conflicts in translations?

 		
 How do I translate several branches at once?

 		
 How to translate multi-platform projects?

 		
 How to export the Git repository that Weblate uses?

 		
 What are the options for pushing changes back upstream?

 		
 How can I limit Weblate access to only translations, without exposing source code to it?

 		
 How can I check whether my Weblate is set up properly?

 		
 Why are all commits committed by Weblate <noreply@weblate.org>?

 		
 Usage

 		
 How do I review the translations of others?

 		
 How do I provide feedback on a source string?

 		
 How can I use existing translations while translating?

 		
 Does Weblate update translation files besides translations?

 		
 Where do language definitions come from and how can I add my own?

 		
 Can Weblate highlight changes in a fuzzy string?

 		
 Why does Weblate still show old translation strings when Iâ��ve updated the template?

 		
 Troubleshooting

 		
 Requests sometimes fail with Â«too many open filesÂ» error

 		
 When accessing the site I get a Â«Bad Request (400)Â» error

 		
 What does mean Â«There are more files for the single language (en)Â»?

 		
 Features

 		
 Does Weblate support other VCSes than Git and Mercurial?

 		
 How does Weblate credit translators?

 		
 Why does Weblate force showing all PO files in a single tree?

 		
 Why does Weblate use language codes such sr_Latn or zh_Hant?

 		
 Supported file formats

 		
 Bilingual and monolingual formats

 		
 Automatic detection

 		
 Translation types capabilities

 		
 GNU gettext

 		
 Monolingual gettext

 		
 XLIFF

 		
 Translation states

 		
 Whitespace and newlines in XLIFF

 		
 Specifying translation flags

 		
 String keys

 		
 Java properties

 		
 GWT properties

 		
 INI translations

 		
 Inno Setup INI translations

 		
 Joomla translations

 		
 Qt Linguist .ts

 		
 Android string resources

 		
 Apple iOS strings

 		
 PHP strings

 		
 Laravel PHP strings

 		
 JSON files

 		
 JSON i18next files

 		
 go-i18n JSON files

 		
 ARB File

 		
 WebExtension JSON

 		
 .XML resource files

 		
 CSV files

 		
 YAML files

 		
 Ruby YAML files

 		
 DTD files

 		
 Flat XML files

 		
 Windows RC files

 		
 App store metadata files

 		
 Subtitle files

 		
 Excel Open XML

 		
 HTML files

 		
 OpenDocument Format

 		
 IDML Format

 		
 TermBase eXchange format

 		
 Others

 		
 Read only strings

 		
 Version control integration

 		
 Accessing repositories

 		
 Accessing repositories from Hosted Weblate

 		
 SSH repositories

 		
 GitHub repositories

 		
 Weblate internal URLs

 		
 HTTPS repositories

 		
 Using proxy

 		
 Git

 		
 Git with force push

 		
 Customizing Git configuration

 		
 Git remote helpers

 		
 GitHub

 		
 Pushing changes to GitHub as pull requests

 		
 GitLab

 		
 Pushing changes to GitLab as merge requests

 		
 Pagure

 		
 Pushing changes to Pagure as merge requests

 		
 Gerrit

 		
 Mercurial

 		
 Subversion

 		
 Subversion credentials

 		
 Local files

 		
 Weblateâ��s REST API

 		
 Authentication and generic parameters

 		
 Authentication examples

 		
 Passing Parameters Examples

 		
 API rate limiting

 		
 API Entry Point

 		
 Users

 		
 Groups

 		
 Roles

 		
 Languages

 		
 Projects

 		
 Components

 		
 Translations

 		
 Units

 		
 Changes

 		
 Screenshots

 		
 Addons

 		
 Component lists

 		
 Glossary

 		
 Tasks

 		
 Notification hooks

 		
 Exports

 		
 RSS feeds

 		
 Weblate Client

 		
 Installation

 		
 Docker usage

 		
 Getting started

 		
 Synopsis

 		
 Description

 		
 Arguments

 		
 Commands

 		
 Configuration files

 		
 Examples

 		
 Weblateâ��s Python API

 		
 Installation

 		
 wlc

 		
 WeblateException

 		
 Weblate

 		
 wlc.config

 		
 WeblateConfig

 		
 wlc.main

 		
 Command

 		
 Configuration instructions

 		
 Installing Weblate

 		
 Software requirements

 		
 Operating system

 		
 Other services

 		
 Python dependencies

 		
 Optional dependencies

 		
 Database backend dependencies

 		
 Other system requirements

 		
 Build-time dependencies

 		
 Pango and Cairo

 		
 Verifying release signatures

 		
 Filesystem permissions

 		
 Database setup for Weblate

 		
 PostgreSQL

 		
 MySQL and MariaDB

 		
 Other configurations

 		
 Configuring outgoing e-mail

 		
 Running behind reverse proxy

 		
 HTTP proxy

 		
 Adjusting configuration

 		
 Filling up the database

 		
 Production setup

 		
 Disable debug mode

 		
 Properly configure admins

 		
 Set correct site domain

 		
 Correctly configure HTTPS

 		
 Set properly SECURE_HSTS_SECONDS

 		
 Use a powerful database engine

 		
 Enable caching

 		
 Avatar caching

 		
 Configure e-mail sending

 		
 Allowed hosts setup

 		
 Django secret key

 		
 Home directory

 		
 Template loading

 		
 Running maintenance tasks

 		
 System locales and encoding

 		
 Using custom certificate authority

 		
 Compressing client assets

 		
 Running server

 		
 Running web server

 		
 Serving static files

 		
 Content security policy

 		
 Sample configuration for NGINX and uWSGI

 		
 Sample configuration for Apache

 		
 Sample configuration for Apache and Gunicorn

 		
 Running Weblate under path

 		
 Background tasks using Celery

 		
 Running Celery as system service

 		
 Periodic tasks using Celery beat

 		
 Monitoring Celery status

 		
 Monitoring Weblate

 		
 Collecting error reports

 		
 Sentry

 		
 Rollbar

 		
 Migrating Weblate to another server

 		
 Migrating database

 		
 Migrating VCS repositories

 		
 Other notes

 		
 Weblate deployments

 		
 Third-party deployments for Weblate

 		
 Bitnami Weblate stack

 		
 Weblate Cloudron Package

 		
 Weblate in YunoHost

 		
 Upgrading Weblate

 		
 Docker image upgrades

 		
 Generic upgrade instructions

 		
 Version specific instructions

 		
 Upgrade from 2.x

 		
 Upgrade from 3.x

 		
 Upgrade from 4.0 to 4.1

 		
 Upgrade from 4.1 to 4.2

 		
 Upgrade from 4.2 to 4.3

 		
 Upgrade from 4.3 to 4.4

 		
 Upgrade from 4.4 to 4.5

 		
 Upgrading from Python 2 to Python 3

 		
 Migrating from other databases to PostgreSQL

 		
 Creating a database in PostgreSQL

 		
 Migrating using Django JSON dumps

 		
 Migrating to PostgreSQL using pgloader

 		
 Migrating from Pootle

 		
 Backing up and moving Weblate

 		
 Automated backup using BorgBackup

 		
 Borg encryption key

 		
 Weblate provisioned backup storage

 		
 Using custom backup storage

 		
 Local filesystem

 		
 Remote backups

 		
 Restoring from BorgBackup

 		
 Manual backup

 		
 Database

 		
 Files

 		
 Command line for manual backup

 		
 Restoring manual backup

 		
 Moving a Weblate installation

 		
 Authentication

 		
 User registration

 		
 Authentication backends

 		
 Social authentication

 		
 OpenID authentication

 		
 GitHub authentication

 		
 Bitbucket authentication

 		
 Google OAuth 2

 		
 Facebook OAuth 2

 		
 GitLab OAuth 2

 		
 Microsoft Azure Active Directory

 		
 Slack

 		
 Turning off password authentication

 		
 Password authentication

 		
 SAML authentication

 		
 LDAP authentication

 		
 Using bind password

 		
 Active Directory integration

 		
 CAS authentication

 		
 Configuring third party Django authentication

 		
 Access control

 		
 Common setups

 		
 Locking down Weblate

 		
 Site wide permissions

 		
 Per project permissions

 		
 Custom permissions for languages, components or projects

 		
 Project access control

 		
 Automatic group assignments

 		
 Users, roles, groups and permissions

 		
 Permission checking

 		
 Checking access to a project

 		
 Checking access to a component

 		
 Managing users and groups

 		
 Managing per-project access control

 		
 Predefined groups

 		
 Custom access control

 		
 Default groups and roles

 		
 List of privileges

 		
 List of groups

 		
 Translation projects

 		
 Translation organization

 		
 Adding translation projects and components

 		
 Project configuration

 		
 Project name

 		
 Project slug

 		
 Project website

 		
 Mailing list

 		
 Translation instructions

 		
 Set Language-Team header

 		
 Use shared translation memory

 		
 Contribute to shared translation memory

 		
 Access control

 		
 Enable reviews

 		
 Enable source reviews

 		
 Enable hooks

 		
 Language aliases

 		
 Component configuration

 		
 Component name

 		
 Component slug

 		
 Component project

 		
 Version control system

 		
 Source code repository

 		
 Repository push URL

 		
 Repository browser

 		
 Exported repository URL

 		
 Repository branch

 		
 Push branch

 		
 File mask

 		
 Monolingual base language file

 		
 Edit base file

 		
 Intermediate language file

 		
 Template for new translations

 		
 File format

 		
 Source string bug reporting address

 		
 Allow translation propagation

 		
 Enable suggestions

 		
 Suggestion voting

 		
 Autoaccept suggestions

 		
 Translation flags

 		
 Enforced checks

 		
 Translation license

 		
 Contributor agreement

 		
 Adding new translation

 		
 Manage strings

 		
 Language code style

 		
 Merge style

 		
 Commit, add, delete, merge and addon messages

 		
 Committer name

 		
 Committer e-mail

 		
 Push on commit

 		
 Age of changes to commit

 		
 Lock on error

 		
 Source language

 		
 Language filter

 		
 Variants regular expression

 		
 Priority

 		
 Restricted access

 		
 Share in projects

 		
 Use as a glossary

 		
 Glossary color

 		
 Template markup

 		
 Importing speed

 		
 Optimize configuration

 		
 Check resource limits

 		
 Disable unneeded checks

 		
 Automatic creation of components

 		
 Language definitions

 		
 Parsing language codes

 		
 Changing language definitions

 		
 Built-in language definitions

 		
 Ambiguous language codes and macrolanguages

 		
 Language definitions

 		
 Language code

 		
 Language name

 		
 Text direction

 		
 Plural number

 		
 Plural formula

 		
 Adding new translations

 		
 Continuous localization

 		
 Updating repositories

 		
 Avoiding merge conflicts

 		
 Automatically receiving changes from GitHub

 		
 Automatically receiving changes from Bitbucket

 		
 Automatically receiving changes from GitLab

 		
 Automatically receiving changes from Pagure

 		
 Automatically receiving changes from Azure Repos

 		
 Automatically receiving changes from Gitea Repos

 		
 Automatically receiving changes from Gitee Repos

 		
 Automatically updating repositories nightly

 		
 Pushing changes from Weblate

 		
 Protected branches

 		
 Merge or rebase

 		
 Interacting with others

 		
 Lazy commits

 		
 Processing repository with scripts

 		
 Keeping translations same across components

 		
 Translation propagation

 		
 Consistency check

 		
 Automatic translation

 		
 Licensing translations

 		
 License info

 		
 Contributor agreement

 		
 User licenses

 		
 Translation process

 		
 Suggestion voting

 		
 Additional info on source strings

 		
 Strings prioritization

 		
 Translation flags

 		
 Explanation

 		
 Visual context for strings

 		
 Checks and fixups

 		
 Custom automatic fixups

 		
 Customizing behavior using flags

 		
 Enforcing checks

 		
 Managing fonts

 		
 Writing own checks

 		
 Checking translation text does not contain Â«fooÂ»

 		
 Checking that Czech translation text plurals differ

 		
 Machine translation

 		
 amaGama

 		
 Apertium

 		
 AWS

 		
 Baidu API machine translation

 		
 DeepL

 		
 Glosbe

 		
 Google Translate

 		
 Google Translate API V3 (Advanced)

 		
 Microsoft Cognitive Services Translator

 		
 Translator Text API V2

 		
 Translator Text API V3

 		
 Microsoft Terminology Service

 		
 ModernMT

 		
 MyMemory

 		
 NetEase Sight API machine translation

 		
 tmserver

 		
 Yandex Translate

 		
 Youdao Zhiyun API machine translation

 		
 Weblate

 		
 Weblate Translation Memory

 		
 SAP Translation Hub

 		
 Custom machine translation

 		
 Addons

 		
 Built-in addons

 		
 Automatic translation

 		
 JavaScript localization CDN

 		
 Remove blank strings

 		
 Cleanup translation files

 		
 Language consistency

 		
 Component discovery

 		
 Bulk edit

 		
 Flag unchanged translations as Â«Needs editingÂ»

 		
 Flag new source strings as Â«Needs editingÂ»

 		
 Flag new translations as Â«Needs editingÂ»

 		
 Statistics generator

 		
 Pseudolocale generation

 		
 Contributors in comment

 		
 Update ALL_LINGUAS variable in the Â«configureÂ» file

 		
 Customize gettext output

 		
 Update LINGUAS file

 		
 Generate MO files

 		
 Update PO files to match POT (msgmerge)

 		
 Squash Git commits

 		
 Customize JSON output

 		
 Formats the Java properties file

 		
 Stale comment removal

 		
 Stale suggestion removal

 		
 Update RESX files

 		
 Customize YAML output

 		
 Customizing list of addons

 		
 Writing addon

 		
 Executing scripts from addon

 		
 Post-update repository processing

 		
 Pre-commit processing of translations

 		
 Translation Memory

 		
 Translation memory scopes

 		
 Imported translation memory

 		
 Per user translation memory

 		
 Per project translation memory

 		
 Shared translation memory

 		
 Managing translation memory

 		
 User interface

 		
 Management interface

 		
 Configuration

 		
 AKISMET_API_KEY

 		
 ANONYMOUS_USER_NAME

 		
 AUDITLOG_EXPIRY

 		
 AUTH_LOCK_ATTEMPTS

 		
 AUTO_UPDATE

 		
 AVATAR_URL_PREFIX

 		
 AUTH_TOKEN_VALID

 		
 AUTH_PASSWORD_DAYS

 		
 AUTOFIX_LIST

 		
 BASE_DIR

 		
 BASIC_LANGUAGES

 		
 CSP_SCRIPT_SRC, CSP_IMG_SRC, CSP_CONNECT_SRC, CSP_STYLE_SRC, CSP_FONT_SRC

 		
 CHECK_LIST

 		
 COMMENT_CLEANUP_DAYS

 		
 COMMIT_PENDING_HOURS

 		
 DATA_DIR

 		
 DATABASE_BACKUP

 		
 DEFAULT_ACCESS_CONTROL

 		
 DEFAULT_AUTO_WATCH

 		
 DEFAULT_RESTRICTED_COMPONENT

 		
 DEFAULT_ADD_MESSAGE, DEFAULT_ADDON_MESSAGE, DEFAULT_COMMIT_MESSAGE, DEFAULT_DELETE_MESSAGE, DEFAULT_MERGE_MESSAGE

 		
 DEFAULT_ADDONS

 		
 DEFAULT_COMMITER_EMAIL

 		
 DEFAULT_COMMITER_NAME

 		
 DEFAULT_LANGUAGE

 		
 DEFAULT_MERGE_STYLE

 		
 DEFAULT_TRANSLATION_PROPAGATION

 		
 DEFAULT_PULL_MESSAGE

 		
 ENABLE_AVATARS

 		
 ENABLE_HOOKS

 		
 ENABLE_HTTPS

 		
 ENABLE_SHARING

 		
 GITLAB_CREDENTIALS

 		
 GITLAB_USERNAME

 		
 GITLAB_TOKEN

 		
 GITHUB_CREDENTIALS

 		
 GITHUB_USERNAME

 		
 GITHUB_TOKEN

 		
 GOOGLE_ANALYTICS_ID

 		
 HIDE_REPO_CREDENTIALS

 		
 HIDE_VERSION

 		
 IP_BEHIND_REVERSE_PROXY

 		
 IP_PROXY_HEADER

 		
 IP_PROXY_OFFSET

 		
 LEGAL_URL

 		
 LICENSE_EXTRA

 		
 LICENSE_FILTER

 		
 LICENSE_REQUIRED

 		
 LIMIT_TRANSLATION_LENGTH_BY_SOURCE_LENGTH

 		
 LOCALIZE_CDN_URL and LOCALIZE_CDN_PATH

 		
 LOGIN_REQUIRED_URLS

 		
 LOGIN_REQUIRED_URLS_EXCEPTIONS

 		
 MATOMO_SITE_ID

 		
 MATOMO_URL

 		
 MT_SERVICES

 		
 MT_APERTIUM_APY

 		
 MT_AWS_ACCESS_KEY_ID

 		
 MT_AWS_SECRET_ACCESS_KEY

 		
 MT_AWS_REGION

 		
 MT_BAIDU_ID

 		
 MT_BAIDU_SECRET

 		
 MT_DEEPL_API_VERSION

 		
 MT_DEEPL_KEY

 		
 MT_GOOGLE_KEY

 		
 MT_GOOGLE_CREDENTIALS

 		
 MT_GOOGLE_PROJECT

 		
 MT_GOOGLE_LOCATION

 		
 MT_MICROSOFT_BASE_URL

 		
 MT_MICROSOFT_COGNITIVE_KEY

 		
 MT_MICROSOFT_REGION

 		
 MT_MICROSOFT_ENDPOINT_URL

 		
 MT_MODERNMT_KEY

 		
 MT_MODERNMT_URL

 		
 MT_MYMEMORY_EMAIL

 		
 MT_MYMEMORY_KEY

 		
 MT_MYMEMORY_USER

 		
 MT_NETEASE_KEY

 		
 MT_NETEASE_SECRET

 		
 MT_TMSERVER

 		
 MT_YANDEX_KEY

 		
 MT_YOUDAO_ID

 		
 MT_YOUDAO_SECRET

 		
 MT_SAP_BASE_URL

 		
 MT_SAP_SANDBOX_APIKEY

 		
 MT_SAP_USERNAME

 		
 MT_SAP_PASSWORD

 		
 MT_SAP_USE_MT

 		
 NEARBY_MESSAGES

 		
 PAGURE_CREDENTIALS

 		
 PAGURE_USERNAME

 		
 PAGURE_TOKEN

 		
 RATELIMIT_ATTEMPTS

 		
 RATELIMIT_WINDOW

 		
 RATELIMIT_LOCKOUT

 		
 REGISTRATION_ALLOW_BACKENDS

 		
 REGISTRATION_CAPTCHA

 		
 REGISTRATION_EMAIL_MATCH

 		
 REGISTRATION_OPEN

 		
 REPOSITORY_ALERT_THRESHOLD

 		
 REQUIRE_LOGIN

 		
 SENTRY_DSN

 		
 SESSION_COOKIE_AGE_AUTHENTICATED

 		
 SIMPLIFY_LANGUAGES

 		
 SITE_DOMAIN

 		
 SITE_TITLE

 		
 SPECIAL_CHARS

 		
 SINGLE_PROJECT

 		
 STATUS_URL

 		
 SUGGESTION_CLEANUP_DAYS

 		
 UPDATE_LANGUAGES

 		
 URL_PREFIX

 		
 VCS_BACKENDS

 		
 VCS_CLONE_DEPTH

 		
 WEBLATE_ADDONS

 		
 WEBLATE_EXPORTERS

 		
 WEBLATE_FORMATS

 		
 WEBLATE_GPG_IDENTITY

 		
 Sample configuration

 		
 Management commands

 		
 Invoking management commands

 		
 add_suggestions

 		
 auto_translate

 		
 celery_queues

 		
 checkgit

 		
 commitgit

 		
 commit_pending

 		
 cleanuptrans

 		
 createadmin

 		
 dump_memory

 		
 dumpuserdata

 		
 import_demo

 		
 import_json

 		
 import_memory

 		
 import_project

 		
 importuserdata

 		
 importusers

 		
 install_addon

 		
 list_languages

 		
 list_translators

 		
 list_versions

 		
 loadpo

 		
 lock_translation

 		
 move_language

 		
 pushgit

 		
 unlock_translation

 		
 setupgroups

 		
 setuplang

 		
 updatechecks

 		
 updategit

 		
 Announcements

 		
 Component Lists

 		
 Automatic component lists

 		
 Optional Weblate modules

 		
 Git exporter

 		
 Installation

 		
 Usage

 		
 Billing

 		
 Installation

 		
 Usage

 		
 Legal

 		
 Installation

 		
 Usage

 		
 Avatars

 		
 Spam protection

 		
 Signing Git commits with GnuPG

 		
 Rate limiting

 		
 Fedora Messaging integration

 		
 Customizing Weblate

 		
 Creating a Python module

 		
 Changing the logo

 		
 Custom quality checks, addons and auto-fixes

 		
 Management interface

 		
 The Django admin interface

 		
 Adding a project

 		
 Bilingual components

 		
 Monolingual components

 		
 Getting support for Weblate

 		
 Integrating support

 		
 Data submitted to the Weblate

 		
 Integration services

 		
 Legal documents

 		
 ITAR and other export controls

 		
 US encryption controls

 		
 Starting with internationalization

 		
 Choosing internationalization framework

 		
 Integrating with Weblate

 		
 Weblate basics

 		
 Project and component structure

 		
 Importing localization project into Weblate

 		
 Fetching updated translations from Weblate

 		
 Fetching remote changes into Weblate

 		
 Adding new strings

 		
 Updating target language files

 		
 Translating software using GNU Gettext

 		
 Workflow overview

 		
 Sample program

 		
 Extracting translatable strings

 		
 Starting new translation

 		
 Updating strings

 		
 Importing to Weblate

 		
 Translating documentation using Sphinx

 		
 Translating HTML and JavaScript using Weblate CDN

 		
 Creating component

 		
 Configuring Weblate CDN addon

 		
 String extraction for Weblate CDN

 		
 HTML localization using Weblate CDN

 		
 JavaScript localization

 		
 Translation component alerts

 		
 Building translators community

 		
 Community localization checklist

 		
 Managing translations

 		
 Adding new translations

 		
 Removing existing translations

 		
 String variants

 		
 Automated key based variants

 		
 Manual variants

 		
 Variants while translating

 		
 String labels

 		
 Reviewing strings

 		
 Activity reports

 		
 Source strings checks

 		
 Translation string checks

 		
 Receiving source string feedback

 		
 Promoting the translation

 		
 Translation progress reporting

 		
 Translator credits

 		
 Contributor stats

 		
 Contributing to Weblate

 		
 Translating Weblate

 		
 Funding Weblate development

 		
 Backers who have funded Weblate

 		
 Starting contributing code to Weblate

 		
 Starting with our codebase

 		
 Running Weblate locally

 		
 Running Weblate locally in Docker

 		
 Coding Weblate with PyCharm

 		
 Bootstrapping your devel instance

 		
 Weblate source code

 		
 Security by Design Principles

 		
 Coding standard

 		
 Debugging Weblate

 		
 Debug mode

 		
 Weblate logs

 		
 Not processing background tasks

 		
 Not receiving e-mails from Weblate

 		
 Analyzing application crashes

 		
 Silent failures

 		
 Performance issues

 		
 Weblate internals

 		
 Directory structure

 		
 Modules

 		
 Developing addons

 		
 Weblate frontend

 		
 Supported browsers

 		
 Dependency management

 		
 Coding style

 		
 Localization

 		
 Icons

 		
 Reporting issues in Weblate

 		
 Security issues

 		
 Weblate testsuite and continuous integration

 		
 Continuous integration

 		
 Local testing

 		
 Data schemas

 		
 Weblate Translation Memory Schema

 		
 Weblate user data export

 		
 Releasing Weblate

 		
 Releasing schedule

 		
 Release planning

 		
 Release process

 		
 Security and privacy

 		
 Tracking dependencies for vulnerabilities

 		
 Docker containers security

 		
 About Weblate

 		
 Project goals

 		
 Project name

 		
 Project website

 		
 Project logos

 		
 Leadership

 		
 Authors

 		
 License

 		
 Weblate 4.5.1

 		
 Weblate 4.5

 		
 Weblate 4.4.2

 		
 Weblate 4.4.1

 		
 Weblate 4.4

 		
 Weblate 4.3.2

 		
 Weblate 4.3.1

 		
 Weblate 4.3

 		
 Weblate 4.2.2

 		
 Weblate 4.2.1

 		
 Weblate 4.2

 		
 Weblate 4.1.1

 		
 Weblate 4.1

 		
 Weblate 4.0.4

 		
 Weblate 4.0.3

 		
 Weblate 4.0.2

 		
 Weblate 4.0.1

 		
 Weblate 4.0

 		
 Weblate 3.x series

 		
 Weblate 3.11.3

 		
 Weblate 3.11.2

 		
 Weblate 3.11.1

 		
 Weblate 3.11

 		
 Weblate 3.10.3

 		
 Weblate 3.10.2

 		
 Weblate 3.10.1

 		
 Weblate 3.10

 		
 Weblate 3.9.1

 		
 Weblate 3.9

 		
 Weblate 3.8

 		
 Weblate 3.7.1

 		
 Weblate 3.7

 		
 Weblate 3.6.1

 		
 Weblate 3.6

 		
 Weblate 3.5.1

 		
 Weblate 3.5

 		
 Weblate 3.4

 		
 Weblate 3.3

 		
 Weblate 3.2.2

 		
 Weblate 3.2.1

 		
 Weblate 3.2

 		
 Weblate 3.1.1

 		
 Weblate 3.1

 		
 Weblate 3.0.1

 		
 Weblate 3.0

 		
 Weblate 2.x series

 		
 Weblate 2.20

 		
 Weblate 2.19.1

 		
 Weblate 2.19

 		
 Weblate 2.18

 		
 Weblate 2.17.1

 		
 Weblate 2.17

 		
 Weblate 2.16

 		
 Weblate 2.15

 		
 Weblate 2.14.1

 		
 Weblate 2.14

 		
 Weblate 2.13.1

 		
 Weblate 2.13

 		
 Weblate 2.12

 		
 Weblate 2.11

 		
 Weblate 2.10.1

 		
 Weblate 2.10

 		
 Weblate 2.9

 		
 Weblate 2.8

 		
 Weblate 2.7

 		
 Weblate 2.6

 		
 Weblate 2.5

 		
 Weblate 2.4

 		
 Weblate 2.3

 		
 Weblate 2.2

 		
 Weblate 2.1

 		
 Weblate 2.0

 		
 Weblate 1.x series

 		
 Weblate 1.9

 		
 Weblate 1.8

 		
 Weblate 1.7

 		
 Weblate 1.6

 		
 Weblate 1.5

 		
 Weblate 1.4

 		
 Weblate 1.3

 		
 Weblate 1.2

 		
 Weblate 1.1

 		
 Weblate 1.0

 		
 Weblate 0.x series

 		
 Weblate 0.9

 		
 Weblate 0.8

 		
 Weblate 0.7

 		
 Weblate 0.6

 		
 Weblate 0.5

 		
 Weblate 0.4

 		
 Weblate 0.3

 		
 Weblate 0.2

 		
 Weblate 0.1

_images/activity.png
Q) Weblate

Dashboard

Watched translations [[J

Suggested translations [m Search

Daily activity

Weekly activity
-I|‘lll‘l-|‘|.Ihll”ll“|-|‘

i

11/2020
12/2020
12021
2/2021

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/add-component-mono.png
ELCOM E WEBLATE TEST. RETURN TO WEBLATE / DOCUMENTATION / CHANGE PASSWORD / SIGN OUT

Home » Weblate translations » Components » Add Component

PEED DOCUMEN

oN

Add Component o

Required fields are marked in bold.

‘Component name: Android

Display name

URL slug: android

Name used in URLs and flenames.

Project: WeblateOrg v+ +

Version control system: Git v

Version control system to use to access your repository containing translations. You can also choose additional ntegration with third party providers to submit merge requests.

Source code repository: | weblate:/weblateorg/language-names

URL of repository, use weblate://project/component to share i with other component,

Repository push URL:
URL of push repositoy, pushing s tumed of if empry.

Repository browser.
Link o repository browser, use {oranchi) forbranch,(flenamel) and {(ine}} as filename and line placeholders.
Exported repository URL:
URL of repository wnere users can fetch changes from Weblate
Source string bug reporting
address
E-mail adéress for reports on erfors in source strings. Leave empty for no e-mails.
Repository branch

Repository branch o translate

Push branch:

Branch for pushing changes, leave empty to use repository branc

Filemask: app/src/main/res /values-*/strings.xml

Path offles to translate relative to repository root, use * instead of anguage code, or example: po/* po or locale/*/LC_MESSAGES/django.po.

Menolingual base language | app/src/main/tes/values/strings xm
file:

Filename of translation base file, containing all strings and their source; it is 1

mmended for monolingua transation formats.

Edit base file
Whether users vill be able to edit the base file for monalingual translations.

Intermediate language file:

Filename of intermediate translation file. In most

s this i a translation fle provided by developers and is used when creating actual source strings.
Template for new

translations:

Filename of fle used for creating new translations. For gettext choose po fle
File format: Android String Resource v

O Locked
Locked component villnot get any ranslation updates

‘Allow translation propagation
Wnether translation updates in ather components vill cause automatic translation in this one

Turm on suggestions
Whethert llow tanslaion suggestionsat al.

0 Suggestion voting
Userscan nly o forsuggestons an cart ke et ranslaions.

Autoaccept suggestions: | 0

Automaticallya

pt suggestions with this number of votes, use 0 to turm it off.

Translation flags:

‘Addtional commarseparated flags to nfluence qualty checks. Possible values can be found n the documentation

Enforced checks: 0

List of checks which can not be ignored.

Translation license: MIT License v

Gontibutor agreement

User agreement which needs to be approved before a user can translate this component

‘Adding new translation: Create new language file v

Howrto handle requests for

ating new translations.

Language code style: Defauit based on the file format v

Customize language code used o generate the flename for ranslations created by Weblate.

0 Manage stings

Enables adding and removing strings straight from Weblate. If your strings are extracted from the sour

ode or managed extenally you probably want to keep it isabled

Rebase v

Define whether Weblate should merge the upstream repository or rebase changes onto it

Commitmessage when Translated using Weblate ({{language_name }})
translating:
Curtently translated at { stats ranslated_percent)% ({ stats.translated)} of {stats.all } strings)

‘Translation: {project_name J/4{ component_narme }}
Translate-URL: {url }}

You can use template language for various info, lease consult the documentation for more details

Commit message when ‘Added translation using Weblate ({{ language_name }))
adding translation:

You can use template language for various info, lease consult the documentation for more details

Commit message when Deleted translation using Weblate ({{ language_name }))
removing translation:

You can use template language for various info, lease consult the documentation for more details

Commit message when Merge branch { component_remote_branch }} into Weblate.
‘merging translation:

mentation for more cetalls

You can use template language for various info, please consult the o

Commit message when Update translation files
‘addon makes a change:
Updated by "{{ addon_name " hook in Weblate.

‘Translation: {project_name J/4{ component_narme }}
Translate-URL: {url }}

You can use template language for various info, lease consult the documentation for more details

Committer name: Weblate

Committer e-mail noreply@weblate org

Push on commit
Whether the repository should be pushed upstream on every commit.

Age of changes to commit: | 24

“Time in hours after wh s

any pending changes il b

Lock on error
Whether the component should be locked on repository errors.

‘Source language: English P

Language used for source strings in all components

Language filter: TR

Regular expression used to fiter translation files when scanning for flemask.

Variants regular expression
Regular expression used to determine variants of a string
Priority: Medium v

Components with higher prioity are offered frst to translators.

O Resticted component
Restrict access to the component to oly those explicily given permission.

share in projects Weblateorg

Choose additional proj

where this component willbe lsted. Hold down “Control’, or “Command” on a Mac, to select more than one.

0 Use as a glossary

Glossary color: siver v

_images/about-gpg.png
Q) Weblate

About Weblate | Weblate keys

AboutWeblate Statistics

SSH key [)

SSH key not available.

Commit signing [)

All commits made with Weblate are signed with the GPG key 137ABA3650105C913ADEF12BBO0A15BF919602DBF, for which the corresponding public key is found below:

BEGIN PGP PUBLIC KEY BLOCK-----

MQGNBGBCQMgBDADfa5ilPqAVDxJDT3SSWI4ZcQIwnnNCHRS3Cans053LT 2w7xoB4
3xBXMz+UDMbcJFs4ERSANLYSXFYUXqB9ZxJrWXBhda/V1I3DyTILK]OZPkd+wCiQ
133bFFO/LipArkZUexrllINgvmMcUioXAUhrOJcFtVrilAwpRYctUcFun¥qoHhLF
hdOrzoVaRA9usvzW+0/mLVgaey31VZICBOJ2YVPZ/9AZC3RQWxFurgPresfi9sdl
W02zKx7Cy) mGWEionY8QleA3xZ9Jc4qiRONFRNQKLxyusAPD/mHaCPPtfzIZxdb
BPSQOWGPEKZKIFQ29eT Neg4DSDSiSjjfZE1YCNgIOX72s/qT KNKFSCLUUNYaSf/
wFeRepsq0JnDmM7Xyn7jBIVVuK7y5 Fgw+Kmi/4ySxnU4dDg4YOKESM +Z73gHAABXY
05QbyuoG+6UhHC5X9BZ712KVEE031/8UBZfLLUAACOXWZqSahE 2fvsBgWOEODSIE
69W0UXUGAXT+RyYKAEQEAADQUV2VibGFOZSABA2VibGFOZUBIeGFtcGXILmNVHT6)
A4EEWEKADEWIQQTero2UBBCkTre8SuwoVy5GWAEVWUCYE JAAIbAWULCQgHAEYY
CgkICWIEFgIDAQIeAQIXEAAKCRCWOVWSGIWAEVOOZDACDLKYbOCTq8 JulORV1BZP
O7TXRHlaxujoWaSLvg2TEGWSwL2Y02)2263MgdBgn7uzelexcBogitINAoGtaseK
72JGLujtD6VR/hkIMKTIKDfoqBybunpSa6 DVCQ6gecO1p+TWpEGZweY9CtdulgH
0OleSchiicl 20v245c5AsevnzkaTAN++Tf/c130 | laSkivi+ F5XIIGA2ARRFIIMC4/Ge. A

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/addon-discovery.png
Q) Weblate

WeblateOrg | Language names | Addons

Configure addon

« Please review and confirm the matched components,

Component Matched files
Following components would be created

Djangojs

Component discovery

weblate/locale/cs/LC_MESSAGES/djangojs.po (cs)

weblate/locale/he/LC_MESSAGES/djangojs.po (he]
weblate/locale/hu/LC_MESSAGES/djangojs.po (hu]

Django

weblate/locale/hu/LC_MESSAGES/django.po (hu

weblate/locale/he/LC_MESSAGES/django.po (he)
weblate/locale/cs/LC_MESSAGES/django.po (cs)

) I confirm the above matcheslook correct

Regular expression to match translation files against

weblate/locale/(?P<language>[*/]*)/LC_MESSAGES/(?P<component>[*/]*)\.po

File format

gettext PO file

Customize the component name

{{component]title}}

Define the monolingual base filename

Leave empty for bilingual translation files.
Define the base file for new translations

weblate/locale/{{ component }}.pot

Filename of file used for creating new translations. For gettext choose pot file,

Language filter

*(cs|he[hu)$

Regular expression to filter translation files against when scanning for filemask

Clone addons from the main component to the newly created ones

() Remove components for inexistant files

The regular expression to match translation files has to contain two named groups to match component and language, some examples:

Regular expression

(2P<language>[*/.1*)/ (?P<component>[*/1+)\..po

Tocale/ (2P<language> [/ .]#) /LC_MESSAGES/ (?
P<component>[/1+)\ .po

sre/locale/ (2P<component>[#/1#)\ . (?P<language>
[*/.1%)\.po

Tlocale/ (2P<language>[*/.]1*)/(2P<component>
[%/1%)/ (2P=language)\.po

res/values-(?P<language>[*/.]+) /strings-(2
P<component>[#/]#)\.xml

Example matched files

cs/application.po
cs/website.po
de/application.po
de/website.po

Tocale/cs/LC_MESSAGES/application. po
Tocale/cs/LC_MESSAGES/website.po
Tocale/de/LC_MESSAGES/application. po
Tocale/de/LC_MESSAGES/website.po

src/locale/application.cs.po
src/locale/website. cs.po
src/locale/application.de.po
src/locale/website.de.po

Tocale/cs/application/cs.po
Tocale/cs/website/cs.po
Tocale/de/application/de.po
Tocale/de/website/de.po

res/values-cs/strings-about. xml
res/values-cs/strings-help.xml
res/values-de/strings-about. xml
res/values-de/strings-help.xml

Description

One folder per language containing
translation files for components.

Usual structure for storing gettext PO
files,

Using both component and language
name within filename.

Using language in both path and filename.

Android resource strings, split into several
files,

You can use Django template markup in both component name and the monolingual base filename, for example:

{{ component }}

Component filename match

{{ component|title }}
Component filename with upper case first letter

Save

Weblate 45,1 AboutWeblate Legal

Contact Documentation

Donate to Weblate

_images/addons.png
Q) Weblate

WeblateOrg | Language names | Addons

Installed addons ®

There are no addons currently installed,

Available addons ®

Xa Automatic translation

¥ Language consistency
Q_Component discovery
¢ Bulk edit

, Statistics generator

Xa Pseudolocale generation
¢ Contributors in comment
‘\ Customize gettext output
¢ Generate MO files

¢ Update PO files to match POT (msgmerge)

X Squash Git commits m
Stale comment removal m

B Stale suggestion removal m

Some addons will ask for additional configuration during installation.

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/add-component.png
I WEBLATE TEST. RETURN TO WEBLATE / D

Home , Weblate translations » Components » Add Component

EED DOCUMENTATION

Add Component o

Required fields are marked in bold.

Component name: Language names

Display name

URL slug: language-names

Name used in URLs and flenames.

Project: WeblateOrg v +

Version control system: Git v

Version control system to use to

55 your repository containing translations. You can also choose additional integration with hird party providers to submit merge requests.

Source code repository: | https:/github.com/WeblateOrg/demo.git

URL of repository, use weblate://project/component to share it with other component,

Repository push URL:
URL of push repositoy, pushing s tumed of if empry.

Repository browser. hitps://github.com/WeblateOrg/demoyblob/4{branch}y/{(flename}#Ly

Link to repository browser, use {(branch) for branch, ({flename}) and ({lne}} as filename and line placehalders

Exported repository URL:
URL of repository where users can fetch changes from Weblate
Source string bug reporting
address
E-mail adéress for reports on erfors in source strings. Leave empty for no e-mails.
Repository branch

Repository branch o translate

Push branch:

Branch for pushing changes, leave empy to use repository branch

Filemask: ‘weblate/langdata/locale/*/LC_MESSAGES/dj¢

Path offles to translate relative to repository root, use * instead of anguage code, or example: po/* po or locale/*/LC_MESSAGES/django.po.

Monolingual base language
file:

Filename of ranslation base file containing all strings and their source; it is recommended for monolingu transation formats.

Edit base file
Whether users vill be able to edit the base fle for monolingual translations.

Intermediate language file:

Filename of ntermediate translation file. In most cases this is a translation file provided by developers and is used when creating actual source strings.

Template for new ‘weblate/langdatarlocale/django pot
translations:

Filename of fle used for creating new translations. For gettext choose pot fle

File format: gettext PO file v

O Locked
Locked component illnot get any ranslation updates

Allow translation propagation
Wnether translation updates in ather components vill cause automatic translationin this one

Tum on suggestions
Whethert allow tanslation suggestionsat al.

0 Suggestion voting
Userscan nly o forsuggestons an cart ke et ranslaios.

Autoaccept suggestions: | 0

Automatically

ept suggestions vith this number of votes, use 0 to turn it off.

Translation flags:

‘Addtional commarseparated flags to influence qualty checks. Possible values can be found n the documentation

Enforced checks: 0
List of checks which can not b ignored.
Translation license: GNU General Public License v3.0 or later v

Gontibutor agreement

User agreement which needs to be approved before a user can translate this component

‘Adding new translation: Create new language file v

Hourto handle requests for creating new transations,

Language code style: Defauit based on the file format v

Customize language code used to generate the flename for ranslations created by Weblate.

0 Manage stings
Enables adding and remoing strings staight from Weblate. I your srings are extracted rom the sourc code or manage exerallyyou probably want to keep I isablec

Merge style: Rebase v

Define whether Weblate should merge the upstream repository or rebase changes onto it

Commitmessage when Translated using Weblate ({{language_narme }})
translating:
Curtently translated at { stats ranslated_percent)% ({(stats.translated)} of {stats.all } strings)

‘Translation: { project_name J/4{ component_narme }}
Translate-URL: {url }}

You can use template language for various info, lease consult the documentation for more details

Commit message when ‘Added translation using Weblate ({{ language_name }))
adding translation:

You can use template language for various info, lease consult the documentation for more details

Commit message when Deleted translation using Weblate ({{ language_name }))
removing translation:

You can use template language for various info, lease consult the documentation for more details

‘Commit message when Merge branch { component_remote_branch }} into Weblate.
‘merging translation:

You can use template language for various info, lease consult the documentation for more details

Commit message when Update translation files
‘addon makes a change:
Updated by "{{ addon_name " hook in Weblate.

‘Translation: { project_name J/4{ component_narme }}
Translate-URL: {url }}

You can use template language for various info, lease consult the documentation for more details

Committer name: Weblate

Committer e-mail: noreply@weblate org

Push on commit
Whether the repository should be pushed upstream on every commit.

Age of changes to commit: | 24

“Time in hours after which any pending changes will be committed to the VCS.

Lock on error
Whether the component should be locked on repository errors.

‘Source language: English P

Language used for source strings in all components

Language filter: cslhelhu)$]

Regular expression used to fitertranslation files when scanning for flemask.

Variants regular expression
Regular expression used to determine variants of a string
Priority: Medium v

Components with higher prioity are offered frst to translators.

O Resticted component
Restrict access to the component to oly those explicily given permission.

share in projects Weblateorg

Choose aditional projects where this component willbe listed. Hold down *Controf’ o *Command on a Mac, to select more than one.

0 Use as a glossary

Glossary color: siver v

_images/add-project.png
RETURN TO WEBLATE / DOCUMENTATION / CHANGE PA!

Home , Weblate translations » Projects » Add Project

Add Project

Required fields are marked in bold.

Project name: WeblateOrg]
Disply e
URLshug: weblateorg J

Name used in URLs and flenames.

Project website: https://weblate.org/

Main website of translated project.

Translation instructions: hitps://weblate org/contribute/|

You can use Markdown and mention users by @usemame.

‘Set "Language-Team" header
Lets Weblate update the *Language-Tea fle header of your project.

Use shared translation memory
Uses the pool of shared translations between projcts.

Contribute to shared translation mermory
Contributes to the pool of shared translations between projecs

Access control: Protected v

Howto restrict access tothis project is detailed in the documentation

O Enable reviews
Requires dedicated revieviers to approve translations,

O Enable source reviews
Requires dedicated revieviers to approve source strings.

Enable hooks
Whether to allow updating this repository by remote hooks

Language aliases:

Comma-separated st of anguage code mappings, for example: en_GBenen_US:en

_images/admin-wrench.png
Q) Weblate

Dashboard

Watched translation: Suggested translations [Insights ~ search

Choose what languages youwant in the preferences, to see overview of available translations for those languages in your watched projects.

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/admin.png
Site administration

REPORTS,

Weblate support status
Status of repositories
SSHkeys
Performance report

Translation memory

Auditlogs +Add & Change
Profiles +Add & Change
Verified emails + Add # Change

AUTH TOKEN

Tokens +Add # Change

AUTHENTICATION

Groups +Add # Change
Roles +Add & Change
Users +Add # Change

BILLING

Billngs +Add # Change
Invoices +Add & Change
Plans +Add # Change

FONTS

Font groups +Add # Change

ot +Add & Change

LEGAL

Agreements +Add # Change

PYTHON SOCIAL

Associations +Add # Change
Nonces +Add & Change
User social auths +Add # Change
SCREENSHOTS

Screenshots +Add # Change

TRANSLATION MEMORY

Memorys +Add # Change

WEBLATE CONFIGURATION

Settings. +Add & Change

WEBLATE LANGUAGES.

Languages +Add # Change

WEBLATE TRANSLATIONS

Announcements +Add # Change
Componentlists +Add & Change
Components +Add # Change
Contributor agreements +Add & Change

Projects +Add # Change

Recent actions

My actions

Noneavailable

_images/alerts.png
Q) Weblate

WeblateOrg | Duplicates 37%

Translations Info search Insights~ Files~ Tools~ Manage~ Share~ ® Notwatching

Duplicated string found in the file.

The component contains several duplicated translation strings.

The following occurrences were found:
Language Source

Italian Thankyou for using Weblate.

Please fix this by removing duplicated strings with same identifier from the translation files.

Appeared 3 seconds ago, last seen 3 seconds ago

Duplicated translation,

The component contains several translation files mapped to a single language in Weblate. Please fix this by removing one of the translation files.
Please consider the following;
« Avoid having translation files for both the plain language code and its equivalent territory designation (for example de and de_DE)

The following occurrences were found:

Language Language codes

Czech cs_CZ,cs

Appeared 3 seconds ago, last seen 3 seconds ago

License info missing

Any publiclyavailable project should have defined license to indicate what terms apply to contributions.

Appeared 3 seconds ago, last seen 3 seconds ago

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/announcement.png
RETURN TO WEBLATE / DOCUMENTATION / C

Home > Weblate translations > Announcements » Add Announcemer

Add Announcement

Required fields are marked in bold.

Message: “Translations will be used only if they reach 60%|

Yo can use Markdown and mention users by @usemame.

Project WeblateOrg v +

Component: e

Language: e v o+
Category: info (ightblue) v

Category defines color used for the message.

Expiry date: | Today | ()

The message will be not shown after this date. Use t to announce string freeze and translation deadline for next release,

Notify users

save and add another f§Save and continue editing -

_images/authentication.png
Q) Weblate

Your profile
Languages Preferences Notifications Profile Licenses Auditlog APlaccess
Account o
Username

testuser

Username may only contain letters, numbers or the following characters: @ .+ - _
Full name

Weblate Test
E-mail

weblate@example.org v

You can add another e-mail address below.

Your name and e-mail will appear as commit authorship.

Save

Current user identities o
Identity UserID Action
ﬁ Password testuser

E-mail weblate@example.org m

Google weblate@example.org m

GitHub 123456 m

Bitbucket weblate m

Add new association

E-mail

Removal

Account removal deletes all your private data

Remove my account

User data

You can download all your private data.

Download user data

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/announcement-language.png
Q) Weblate

Languages | Czech

Czech translators rock!

[rroeci: [ATERME LV

Project Translated Untranslated Untranslated words Checks Suggestions Comments

, Weblateorgwi 97% 1 12 3

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/announcement-project.png
Q) Weblate

WeblateOrg transiated

Translations will be used only if they reach 60%.

Components Languages Info Search Insights~ Files~ Tools~ share ~ ® Notwatching ~

Post announcement [)

Message

You can use Markdown and mention users by @username.
Ccategory

Info (light blue) v
Category defines color used for the message.
Expiry date

mm/dd/yyyy [m]
The message will be not shown after this date. Use it to announce string freeze and translation deadline for next release.
Notify users

The message is shown for all translations within the project, until its given expiry, or permanently until it is deleted

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/bitbucket-settings.png
@ LN weblate-test Michal Cihaf' / weblate-test
Settings
Q B overview
+ GENERAL Webhooks
<> Source i
Repository details Edit Weblate
¢ Commits User and group access To learn more about how webhooks work, check out the documentation.
Access keys T
35 mranches Tille | Weblate]
Username aliases
T3 Pull requests Strip commits URL | hitps:/iosted.weblate.org/hooksibitb. |
© Pipelines Unpublish commits Status (W Active
B nacive webhooks don' figger requess.
B pownloads WORKFLOW
SSL/TLS (] skip certificate verification
{3 settings Branch permissions Unirusted o self-signed certficates may not be secure. Leam
Bookmark management more
SHARE YOUR THOUGHTS Defaultreviewers Triggers (®) Repository push
Give feedback Webhooks O Choose from a full st of triggers
5 o rew e Links By cancel
FEATURES
wiki
Issue tracker

_images/automatic-translation.png
Q) Weblate

WeblateOrg | Django | Czech 6%

Overview Imfo Search nsights~ Files- Manage - share - © Watching -

Search and replace
Bulk edit

Automatic translation [)

Automatic translation takes existing translations in this proje rrent component. It can be used to push translations to
adifferent branch, to fix inconsistent translations or to transl; ~Dataexports ranslation memory.

Automatic translation via machine translation uses active mac F2iling checks

this project.

zet the best possible translations and applies them in

Automatic translation mode

Add as suggestion v
searchfilter
Strings needing action v

Automatic translation source

Other translation components @ Machine translation

Machine translation engines

Search.
Available: Chosen:
Weblate Weblate

Weblate Translation Memory

Score threshold

80

Apply

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/backups.png
Q) Weblate

Manage | Backups

Backup process triggered

Weblate status Translationmemory ~ Performancereport SSHkeys Alerts Repositories Users Appearance

Tools Billing

Backup service: /tmp/tmp5x9vz8fjweblate @
Backup senvice credentials rch

Backup repository /tmp/tmpsxovzafiweblate I

Passphrase EDD5QSPNSHNGWhBEDF 6@YM002UW0$083ML5UjdaGZRDEXNVHG)

The passphrase is used to encrypt the backups and is necessary to restore them

SSH key Download private key

The private key is needed to access the remote backup repository.

Beleted the oldest hackips
Backup performed Wiarch 5, 2621

Repository nitialization

Activate support package [)

The support packages include priority e-mail support, or cloud backups of your Weblate installation.

Activation token

Please enter the activation token obtained when making the subscription.

Add backup service ®

Backup repository URL

Use /path/to/repo for local backups or user@host:/path/to/repo for remote SSH backups

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/cloudron.png
Cloudron install

_images/componentlist-add.png
RETURN TO WEBLATE / DOCUMENTATION

Home , Weblate translations » Component lists » Add Component |

Add Component list

Required fields are marked in bold.

‘Component list name: All components \
Display name
URL slug: all-components \

Name used in URLs and flenames.

‘Show on dashboard
When enabled this component lst vill be shown as a tab on the dashboard

Components: Available components @ ‘ “hosen components @

Q [) ‘

‘WeblateOrg/Django -

WeblateOrg/Language names

WeblateOrg/WeblateOrg
o
(<]

Choose all @ @ Remove all

Hold down “Control”, or “Command” on a Mac, o select more than one.

UTOMATIC COMPONENT LIST ASSIGN MENT

PROJECT REGULAR EXPRESSION ©

=]

4 Add another Automatic component list assignment

_images/checks.png
Q) Weblate

WeblateOrg | Django | Czech | Translate

The translation has been saved, however there are some newly failing checks: Missing plurals, Python format

K< 171> 0l Customsearch~ | '%(count)s word"

Translation @

English
singular
% (count)s word D
Plural
% (count)s words D

Czech, One) clone source | (%« [nes ... [[[.]]-]-

Czech, Few &) clone source | (%]« [nes ... [[[.]]-]-

nékolikslov

Czech, Other

) Clone source | [| < s ..., [<].[]-]-

% (count)s slov

Plural fermula:)?0:(n>=28&n<=4)71:2

() Needs editing

Nearby strings Comments Automatic suggestions Other languages

History

New comment

Comment on this string for fellow translators and developers to read.
Scope
Translation comment, discussions with other translators v

Is your comment specific to this translation or generic for all of them?

New comment

You can use Markdown and mention users by @username.

Save

Position~

¥ Zen T
Things to check
A\ Python format

Following format strings are
missing: %(count)s

Dismiss

Dismiss for all languages

A\ Missing plurals

Some plural forms are not
translated

Dismiss

Dismiss for all languages

Glossary /

English Czech

Norelated strings found in the
glossary.

@ Addtermto glossary

Sourceinformation @

Screenshot context /
Noscreenshot currently
associated.

Explanation /
No explanation currently
provided.

Labels /
Nolabels currently set.

Flags /
python-format

Source string location
weblate/templates/translation.
htm:149

String age
23 seconds ago

Source string age
24seconds ago

Translation file
‘weblate/locale/cs/LC_MESSAGE
s/django.po, string 5

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/engage.png
Q) Weblate

Getinvolved in WeblateOrg

Hello and thank you for your interest — WeblateOrg is being translated using Weblate, a web tool
designed to ease translating for both developers and translators.

37 15 85.5%

STRINGS LANGUAGES TRANSLATED

The translation project for WeblateOrg currently contains 37 strings for translation. It is being translated into 15 languages. Overall,
these translations are 85.5% complete. If youwould like to contribute to translation of WeblateOrg, you need to register on this server.
This translation is open only to a limited group of translators, if you want to contribute please get in touch with the project maintainers,

[F—

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/export-import.png
Q) Weblate

WeblateOrg /| Django | Czech tra

Overview Info Search Insights~ ﬂ Tools~ Manage~ Share~ © Watching

Download translation

Upload ®

Customize download

The uploaded file will be merged with the current t to overwrite already translated strings, don't forget to turn it on.
File

| Choose File | No file chosen

ile upload mode

O Add as translation
© Add as suggestion
O Add as translation needing edit

O Replace existing translation file
Processing of strings needing edit

Do not import v
Conflict handling

Update translated strings v

Whether to overwrite existing translations if the string is already translated.

Author name

Weblate Test

Author e-mail

weblate@example.org

Upload

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/contributor-agreement.png
Q) Weblate

WeblateOrg | Language names

Contribution to this translation requires you to agree with a contributor agreement. I (e
o Merts Search nsights< Fles- Tools~ Manage~ Share~ © watching

Language Translated Untranslated Untranslated words Checks Suggestions Comments
s Czechw
; wo v
s Hebreww|
; wo v
, Hungarianw @ 81% 4 5
s Englishw
y glish w g [v

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/dashboard-dropdown.png
Q) Weblate

Your profile
Languages Notifications ~ Account Profile Licenses Auditlog APlaccess
Preferences @

[Hide completed translations on the dashboard
Translation editor mode

Full editor v
Zen editor mode

Top to bottom
Number of nearby strings

15

Number of nearby strings to show in each direction in the full editor.
show secondary translations in the Zen mode
() Hide source if a secondary translation exists

Editor link

Enter a custom URL to be used as link to the source code. You can use {{branch}} for branch, {{filename}} and {{line}} as filename and line
placeholders.

Special characters

You can specify additional special visual keyboard characters to be shown while translating. It can be useful for characters you use frequently,
but are hard to type on your keyboard,

Default dashboard view

® Watched translations

Component lists

Component list

Suggested translations

Default component list

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/font-group-list.png
Q) Weblate

WeblateOrg | Fonts

Font groups [EZNIS

Group name Default font Language overrides

default-font Source Sans Pro Bold Japanese: Droid Sans Fallback Regular @
Korean: Droid Sans Fallback Regular

Add font group

Font group name

Identifier you will use in checks to select this font group. Avoid whitespaces and special characters,

Default font

Default font is used unless per language override matches.

Save

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/font-edit.png
Q) Weblate

WeblateOrg | Fonts | Droid Sans Fallback Regular

Font
Font family Droid Sans Fallback
Font style Regular
File size 3939852
Created now
Uploaded by %tesmser

Used ingroups

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

_images/font-group-edit.png
Q) Weblate

WeblateOrg | Font groups | default-font

Font group
Name default-font
Default font Source Sans Pro Bold

Japanese [EXPIEFERRE Droid Sans Fallback Regular

Remove

Korean [EXTIEFERRE Droid Sans Fallback Regular

Add language override

Remove

Language

Save

Edit font group

Font group name
default-font
Identifier you will use in checks to select this font group. Avoid whitespaces and special characters,
Default font
Source Sans Pro Bold v

Default font is used unless per language override matches.

Save

Weblate 451 AboutWeblate Legal Contact Documentation Donate to Weblate

