
The Weblate Manual
Release 4.5.3

Michal Čihař

apr. 01, 2021



User docs

1 User docs 1
1.1 Weblate basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Registration and user profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Translating using Weblate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Downloading and uploading translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.6 Checks and fixups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.7 Searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.8 Translation workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.9 Frequently Asked Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
1.10 Supported file formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.11 Version control integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
1.12 Weblate’s REST API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
1.13 Weblate Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
1.14 Weblate’s Python API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

2 Administrator docs 133
2.1 Configuration instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
2.2 Weblate deployments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
2.3 Upgrading Weblate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
2.4 Backing up and moving Weblate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
2.5 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
2.6 Access control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
2.7 Translation projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
2.8 Language definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
2.9 Continuous localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
2.10 Licensing translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
2.11 Translation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
2.12 Checks and fixups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
2.13 Machine translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
2.14 Addons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
2.15 Translation Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
2.16 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
2.17 Sample configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
2.18 Management commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
2.19 Announcements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
2.20 Component Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
2.21 Optional Weblate modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
2.22 Customizing Weblate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
2.23 Management interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
2.24 Getting support for Weblate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

i



2.25 Legal documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

3 Contributor docs 356
3.1 Contributing to Weblate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
3.2 Starting contributing code to Weblate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
3.3 Weblate source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
3.4 Debugging Weblate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
3.5 Weblate internals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
3.6 Developing addons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
3.7 Weblate frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
3.8 Reporting issues in Weblate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
3.9 Weblate testsuite and continuous integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
3.10 Data schemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
3.11 Releasing Weblate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
3.12 Security and privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
3.13 About Weblate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
3.14 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

4 Change History 378
4.1 Weblate 4.5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
4.2 Weblate 4.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
4.3 Weblate 4.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
4.4 Weblate 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
4.5 Weblate 4.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
4.6 Weblate 4.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
4.7 Weblate 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
4.8 Weblate 4.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
4.9 Weblate 4.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
4.10 Weblate 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
4.11 Weblate 4.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
4.12 Weblate 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
4.13 Weblate 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
4.14 Weblate 4.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
4.15 Weblate 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
4.16 Weblate 4.0.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
4.17 Weblate 4.0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
4.18 Weblate 4.0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
4.19 Weblate 4.0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
4.20 Weblate 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
4.21 Weblate 3.x series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
4.22 Weblate 2.x series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
4.23 Weblate 1.x series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
4.24 Weblate 0.x series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

Python Module Index 418

HTTP Routing Table 419

Index 422

ii



KAPITTEL1

User docs

1.1 Weblate basics

1.1.1 Project and component structure

In Weblate translations are organized into projects and components. Each project can contain number of components
and those contain translations into individual languages. The component corresponds to one translatable file (for
example GNU gettext or Android string resources). The projects are there to help you organize component into logical
sets (for example to group all translations used within one application).
Internally, each project has translations to common strings propagated across other components within it by default.
This lightens the burden of repetitive and multi version translation. The translation propagation can be disabled per
Component configuration using Allow translation propagation in case the translations should diverge.
See also:
../devel/integration

1.2 Registration and user profile

1.2.1 Registration

Everybody can browse projects, view translations or suggest translations by default. Only registered users are allowed
to actually save changes, and are credited for every translation made.
You can register by following a few simple steps:

1. Fill out the registration form with your credentials.
2. Activate registration by following the link in the e-mail you receive.
3. Optionally adjust your profile to choose which languages you know.

1



The Weblate Manual, Release 4.5.3

1.2.2 Dashboard

When you sign in, you will see an overview of projects and components, as well as their respective translation pro-
gression.
New in version 2.5.
Components of projects you are watching are shown by default, and cross-referenced with your preferred languages.

Hint: You can switch to different views using the navigation tabs.

The menu has these options:
• Projects > Browse all projects in the main menu showing translation status for each project on the Weblate
instance.

• Selecting a language in the main menu Languages will show translation status of all projects, filtered by one of
your primary languages.

2 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

• Watched translations in the Dashboard will show translation status of only those projects you are watching,
filtered by your primary languages.

In addition, the drop-down can also show any number of component lists, sets of project components preconfigured
by the Weblate administrator, see Component Lists.
You can configure your personal default dashboard view in the Preferences section of your user profile settings.

Note: When Weblate is configured for a single project using SINGLE_PROJECT in the settings.py file (see
Configuration), the dashboard will not be shown, as the user will be redirected to a single project or component instead.

1.2.3 User profile

The user profile is accessible by clicking your user icon in the top-right of the top menu, then the Settings menu.
The user profile contains your preferences. Name and e-mail address is used in VCS commits, so keep this info
accurate.

Note: All language selections only offer currently translated languages.

Hint: Request or add other languages you want to translate by clicking the button to make them available too.

Languages

1.2.4 Interface language

Choose the language you want to display the UI in.

1.2. Registration and user profile 3



The Weblate Manual, Release 4.5.3

Translated languages

Choose which languages you prefer to translate, and they will be offered on the main page of watched projects, so
that you have easier access to these all translations in each of those languages.

4 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

Secondary languages

You can define which secondary languages are shown to you as a guide while translating. An example can be seen in
the following image, where the Hebrew language is shown as secondarily:

1.2. Registration and user profile 5



The Weblate Manual, Release 4.5.3

1.2.5 Preferences

Default dashboard view

On the Preferences tab, you can pick which of the available dashboard views to present by default. If you pick the
Component list, you have to select which component list will be displayed from the Default component list drop-down.
See also:
Component Lists

Editor link

A source code link is shown in the web-browser configured in the Component configuration by default.

Hint: By setting the Editor link, you use your local editor to open the VCS source code file of translated strings. You
can use Template markup.
Usually something like editor://open/?file={{filename}}&line={{line}} is a good option.

See also:
You can find more info on registering custom URL protocols for the editor in the Nette documentation.

1.2.6 Notifications

Subscribe to various notifications from the Notifications tab. Notifications for selected events on watched or admi-
nistered projects will be sent to you per e-mail.
Some of the notifications are sent only for events in your languages (for example about new strings to translate), while
some trigger at component level (for example merge errors). These two groups of notifications are visually separated
in the settings.
You can toggle notifications for watched projects and administered projects and it can be further tweaked (or muted)
per project and component. Visit the component overview page and select appropriate choice from the Watching
menu.
In case Automatically watch projects on contribution is enabled you will automatically start watching projects upon
translating a string. The default value depends on DEFAULT_AUTO_WATCH.

Note: You will not receive notifications for your own actions.

6 Kapittel 1. User docs

https://tracy.nette.org/en/open-files-in-ide


The Weblate Manual, Release 4.5.3

1.2. Registration and user profile 7



The Weblate Manual, Release 4.5.3

1.2.7 Account

The Account tab lets you set up basic account details, connect various services you can use to sign in into Weblate,
completely remove your account, or download your user data (seeWeblate user data export).

Note: The list of services depends on your Weblate configuration, but can be made to include popular sites such as
GitLab, GitHub, Google, Facebook, or Bitbucket or other OAuth 2.0 providers.

8 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

1.2. Registration and user profile 9



The Weblate Manual, Release 4.5.3

1.2.8 Profile

All of the fields on this page are optional and can be deleted at any time, and by filling them out, you’re giving us
consent to share this data wherever your user profile appears.
Avatar can be shown for each user (depending on ENABLE_AVATARS). These images are obtained using https:
//gravatar.com/.

1.2.9 Licenses

1.2.10 API access

You can get or reset your API access token here.

1.2.11 Audit log

Audit log keeps track of the actions performed with your account. It logs IP address and browser for every important
action with your account. The critical actions also trigger a notification to a primary e-mail address.
See also:
Running behind reverse proxy

1.3 Translating using Weblate

Thank you for interest in translating using Weblate. Projects can either be set up for direct translation, or by way of
accepting suggestions made by users without accounts.
Overall, there are two modes of translation:

• The project accepts direct translations
• The project only accepts suggestions, which are automatically validated once a defined number of votes is
reached

Please see Translation workflows for more info on translation workflow.
Options for translation project visibility:

• Publicly visible and anybody can contribute
• Visible only to a certain group of translators

See also:
Access control, Translation workflows

1.3.1 Translation projects

Translation projects hold related components; resources for the same software, book, or project.

10 Kapittel 1. User docs

https://gravatar.com/
https://gravatar.com/


The Weblate Manual, Release 4.5.3

1.3.2 Translation links

Having navigated to a component, a set of links lead to its actual translation. The translation is further divided into
individual checks, like Not translated strings or Strings needing action. If the whole project is translated, without error,
All strings is still available. Alternatively you can use the search field to find a specific string or term.

1.3. Translating using Weblate 11



The Weblate Manual, Release 4.5.3

1.3.3 Suggestions

Note: Actual permissions might vary depending on your Weblate configuration.

Anonymous users can only (by default) forward suggestions. Doing so is still available to signed-in users, in cases
where uncertainty about the translation arises, prompting other translators to review it.
The suggestions are scanned on a daily basis to remove duplicates and suggestions matching the current translation.

12 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

1.3.4 Comments

Three types of comments can be posted: for translations, source strings, or to report source string bugs when this
functionality is turned on using Enable source reviews. Choose the one suitable to topic you want to discuss. Source
string comments are in any event good for providing feedback on the original string, for example that it should be
rephrased or to ask questions about it.
You can use Markdown syntax in all comments and mention other users using @mention.
See also:
report-source, Source strings reviews, Enable source reviews

1.3.5 Variants

Variants are used to group different length variants of the string. The frontend of your project can then use different
strings depending on the screen or window size.
See also:
variants, Variants

1.3.6 Labels

Labels are used to categorize strings within a project to further customize the localization workflow (for example to
define categories of strings).
See also:
labels

1.3.7 Translating

On the translation page, the source string and an editing area for its translation are shown. Should the translation be
plural, multiple source strings and editing areas are shown, each described and labeled in the amount of plural forms
the translated language has.
All special whitespace characters are underlined in red and indicated with grey symbols. More than one subsequent
space is also underlined in red to alert the translator to a potential formatting issue.
Various bits of extra info can be shown on this page, most of which coming from the project source code (like context,
comments or where the message is being used). Translation fields for any secondary languages translators select in
the preferences will be shown (see Secondary languages) above the source string.
Below the translation, translators will find suggestion made by others, to be accepted (✓), accepted with changes ( ),
or deleted ( ).

Plurals

Words changing form to account of their numeric designation are called plurals. Each language has its own definition
of plurals. English, for example, supports one. In the singular definition of for example «car», implicitly one car
is referenced, in the plural definition, «cars» two or more cars are referenced (or the concept of cars as a noun).
Languages like for example Czech or Arabic have more plurals and also their rules for plurals are different.
Weblate has full support for each of these forms, in each respective language (by translating every plural separately).
The number of fields and how it is in turn used in the translated application or project depends on the configured
plural formula. Weblate shows the basic info, and the Language Plural Rules by the Unicode Consortium is a more
detailed description.

1.3. Translating using Weblate 13

https://unicode-org.github.io/cldr-staging/charts/37/supplemental/language_plural_rules.html


The Weblate Manual, Release 4.5.3

See also:
Plural formula

14 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

Keyboard shortcuts

Changed in version 2.18: The keyboard shortcuts have been revamped in 2.18 to less likely collide with browser or
system defaults.
The following keyboard shortcuts can be utilized during translation:

Keyboard shortcut Description
Alt+Home Navigate to first translation in current search.
Alt+End Navigate to last translation in current search.
Alt+PageUp or
Ctrl ↑ or
Alt ↑ or
Cmd ↑

Navigate to previous translation in current search.

Alt+PageDown or
Ctrl+↓ or
Alt+↓ or
Cmd+↓

Navigate to next translation in current search.

Alt+Enter or
Ctrl+Enter or
Cmd+Enter

Save current translation.

Ctrl+Shift+Enter or
Cmd+Shift+Enter

Unmark translation as needing edit and submit it.

Ctrl+E or
Cmd+E

Focus translation editor.

Ctrl+U or
Cmd+U

Focus comment editor.

Ctrl+M or
Cmd+M

Shows Automatic suggestions tab, see Automatic suggestions.

Ctrl+1 to Ctrl+9 or
Cmd+1 to Cmd+9

Copies placeable of given number from source string.

Ctrl+M+1 to 9 or
Cmd+M+1 to 9

Copy themachine translation of given number to current trans-
lation.

Ctrl+I+1 to 9 or
Cmd+I+1 to 9

Ignore one item in the list of failing checks.

Ctrl+J or
Cmd+J

Shows the Nearby strings tab.

Ctrl+S or
Cmd+S

Focus search field.

Ctrl+O or
Cmd+O

Copy source string.

Ctrl+Y or
Cmd+Y

Toggle the Needs editing flag.

Visual keyboard

A small visual keyboard row is shown just above the translation field. This can be useful to keep local punctuation in
mind (as the row is local to each language), or have characters otherwise hard to type handy.
The shown symbols factor into three categories:

• User configured characters defined in the User profile

• Per-language characters provided by Weblate (e.g. quotes or RTL specific characters)
• Characters configured using SPECIAL_CHARS

1.3. Translating using Weblate 15



The Weblate Manual, Release 4.5.3

Translation context

This contextual description provides related info about the current string.
String attributes Things like message ID, context (msgctxt) or location in source code.
Screenshots Screenshots can be uploaded to Weblate to better inform translators of where and how the string is

used, see Visual context for strings.
Nearby strings Displays neighbouring messages from the translation file. These are usually also used in a similar

context and prove useful in keeping the translation consistent.
Other occurrences In case a message appears in multiple places (e.g. multiple components), this tab shows all of

them if they are found to be inconsistent (see Inconsistent). You can choose which one to use.
Translation memory Look at similar strings translated in past, see Translation Memory.

16 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

Glossary Displays terms from the project glossary used in the current message.
Recent changes List of people whom have changed this message recently using Weblate.
Project Project info like instructions for translators, or a directory or link to the string in the version control system

repository the project uses.
If you want direct links, the translation format has to support it.

Translation history

Every change is by default (unless turned off in component settings) saved in the database, and can be reverted.
Optionally one can still also revert anything in the underlying version control system.

Translated string length

Weblate can limit the length of a translation in several ways to ensure the translated string is not too long:
• The default limitation for translation is ten times longer than the source string. This can be turned off by LI-
MIT_TRANSLATION_LENGTH_BY_SOURCE_LENGTH. In case you are hitting this, it might be also cau-
sed by a monolingual translation erroneously set up as bilingual one, making Weblate mistaking the translation
key for the actual source string. See Bilingual and monolingual formats for more info.

• Maximal length in characters defined by translation file or flag, see Maximum length of translation.
• Maximal rendered size in pixels defined by flags, see Maximum size of translation.

1.3.8 Automatic suggestions

Based on configuration and your translated language, Weblate provides suggestions from several machine translation
tools and Translation Memory. All machine translations are available in a single tab of each translation page.
See also:
You can find the list of supported tools in Machine translation.

1.3.9 Automatic translation

You can use automatic translation to bootstrap translation based on external sources. This tool is called Automatic
translation accessible in the Tools menu, once you have selected a component and a language:

1.3. Translating using Weblate 17



The Weblate Manual, Release 4.5.3

Two modes of operation are possible:
• Using other Weblate components as a source for translations.
• Using selected machine translation services with translations above a certain quality threshold.

You can also choose which strings are to be auto-translated.

Warning: Bemindful that this will overwrite existing translations if employed with wide filters such asAll strings.

Useful in several situations like consolidating translation between different components (for example the application
and its website) or when bootstrapping a translation for a new component using existing translations (translation
memory).
See also:
Keeping translations same across components

18 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

1.3.10 Rate limiting

To avoid abuse of the interface, rate limiting is applied to several operations like searching, sending contact forms or
translating. If affected by it, you are blocked for a certain period until you can perform the operation again.
Default limits and fine-tuning is described in the administrative manual, see Rate limiting.

1.3.11 Search and replace

Change terminology effectively or perform bulk fixing of the strings using Search and replace in the Tools menu.

Hint: Don’t worry about messing up the strings. This is a two-step process showing a preview of edited strings before
the actual change is confirmed.

1.3.12 Bulk edit

Bulk editing allows performing one operation on number of strings. You define strings by searching for them and set
up something to be done for matching ones. The following operations are supported:

• Changing string state (for example to approve all unreviewed strings).
• Adjust translation flags (see Customizing behavior using flags)
• Adjust string labels (see labels)

Hint: This tool is called Bulk edit accessible in the Tools menu of each project, component or translation.

See also:
Bulk edit addon

1.4 Downloading and uploading translations

You can export files from a translation, make changes, and import them again. This allows working offline, and then
merging changes back into the existing translation. This works even if it has been changed in the meantime.

Note: Available options might be limited by access control settings.

1.4.1 Downloading translations

From the project or component dashboard, translatable files can be downloaded in the Files menu.
The first option is to download the file in the original format as it is stored in the repository. In this case, any pending
changes in the translation are getting committed and the up-to-date file is yield without any conversions.
You can also download the translation converted into one of the widely used localization formats. The converted files
will be enriched with data provided in Weblate; such as additional context, comments or flags. Several file formats
are available via the Files ↓ Customize download menu:

• gettext PO
• XLIFF with gettext extensions
• XLIFF 1.1

1.4. Downloading and uploading translations 19



The Weblate Manual, Release 4.5.3

• TermBase eXchange
• Translation Memory eXchange
• gettext MO
• CSV
• Excel Open XML
• JSON
• Android String Resource
• iOS strings

See also:
GET /api/translations/(string:project)/(string:component)/
(string:language)/file/

20 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

1.4.2 Uploading translations

When you have made your changes, use Upload translation in the Files menu.

Supported file formats

Any file in a supported file format can be uploaded, but it is still recommended to use the same file format as the one
used for translation, otherwise some features might not be translated properly.
See also:
Supported file formats

The uploaded file is merged to update the translation, overwriting existing entries by default (this can be turned off
or on in the upload dialog).

1.4. Downloading and uploading translations 21



The Weblate Manual, Release 4.5.3

Import methods

These are the choices presented when uploading translation files:
Add as translation (translate) Imported translations are added as translations. This is the most common

usecase, and the default behavior.
Add as suggestion (suggest) Imported translations are added as suggestions, do this when you want to have your

uploaded strings reviewed.
Add as translation needing edit (fuzzy) Imported translations are added as translations needing edit. This can

be useful when you want translations to be used, but also reviewed.
Replace existing translation file (replace) Existing file is replaced with new content. This can lead to loss of

existing translations, use with caution.
Update source strings (source) Updates source strings in bilingual translation file. This is similar to whatUpdate

PO files to match POT (msgmerge) does.
This option is supported only for some file formats.

Add new strings (add) Adds new strings to the translation. It skips the one which already exist.
In case you want to both add new strings and update existing translations, upload the file second time with Add
as translation.
This option is available only with Manage strings turned on.

See also:
POST /api/translations/(string:project)/(string:component)/
(string:language)/file/

Conflicts handling

Defines how to deal with uploaded strings which are already translated.

Strings needing edit

There is also an option for how to handle strings needing edit in the imported file. Such strings can be handle in one
of the three following ways: «Do not import», «Import as string needing edit», or «Import as translated».

Overriding authorship

With admin permissions, you can also specify authorship of uploaded file. This can be useful in case you’ve received
the file in another way and want to merge it into existing translations while properly crediting the actual author.

1.5 Glossary

Each project can include one or more glossaries as a shorthand for storing terminology. Glossary easify maintaining
consistency of the translation.
A glossary for each language can be managed on its own, but they are stored together as a single component which
helps project admins and multilingual translators to maintain some cross-language consistency as well. Terms from
the glossary containing words from the currently translated string are displayed in the sidebar of the translation editor.

22 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

1.5.1 Managing glossaries

Changed in version 4.5: Glossaries are now regular translation components and you can use all Weblate features on
them — commenting, storing in a remote repository, or adding explanations.
Use any component as a glossary by turning on Use as a glossary. You can create multiple glossaries for one project.
An empty glossary for a given project is automatically created with the project. Glossaries are shared among all
components of the same project, and optionally with other projects using Share in projects from the respective glossary
component.
The glossary component looks like any other component in Weblate with added colored label:

You can browse all glossary terms:

or edit them as any translations.

1.5. Glossary 23



The Weblate Manual, Release 4.5.3

1.5.2 Glossary terms

Glossary terms are translated the same way regular strings are. You can toggle additional features using the Tools
menu for each term.

Not translatable terms

New in version 4.5.
Flagging certain glossary term translations read-only by bulk-editing, typing in the flag, or by using Tools ↓:gui-
label:Mark as read-onlymeans they can not be translated. Use this for brand names or other terms that should not be
changed in other languages. Such terms are visually highlighted in the glossary sidebar.
See also:
Customizing behavior using flags

Forbidden translations

New in version 4.5.
Flagging certain glossary term translations as forbidden, by bulk-editing, typing in the flag, or by using Tools
↓:guilabel:Mark as forbidden translation means they are not to be used. Use this to clarify translation when some
words are ambiguous or could have unexpected meanings.
See also:
Customizing behavior using flags

24 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

Terminology

New in version 4.5.
Flagging certain glossary terms as terminology by bulk-editing, typing in the flag, or or by using Tools ↓:gui-
label:Mark as terminology adds entries for them to all languages in the glossary. Use this for important terms that
should be well thought out, and retain a consistent meaning across all languages.
See also:
Customizing behavior using flags

Variants

Variants are a generic way to group strings together. All term variants are listed in the glossary sidebar when trans-
lating.

Hint: You can use this to add abbreviations or shorter expressions for a term.

See also:
variants

1.6 Checks and fixups

The quality checks help catch common translator errors, ensuring the translation is in good shape. The checks can be
ignored in case of false positives.
Once submitting a translation with a failing check, this is immediately shown to the user:

1.6. Checks and fixups 25



The Weblate Manual, Release 4.5.3

26 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

1.6.1 Automatic fixups

In addition to Quality checks, Weblate can fix some common errors in translated strings automatically. Use it with
caution to not have it add errors.
See also:
AUTOFIX_LIST

1.6.2 Quality checks

Weblate employs a wide range of quality checks on strings. The following section describes them all in further detail.
There are also language specific checks. Please file a bug if anything is reported in error.
See also:
CHECK_LIST, Customizing behavior using flags

1.6.3 Translation checks

Executed upon every translation change, helping translators maintain good quality translations.

BBcode markup

BBcode in translation does not match source

BBCode represents simple markup, like for example highlighting important parts of a message in bold font, or italics.
This check ensures they are also found in translation.

Note: The method for detecting BBcode is currently quite simple so this check might produce false positives.

Consecutive duplicated words

Text contains the same word twice in a row:

New in version 4.1.
Checks that no consecutive duplicate words occur in a translation. This usually indicates a mistake in the translation.

Hint: This check includes language specific rules to avoid false positives. In case it triggers falsely in your case, let
us know. See Reporting issues in Weblate.

Does not follow glossary

New in version 4.5.
The translation does not follow terms defined in a glossary.

This check has to be turned on using check-glossary flag (see Customizing behavior using flags). Please consider
following prior to enabling it:

• It does exact string matching, the glossary is expected to contain terms in all variants.
• Checking each string against glossary is expensive, it will slow down any operation in Weblate which involves
running checks like importing strings or translating.

1.6. Checks and fixups 27



The Weblate Manual, Release 4.5.3

See also:
Glossary, Customizing behavior using flags, Translation flags

Double space

Translation contains double space

Checks that double space is present in translation to avoid false positives on other space-related checks.
Check is false when double space is found in source meaning double space is intentional.

Formatted strings

Checks that formatting in strings are replicated between both source and translation. Omitting format strings in
translation usually causes severe problems, so the formatting in strings should usually match the source.
Weblate supports checking format strings in several languages. The check is not enabled automatically, only if a string
is flagged appropriately (e.g. c-format for C format). Gettext adds this automatically, but you will probably have to
add it manually for other file formats or if your PO files are not generated by xgettext.
This can be done per unit (see Additional info on source strings) or in Component configuration. Having it defined per
component is simpler, but can lead to false positives in case the string is not interpreted as a formatting string, but
format string syntax happens to be used.

Hint: In case specific format check is not available in Weblate, you can use generic Placeholders.

Besides checking, this will also highlight the formatting strings to easily insert them into translated strings:

28 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

AngularJS interpolation string

AngularJS interpolation strings do not match source

Named format string Your balance is {{amount}} {{ currency }}
Flag to enable angularjs-format

See also:
AngularJS text interpolation

1.6. Checks and fixups 29

https://angular.io/guide/interpolation


The Weblate Manual, Release 4.5.3

C format

C format string does not match source

Simple format string There are %d apples
Position format string Your balance is %1$d %2$s
Flag to enable c-format

See also:
C format strings, C printf format

C# format

C# format string does not match source

Position format string There are {0} apples
Flag to enable c-sharp-format

See also:
C# String Format

ECMAScript template literals

ECMAScript template literals do not match source

Interpolation There are ${number} apples
Flag to enable es-format

See also:
Template literals

i18next interpolation

The i18next interpolation does not match source

New in version 4.0.

Interpolation There are {{number}} apples
Nesting There are $t(number) apples
Flag to enable i18next-interpolation

See also:
i18next interpolation

30 Kapittel 1. User docs

https://www.gnu.org/software/gettext/manual/html_node/c_002dformat.html
https://en.wikipedia.org/wiki/Printf_format_string
https://docs.microsoft.com/en-us/dotnet/api/system.string.format?view=netframework-4.7.2
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://www.i18next.com/translation-function/interpolation


The Weblate Manual, Release 4.5.3

Java format

Java format string does not match source

Simple format string There are %d apples
Position format string Your balance is %1$d %2$s
Flag to enable java-format

See also:
Java Format Strings

Java MessageFormat

Java MessageFormat string does not match source

Position format string There are {0} apples
Flag to enable java-messageformat enables the check unconditionally

auto-java-messageformat enables check only if there is a format string in the source

See also:
Java MessageFormat

JavaScript format

JavaScript format string does not match source

Simple format string There are %d apples
Flag to enable javascript-format

See also:
JavaScript formatting strings

Lua format

Lua format string does not match source

Simple format string There are %d apples
Flag to enable lua-format

See also:
Lua formatting strings

1.6. Checks and fixups 31

https://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html
https://docs.oracle.com/javase/7/docs/api/java/text/MessageFormat.html
https://www.gnu.org/software/gettext/manual/html_node/javascript_002dformat.html
https://www.gnu.org/software/gettext/manual/html_node/lua_002dformat.html#lua_002dformat


The Weblate Manual, Release 4.5.3

Percent placeholders

The percent placeholders do not match source

New in version 4.0.

Simple format string There are %number% apples
Flag to enable percent-placeholders

Perl format

Perl format string does not match source

Simple format string There are %d apples
Position format string Your balance is %1$d %2$s
Flag to enable perl-format

See also:
Perl sprintf, Perl Format Strings

PHP format

PHP format string does not match source

Simple format string There are %d apples
Position format string Your balance is %1$d %2$s
Flag to enable php-format

See also:
PHP sprintf documentation, PHP Format Strings

Python brace format

Python brace format string does not match source

Simple format string There are {} apples
Named format string Your balance is {amount} {currency}
Flag to enable python-brace-format

See also:
Python brace format, Python Format Strings

32 Kapittel 1. User docs

https://perldoc.perl.org/functions/sprintf
https://www.gnu.org/software/gettext/manual/html_node/perl_002dformat.html
https://www.php.net/manual/en/function.sprintf.php
https://www.gnu.org/software/gettext/manual/html_node/php_002dformat.html
https://docs.python.org/3.9/library/string.html#formatstrings
https://www.gnu.org/software/gettext/manual/html_node/python_002dformat.html


The Weblate Manual, Release 4.5.3

Python format

Python format string does not match source

Simple format string There are %d apples
Named format string Your balance is %(amount) %(currency)
Flag to enable python-format

See also:
Python string formatting, Python Format Strings

Qt format

Qt format string does not match source

Position format string There are %1 apples
Flag to enable qt-format

See also:
Qt QString::arg()

Qt plural format

Qt plural format string does not match source

Plural format string There are %Ln apple(s)
Flag to enable qt-plural-format

See also:
Qt i18n guide

Ruby format

Ruby format string does not match source

Simple format string There are %d apples
Position format string Your balance is %1$f %2$s
Named format string Your balance is %+.2<amount>f %<currency>s
Named template string Your balance is %{amount} %{currency}
Flag to enable ruby-format

See also:
Ruby Kernel#sprintf

1.6. Checks and fixups 33

https://docs.python.org/3.9/library/stdtypes.html#old-string-formatting
https://www.gnu.org/software/gettext/manual/html_node/python_002dformat.html
https://doc.qt.io/qt-5/qstring.html#arg
https://doc.qt.io/qt-5/i18n-source-translation.html#handling-plurals
https://ruby-doc.org/core/Kernel.html#method-i-sprintf


The Weblate Manual, Release 4.5.3

Scheme format

Scheme format string does not match source

Simple format string There are ~d apples
Flag to enable scheme-format

See also:
Srfi 28, Chicken Scheme format, Guile Scheme formatted output

Vue I18n formatting

The Vue I18n formatting does not match source

Named formatting There are {count} apples
Rails i18n formatting There are %{count} apples
Linked locale messages @:message.dio @:message.the_world!
Flag to enable vue-format

See also:
Vue I18n Formatting, Vue I18n Linked locale messages

Has been translated

This string has been translated in the past

Means a string has been translated already. This can happen when the translations have been reverted in VCS or lost
otherwise.

Inconsistent

This string has more than one translation in this project or is not translated in some components.

Weblate checks translations of the same string across all translation within a project to help you keep consistent
translations.
The check fails on differing translations of one string within a project. This can also lead to inconsistencies in displayed
checks. You can find other translations of this string on the Other occurrences tab.

Note: This check also fires in case the string is translated in one component and not in another. It can be used as a
quick way to manually handle strings which are not translated in some components just by clicking on the Use this
translation button displayed on each line in the Other occurrences tab.
You can use Automatic translation addon to automate translating of newly added strings which are already translated
in another component.

See also:
Keeping translations same across components

34 Kapittel 1. User docs

https://srfi.schemers.org/srfi-28/srfi-28.html
https://wiki.call-cc.org/eggref/5/format
https://www.gnu.org/software/guile/manual/html_node/Formatted-Output.html
https://kazupon.github.io/vue-i18n/guide/formatting.html
https://kazupon.github.io/vue-i18n/guide/messages.html#linked-locale-messages


The Weblate Manual, Release 4.5.3

Kashida letter used

The decorative kashida letters should not be used

New in version 3.5.
The decorative Kashida letters should not be used in translation. These are also known as Tatweel.
See also:
Kashida on Wikipedia

Markdown links

Markdown links do not match source

New in version 3.5.
Markdown links do not match source.
See also:
Markdown links

Markdown references

Markdown link references do not match source

New in version 3.5.
Markdown link references do not match source.
See also:
Markdown links

Markdown syntax

Markdown syntax does not match source

New in version 3.5.
Markdown syntax does not match source
See also:
Markdown span elements

Maximum length of translation

Translation should not exceed given length

Checks that translations are of acceptable length to fit available space. This only checks for the length of translation
characters.
Unlike the other checks, the flag should be set as a key:value pair like max-length:100.

Hint: This check looks at number of chars, what might not be the best metric when using proportional fonts to render
the text. The Maximum size of translation check does check actual rendering of the text.
The replacements: flag might be also useful to expand placeables before checking the string.

1.6. Checks and fixups 35

https://en.wikipedia.org/wiki/Kashida
https://daringfireball.net/projects/markdown/syntax#link
https://daringfireball.net/projects/markdown/syntax#link
https://daringfireball.net/projects/markdown/syntax#span


The Weblate Manual, Release 4.5.3

Maximum size of translation

Translation rendered text should not exceed given size

New in version 3.7.
Translation rendered text should not exceed given size. It renders the text with line wrapping and checks if it fits into
given boundaries.
This check needs one or two parameters - maximal width and maximal number of lines. In case the number of lines
is not provided, one line text is considered.
You can also configure used font by font-* directives (see Customizing behavior using flags), for example following
translation flags say that the text rendered with ubuntu font size 22 should fit into two lines and 500 pixels:

max-size:500:2, font-family:ubuntu, font-size:22

Hint: You might want to set font-* directives in Component configuration to have the same font configured for all
strings within a component. You can override those values per string in case you need to customize it per string.
The replacements: flag might be also useful to expand placeables before checking the string.

See also:
Managing fonts, Customizing behavior using flags, Maximum length of translation

Mismatched \n

Number of \n in translation does not match source

Usually escaped newlines are important for formatting program output. Check fails if the number of \n literals in
translation do not match the source.

Mismatched colon

Source and translation do not both end with a colon

Checks that colons are replicated between both source and translation. The presence of colons is also checked for
various languages where they do not belong (Chinese or Japanese).
See also:
Colon on Wikipedia

Mismatched ellipsis

Source and translation do not both end with an ellipsis

Checks that trailing ellipses are replicated between both source and translation. This only checks for real ellipsis (…)
not for three dots (...).
An ellipsis is usually rendered nicer than three dots in print, and sounds better with text-to-speech.
See also:
Ellipsis on Wikipedia

36 Kapittel 1. User docs

https://en.wikipedia.org/wiki/Colon_(punctuation)
https://en.wikipedia.org/wiki/Ellipsis


The Weblate Manual, Release 4.5.3

Mismatched exclamation mark

Source and translation do not both end with an exclamation mark

Checks that exclamations are replicated between both source and translation. The presence of exclamation marks is
also checked for various languages where they do not belong (Chinese, Japanese, Korean, Armenian, Limbu, Myan-
mar or Nko).
See also:
Exclamation mark on Wikipedia

Mismatched full stop

Source and translation do not both end with a full stop

Checks that full stops are replicated between both source and translation. The presence of full stops is checked for
various languages where they do not belong (Chinese, Japanese, Devanagari or Urdu).
See also:
Full stop on Wikipedia

Mismatched question mark

Source and translation do not both end with a question mark

Checks that question marks are replicated between both source and translation. The presence of question marks is also
checked for various languages where they do not belong (Armenian, Arabic, Chinese, Korean, Japanese, Ethiopic,
Vai or Coptic).
See also:
Question mark on Wikipedia

Mismatched semicolon

Source and translation do not both end with a semicolon

Checks that semicolons at the end of sentences are replicated between both source and translation. This can be useful
to keep formatting of entries such as desktop files.
See also:
Semicolon on Wikipedia

Mismatching line breaks

Number of new lines in translation does not match source

Usually newlines are important for formatting program output. Check fails if the number of \n literals in translation
do not match the source.

1.6. Checks and fixups 37

https://en.wikipedia.org/wiki/Exclamation_mark
https://en.wikipedia.org/wiki/Full_stop
https://en.wikipedia.org/wiki/Question_mark
https://en.wikipedia.org/wiki/Semicolon


The Weblate Manual, Release 4.5.3

Missing plurals

Some plural forms are not translated

Checks that all plural forms of a source string have been translated. Specifics on how each plural form is used can be
found in the string definition.
Failing to fill in plural forms will in some cases lead to displaying nothing when the plural form is in use.

Placeholders

Translation is missing some placeholders:

New in version 3.9.
Changed in version 4.3: You can use regular expression as placeholder.
Translation is missing some placeholders. These are either extracted from the translation file or defined manually
using placeholders flag, more can be separated with colon, strings with space can be quoted:

placeholders:$URL$:$TARGET$:"some long text"

In case you have some syntax for placeholders, you can use a regular expression:

placeholders:r"%[^% ]%"

See also:
Customizing behavior using flags

Punctuation spacing

Missing non breakable space before double punctuation sign

New in version 3.9.
Checks that there is non breakable space before double punctuation sign (exclamationmark, questionmark, semicolon
and colon). This rule is used only in a few selected languages like French or Breton, where space before double
punctuation sign is a typographic rule.
See also:
French and English spacing on Wikipedia

Regular expression

Translation does not match regular expression:

New in version 3.9.
Translation does not match regular expression. The expression is either extracted from the translation file or defined
manually using regex flag:

regex:^foo|bar$

38 Kapittel 1. User docs

https://en.wikipedia.org/wiki/History_of_sentence_spacing#French_and_English_spacing


The Weblate Manual, Release 4.5.3

Same plurals

Some plural forms are translated in the same way

Check that fails if some plural forms are duplicated in the translation. In most languages they have to be different.

Starting newline

Source and translation do not both start with a newline

Newlines usually appear in source strings for good reason, omissions or additions can lead to formatting problems
when the translated text is put to use.
See also:
Trailing newline

Starting spaces

Source and translation do not both start with same number of spaces

A space in the beginning of a string is usually used for indentation in the interface and thus important to keep.

Trailing newline

Source and translation do not both end with a newline

Newlines usually appear in source strings for good reason, omissions or additions can lead to formatting problems
when the translated text is put to use.
See also:
Starting newline

Trailing space

Source and translation do not both end with a space

Checks that trailing spaces are replicated between both source and translation.
Trailing space is usually utilized to space out neighbouring elements, so removing it might break layout.

Unchanged translation

Source and translation are identical

Happens if the source and corresponding translation strings is identical, down to at least one of the plural forms. Some
strings commonly found across all languages are ignored, and various markup is stripped. This reduces the number
of false positives.
This check can help find strings mistakenly untranslated.
The default behavior of this check is to exclude words from the built-in blacklist from the checking. These are words
which are frequently not being translated. This is useful to avoid false positives on short strings, which consist only
of single word which is same in several languages. This blacklist can be disabled by adding strict-same flag to
string or component.
See also:
Component configuration, Customizing behavior using flags

1.6. Checks and fixups 39



The Weblate Manual, Release 4.5.3

Unsafe HTML

The translation uses unsafe HTML markup

New in version 3.9.
The translation uses unsafe HTML markup. This check has to be enabled using safe-html flag (see Customizing
behavior using flags). There is also accompanied autofixer which can automatically sanitize the markup.
See also:
The HTML check is performed by the Bleach library developed by Mozilla.

URL

The translation does not contain an URL

New in version 3.5.
The translation does not contain an URL. This is triggered only in case the unit is marked as containing URL. In that
case the translation has to be a valid URL.

XML markup

XML tags in translation do not match source

This usually means the resulting output will look different. In most cases this is not a desired result from changing the
translation, but occasionally it is.
Checks that XML tags are replicated between both source and translation.

XML syntax

The translation is not valid XML

New in version 2.8.
The XML markup is not valid.

Zero-width space

Translation contains extra zero-width space character

Zero-width space (<U+200B>) characters are used to break messages within words (word wrapping).
As they are usually inserted by mistake, this check is triggered once they are present in translation. Some programs
might have problems when this character is used.
See also:
Zero width space on Wikipedia

40 Kapittel 1. User docs

https://bleach.readthedocs.io/
https://en.wikipedia.org/wiki/Zero-width_space


The Weblate Manual, Release 4.5.3

1.6.4 Source checks

Source checks can help developers improve the quality of source strings.

Ellipsis

The string uses three dots (…) instead of an ellipsis character (…)

This fails when the string uses three dots (...) when it should use an ellipsis character (…).
Using the Unicode character is in most cases the better approach and looks better rendered, and may sound better
with text-to-speech.
See also:
Ellipsis on Wikipedia

Long untranslated

The string has not been translated for a long time

New in version 4.1.
When the string has not been translated for a long time, it is can indicate problem in a source string making it hard
to translate.

Multiple failing checks

The translations in several languages have failing checks

Numerous translations of this string have failing quality checks. This is usually an indication that something could be
done to improve the source string.
This check failing can quite often be caused by a missing full stop at the end of a sentence, or similar minor issues
which translators tend to fix in translation, while it would be better to fix it in the source string.

Multiple unnamed variables

There are multiple unnamed variables in the string, making it impossible for translators to reorder them

New in version 4.1.
There are multiple unnamed variables in the string, making it impossible for translators to reorder them.
Consider using named variables instead to allow translators to reorder them.

Unpluralised

The string is used as plural, but not using plural forms

The string is used as a plural, but does not use plural forms. In case your translation system supports this, you should
use the plural aware variant of it.
For example with Gettext in Python it could be:

from gettext import ngettext

print ngettext("Selected %d file", "Selected %d files", files) % files

1.6. Checks and fixups 41

https://en.wikipedia.org/wiki/Ellipsis


The Weblate Manual, Release 4.5.3

1.7 Searching

New in version 3.9.
Advanced queries using boolean operations, parentheses, or field specific lookup can be used to find the strings you
want.
When no field is defined, the lookup happens on Source, Translate and Context fields.

42 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

1.7.1 Simple search

Any phrase typed into the search box is split into words. Strings containing any of them are shown. To look for an
exact phrase, put «the searchphrase» into quotes (both single (’) and double («) quotes will work): "this is a
quoted string" or 'another quoted string'.

1.7.2 Fields

source:TEXT Source string case insensitive search.
target:TEXT Target string case insensitive search.
context:TEXT Context string case insensitive search.
key:TEXT Key string case insensitive search.
note:TEXT Comment string case insensitive search.
location:TEXT Location string case insensitive search.
priority:NUMBER String priority.
added:DATETIME Timestamp for when the string was added to Weblate.
state:TEXT State search (approved, translated, needs-editing, empty, read-only), supports

Field operators.
pending:BOOLEAN String pending for flushing to VCS.
has:TEXT Search for string having attributes - plural, context, suggestion, comment, check,

dismissed-check, translation, variant, screenshot, flags, explanation, glossa-
ry.

is:TEXT Search for string states (pending, translated, untranslated).
language:TEXT String target language.
component:TEXT Component slug, see Component slug.
project:TEXT Project slug, see URL slug.
changed_by:TEXT String was changed by author with given username.
changed:DATETIME String content was changed on date, supports Field operators.
change_time:DATETIME String was changed on date, supports Field operators, unlike changed this includes

event which don’t change content and you can apply custom action filtering using change_action.
change_action:TEXT Filters on change action, useful together withchange_time. Accepts English name of

the change action, either quoted and with spaces or lowercase and spaces replaced by a hyphen. See Searching
for changes for examples.

check:TEXT String has failing check.
dismissed_check:TEXT String has dismissed check.
comment:TEXT Search in user comments.
comment_author:TEXT Filter by comment author.
suggestion:TEXT Search in suggestions.
suggestion_author:TEXT Filter by suggestion author.
explanation:TEXT Search in explanations.

1.7. Searching 43



The Weblate Manual, Release 4.5.3

1.7.3 Boolean operators

You can combine lookups using AND, OR, NOT and parentheses to form complex queries. For example: sta-
te:translated AND (source:hello OR source:bar)

1.7.4 Field operators

You can specify operators, ranges or partial lookups for date or numeric searches:
state:>=translated State is translated or better (approved).
changed:2019 Changed in year 2019.
changed:[2019-03-01 to 2019-04-01] Changed between two given dates.

1.7.5 Exact operators

You can do an exact match query on different string fields using= operator. For example, to search for all source strings
exactly matching hello world, use: source:="hello world". For searching single word expressions, you
can skip quotes. For example, to search for all source strings matching hello, you can use: source:=hello.

1.7.6 Searching for changes

New in version 4.4.
Searching for history events can be done using change_action and change_time operators.
For example, searching for strings marked for edit in 2018 can be entered as change_time:2018 AND
change_action:marked-for-edit or change_time:2018 AND change_action:"Marked
for edit".

1.7.7 Regular expressions

Anywhere text is accepted you can also specify a regular expression as r"regexp".
For example, to search for all source strings which contain any digit between 2 and 5, use source:r"[2-5]".

1.7.8 Predefined queries

You can select out of predefined queries on the search page, this allows you to quickly access the most frequent
searches:

44 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

1.7. Searching 45



The Weblate Manual, Release 4.5.3

1.7.9 Ordering the results

There are many options to order the strings according to your needs:

46 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

1.8 Translation workflows

Using Weblate is a process that brings your users closer to you, by bringing you closer to your translators. It is up to
you to decide how many of its features you want to make use of.
The following is not a complete list of ways to configure Weblate. You can base other workflows on the most usual
examples listed here.

1.8.1 Translation access

The access control is not discussed in detail as a whole in the workflows, as most of its options can be applied to any
workflow. Please consult the respective documentation on how to manage access to translations.
In the following chapters, any user means a user who has access to the translation. It can be any authenticated user if
the project is public, or a user that has a Translate permission for the project.

1.8.2 Translation states

Each translated string can be in one of following states:
Untranslated Translation is empty, it might or not be stored in the file, depending on the file format.
Needs editing Translation needs editing, this is usually the result of a source string change, fuzzy matching or trans-

lator action. The translation is stored in the file, depending on the file format it might be marked as needing
edit (for example as it gets a fuzzy flag in the Gettext file).

Waiting for review Translation is made, but not reviewed. It is stored in the file as a valid translation.
Approved Translation has been approved in the review. It can no longer be changed by translators, but only by

reviewers. Translators can only add suggestions to it.
Suggestions Suggestions are stored in Weblate only and not in the translation file.
The states are represented in the translation files when possible.

Hint: In case file format you use does not support storing states, you might want to use Flag unchanged translations
as «Needs editing» addon to flag unchanged strings as needing editing.

See also:
Translation types capabilities, Translation workflows

1.8.3 Direct translation

This is most usual setup for smaller teams, anybody can directly translate. This is also the default setup in Weblate.
• Any user can edit translations.
• Suggestions are optional ways to suggest changes, when translators are not sure about the change.

Setting Value Note
Enable reviews off Configured at project level.
Enable suggestions on It is useful for users to be able to suggest when they are not sure.
Suggestion voting off
Autoaccept suggestions 0
Translators group Users Or Translate with per-project access control.
Reviewers group N/A Not used.

1.8. Translation workflows 47



The Weblate Manual, Release 4.5.3

1.8.4 Peer review

With this workflow, anybody can add suggestions, and need approval from additional member(s) before it is accepted
as a translation.

• Any user can add suggestions.
• Any user can vote for suggestions.
• Suggestions become translations when given a predetermined number of votes.

Setting Value Note
Enable reviews off Configured at project level.
Enable suggestions on
Suggestion voting off
Autoaccept suggestions 1 You can set higher value to require more peer reviews.
Translators group Users Or Translate with per-project access control.
Reviewers group N/A Not used, all translators review.

1.8.5 Dedicated reviewers

New in version 2.18: The proper review workflow is supported since Weblate 2.18.
With dedicated reviewers you have two groups of users, one able to submit translations, and one able to review them
to ensure translations are consistent and that the quality is good.

• Any user can edit unapproved translations.
• Reviewer can approve / unapprove strings.
• Reviewer can edit all translations (including approved ones).
• Suggestions can also be used to suggest changes for approved strings.

Setting Value Note
Enable reviews on Configured at project level.
Enable suggestions off It is useful for users to be able to suggest when they are not sure.
Suggestion voting off
Autoaccept suggestions 0
Translators group Users Or Translate with per-project access control.
Reviewers group Reviewers Or Review with per-project access control.

1.8.6 Turning on reviews

Reviews can be turned on in the project configuration, from theWorkflow subpage of project settings (to be found in
the Manage→ Settings menu):

48 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

Note: Depending onWeblate configuration, the setting might not be available to you. For example on HostedWeblate
this is not available for projects hosted for free.

1.8.7 Quality gateway for the source strings

In many cases the original source language strings are coming from developers, because they write the code and
provide initial strings. However developers are often not a native speakers in the source language and do not provide
desired quality of the source strings. The intermediate translation can help you in addressing this - there is additional
quality gateway for the strings between developers and translators and users.
By setting Intermediate language file, this file will be used as source for the strings, but it will be edited to source
language to polish it. Once the string is ready in the source language, it will be also available for translators to translate
into additional languages.

Development process Localization process

Developers

Intermediate file Monolingual base language file

Translators

Translation language file

Editors

1.8. Translation workflows 49



The Weblate Manual, Release 4.5.3

See also:
Intermediate language file, Monolingual base language file, Bilingual and monolingual formats

1.8.8 Source strings reviews

With Enable source reviews enabled, the review process can be applied on the source strings. Once enabled, users can
report issues in the source strings. The actual process depends on whether you use bilingual or monolingual formats.
For monolingual formats, the source string review behaves similarly as with Dedicated reviewers - once issue is re-
ported on the source string, it is marked as Needs editing.
The bilingual formats do not allow direct editing of the source strings (these are typically extracted directly from the
source code). In this case Source needs review label is attached to strings reported by translators. You should review
such strings and either edit them in the source or remove the label.
See also:
Bilingual and monolingual formats, Dedicated reviewers, labels, Comments

1.9 Frequently Asked Questions

1.9.1 Configuration

How to create an automated workflow?

Weblate can handle all the translation things semi-automatically for you. If you give it push access to your repository,
the translations can happen without interaction, unless some merge conflict occurs.

1. Set up your Git repository to tell Weblate when there is any change, see Notification hooks for info on how to
do it.

2. Set a push URL at your Component configuration in Weblate, this allows Weblate to push changes to your
repository.

3. Turn on Push on commit on your Component configuration in Weblate, this will make Weblate push changes to
your repository whenever they happen at Weblate.

See also:
Continuous localization, Avoiding merge conflicts

How to access repositories over SSH?

Please see Accessing repositories for info on setting up SSH keys.

How to fix merge conflicts in translations?

Merge conflicts happen from time to time when the translation file is changed in both Weblate and the upstream
repository concurrently. You can usually avoid this by merging Weblate translations prior to making changes in the
translation files (e.g. before running msgmerge). Just tell Weblate to commit all pending translations (you can do it in
Repository maintenance in the Manage menu) and merge the repository (if automatic push is not on).
If you’ve already ran into a merge conflict, the easiest way is to solve all conflicts locally at your workstation - is to
simply addWeblate as a remote repository, merge it into upstream and fix any conflicts. Once you push changes back,
Weblate will be able to use the merged version without any other special actions.

50 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

Note: Depending on your setup, access to the Weblate repository might require authentication. When using the built
in Git exporter in Weblate, you authenticate with your username and the API key.

# Commit all pending changes in Weblate, you can do this in the UI as well:
wlc commit
# Lock the translation in Weblate, again this can be done in the UI as well:
wlc lock
# Add Weblate as remote:
git remote add weblate https://hosted.weblate.org/git/project/component/
# You might need to include credentials in some cases:
git remote add weblate https://username:APIKEY@hosted.weblate.org/git/project/
↪→component/

# Update weblate remote:
git remote update weblate

# Merge Weblate changes:
git merge weblate/main

# Resolve conflicts:
edit …
git add …
…
git commit

# Push changes to upstream repository, Weblate will fetch merge from there:
git push

# Open Weblate for translation:
wlc unlock

If you’re using multiple branches in Weblate, you can do the same to all of them:

# Add and update Weblate remotes
git remote add weblate-one https://hosted.weblate.org/git/project/one/
git remote add weblate-second https://hosted.weblate.org/git/project/second/
git remote update weblate-one weblate-second

# Merge QA_4_7 branch:
git checkout QA_4_7
git merge weblate-one/QA_4_7
... # Resolve conflicts
git commit

# Merge main branch:
git checkout main
git merge weblates-second/main
... # Resolve conflicts
git commit

# Push changes to the upstream repository, Weblate will fetch the merge from there:
git push

In case of gettext PO files, there is a way to merge conflicts in a semi-automatic way:
Fetch and keep a local clone of the Weblate Git repository. Also get a second fresh local clone of the upstream Git
repository (i. e. you need two copies of the upstream Git repository: An intact and a working copy):

# Add remote:
git remote add weblate /path/to/weblate/snapshot/

(continues on next page)

1.9. Frequently Asked Questions 51



The Weblate Manual, Release 4.5.3

(continued from previous page)
# Update Weblate remote:
git remote update weblate

# Merge Weblate changes:
git merge weblate/main

# Resolve conflicts in the PO files:
for PO in `find . -name '*.po'` ; do

msgcat --use-first /path/to/weblate/snapshot/$PO\
/path/to/upstream/snapshot/$PO -o $PO.merge

msgmerge --previous --lang=${PO%.po} $PO.merge domain.pot -o $PO
rm $PO.merge
git add $PO

done
git commit

# Push changes to the upstream repository, Weblate will fetch merge from there:
git push

See also:
How to export the Git repository that Weblate uses?, Continuous localization, Avoiding merge conflicts,Weblate Client

How do I translate several branches at once?

Weblate supports pushing translation changes within one Project configuration. For every Component configuration
which has it turned on (the default behavior), the change made is automatically propagated to others. This way trans-
lations are kept synchronized even if the branches themselves have already diverged quite a lot, and it is not possible
to simply merge translation changes between them.
Once you merge changes from Weblate, you might have to merge these branches (depending on your development
workflow) discarding differences:

git merge -s ours origin/maintenance

See also:
Keeping translations same across components

How to translate multi-platform projects?

Weblate supports a wide range of file formats (see Supported file formats) and the easiest approach is to use the native
format for each platform.
Once you have added all platform translation files as components in one project (see Adding translation projects and
components), you can utilize the translation propagation feature (turned on by default, and can be turned off in the
Component configuration) to translate strings for all platforms at once.
See also:
Keeping translations same across components

52 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

How to export the Git repository that Weblate uses?

There is nothing special about the repository, it lives under the DATA_DIR directory and is named vcs/
<project>/<component>/. If you have SSH access to this machine, you can use the repository directly.
For anonymous access, you might want to run a Git server and let it serve the repository to the outside world.
Alternatively, you can use Git exporter inside Weblate to automate this.

What are the options for pushing changes back upstream?

This heavily depends on your setup, Weblate is quite flexible in this area. Here are examples of some workflows used
with Weblate:

• Weblate automatically pushes and merges changes (see How to create an automated workflow?).
• You manually tell Weblate to push (it needs push access to the upstream repository).
• Somebody manually merges changes from the Weblate git repository into the upstream repository.
• Somebody rewrites history produced by Weblate (e.g. by eliminating merge commits), merges changes, and
tells Weblate to reset the content in the upstream repository.

Of course you are free to mix all of these as you wish.

How can I limit Weblate access to only translations, without exposing source code to it?

You can use git submodule for separating translations from source code while still having them under version control.
1. Create a repository with your translation files.
2. Add this as a submodule to your code:

git submodule add git@example.com:project-translations.git path/to/translations

3. Link Weblate to this repository, it no longer needs access to the repository containing your source code.
4. You can update the main repository with translations from Weblate by:

git submodule update --remote path/to/translations

Please consult the git submodule documentation for more details.

How can I check whether my Weblate is set up properly?

Weblate includes a set of configuration checks which you can see in the admin interface, just follow the Performance
report link in the admin interface, or open the /manage/performance/ URL directly.

Why are all commits committed by Weblate <noreply@weblate.org>?

This is the default committer name, configured when you create a translation component. You can change it in the
administration at any time.
The author of every commit (if the underlying VCS supports it) is still recorded correctly as the user that made the
translation.
See also:
Component configuration

1.9. Frequently Asked Questions 53

https://git-scm.com/docs/git-submodule
https://git-scm.com/docs/git-submodule


The Weblate Manual, Release 4.5.3

1.9.2 Usage

How do I review the translations of others?

• There are several review based workflows available in Weblate, see Translation workflows.
• You can subscribe to any changes made in Notifications and then check others contributions as they come in
by e-mail.

• There is a review tool available at the bottom of the translation view, where you can choose to browse transla-
tions made by others since a given date.

See also:
Translation workflows

How do I provide feedback on a source string?

On context tabs below translation, you can use the Comments tab to provide feedback on a source string, or discuss it
with other translators.
See also:
report-source, Comments

How can I use existing translations while translating?

• All translations within Weblate can be used thanks to shared translation memory.
• You can import existing translation memory files into Weblate.
• Use the import functionality to load compendium as translations, suggestions or translations needing review.
This is the best approach for a one-time translation using a compendium or a similar translation database.

• You can set up tmserver with all databases you have and let Weblate use it. This is good when you want to use
it several times during translation.

• Another option is to translate all related projects in a single Weblate instance, which will make it automatically
pick up translations from other projects as well.

See also:
Machine translation, Automatic suggestions, Translation Memory

Does Weblate update translation files besides translations?

Weblate tries to limit changes in translation files to a minimum. For some file formats it might unfortunately lead to
reformatting the file. If you want to keep the file formatted your way, please use a pre-commit hook for that.
See also:
updating-target-files

54 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

Where do language definitions come from and how can I add my own?

The basic set of language definitions is included within Weblate and Translate-toolkit. This covers more than 150
languages and includes info about plural forms or text direction.
You are free to define your own languages in the administrative interface, you just need to provide info about it.
See also:
Language definitions

Can Weblate highlight changes in a fuzzy string?

Weblate supports this, however it needs the data to show the difference.
For Gettext PO files, you have to pass the parameter --previous to msgmerge when updating PO files, for
example:

msgmerge --previous -U po/cs.po po/phpmyadmin.pot

For monolingual translations, Weblate can find the previous string by ID, so it shows the differences automatically.

Why does Weblate still show old translation strings when I’ve updated the template?

Weblate does not try to manipulate the translation files in any way other than allowing translators to translate. So it
also does not update the translatable files when the template or source code have been changed. You simply have to
do this manually and push changes to the repository, Weblate will then pick up the changes automatically.

Note: It is usually a good idea to merge changes done in Weblate before updating translation files, as otherwise you
will usually end up with some conflicts to merge.

For example with gettext PO files, you can update the translation files using the msgmerge tool:

msgmerge -U locale/cs/LC_MESSAGES/django.mo locale/django.pot

In case you want to do the update automatically, you can install addon Update PO files to match POT (msgmerge).
See also:
updating-target-files

1.9.3 Troubleshooting

Requests sometimes fail with «too many open files» error

This happens sometimes when your Git repository grows too much and you have many of them. Compressing the Git
repositories will improve this situation.
The easiest way to do this is to run:

# Go to DATA_DIR directory
cd data/vcs
# Compress all Git repositories
for d in */* ; do

pushd $d
git gc
popd

done

1.9. Frequently Asked Questions 55



The Weblate Manual, Release 4.5.3

See also:
DATA_DIR

When accessing the site I get a «Bad Request (400)» error

This is most likely caused by an improperly configured ALLOWED_HOSTS. It needs to contain all hostnames you
want to access on your Weblate. For example:

ALLOWED_HOSTS = ["weblate.example.com", "weblate", "localhost"]

See also:
Allowed hosts setup

What does mean «There are more files for the single language (en)»?

This typically happens when you have translation file for source language. Weblate keeps track of source strings and
reserves source language for this. The additional file for same language is not processed.

• In case the translation to the source language is desired, please change the Source language in the component
settings.

• In case the translation file for the source language is not needed, please remove it from the repository.
• In case the translation file for the source language is needed, but should be ignored by Weblate, please adjust
the Language filter to exclude it.

Hint: You might get similar error message for other languages as well. In that case the most likely reason is that
several files map to single language in Weblate.
This can be caused by using obsolete language codes together with new one (ja and jp for Japanese) or including
both country specific and generic codes (fr and fr_FR). See Parsing language codes for more details.

1.9.4 Features

Does Weblate support other VCSes than Git and Mercurial?

Weblate currently does not have native support for anything other than Git (with extended support for GitHub, Gerrit
and Subversion) and Mercurial, but it is possible to write backends for other VCSes.
You can also use Git remote helpers in Git to access other VCSes.
Weblate also supports VCS-less operation, see Local files.

Note: For native support of other VCSes, Weblate requires using distributed VCS, and could probably be adjusted
to work with anything other than Git and Mercurial, but somebody has to implement this support.

See also:
Version control integration

56 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

How does Weblate credit translators?

Every change made in Weblate is committed into VCS under the translators name. This way every single change has
proper authorship, and you can track it down using the standard VCS tools you use for code.
Additionally, when the translation file format supports it, the file headers are updated to include the translator’s name.
See also:
list_translators, ../devel/reporting

Why does Weblate force showing all PO files in a single tree?

Weblate was designed in a way that every PO file is represented as a single component. This is beneficial for translators,
so they know what they are actually translating.
Changed in version 4.2: Translators can translate all the components of a project into a specific language as a whole.

Why does Weblate use language codes such sr_Latn or zh_Hant?

These are language codes defined by RFC 4646 to better indicate that they are really different languages instead
previously wrongly used modifiers (for @latin variants) or country codes (for Chinese).
Weblate still understands legacy language codes and will map them to current one - for example sr@latin will be
handled as sr_Latn or zh@CN as zh_Hans.
See also:
Language definitions

1.10 Supported file formats

Weblate supports most translation format understood by translate-toolkit, however each format being slightly different,
some issues with formats that are not well tested can arise.
See also:
Translation Related File Formats

Note: When choosing a file format for your application, it’s better to stick some well established format in the
toolkit/platform you use. This way your translators can additionally use whatever tools they are used to, and will more
likely contribute to your project.

1.10.1 Bilingual and monolingual formats

Both monolingual and bilingual formats are supported. Bilingual formats store two languages in single file—source
and translation (typical examples areGNU gettext,XLIFF orApple iOS strings). On the other side, monolingual formats
identify the string by ID, and each language file contains only the mapping of those to any given language (typically
Android string resources). Some file formats are used in both variants, see the detailed description below.
For correct use of monolingual files, Weblate requires access to a file containing complete list of strings to translate
with their source—this file is calledMonolingual base language file within Weblate, though the naming might vary in
your paradigm.
Additionally this workflow can be extended by utilizing Intermediate language file to include strings provided by
developers, but not to be used as is in the final strings.

1.10. Supported file formats 57

https://tools.ietf.org/html/rfc4646.html
https://toolkit.translatehouse.org/
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/index.html


The Weblate Manual, Release 4.5.3

1.10.2 Automatic detection

Weblate can automatically detect several widespread file formats, but this detection can harm your performance and
will limit features specific to given file format (for example automatic addition of new translations).

1.10.3 Translation types capabilities

Capabilities of all supported formats:

Format Linguali-
tySide 59, 1

Plu-
ralsSide 59, 2

Com-
mentsSide 59, 3

Con-
textSide 59, 4

Loca-
tionSide 59, 5

FlagsSide 59, 8 Additional
sta-
tesSide 59, 6

GNU
gettext

bilingual yes yes yes yes yes9 needs edi-
ting

Mono-
lingual
gettext

mono yes yes yes yes yes? needs edi-
ting

XLIFF both yes yes yes yes yes10 needs
editing,
approved

Java
properties

both no yes no no no

GWT pro-
perties

mono yes yes no no no

Joomla
transla-
tions

mono no yes no yes no

Qt Linguist
.ts

both yes yes no yes yes? needs edi-
ting

Android
string
resources

mono yes yes7 no no yes?

Apple iOS
strings

bilingual no yes no no no

PHP strings mono no11 yes no no no
JSON files mono no no no no no
JSON
i18next
files

mono yes no no no no

go-i18n
JSON files

mono yes no no no no

ARB File mono yes yes no no no
WebEx-
tension
JSON

mono yes yes no no no

.XML
resource
files

mono no yes no no yes?

CSV files both no yes yes yes no needs edi-
ting

YAML files mono no yes no no no
Ruby
YAML files

mono yes yes no no no

DTD files mono no no no no no
continues on next page

58 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

Table 1 – continued from previous page
Format Linguali-

tySide 59, 1
Plu-
ralsSide 59, 2

Com-
mentsSide 59, 3

Con-
textSide 59, 4

Loca-
tionSide 59, 5

FlagsSide 59, 8 Additional
sta-
tesSide 59, 6

Flat XML
files

mono no no no no yes?

Windows
RC files

mono no yes no no no

Excel Open
XML

mono no yes yes yes no needs edi-
ting

App store
metadata
files

mono no no no no no

Subtitle fi-
les

mono no no no yes no

HTML files mono no no no no no
OpenDo-
cument
Format

mono no no no no no

IDML For-
mat

mono no no no no no

INI transla-
tions

mono no no no no no

Inno Setup
INI transla-
tions

mono no no no no no

TermBase
eXchange
format

bilingual no yes no no yes?

1.10.4 GNU gettext

Most widely used format for translating libre software.
Contextual info stored in the file is supported by adjusting its headers or linking to corresponding source files.
The bilingual gettext PO file typically looks like this:

#: weblate/media/js/bootstrap-datepicker.js:1421
msgid "Monday"
msgstr "Pondělí"

#: weblate/media/js/bootstrap-datepicker.js:1421
msgid "Tuesday"
msgstr "Úterý"

(continues on next page)
1 See Bilingual and monolingual formats
2 Plurals are necessary to properly localize strings with variable count.
3 Comments can be used to pass additional info about the string to translate.
4 Context is used to differentiate identical strings used in different scopes (for example Sun can be used as an abbreviated name of the day

«Sunday» or as the name of our closest star).
5 Location of a string in source code might help proficient translators figure out how the string is used.
8 See Customizing behavior using flags
6 Additional states supported by the file format in addition to «Not translated» and «Translated».
9 The gettext type comments are used as flags.
10 The flags are extracted from the non-standard attribute weblate-flags for all XML based formats. Additionally max-length:N is

supported through the maxwidth attribute as defined in the XLIFF standard, see Specifying translation flags.
7 XML comment placed before the <string> element, parsed as a developer comment.
11 The plurals are supported only for Laravel which uses in string syntax to define them, see Localization in Laravel.

1.10. Supported file formats 59

http://docs.oasis-open.org/xliff/v1.2/os/xliff-core.html#maxwidth
https://laravel.com/docs/7.x/localization


The Weblate Manual, Release 4.5.3

(continued from previous page)
#: weblate/accounts/avatar.py:163
msgctxt "No known user"
msgid "None"
msgstr "Žádný"

Typical Weblate Component configuration
Filemask po/*.po
Monolingual base language file Empty
Template for new translations po/messages.pot
File format Gettext PO file

See also:
devel/gettext, devel/sphinx, Gettext on Wikipedia, PO Files, Update ALL_LINGUAS variable in the «configure» file,
Customize gettext output, Update LINGUAS file, Generate MO files, Update PO files to match POT (msgmerge)

Monolingual gettext

Some projects decide to use gettext as monolingual formats—they code just the IDs in their source code and the
string then needs to be translated to all languages, including English. This is supported, though you have to choose
this file format explicitly when importing components into Weblate.
The monolingual gettext PO file typically looks like this:

#: weblate/media/js/bootstrap-datepicker.js:1421
msgid "day-monday"
msgstr "Pondělí"

#: weblate/media/js/bootstrap-datepicker.js:1421
msgid "day-tuesday"
msgstr "Úterý"

#: weblate/accounts/avatar.py:163
msgid "none-user"
msgstr "Žádný"

While the base language file will be:

#: weblate/media/js/bootstrap-datepicker.js:1421
msgid "day-monday"
msgstr "Monday"

#: weblate/media/js/bootstrap-datepicker.js:1421
msgid "day-tuesday"
msgstr "Tuesday"

#: weblate/accounts/avatar.py:163
msgid "none-user"
msgstr "None"

Typical Weblate Component configuration
Filemask po/*.po
Monolingual base language file po/en.po
Template for new translations po/messages.pot
File format Gettext PO file (monolingual)

60 Kapittel 1. User docs

https://en.wikipedia.org/wiki/Gettext
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/po.html


The Weblate Manual, Release 4.5.3

1.10.5 XLIFF

XML-based format created to standardize translation files, but in the end it is one of many standards, in this area.
XMLLocalization Interchange File Format (XLIFF) is usually used as bilingual, butWeblate supports it as monolingual
as well.
See also:
XML Localization Interchange File Format (XLIFF) specification

Translation states

Changed in version 3.3: Weblate ignored the state attribute prior to the 3.3 release.
The state attribute in the file is partially processed and mapped to the «Needs edit» state in Weblate (the following
states are used to flag the string as needing edit if there is a target present: new, needs-translation, needs-
adaptation, needs-l10n). Should the state attribute be missing, a string is considered translated as soon as
a <target> element exists.
If the translation string has approved="yes", it will also be imported into Weblate as «Approved», anything else
will be imported as «Waiting for review» (which matches the XLIFF specification).
While saving, Weblate doesn’t add those attributes unless necessary:

• The state attribute is only added in case string is marked as needing edit.
• The approved attribute is only added in case string has been reviewed.
• In other cases the attributes are not added, but they are updated in case they are present.

That means that when using the XLIFF format, it is strongly recommended to turn on the Weblate review process, in
order to see and change the approved state of strings.
Similarly upon importing such files (in the upload form), you should choose Import as translated under Processing of
strings needing edit.
See also:
Dedicated reviewers

Whitespace and newlines in XLIFF

Generally types or amounts of whitespace is not differentiated between in XML formats. If you want to keep it, you
have to add the xml:space="preserve" flag to the string.
For example:

<trans-unit id="10" approved="yes">
<source xml:space="preserve">hello</source>
<target xml:space="preserve">Hello, world!

</target>
</trans-unit>

1.10. Supported file formats 61

https://xkcd.com/927/


The Weblate Manual, Release 4.5.3

Specifying translation flags

You can specify additional translation flags (see Customizing behavior using flags) by using the weblate-flags
attribute. Weblate also understands maxwidth and font attributes from the XLIFF specification:

<trans-unit id="10" maxwidth="100" size-unit="pixel" font="ubuntu;22;bold">
<source>Hello %s</source>

</trans-unit>
<trans-unit id="20" maxwidth="100" size-unit="char" weblate-flags="c-format">

<source>Hello %s</source>
</trans-unit>

The font attribute is parsed for font family, size and weight, the above example shows all of that, though only font
family is required. Any whitespace in the font family is converted to underscore, so Source Sans Pro becomes
Source_Sans_Pro, please keep that in mind when naming the font group (see Managing fonts).

String keys

Weblate identifies the units in the XLIFF file by resname attribute in case it is present and falls back to id (together
with file tag if present).
The resname attribute is supposed to be human friendly identifier of the unit making it more suitable for Weblate
to display instead of id. The resname has to be unique in the whole XLIFF file. This is required by Weblate and
is not covered by the XLIFF standard - it does not put any uniqueness restrictions on this attribute.

Typical Weblate Component configuration for bilingual XLIFF
Filemask localizations/*.xliff
Monolingual base language file Empty
Template for new translations localizations/en-US.xliff
File format XLIFF Translation File

Typical Weblate Component configuration for monolingual XLIFF
File mask localizations/*.xliff
Monolingual base language file localizations/en-US.xliff
Template for new translations localizations/en-US.xliff
File format XLIFF Translation File

See also:
XLIFF on Wikipedia, XLIFF, font attribute in XLIFF 1.2, maxwidth attribute in XLIFF 1.2

1.10.6 Java properties

Native Java format for translations.
Java properties are usually used as monolingual translations.
Weblate supports ISO-8859-1, UTF-8 and UTF-16 variants of this format. All of them support storing all Unicode
characters, it is just differently encoded. In the ISO-8859-1, the Unicode escape sequences are used (for example
zkou\u0161ka), all others encode characters directly either in UTF-8 or UTF-16.

Note: Loading escape sequences works in UTF-8 mode as well, so please be careful choosing the correct encoding
set to match your application needs.

62 Kapittel 1. User docs

https://en.wikipedia.org/wiki/XLIFF
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/xliff.html
http://docs.oasis-open.org/xliff/v1.2/os/xliff-core.html#font
http://docs.oasis-open.org/xliff/v1.2/os/xliff-core.html#maxwidth


The Weblate Manual, Release 4.5.3

Typical Weblate Component configuration
Filemask src/app/Bundle_*.properties
Monolingual base language file src/app/Bundle.properties
Template for new translations Empty
File format Java Properties (ISO-8859-1)

See also:
Java properties on Wikipedia, Mozilla and Java properties files, Formats the Java properties file, Cleanup translation
files

1.10.7 GWT properties

Native GWT format for translations.
GWT properties are usually used as monolingual translations.

Typical Weblate Component configuration
Filemask src/app/Bundle_*.properties
Monolingual base language file src/app/Bundle.properties
Template for new translations Empty
File format GWT Properties

See also:
GWT localization guide, GWT Internationalization Tutorial, Mozilla and Java properties files, Formats the Java pro-
perties file, Cleanup translation files

1.10.8 INI translations

New in version 4.1.
INI file format for translations.
INI translations are usually used as monolingual translations.

Typical Weblate Component configuration
Filemask language/*.ini
Monolingual base language file language/en.ini
Template for new translations Empty
File format INI File

Note: Weblate only extracts keys from sections within an INI file. In case your INI file lacks sections, you might
want to use Joomla translations or Java properties instead.

See also:
INI Files, Java properties, Joomla translations, Inno Setup INI translations

1.10. Supported file formats 63

https://en.wikipedia.org/wiki/.properties
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/properties.html
http://www.gwtproject.org/doc/latest/DevGuideI18n.html
http://www.gwtproject.org/doc/latest/tutorial/i18n.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/properties.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/ini.html


The Weblate Manual, Release 4.5.3

1.10.9 Inno Setup INI translations

New in version 4.1.
Inno Setup INI file format for translations.
Inno Setup INI translations are usually used as monolingual translations.

Note: The only notable difference to INI translations is in supporting %n and %t placeholders for line break and tab.

Typical Weblate Component configuration
Filemask language/*.islu
Monolingual base language file language/en.islu
Template for new translations Empty
File format Inno Setup INI File

Note: Only Unicode files (.islu) are currently supported, ANSI variant (.isl) is currently not supported.

See also:
INI Files, Joomla translations, INI translations

1.10.10 Joomla translations

New in version 2.12.
Native Joomla format for translations.
Joomla translations are usually used as monolingual translations.

Typical Weblate Component configuration
Filemask language/*/com_foobar.ini
Monolingual base language file language/en-GB/com_foobar.ini
Template for new translations Empty
File format Joomla Language File

See also:
Specification of Joomla language files, Mozilla and Java properties files, INI translations, Inno Setup INI translations

1.10.11 Qt Linguist .ts

Translation format used in Qt based applications.
Qt Linguist files are used as both bilingual and monolingual translations.

Typical Weblate Component configuration when using as bilingual
Filemask i18n/app.*.ts
Monolingual base language file Empty
Template for new translations i18n/app.de.ts
File format Qt Linguist Translation File

64 Kapittel 1. User docs

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/ini.html
https://docs.joomla.org/Specification_of_language_files
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/properties.html


The Weblate Manual, Release 4.5.3

Typical Weblate Component configuration when using as monolingual
Filemask i18n/app.*.ts
Monolingual base language file i18n/app.en.ts
Template for new translations i18n/app.en.ts
File format Qt Linguist Translation File

See also:
Qt Linguist manual, Qt .ts, Bilingual and monolingual formats

1.10.12 Android string resources

Android specific file format for translating applications.
Android string resources are monolingual, the Monolingual base language file is stored in a different location from
the others res/values/strings.xml.

Typical Weblate Component configuration
Filemask res/values-*/strings.xml
Monolingual base language file res/values/strings.xml
Template for new translations Empty
File format Android String Resource

See also:
Android string resources documentation, Android string resources

Note: Android string-array structures are not currently supported. To work around this, you can break your string
arrays apart:

<string-array name="several_strings">
<item>First string</item>
<item>Second string</item>

</string-array>

become:

<string-array name="several_strings">
<item>@string/several_strings_0</item>
<item>@string/several_strings_1</item>

</string-array>
<string name="several_strings_0">First string</string>
<string name="several_strings_1">Second string</string>

The string-array that points to the string elements should be stored in a different file, and not be made available for
translation.
This script may help pre-process your existing strings.xml files and translations: https://gist.github.com/paour/
11291062

1.10. Supported file formats 65

https://doc.qt.io/qt-5/qtlinguist-index.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/ts.html
https://developer.android.com/guide/topics/resources/string-resource
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/android.html
https://gist.github.com/paour/11291062
https://gist.github.com/paour/11291062


The Weblate Manual, Release 4.5.3

1.10.13 Apple iOS strings

Apple specific file format for translating applications, used for both iOS and iPhone/iPad application translations.
Apple iOS strings are usually used as bilingual translations.

Typical Weblate Component configuration
Filemask Resources/*.lproj/Localizable.strings
Monolingual base lan-
guage file

Resources/en.lproj/Localizable.strings or Resources/Base.
lproj/Localizable.strings

Template for new
translations

Empty

File format iOS Strings (UTF-8)

See also:
Apple «strings files» documentation, Mac OSX strings

1.10.14 PHP strings

PHP translations are usually monolingual, so it is recommended to specify a base file with (what is most often the)
English strings.
Example file:

<?php
$LANG['foo'] = 'bar';
$LANG['foo1'] = 'foo bar';
$LANG['foo2'] = 'foo bar baz';
$LANG['foo3'] = 'foo bar baz bag';

Typical Weblate Component configuration
Filemask lang/*/texts.php
Monolingual base language file lang/en/texts.php
Template for new translations lang/en/texts.php
File format PHP strings

Laravel PHP strings

Changed in version 4.1.
The Laravel PHP localization files are supported as well with plurals:

<?php
return [

'welcome' => 'Welcome to our application',
'apples' => 'There is one apple|There are many apples',

];

See also:
PHP, Localization in Laravel

66 Kapittel 1. User docs

https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPInternational/MaintaingYourOwnStringsFiles/MaintaingYourOwnStringsFiles.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/strings.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/php.html
https://laravel.com/docs/7.x/localization


The Weblate Manual, Release 4.5.3

1.10.15 JSON files

New in version 2.0.
Changed in version 2.16: Since Weblate 2.16 and with translate-toolkit at-least 2.2.4, nested structure JSON files are
supported as well.
Changed in version 4.3: The structure of JSON file is properly preserved even for complex situations which were
broken in prior releases.
JSON format is used mostly for translating applications implemented in JavaScript.
Weblate currently supports several variants of JSON translations:

• Simple key / value files, used for example by vue-i18n or react-intl.
• Files with nested keys.
• JSON i18next files

• go-i18n JSON files

• WebExtension JSON

• ARB File

JSON translations are usually monolingual, so it is recommended to specify a base file with (what is most often the)
English strings.
Example file:

{
"Hello, world!\n": "Ahoj světe!\n",
"Orangutan has %d banana.\n": "",
"Try Weblate at https://demo.weblate.org/!\n": "",
"Thank you for using Weblate.": ""

}

Nested files are supported as well (see above for requirements), such a file can look like:

{
"weblate": {
"hello": "Ahoj světe!\n",
"orangutan": "",
"try": "",
"thanks": ""

}
}

Hint: The JSON file and JSON nested structure file can both handle same type of files. Both preserve existing JSON
structure when translating.
The only difference between them is when adding new strings using Weblate. The nested structure format parses the
newly added key and inserts the new string into the matching structure. For example app.name key is inserted as:

{
"app": {

"name": "Weblate"
}

}

1.10. Supported file formats 67

https://toolkit.translatehouse.org/


The Weblate Manual, Release 4.5.3

Typical Weblate Component configuration
Filemask langs/translation-*.json
Monolingual base language file langs/translation-en.json
Template for new translations Empty
File format JSON nested structure file

See also:
JSON, Customize JSON output, Cleanup translation files,

1.10.16 JSON i18next files

Changed in version 2.17: Since Weblate 2.17 and with translate-toolkit at-least 2.2.5, i18next JSON files with plurals
are supported as well.
i18next is an internationalization framework written in and for JavaScript. Weblate supports its localization files with
features such as plurals.
i18next translations are monolingual, so it is recommended to specify a base file with (what is most often the) English
strings.

Note: Weblate supports the i18next JSON v3 format. The v2 and v1 variants are mostly compatible, with exception
of how plurals are handled.

Example file:

{
"hello": "Hello",
"apple": "I have an apple",
"apple_plural": "I have {{count}} apples",
"apple_negative": "I have no apples"

}

Typical Weblate Component configuration
Filemask langs/*.json
Monolingual base language file langs/en.json
Template for new translations Empty
File format i18next JSON file

See also:
JSON, i18next JSON Format, Customize JSON output, Cleanup translation files

1.10.17 go-i18n JSON files

New in version 4.1.
go-i18n translations are monolingual, so it is recommended to specify a base file with (what is most often the) English
strings.

Note: Weblate supports the go-i18n JSON v1 format, for flat JSON formats please use JSON files. The v2 format
with hash is currently not supported.

68 Kapittel 1. User docs

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/json.html
https://toolkit.translatehouse.org/
https://www.i18next.com/
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/json.html
https://www.i18next.com/misc/json-format


The Weblate Manual, Release 4.5.3

Typical Weblate Component configuration
Filemask langs/*.json
Monolingual base language file langs/en.json
Template for new translations Empty
File format go-i18n JSON file

See also:
JSON, go-i18n, Customize JSON output, Cleanup translation files,

1.10.18 ARB File

New in version 4.1.
ARB translations are monolingual, so it is recommended to specify a base file with (what is most often the) English
strings.

Typical Weblate Component configuration
Filemask lib/l10n/intl_*.arb
Monolingual base language file lib/l10n/intl_en.arb
Template for new translations Empty
File format ARB file

See also:
JSON, Application Resource Bundle Specification, Internationalizing Flutter apps, Customize JSON output, Cleanup
translation files

1.10.19 WebExtension JSON

New in version 2.16: This is supported since Weblate 2.16 and with translate-toolkit at-least 2.2.4.
File format used when translating extensions for Mozilla Firefox or Google Chromium.

Note: While this format is called JSON, its specification allows to include comments, which are not part of JSON
specification. Weblate currently does not support file with comments.

Example file:

{
"hello": {
"message": "Ahoj světe!\n",
"description": "Description",
"placeholders": {

"url": {
"content": "$1",
"example": "https://developer.mozilla.org"

}
}

},
"orangutan": {
"message": "",
"description": "Description"

},
"try": {
"message": "",

(continues on next page)

1.10. Supported file formats 69

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/json.html
https://github.com/nicksnyder/go-i18n
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/json.html
https://github.com/google/app-resource-bundle/wiki/ApplicationResourceBundleSpecification
https://flutter.dev/docs/development/accessibility-and-localization/internationalization
https://toolkit.translatehouse.org/


The Weblate Manual, Release 4.5.3

(continued from previous page)
"description": "Description"

},
"thanks": {
"message": "",
"description": "Description"

}
}

Typical Weblate Component configuration
Filemask _locales/*/messages.json
Monolingual base language file _locales/en/messages.json
Template for new translations Empty
File format WebExtension JSON file

See also:
JSON, Google chrome.i18n, Mozilla Extensions Internationalization

1.10.20 .XML resource files

New in version 2.3.
A .XML resource (.resx) file employs a monolingual XML file format used in Microsoft .NET applications. It is
interchangeable with .resw, when using identical syntax to .resx.

Typical Weblate Component configuration
Filemask Resources/Language.*.resx
Monolingual base language file Resources/Language.resx
Template for new translations Empty
File format .NET resource file

See also:
.NET Resource files (.resx), Cleanup translation files

1.10.21 CSV files

New in version 2.4.
CSV files can contain a simple list of source and translation. Weblate supports the following files:

• Files with header defining fields (location, source, target, ID, fuzzy, context, transla-
tor_comments, developer_comments). This is the recommended approach, as it is the least error
prone. Choose CSV file as a file format.

• Files with two fields—source and translation (in this order). Choose Simple CSV file as a file format.
• Headerless files with fields in order defined by the translate-toolkit: location, source, target, ID,
fuzzy, context, translator_comments, developer_comments. Choose CSV file as a file for-
mat.

• Remember to defineMonolingual base language file when your files are monolingual (see Bilingual and mono-
lingual formats).

Warning: TheCSV format currently automatically detects the dialect of the CSVfile. In some cases the automatic
detection might fail and you will get mixed results. This is especially true for CSV files with newlines in the values.
As a workaround it is recommended to omit quoting characters.

70 Kapittel 1. User docs

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/json.html
https://developer.chrome.com/docs/extensions/reference/i18n/
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Internationalization
https://lingohub.com/developers/resource-files/resw-resx-localization
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/resx.html
https://toolkit.translatehouse.org/


The Weblate Manual, Release 4.5.3

Example file:

Thank you for using Weblate.,Děkujeme za použití Weblate.

Typical Weblate Component configuration for bilingual CSV
Filemask locale/*.csv
Monolingual base language file Empty
Template for new translations locale/en.csv
File format CSV file

Typical Weblate Component configuration for monolingual CSV
Filemask locale/*.csv
Monolingual base language file locale/en.csv
Template for new translations locale/en.csv
File format Simple CSV file

See also:
CSV

1.10.22 YAML files

New in version 2.9.
The plain YAML files with string keys and values. Weblate also extract strings from lists or dictionaries.
Example of a YAML file:

weblate:
hello: ""
orangutan": ""
try": ""
thanks": ""

Typical Weblate Component configuration
Filemask translations/messages.*.yml
Monolingual base language file translations/messages.en.yml
Template for new translations Empty
File format YAML file

See also:
YAML, Ruby YAML files

1.10.23 Ruby YAML files

New in version 2.9.
Ruby i18n YAML files with language as root node.
Example Ruby i18n YAML file:

cs:
weblate:
hello: ""
orangutan: ""

(continues on next page)

1.10. Supported file formats 71

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/csv.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/yaml.html


The Weblate Manual, Release 4.5.3

(continued from previous page)
try: ""
thanks: ""

Typical Weblate Component configuration
Filemask translations/messages.*.yml
Monolingual base language file translations/messages.en.yml
Template for new translations Empty
File format Ruby YAML file

See also:
YAML, YAML files

1.10.24 DTD files

New in version 2.18.
Example DTD file:

<!ENTITY hello "">
<!ENTITY orangutan "">
<!ENTITY try "">
<!ENTITY thanks "">

Typical Weblate Component configuration
Filemask locale/*.dtd
Monolingual base language file locale/en.dtd
Template for new translations Empty
File format DTD file

See also:
Mozilla DTD format

1.10.25 Flat XML files

New in version 3.9.
Example of a flat XML file:

<?xml version='1.0' encoding='UTF-8'?>
<root>

<str key="hello_world">Hello World!</str>
<str key="resource_key">Translated value.</str>

</root>

Typical Weblate Component configuration
Filemask locale/*.xml
Monolingual base language file locale/en.xml
Template for new translations Empty
File format Flat XML file

See also:
Flat XML

72 Kapittel 1. User docs

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/yaml.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/dtd.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/flatxml.html


The Weblate Manual, Release 4.5.3

1.10.26 Windows RC files

Changed in version 4.1: Support for Windows RC files has been rewritten.

Note: Support for this format is currently in beta, feedback from testing is welcome.

Example Windows RC file:

LANGUAGE LANG_CZECH, SUBLANG_DEFAULT

STRINGTABLE
BEGIN

IDS_MSG1 "Hello, world!\n"
IDS_MSG2 "Orangutan has %d banana.\n"
IDS_MSG3 "Try Weblate at http://demo.weblate.org/!\n"
IDS_MSG4 "Thank you for using Weblate."

END

Typical Weblate Component configuration
Filemask lang/*.rc
Monolingual base language file lang/en-US.rc
Template for new translations lang/en-US.rc
File format RC file

See also:
Windows RC files

1.10.27 App store metadata files

New in version 3.5.
Metadata used for publishing apps in various app stores can be translated. Currently the following tools are compatible:

• Triple-T gradle-play-publisher
• Fastlane
• F-Droid

The metadata consists of several textfiles, which Weblate will present as separate strings to translate.

Typical Weblate Component configuration
Filemask fastlane/android/metadata/*
Monolingual base language file fastlane/android/metadata/en-US
Template for new translations fastlane/android/metadata/en-US
File format App store metadata files

Hint: In case you don’t want to translate certain strings (for example changelogs), mark them read-only (see Custo-
mizing behavior using flags). This can be automated by the Bulk edit.

1.10. Supported file formats 73

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/rc.html
https://github.com/Triple-T/gradle-play-publisher
https://docs.fastlane.tools/getting-started/android/setup/#fetch-your-app-metadata
https://f-droid.org/docs/All_About_Descriptions_Graphics_and_Screenshots/


The Weblate Manual, Release 4.5.3

1.10.28 Subtitle files

New in version 3.7.
Weblate can translate various subtitle files:

• SubRip subtitle file (*.srt)
• MicroDVD subtitle file (*.sub)
• Advanced Substation Alpha subtitles file (*.ass)
• Substation Alpha subtitle file (*.ssa)

Typical Weblate Component configuration
Filemask path/*.srt
Monolingual base language file path/en.srt
Template for new translations path/en.srt
File format SubRip subtitle file

See also:
Subtitles

1.10.29 Excel Open XML

New in version 3.2.
Excel Open XML (.xlsx) files can be imported and exported.
When uploading XLSX files for translation, be aware that only the active worksheet is considered, and there must be
at least a column called source (which contains the source string) and a column called target (which contains
the translation). Additionally there should be the column called context (which contains the context path of the
translation string). If you use the XLSX download for exporting the translations into an Excel workbook, you already
get a file with the correct file format.

1.10.30 HTML files

New in version 4.1.

Note: Support for this format is currently in beta, feedback from testing is welcome.

The translatable content is extracted from the HTML files and offered for the translation.
See also:
HTML

1.10.31 OpenDocument Format

New in version 4.1.

Note: Support for this format is currently in beta, feedback from testing is welcome.

The translatable content is extracted from the OpenDocument files and offered for the translation.
See also:
OpenDocument Format

74 Kapittel 1. User docs

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/subtitles.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/html.html
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/odf.html


The Weblate Manual, Release 4.5.3

1.10.32 IDML Format

New in version 4.1.

Note: Support for this format is currently in beta, feedback from testing is welcome.

The translatable content is extracted from the Adobe InDesign Markup Language files and offered for the translation.

1.10.33 TermBase eXchange format

New in version 4.5.
TBX is an XML format for the exchange of terminology data.

Typical Weblate Component configuration
Filemask tbx/*.tbx
Monolingual base language file Empty
Template for new translations Empty
File format TermBase eXchange file

See also:
TBX on Wikipedia, TBX, Glossary

1.10.34 Others

Most formats supported by translate-toolkit which support serializing can be easily supported, but they did not (yet)
receive any testing. In most cases some thin layer is needed in Weblate to hide differences in behavior of different
translate-toolkit storages.
See also:
Translation Related File Formats

1.10.35 Read only strings

New in version 3.10.
Read-only strings from translation files will be included, but can not be edited in Weblate. This feature is natively
supported by few formats (XLIFF and Android string resources), but can be emulated in others by adding a read-
only flag, see Customizing behavior using flags.

1.11 Version control integration

Weblate currently supports Git (with extended support for GitHub, Gerrit and Subversion) and Mercurial as version
control back-ends.

1.11. Version control integration 75

https://en.wikipedia.org/wiki/TermBase_eXchange
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/tbx.html
https://toolkit.translatehouse.org/
https://toolkit.translatehouse.org/
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/formats/index.html


The Weblate Manual, Release 4.5.3

1.11.1 Accessing repositories

The VCS repository you want to use has to be accessible to Weblate. With a publicly available repository you just
need to enter the correct URL (for example https://github.com/WeblateOrg/weblate.git), but for
private repositories or for push URLs the setup is more complex and requires authentication.

Accessing repositories from Hosted Weblate

For Hosted Weblate there is a dedicated push user registered on GitHub, Bitbucket, Codeberg and GitLab (with the
username weblate, e-mail hosted@weblate.org and, namedWeblate push user). You need to add this user as a
collaborator and give it appropriate permission to your repository (read-only is okay for cloning, write is required for
pushing). Depending on service and your organization settings, this happens immediately, or requires confirmation
on the Weblate side.
Theweblate user on GitHub accepts invitations automatically within fiveminutes. Manual processing might be needed
on the other services, so please be patient.
Once the weblate user is added, you can configure Source code repository and Repository push URL using the SSH
protocol (for example git@github.com:WeblateOrg/weblate.git).

SSH repositories

The most frequently used method to access private repositories is based on SSH. Authorize the public Weblate SSH
key (seeWeblate SSH key) to access the upstream repository this way.

Warning: On GitHub, each key can only be used once, see GitHub repositories and Accessing repositories from
Hosted Weblate.

Weblate also stores the host key fingerprint upon first connection, and fails to connect to the host should it be changed
later (see Verifying SSH host keys).
In case adjustment is needed, do so from the Weblate admin interface:

76 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

Weblate SSH key

The Weblate public key is visible to all users browsing the About page.
Admins can generate or display the public key currently used by Weblate in the connection (from SSH keys) on the
admin interface landing page.

Note: The corresponding private SSH key can not currently have a password, so make sure it is well protected.

Hint: Make a backup of the generated private Weblate SSH key.

Verifying SSH host keys

Weblate automatically stores the SSH host keys on first access and remembers them for further use.
In case you want to verify the key fingerprint before connecting to the repository, add the SSH host keys of the servers
you are going to access in Add host key, from the same section of the admin interface. Enter the hostname you are
going to access (e.g. gitlab.com), and press Submit. Verify its fingerprint matches the server you added.
The added keys with fingerprints are shown in the confirmation message:

1.11. Version control integration 77



The Weblate Manual, Release 4.5.3

GitHub repositories

Access via SSH is possible (see SSH repositories), but in case you need to access more than one repository, you will
hit a GitHub limitation on allowed SSH key usage (since each key can be used only once).
In case the Push branch is not set, the project is forked and changes pushed through a fork. In case it is set, changes
are pushed to the upstream repository and chosen branch.
For smaller deployments, use HTTPS authentication with a personal access token and your GitHub account, see
Creating an access token for command-line use.
For bigger setups, it is usually better to create a dedicated user for Weblate, assign it the public SSH key generated in
Weblate (see Weblate SSH key) and grant it access to all the repositories you want to translate. This approach is also
used for Hosted Weblate, there is dedicated weblate user for that.
See also:
Accessing repositories from Hosted Weblate

78 Kapittel 1. User docs

https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token


The Weblate Manual, Release 4.5.3

Weblate internal URLs

Share one repository setup between different components by referring to its placement as weblate://project/
component in other(linked) components. This way linked components use the VCS repository configuration of the
main(referenced) component.

Warning: Removing main component also removes linked components.

Weblate automatically adjusts the repository URL when creating a component if it finds a component with a matching
repository setup. You can override this in the last step of the component configuration.
Reasons to use this:

• Saves disk space on the server, the repository is stored just once.
• Makes the updates faster, only one repository is updated.
• There is just single exported repository with Weblate translations (see Git exporter).
• Some addons can operate on multiple components sharing one repository, for example Squash Git commits.

HTTPS repositories

To access protected HTTPS repositories, include the username and password in the URL. Don’t worry, Weblate will
strip this info when the URL is shown to users (if even allowed to see the repository URL at all).
For example the GitHub URL with authentication added might look like: https://
user:your_access_token@github.com/WeblateOrg/weblate.git.

Note: If your username or password contains special characters, those have to be URL encoded, for example
https://user%40example.com:%24password%23@bitbucket.org/….

Using proxy

If you need to access HTTP/HTTPS VCS repositories using a proxy server, configure the VCS to use it.
This can be done using the http_proxy, https_proxy, and all_proxy environment variables, (as described
in the cURL documentation) or by enforcing it in the VCS configuration, for example:

git config --global http.proxy http://user:password@proxy.example.com:80

Note: The proxy configuration needs to be done under user running Weblate (see also Filesystem permissions) and
with HOME=$DATA_DIR/home (see DATA_DIR), otherwise Git executed by Weblate will not use it.

See also:
The cURL manpage, Git config documentation

1.11. Version control integration 79

https://curl.se/docs/
https://curl.se/docs/manpage.html
https://git-scm.com/docs/git-config


The Weblate Manual, Release 4.5.3

1.11.2 Git

See also:
See Accessing repositories for info on how to access different kinds of repositories.

Git with force push

This behaves exactly like Git itself, the only difference being that it always force pushes. This is intended only in the
case of using a separate repository for translations.

Warning: Use with caution, as this easily leads to lost commits in your upstream repository.

Customizing Git configuration

Weblate invokes all VCS commands with HOME=$DATA_DIR/home (see DATA_DIR), therefore editing the user
configuration needs to be done in DATA_DIR/home/.git.

Git remote helpers

You can also use Git remote helpers for additionally supporting other version control systems, but be prepared to
debug problems this may lead to.
At this time, helpers for Bazaar and Mercurial are available within separate repositories on GitHub: git-remote-hg
and git-remote-bzr. Download them manually and put somewhere in your search path (for example ~/bin). Make
sure you have the corresponding version control systems installed.
Once you have these installed, such remotes can be used to specify a repository in Weblate.
To clone the gnuhello project from Launchpad using Bazaar:

bzr::lp:gnuhello

For the hello repository from selenic.com using Mercurial:

hg::http://selenic.com/repo/hello

Warning: The inconvenience of using Git remote helpers is for example with Mercurial, the remote helper
sometimes creates a new tip when pushing changes back.

1.11.3 GitHub

New in version 2.3.
This adds a thin layer atop Git using the GitHub API to allow pushing translation changes as pull requests, instead of
pushing directly to the repository.
Git pushes changes directly to a repository, while GitHub creates pull requests. The latter is not needed for merely
accessing Git repositories.
See also:
Pushing changes from Weblate

80 Kapittel 1. User docs

https://git-scm.com/docs/gitremote-helpers
https://github.com/felipec/git-remote-hg
https://github.com/felipec/git-remote-bzr
https://docs.github.com/en/rest


The Weblate Manual, Release 4.5.3

Pushing changes to GitHub as pull requests

If not wanting to push translations to a GitHub repository, they can be sent as either one or many pull requests instead.
You need to configure API credentials to make this work.
See also:
GITHUB_USERNAME, GITHUB_TOKEN , GITHUB_CREDENTIALS

1.11.4 GitLab

New in version 3.9.
This just adds a thin layer atop Git using the GitLab API to allow pushing translation changes as merge requests
instead of pushing directly to the repository.
There is no need to use this to access Git repositories, ordinaryGit works the same, the only difference is how pushing
to a repository is handled. WithGit changes are pushed directly to the repository, whileGitLab creates merge request.
See also:
Pushing changes from Weblate

Pushing changes to GitLab as merge requests

If not wanting to push translations to a GitLab repository, they can be sent as either one or many merge requests
instead.
You need to configure API credentials to make this work.
See also:
GITLAB_USERNAME, GITLAB_TOKEN , GITLAB_CREDENTIALS

1.11.5 Pagure

New in version 4.3.2.
This just adds a thin layer atop Git using the Pagure API to allow pushing translation changes as merge requests
instead of pushing directly to the repository.
There is no need to use this to access Git repositories, ordinaryGit works the same, the only difference is how pushing
to a repository is handled. WithGit changes are pushed directly to the repository, while Pagure creates merge request.
See also:
Pushing changes from Weblate

Pushing changes to Pagure as merge requests

If not wanting to push translations to a Pagure repository, they can be sent as either one or many merge requests
instead.
You need to configure API credentials to make this work.
See also:
PAGURE_USERNAME, PAGURE_TOKEN , PAGURE_CREDENTIALS

1.11. Version control integration 81

https://docs.gitlab.com/ee/api/
https://pagure.io/api/0/


The Weblate Manual, Release 4.5.3

1.11.6 Gerrit

New in version 2.2.
Adds a thin layer atop Git using the git-review tool to allow pushing translation changes as Gerrit review requests,
instead of pushing them directly to the repository.
The Gerrit documentation has the details on the configuration necessary to set up such repositories.

1.11.7 Mercurial

New in version 2.1.
Mercurial is another VCS you can use directly in Weblate.

Note: It should work with anyMercurial version, but there are sometimes incompatible changes to the command-line
interface which breaks Weblate integration.

See also:
See Accessing repositories for info on how to access different kinds of repositories.

1.11.8 Subversion

New in version 2.8.
Weblate uses git-svn to interact with subversion repositories. It is a Perl script that lets subversion be used by a Git
client, enabling users to maintain a full clone of the internal repository and commit locally.

Note: Weblate tries to detect Subversion repository layout automatically - it supports both direct URLs for branch
or repositories with standard layout (branches/, tags/ and trunk/). More info about this is to be found in the git-svn
documentation. If your repository does not have a standard layout and you encounter errors, try including the branch
name in the repository URL and leaving branch empty.

Changed in version 2.19: Before this, only repositories using the standard layout were supported.

Subversion credentials

Weblate expects you to have accepted the certificate up-front (and your credentials if needed). It will look to insert
them into the DATA_DIR directory. Accept the certificate by using svn once with the $HOME environment variable
set to the DATA_DIR:

# Use DATA_DIR as configured in Weblate settings.py, it is /app/data in the Docker
HOME=${DATA_DIR}/home svn co https://svn.example.com/example

See also:
DATA_DIR

82 Kapittel 1. User docs

https://pypi.org/project/git-review/
https://git-scm.com/docs/git-svn
https://subversion.apache.org/
https://git-scm.com/docs/git-svn#Documentation/git-svn.txt---stdlayout
https://git-scm.com/docs/git-svn#Documentation/git-svn.txt---stdlayout


The Weblate Manual, Release 4.5.3

1.11.9 Local files

New in version 3.8.
Weblate can also operate without a remote VCS. The initial translations are imported by uploading them. Later you
can replace individual files by file upload, or add translation strings directly from Weblate (currently available only
for monolingual translations).
In the background Weblate creates a Git repository for you and all changes are tracked in. In case you later decide to
use a VCS to store the translations, you already have a repository within Weblate can base your integration on.

1.12 Weblate’s REST API

New in version 2.6: The REST API is available since Weblate 2.6.
The API is accessible on the /api/ URL and it is based on Django REST framework. You can use it directly or by
Weblate Client.

1.12.1 Authentication and generic parameters

The public project API is available without authentication, though unauthenticated requests are heavily throttled (by
default to 100 requests per day), so it is recommended to use authentication. The authentication uses a token, which
you can get in your profile. Use it in the Authorization header:
ANY /

Generic request behaviour for the API, the headers, status codes and parameters here apply to all endpoints as
well.

Query Parameters
• format – Response format (overrides Accept). Possible values depends on REST fram-
ework setup, by default json and api are supported. The latter provides web browser
interface for API.

Request Headers
• Accept – the response content type depends on Accept header
• Authorization – optional token to authenticate

Response Headers
• Content-Type – this depends on Accept header of request
• Allow – list of allowed HTTP methods on object

Response JSON Object
• detail (string) – verbose description of the result (for HTTP status codes other than
200 OK)

• count (int) – total item count for object lists
• next (string) – next page URL for object lists
• previous (string) – previous page URL for object lists
• results (array) – results for object lists
• url (string) – URL to access this resource using API
• web_url (string) – URL to access this resource using web browser

Status Codes
• 200 OK – when request was correctly handled

1.12. Weblate’s REST API 83

https://www.django-rest-framework.org/
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7235#section-4.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-7.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


The Weblate Manual, Release 4.5.3

• 201 Created – when a new object was created successfully
• 204 No Content – when an object was created successfully
• 400 Bad Request – when form parameters are missing
• 403 Forbidden – when access is denied
• 429 Too Many Requests – when throttling is in place

Authentication examples

Example request:

GET /api/ HTTP/1.1
Host: example.com
Accept: application/json, text/javascript
Authorization: Token YOUR-TOKEN

Example response:

HTTP/1.0 200 OK
Date: Fri, 25 Mar 2016 09:46:12 GMT
Server: WSGIServer/0.1 Python/2.7.11+
Vary: Accept, Accept-Language, Cookie
X-Frame-Options: SAMEORIGIN
Content-Type: application/json
Content-Language: en
Allow: GET, HEAD, OPTIONS

{
"projects":"http://example.com/api/projects/",
"components":"http://example.com/api/components/",
"translations":"http://example.com/api/translations/",
"languages":"http://example.com/api/languages/"

}

CURL example:

curl \
-H "Authorization: Token TOKEN" \
https://example.com/api/

Passing Parameters Examples

For the POSTmethod the parameters can be specified either as form submission (application/x-www-form-
urlencoded) or as JSON (application/json).
Form request example:

POST /api/projects/hello/repository/ HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/x-www-form-urlencoded
Authorization: Token TOKEN

operation=pull

JSON request example:

84 Kapittel 1. User docs

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://tools.ietf.org/html/rfc6585#section-4
https://tools.ietf.org/html/rfc7231#section-4.3.3


The Weblate Manual, Release 4.5.3

POST /api/projects/hello/repository/ HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Token TOKEN
Content-Length: 20

{"operation":"pull"}

CURL example:

curl \
-d operation=pull \
-H "Authorization: Token TOKEN" \
http://example.com/api/components/hello/weblate/repository/

CURL JSON example:

curl \
--data-binary '{"operation":"pull"}' \
-H "Content-Type: application/json" \
-H "Authorization: Token TOKEN" \
http://example.com/api/components/hello/weblate/repository/

API rate limiting

The API requests are rate limited; the default configuration limits it to 100 requests per day for anonymous users and
5000 requests per hour for authenticated users.
Rate limiting can be adjusted in the settings.py; see Throttling in Django REST framework documentation for
more details how to configure it.
The status of rate limiting is reported in following headers:

X-RateLimit-Limit Rate limiting limit of requests to perform
X-RateLimit-Remaining Remaining limit of requests
X-RateLimit-Reset Number of seconds until ratelimit window resets

Changed in version 4.1: Added ratelimiting status headers.
See also:
Rate limiting, Rate limiting

1.12.2 API Entry Point

GET /api/
The API root entry point.
Example request:

GET /api/ HTTP/1.1
Host: example.com
Accept: application/json, text/javascript
Authorization: Token YOUR-TOKEN

Example response:

1.12. Weblate’s REST API 85

https://www.django-rest-framework.org/api-guide/throttling/


The Weblate Manual, Release 4.5.3

HTTP/1.0 200 OK
Date: Fri, 25 Mar 2016 09:46:12 GMT
Server: WSGIServer/0.1 Python/2.7.11+
Vary: Accept, Accept-Language, Cookie
X-Frame-Options: SAMEORIGIN
Content-Type: application/json
Content-Language: en
Allow: GET, HEAD, OPTIONS

{
"projects":"http://example.com/api/projects/",
"components":"http://example.com/api/components/",
"translations":"http://example.com/api/translations/",
"languages":"http://example.com/api/languages/"

}

1.12.3 Users

New in version 4.0.
GET /api/users/

Returns a list of users if you have permissions to see manage users. If not, then you get to see only your own
details.
See also:
Users object attributes are documented at GET /api/users/(str:username)/.

POST /api/users/
Creates a new user.

Parameters
• username (string) – Username
• full_name (string) – User full name
• email (string) – User email
• is_superuser (boolean) – Is user superuser? (optional)
• is_active (boolean) – Is user active? (optional)

GET /api/users/(str: username)/
Returns information about users.

Parameters
• username (string) – User’s username

Response JSON Object
• username (string) – username of a user
• full_name (string) – full name of a user
• email (string) – email of a user
• is_superuser (boolean) – whether the user is a super user
• is_active (boolean) – whether the user is active
• date_joined (string) – date the user is created
• groups (array) – link to associated groups; see GET /api/groups/(int:id)/

Example JSON data:

86 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

{
"email": "user@example.com",
"full_name": "Example User",
"username": "exampleusername",
"groups": [

"http://example.com/api/groups/2/",
"http://example.com/api/groups/3/"

],
"is_superuser": true,
"is_active": true,
"date_joined": "2020-03-29T18:42:42.617681Z",
"url": "http://example.com/api/users/exampleusername/",
"statistics_url": "http://example.com/api/users/exampleusername/statistics/

↪→"
}

PUT /api/users/(str: username)/
Changes the user parameters.

Parameters
• username (string) – User’s username

Response JSON Object
• username (string) – username of a user
• full_name (string) – full name of a user
• email (string) – email of a user
• is_superuser (boolean) – whether the user is a super user
• is_active (boolean) – whether the user is active
• date_joined (string) – date the user is created

PATCH /api/users/(str: username)/
Changes the user parameters.

Parameters
• username (string) – User’s username

Response JSON Object
• username (string) – username of a user
• full_name (string) – full name of a user
• email (string) – email of a user
• is_superuser (boolean) – whether the user is a super user
• is_active (boolean) – whether the user is active
• date_joined (string) – date the user is created

DELETE /api/users/(str: username)/
Deletes all user information and marks the user inactive.

Parameters
• username (string) – User’s username

POST /api/users/(str: username)/groups/
Associate groups with a user.

Parameters
• username (string) – User’s username

1.12. Weblate’s REST API 87



The Weblate Manual, Release 4.5.3

Form Parameters
• string group_id – The unique group ID

GET /api/users/(str: username)/statistics/
List statistics of a user.

Parameters
• username (string) – User’s username

Response JSON Object
• translated (int) – Number of translations by user
• suggested (int) – Number of suggestions by user
• uploaded (int) – Number of uploads by user
• commented (int) – Number of comments by user
• languages (int) – Number of languages user can translate

GET /api/users/(str: username)/notifications/
List subscriptions of a user.

Parameters
• username (string) – User’s username

POST /api/users/(str: username)/notifications/
Associate subscriptions with a user.

Parameters
• username (string) – User’s username

Request JSON Object
• notification (string) – Name of notification registered
• scope (int) – Scope of notification from the available choices
• frequency (int) – Frequency choices for notifications

GET /api/users/(str: username)/notifications/
int: subscription_id/ Get a subscription associated with a user.

Parameters
• username (string) – User’s username
• subscription_id (int) – ID of notification registered

PUT /api/users/(str: username)/notifications/
int: subscription_id/ Edit a subscription associated with a user.

Parameters
• username (string) – User’s username
• subscription_id (int) – ID of notification registered

Request JSON Object
• notification (string) – Name of notification registered
• scope (int) – Scope of notification from the available choices
• frequency (int) – Frequency choices for notifications

PATCH /api/users/(str: username)/notifications/
int: subscription_id/ Edit a subscription associated with a user.

Parameters

88 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

• username (string) – User’s username
• subscription_id (int) – ID of notification registered

Request JSON Object
• notification (string) – Name of notification registered
• scope (int) – Scope of notification from the available choices
• frequency (int) – Frequency choices for notifications

DELETE /api/users/(str: username)/notifications/
int: subscription_id/ Delete a subscription associated with a user.

Parameters
• username (string) – User’s username
• subscription_id – Name of notification registered
• subscription_id – int

1.12.4 Groups

New in version 4.0.
GET /api/groups/

Returns a list of groups if you have permissions to see manage groups. If not, then you get to see only the
groups the user is a part of.
See also:
Group object attributes are documented at GET /api/groups/(int:id)/.

POST /api/groups/
Creates a new group.

Parameters
• name (string) – Group name
• project_selection (int) – Group of project selection from given options
• language_selection (int) – Group of languages selected from given options

GET /api/groups/(int: id)/
Returns information about group.

Parameters
• id (int) – Group’s ID

Response JSON Object
• name (string) – name of a group
• project_selection (int) – integer corresponding to group of projects
• language_selection (int) – integer corresponding to group of languages
• roles (array) – link to associated roles; see GET /api/roles/(int:id)/

• projects (array) – link to associated projects; see GET /api/projects/
(string:project)/

• components (array) – link to associated components; see GET /api/
components/(string:project)/(string:component)/

• componentlist (array) – link to associated componentlist; see GET /api/
component-lists/(str:slug)/

1.12. Weblate’s REST API 89



The Weblate Manual, Release 4.5.3

Example JSON data:

{
"name": "Guests",
"project_selection": 3,
"language_selection": 1,
"url": "http://example.com/api/groups/1/",
"roles": [

"http://example.com/api/roles/1/",
"http://example.com/api/roles/2/"

],
"languages": [

"http://example.com/api/languages/en/",
"http://example.com/api/languages/cs/",

],
"projects": [

"http://example.com/api/projects/demo1/",
"http://example.com/api/projects/demo/"

],
"componentlist": "http://example.com/api/component-lists/new/",
"components": [

"http://example.com/api/components/demo/weblate/"
]

}

PUT /api/groups/(int: id)/
Changes the group parameters.

Parameters
• id (int) – Group’s ID

Response JSON Object
• name (string) – name of a group
• project_selection (int) – integer corresponding to group of projects
• language_selection (int) – integer corresponding to group of Languages

PATCH /api/groups/(int: id)/
Changes the group parameters.

Parameters
• id (int) – Group’s ID

Response JSON Object
• name (string) – name of a group
• project_selection (int) – integer corresponding to group of projects
• language_selection (int) – integer corresponding to group of languages

DELETE /api/groups/(int: id)/
Deletes the group.

Parameters
• id (int) – Group’s ID

POST /api/groups/(int: id)/roles/
Associate roles with a group.

Parameters
• id (int) – Group’s ID

Form Parameters

90 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

• string role_id – The unique role ID
POST /api/groups/(int: id)/components/

Associate components with a group.
Parameters

• id (int) – Group’s ID
Form Parameters

• string component_id – The unique component ID
DELETE /api/groups/(int: id)/components/

int: component_id Delete component from a group.
Parameters

• id (int) – Group’s ID
• component_id (int) – The unique component ID

POST /api/groups/(int: id)/projects/
Associate projects with a group.

Parameters
• id (int) – Group’s ID

Form Parameters
• string project_id – The unique project ID

DELETE /api/groups/(int: id)/projects/
int: project_id Delete project from a group.

Parameters
• id (int) – Group’s ID
• project_id (int) – The unique project ID

POST /api/groups/(int: id)/languages/
Associate languages with a group.

Parameters
• id (int) – Group’s ID

Form Parameters
• string language_code – The unique language code

DELETE /api/groups/(int: id)/languages/
string: language_code Delete language from a group.

Parameters
• id (int) – Group’s ID
• language_code (string) – The unique language code

POST /api/groups/(int: id)/componentlists/
Associate componentlists with a group.

Parameters
• id (int) – Group’s ID

Form Parameters
• string component_list_id – The unique componentlist ID

DELETE /api/groups/(int: id)/componentlists/
int: component_list_id Delete componentlist from a group.

1.12. Weblate’s REST API 91



The Weblate Manual, Release 4.5.3

Parameters
• id (int) – Group’s ID
• component_list_id (int) – The unique componentlist ID

1.12.5 Roles

GET /api/roles/
Returns a list of all roles associated with user. If user is superuser, then list of all existing roles is returned.
See also:
Roles object attributes are documented at GET /api/roles/(int:id)/.

POST /api/roles/
Creates a new role.

Parameters
• name (string) – Role name
• permissions (array) – List of codenames of permissions

GET /api/roles/(int: id)/
Returns information about a role.

Parameters
• id (int) – Role ID

Response JSON Object
• name (string) – Role name
• permissions (array) – list of codenames of permissions

Example JSON data:

{
"name": "Access repository",
"permissions": [

"vcs.access",
"vcs.view"

],
"url": "http://example.com/api/roles/1/",

}

PUT /api/roles/(int: id)/
Changes the role parameters.

Parameters
• id (int) – Role’s ID

Response JSON Object
• name (string) – Role name
• permissions (array) – list of codenames of permissions

PATCH /api/roles/(int: id)/
Changes the role parameters.

Parameters
• id (int) – Role’s ID

Response JSON Object

92 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

• name (string) – Role name
• permissions (array) – list of codenames of permissions

DELETE /api/roles/(int: id)/
Deletes the role.

Parameters
• id (int) – Role’s ID

1.12.6 Languages

GET /api/languages/
Returns a list of all languages.
See also:
Language object attributes are documented at GET /api/languages/(string:language)/.

POST /api/languages/
Creates a new language.

Parameters
• code (string) – Language name
• name (string) – Language name
• direction (string) – Text direction
• plural (object) – Language plural formula and number

GET /api/languages/(string: language)/
Returns information about a language.

Parameters
• language (string) – Language code

Response JSON Object
• code (string) – Language code
• direction (string) – Text direction
• plural (object) – Object of language plural information
• aliases (array) – Array of aliases for language

Example JSON data:

{
"code": "en",
"direction": "ltr",
"name": "English",
"plural": {

"id": 75,
"source": 0,
"number": 2,
"formula": "n != 1",
"type": 1

},
"aliases": [

"english",
"en_en",
"base",
"source",

(continues on next page)

1.12. Weblate’s REST API 93



The Weblate Manual, Release 4.5.3

(continued from previous page)
"eng"

],
"url": "http://example.com/api/languages/en/",
"web_url": "http://example.com/languages/en/",
"statistics_url": "http://example.com/api/languages/en/statistics/"

}

PUT /api/languages/(string: language)/
Changes the language parameters.

Parameters
• language (string) – Language’s code

Request JSON Object
• name (string) – Language name
• direction (string) – Text direction
• plural (object) – Language plural details

PATCH /api/languages/(string: language)/
Changes the language parameters.

Parameters
• language (string) – Language’s code

Request JSON Object
• name (string) – Language name
• direction (string) – Text direction
• plural (object) – Language plural details

DELETE /api/languages/(string: language)/
Deletes the language.

Parameters
• language (string) – Language’s code

GET /api/languages/(string: language)/statistics/
Returns statistics for a language.

Parameters
• language (string) – Language code

Response JSON Object
• total (int) – total number of strings
• total_words (int) – total number of words
• last_change (timestamp) – last changes in the language
• recent_changes (int) – total number of changes
• translated (int) – number of translated strings
• translated_percent (float) – percentage of translated strings
• translated_words (int) – number of translated words
• translated_words_percent (int) – percentage of translated words
• translated_chars (int) – number of translated characters
• translated_chars_percent (int) – percentage of translated characters

94 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

• total_chars (int) – number of total characters
• fuzzy (int) – number of fuzzy (marked for edit) strings
• fuzzy_percent (int) – percentage of fuzzy (marked for edit) strings
• failing (int) – number of failing strings
• failing – percentage of failing strings

1.12.7 Projects

GET /api/projects/
Returns a list of all projects.
See also:
Project object attributes are documented at GET /api/projects/(string:project)/.

POST /api/projects/
New in version 3.9.
Creates a new project.

Parameters
• name (string) – Project name
• slug (string) – Project slug
• web (string) – Project website

GET /api/projects/(string: project)/
Returns information about a project.

Parameters
• project (string) – Project URL slug

Response JSON Object
• name (string) – project name
• slug (string) – project slug
• web (string) – project website
• components_list_url (string) – URL to components list; see GET /api/
projects/(string:project)/components/

• repository_url (string) – URL to repository status; see GET /api/
projects/(string:project)/repository/

• changes_list_url (string) – URL to changes list; see GET /api/
projects/(string:project)/changes/

• translation_review (boolean) – Enable reviews

• source_review (boolean) – Enable source reviews

• set_language_team (boolean) – Set «Language-Team» header

• enable_hooks (boolean) – Enable hooks

• instructions (string) – Translation instructions

• language_aliases (string) – Language aliases

Example JSON data:

1.12. Weblate’s REST API 95



The Weblate Manual, Release 4.5.3

{
"name": "Hello",
"slug": "hello",
"url": "http://example.com/api/projects/hello/",
"web": "https://weblate.org/",
"web_url": "http://example.com/projects/hello/"

}

PATCH /api/projects/(string: project)/
New in version 4.3.
Edit a project by a PATCH request.

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug

PUT /api/projects/(string: project)/
New in version 4.3.
Edit a project by a PUT request.

Parameters
• project (string) – Project URL slug

DELETE /api/projects/(string: project)/
New in version 3.9.
Deletes a project.

Parameters
• project (string) – Project URL slug

GET /api/projects/(string: project)/changes/
Returns a list of project changes. This is essentially a project scoped GET /api/changes/ accepting same
params.

Parameters
• project (string) – Project URL slug

Response JSON Object
• results (array) – array of component objects; see GET /api/changes/
(int:id)/

GET /api/projects/(string: project)/repository/
Returns information about VCS repository status. This endpoint contains only an overall summary for all reposi-
tories for the project. To get more detailed status use GET /api/components/(string:project)/
(string:component)/repository/.

Parameters
• project (string) – Project URL slug

Response JSON Object
• needs_commit (boolean) – whether there are any pending changes to commit
• needs_merge (boolean) – whether there are any upstream changes to merge
• needs_push (boolean) – whether there are any local changes to push

Example JSON data:

96 Kapittel 1. User docs

https://tools.ietf.org/html/rfc5789#section-2
https://tools.ietf.org/html/rfc7231#section-4.3.4


The Weblate Manual, Release 4.5.3

{
"needs_commit": true,
"needs_merge": false,
"needs_push": true

}

POST /api/projects/(string: project)/repository/
Performs given operation on the VCS repository.

Parameters
• project (string) – Project URL slug

Request JSON Object
• operation (string) – Operation to perform: one of push, pull, commit, re-
set, cleanup, file-sync

Response JSON Object
• result (boolean) – result of the operation

CURL example:

curl \
-d operation=pull \
-H "Authorization: Token TOKEN" \
http://example.com/api/projects/hello/repository/

JSON request example:

POST /api/projects/hello/repository/ HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Token TOKEN
Content-Length: 20

{"operation":"pull"}

JSON response example:

HTTP/1.0 200 OK
Date: Tue, 12 Apr 2016 09:32:50 GMT
Server: WSGIServer/0.1 Python/2.7.11+
Vary: Accept, Accept-Language, Cookie
X-Frame-Options: SAMEORIGIN
Content-Type: application/json
Content-Language: en
Allow: GET, POST, HEAD, OPTIONS

{"result":true}

GET /api/projects/(string: project)/components/
Returns a list of translation components in the given project.

Parameters
• project (string) – Project URL slug

Response JSON Object
• results (array) – array of component objects; see GET /api/components/
(string:project)/(string:component)/

1.12. Weblate’s REST API 97



The Weblate Manual, Release 4.5.3

POST /api/projects/(string: project)/components/
New in version 3.9.
Changed in version 4.3: Thezipfile anddocfile parameters are now accepted for VCS-less components,
see Local files.
Creates translation components in the given project.

Hint: UseWeblate internal URLs when creating multiple components from a single VCS repository.

Note: Most of the component creation happens in the background. Check the task_url attribute of created
component and follow the progress there.

Parameters
• project (string) – Project URL slug

Form Parameters
• file zipfile – ZIP file to upload into Weblate for translations initialization
• file docfile – Document to translate

Response JSON Object
• result (object) – Created component object; see GET /api/components/
(string:project)/(string:component)/

JSON can not be used when uploading the files using the zipfile and docfile parameters. The data has
to be uploaded as multipart/form-data.
CURL form request example:

curl \
--form docfile=@strings.html \
--form name=Weblate \
--form slug=weblate \
--form file_format=html \
--form new_lang=add \
-H "Authorization: Token TOKEN" \
http://example.com/api/projects/hello/components/

CURL JSON request example:

curl \
--data-binary '{

"branch": "main",
"file_format": "po",
"filemask": "po/*.po",
"git_export": "",
"license": "",
"license_url": "",
"name": "Weblate",
"slug": "weblate",
"repo": "file:///home/nijel/work/weblate-hello",
"template": "",
"new_base": "",
"vcs": "git"

}' \
-H "Content-Type: application/json" \
-H "Authorization: Token TOKEN" \
http://example.com/api/projects/hello/components/

98 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

JSON request example:

POST /api/projects/hello/components/ HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Token TOKEN
Content-Length: 20

{
"branch": "main",
"file_format": "po",
"filemask": "po/*.po",
"git_export": "",
"license": "",
"license_url": "",
"name": "Weblate",
"slug": "weblate",
"repo": "file:///home/nijel/work/weblate-hello",
"template": "",
"new_base": "",
"vcs": "git"

}

JSON response example:

HTTP/1.0 200 OK
Date: Tue, 12 Apr 2016 09:32:50 GMT
Server: WSGIServer/0.1 Python/2.7.11+
Vary: Accept, Accept-Language, Cookie
X-Frame-Options: SAMEORIGIN
Content-Type: application/json
Content-Language: en
Allow: GET, POST, HEAD, OPTIONS

{
"branch": "main",
"file_format": "po",
"filemask": "po/*.po",
"git_export": "",
"license": "",
"license_url": "",
"name": "Weblate",
"slug": "weblate",
"project": {

"name": "Hello",
"slug": "hello",
"source_language": {

"code": "en",
"direction": "ltr",
"name": "English",
"url": "http://example.com/api/languages/en/",
"web_url": "http://example.com/languages/en/"

},
"url": "http://example.com/api/projects/hello/",
"web": "https://weblate.org/",
"web_url": "http://example.com/projects/hello/"

},
"repo": "file:///home/nijel/work/weblate-hello",
"template": "",
"new_base": "",
"url": "http://example.com/api/components/hello/weblate/",
"vcs": "git",

(continues on next page)

1.12. Weblate’s REST API 99



The Weblate Manual, Release 4.5.3

(continued from previous page)
"web_url": "http://example.com/projects/hello/weblate/"

}

GET /api/projects/(string: project)/languages/
Returns paginated statistics for all languages within a project.
New in version 3.8.

Parameters
• project (string) – Project URL slug

Response JSON Object
• results (array) – array of translation statistics objects
• language (string) – language name
• code (string) – language code
• total (int) – total number of strings
• translated (int) – number of translated strings
• translated_percent (float) – percentage of translated strings
• total_words (int) – total number of words
• translated_words (int) – number of translated words
• words_percent (float) – percentage of translated words

GET /api/projects/(string: project)/statistics/
Returns statistics for a project.
New in version 3.8.

Parameters
• project (string) – Project URL slug

Response JSON Object
• total (int) – total number of strings
• translated (int) – number of translated strings
• translated_percent (float) – percentage of translated strings
• total_words (int) – total number of words
• translated_words (int) – number of translated words
• words_percent (float) – percentage of translated words

1.12.8 Components

GET /api/components/
Returns a list of translation components.
See also:
Component object attributes are documented at GET /api/components/(string:project)/
(string:component)/.

GET /api/components/(string: project)/
string: component/ Returns information about translation component.

Parameters
• project (string) – Project URL slug

100 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

• component (string) – Component URL slug
Response JSON Object

• project (object) – the translation project; see GET /api/projects/
(string:project)/

• name (string) – Component name

• slug (string) – Component slug

• vcs (string) – Version control system

• repo (string) – Source code repository

• git_export (string) – Exported repository URL

• branch (string) – Repository branch

• push_branch (string) – Push branch

• filemask (string) – File mask

• template (string) – Monolingual base language file

• edit_template (string) – Edit base file

• intermediate (string) – Intermediate language file

• new_base (string) – Template for new translations

• file_format (string) – File format

• license (string) – Translation license

• agreement (string) – Contributor agreement

• new_lang (string) – Adding new translation

• language_code_style (string) – Language code style

• source_language (object) – source language object; see GET /api/
languages/(string:language)/

• push (string) – Repository push URL

• check_flags (string) – Translation flags

• priority (string) – Priority

• enforced_checks (string) – Enforced checks

• restricted (string) – Restricted access

• repoweb (string) – Repository browser

• report_source_bugs (string) – Source string bug reporting address

• merge_style (string) – Merge style

• commit_message (string) – Commit, add, delete, merge and addon messages

• add_message (string) – Commit, add, delete, merge and addon messages

• delete_message (string) – Commit, add, delete, merge and addon messages

• merge_message (string) – Commit, add, delete, merge and addon messages

• addon_message (string) – Commit, add, delete, merge and addon messages

• allow_translation_propagation (string) – Allow translation propagation

• enable_suggestions (string) – Enable suggestions

• suggestion_voting (string) – Suggestion voting

• suggestion_autoaccept (string) – Autoaccept suggestions

1.12. Weblate’s REST API 101



The Weblate Manual, Release 4.5.3

• push_on_commit (string) – Push on commit

• commit_pending_age (string) – Age of changes to commit

• auto_lock_error (string) – Lock on error

• language_regex (string) – Language filter

• variant_regex (string) – Variants regular expression

• repository_url (string) – URL to repository status; see GET /api/
components/(string:project)/(string:component)/repository/

• translations_url (string) – URL to translations list; see GET /
api/components/(string:project)/(string:component)/
translations/

• lock_url (string) – URL to lock status; see GET /api/components/
(string:project)/(string:component)/lock/

• changes_list_url (string) – URL to changes list; see GET /api/
components/(string:project)/(string:component)/changes/

• task_url (string) – URL to a background task (if any); see GET /api/tasks/
(str:uuid)/

Example JSON data:

{
"branch": "main",
"file_format": "po",
"filemask": "po/*.po",
"git_export": "",
"license": "",
"license_url": "",
"name": "Weblate",
"slug": "weblate",
"project": {

"name": "Hello",
"slug": "hello",
"source_language": {

"code": "en",
"direction": "ltr",
"name": "English",
"url": "http://example.com/api/languages/en/",
"web_url": "http://example.com/languages/en/"

},
"url": "http://example.com/api/projects/hello/",
"web": "https://weblate.org/",
"web_url": "http://example.com/projects/hello/"

},
"source_language": {

"code": "en",
"direction": "ltr",
"name": "English",
"url": "http://example.com/api/languages/en/",
"web_url": "http://example.com/languages/en/"

},
"repo": "file:///home/nijel/work/weblate-hello",
"template": "",
"new_base": "",
"url": "http://example.com/api/components/hello/weblate/",
"vcs": "git",
"web_url": "http://example.com/projects/hello/weblate/"

}

102 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

PATCH /api/components/(string: project)/
string: component/ Edit a component by a PATCH request.

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug
• source_language (string) – Project source language code (optional)

Request JSON Object
• name (string) – name of component
• slug (string) – slug of component
• repo (string) – VCS repository URL

CURL example:

curl \
--data-binary '{"name": "new name"}' \
-H "Content-Type: application/json" \
-H "Authorization: Token TOKEN" \
PATCH http://example.com/api/projects/hello/components/

JSON request example:

PATCH /api/projects/hello/components/ HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Token TOKEN
Content-Length: 20

{
"name": "new name"

}

JSON response example:

HTTP/1.0 200 OK
Date: Tue, 12 Apr 2016 09:32:50 GMT
Server: WSGIServer/0.1 Python/2.7.11+
Vary: Accept, Accept-Language, Cookie
X-Frame-Options: SAMEORIGIN
Content-Type: application/json
Content-Language: en
Allow: GET, POST, HEAD, OPTIONS

{
"branch": "main",
"file_format": "po",
"filemask": "po/*.po",
"git_export": "",
"license": "",
"license_url": "",
"name": "new name",
"slug": "weblate",
"project": {

"name": "Hello",
"slug": "hello",
"source_language": {

"code": "en",
"direction": "ltr",

(continues on next page)

1.12. Weblate’s REST API 103

https://tools.ietf.org/html/rfc5789#section-2


The Weblate Manual, Release 4.5.3

(continued from previous page)
"name": "English",
"url": "http://example.com/api/languages/en/",
"web_url": "http://example.com/languages/en/"

},
"url": "http://example.com/api/projects/hello/",
"web": "https://weblate.org/",
"web_url": "http://example.com/projects/hello/"

},
"repo": "file:///home/nijel/work/weblate-hello",
"template": "",
"new_base": "",
"url": "http://example.com/api/components/hello/weblate/",
"vcs": "git",
"web_url": "http://example.com/projects/hello/weblate/"

}

PUT /api/components/(string: project)/
string: component/ Edit a component by a PUT request.

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug

Request JSON Object
• branch (string) – VCS repository branch
• file_format (string) – file format of translations
• filemask (string) – mask of translation files in the repository
• name (string) – name of component
• slug (string) – slug of component
• repo (string) – VCS repository URL
• template (string) – base file for monolingual translations
• new_base (string) – base file for adding new translations
• vcs (string) – version control system

DELETE /api/components/(string: project)/
string: component/ New in version 3.9.
Deletes a component.

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug

GET /api/components/(string: project)/
string: component/changes/ Returns a list of component changes. This is essentially a component
scoped GET /api/changes/ accepting same params.

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug

Response JSON Object
• results (array) – array of component objects; see GET /api/changes/
(int:id)/

104 Kapittel 1. User docs

https://tools.ietf.org/html/rfc7231#section-4.3.4


The Weblate Manual, Release 4.5.3

GET /api/components/(string: project)/
string: component/screenshots/ Returns a list of component screenshots.

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug

Response JSON Object
• results (array) – array of component screenshots; see GET /api/
screenshots/(int:id)/

GET /api/components/(string: project)/
string: component/lock/ Returns component lock status.

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug

Response JSON Object
• locked (boolean) – whether component is locked for updates

Example JSON data:

{
"locked": false

}

POST /api/components/(string: project)/
string: component/lock/ Sets component lock status.
Response is same as GET /api/components/(string:project)/(string:component)/
lock/.

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug

Request JSON Object
• lock – Boolean whether to lock or not.

CURL example:

curl \
-d lock=true \
-H "Authorization: Token TOKEN" \
http://example.com/api/components/hello/weblate/repository/

JSON request example:

POST /api/components/hello/weblate/repository/ HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Token TOKEN
Content-Length: 20

{"lock": true}

JSON response example:

1.12. Weblate’s REST API 105



The Weblate Manual, Release 4.5.3

HTTP/1.0 200 OK
Date: Tue, 12 Apr 2016 09:32:50 GMT
Server: WSGIServer/0.1 Python/2.7.11+
Vary: Accept, Accept-Language, Cookie
X-Frame-Options: SAMEORIGIN
Content-Type: application/json
Content-Language: en
Allow: GET, POST, HEAD, OPTIONS

{"locked":true}

GET /api/components/(string: project)/
string: component/repository/ Returns information about VCS repository status.
The response is same as for GET /api/projects/(string:project)/repository/.

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug

Response JSON Object
• needs_commit (boolean) – whether there are any pending changes to commit
• needs_merge (boolean) – whether there are any upstream changes to merge
• needs_push (boolean) – whether there are any local changes to push
• remote_commit (string) – Remote commit information
• status (string) – VCS repository status as reported by VCS
• merge_failure – Text describing merge failure or null if there is none

POST /api/components/(string: project)/
string: component/repository/ Performs the given operation on a VCS repository.
See POST /api/projects/(string:project)/repository/ for documentation.

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug

Request JSON Object
• operation (string) – Operation to perform: one of push, pull, commit, re-
set, cleanup

Response JSON Object
• result (boolean) – result of the operation

CURL example:

curl \
-d operation=pull \
-H "Authorization: Token TOKEN" \
http://example.com/api/components/hello/weblate/repository/

JSON request example:

POST /api/components/hello/weblate/repository/ HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json

(continues on next page)

106 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

(continued from previous page)
Authorization: Token TOKEN
Content-Length: 20

{"operation":"pull"}

JSON response example:

HTTP/1.0 200 OK
Date: Tue, 12 Apr 2016 09:32:50 GMT
Server: WSGIServer/0.1 Python/2.7.11+
Vary: Accept, Accept-Language, Cookie
X-Frame-Options: SAMEORIGIN
Content-Type: application/json
Content-Language: en
Allow: GET, POST, HEAD, OPTIONS

{"result":true}

GET /api/components/(string: project)/
string: component/monolingual_base/ Downloads base file for monolingual translations.

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug

GET /api/components/(string: project)/
string: component/new_template/ Downloads template file for new translations.

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug

GET /api/components/(string: project)/
string: component/translations/ Returns a list of translation objects in the given component.

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug

Response JSON Object
• results (array) – array of translation objects; see GET /api/translations/
(string:project)/(string:component)/(string:language)/

POST /api/components/(string: project)/
string: component/translations/ Creates new translation in the given component.

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug

Request JSON Object
• language_code (string) – translation language code; see GET /api/
languages/(string:language)/

Response JSON Object
• result (object) – new translation object created

CURL example:

1.12. Weblate’s REST API 107



The Weblate Manual, Release 4.5.3

curl \
-d language_code=cs \
-H "Authorization: Token TOKEN" \
http://example.com/api/projects/hello/components/

JSON request example:

POST /api/projects/hello/components/ HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Token TOKEN
Content-Length: 20

{"language_code": "cs"}

JSON response example:

HTTP/1.0 200 OK
Date: Tue, 12 Apr 2016 09:32:50 GMT
Server: WSGIServer/0.1 Python/2.7.11+
Vary: Accept, Accept-Language, Cookie
X-Frame-Options: SAMEORIGIN
Content-Type: application/json
Content-Language: en
Allow: GET, POST, HEAD, OPTIONS

{
"failing_checks": 0,
"failing_checks_percent": 0,
"failing_checks_words": 0,
"filename": "po/cs.po",
"fuzzy": 0,
"fuzzy_percent": 0.0,
"fuzzy_words": 0,
"have_comment": 0,
"have_suggestion": 0,
"is_template": false,
"is_source": false,
"language": {

"code": "cs",
"direction": "ltr",
"name": "Czech",
"url": "http://example.com/api/languages/cs/",
"web_url": "http://example.com/languages/cs/"

},
"language_code": "cs",
"id": 125,
"last_author": null,
"last_change": null,
"share_url": "http://example.com/engage/hello/cs/",
"total": 4,
"total_words": 15,
"translate_url": "http://example.com/translate/hello/weblate/cs/",
"translated": 0,
"translated_percent": 0.0,
"translated_words": 0,
"url": "http://example.com/api/translations/hello/weblate/cs/",
"web_url": "http://example.com/projects/hello/weblate/cs/"

}

GET /api/components/(string: project)/
string: component/statistics/ Returns paginated statistics for all translations within component.

108 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

New in version 2.7.
Parameters

• project (string) – Project URL slug
• component (string) – Component URL slug

Response JSON Object
• results (array) – array of translation statistics objects; see GET /
api/translations/(string:project)/(string:component)/
(string:language)/statistics/

GET /api/components/(string: project)/
string: component/links/ Returns projects linked with a component.
New in version 4.5.

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug

Response JSON Object
• projects (array) – associated projects; see GET /api/projects/
(string:project)/

POST /api/components/(string: project)/
string: component/links/ Associate project with a component.
New in version 4.5.

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug

Form Parameters
• string project_slug – Project slug

DELETE /api/components/(string: project)/
string: component/links/string: project_slug/Remove association of a project with a component.
New in version 4.5.

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug
• project_slug (string) – Slug of the project to remove

1.12.9 Translations

GET /api/translations/
Returns a list of translations.
See also:
Translation object attributes are documented at GET /api/translations/(string:project)/
(string:component)/(string:language)/.

GET /api/translations/(string: project)/
string: component/string: language/ Returns information about a translation.

Parameters

1.12. Weblate’s REST API 109



The Weblate Manual, Release 4.5.3

• project (string) – Project URL slug
• component (string) – Component URL slug
• language (string) – Translation language code

Response JSON Object
• component (object) – component object; see GET /api/components/
(string:project)/(string:component)/

• failing_checks (int) – number of strings failing checks
• failing_checks_percent (float) – percentage of strings failing checks
• failing_checks_words (int) – number of words with failing checks
• filename (string) – translation filename
• fuzzy (int) – number of fuzzy (marked for edit) strings
• fuzzy_percent (float) – percentage of fuzzy (marked for edit) strings
• fuzzy_words (int) – number of words in fuzzy (marked for edit) strings
• have_comment (int) – number of strings with comment
• have_suggestion (int) – number of strings with suggestion
• is_template (boolean) – whether the translation has a monolingual base
• language (object) – source language object; see GET /api/languages/
(string:language)/

• language_code (string) – language code used in the repository; this can be diffe-
rent from language code in the language object

• last_author (string) – name of last author
• last_change (timestamp) – last change timestamp
• revision (string) – revision hash for the file
• share_url (string) – URL for sharing leading to engagement page
• total (int) – total number of strings
• total_words (int) – total number of words
• translate_url (string) – URL for translating
• translated (int) – number of translated strings
• translated_percent (float) – percentage of translated strings
• translated_words (int) – number of translated words
• repository_url (string) – URL to repository status; see GET /
api/translations/(string:project)/(string:component)/
(string:language)/repository/

• file_url (string) – URL to file object; see GET /api/translations/
(string:project)/(string:component)/(string:language)/
file/

• changes_list_url (string) – URL to changes list; see GET /
api/translations/(string:project)/(string:component)/
(string:language)/changes/

• units_list_url (string) – URL to strings list; see GET /api/
translations/(string:project)/(string:component)/
(string:language)/units/

Example JSON data:

110 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

{
"component": {

"branch": "main",
"file_format": "po",
"filemask": "po/*.po",
"git_export": "",
"license": "",
"license_url": "",
"name": "Weblate",
"new_base": "",
"project": {

"name": "Hello",
"slug": "hello",
"source_language": {

"code": "en",
"direction": "ltr",
"name": "English",
"url": "http://example.com/api/languages/en/",
"web_url": "http://example.com/languages/en/"

},
"url": "http://example.com/api/projects/hello/",
"web": "https://weblate.org/",
"web_url": "http://example.com/projects/hello/"

},
"repo": "file:///home/nijel/work/weblate-hello",
"slug": "weblate",
"template": "",
"url": "http://example.com/api/components/hello/weblate/",
"vcs": "git",
"web_url": "http://example.com/projects/hello/weblate/"

},
"failing_checks": 3,
"failing_checks_percent": 75.0,
"failing_checks_words": 11,
"filename": "po/cs.po",
"fuzzy": 0,
"fuzzy_percent": 0.0,
"fuzzy_words": 0,
"have_comment": 0,
"have_suggestion": 0,
"is_template": false,
"language": {

"code": "cs",
"direction": "ltr",
"name": "Czech",
"url": "http://example.com/api/languages/cs/",
"web_url": "http://example.com/languages/cs/"

},
"language_code": "cs",
"last_author": "Weblate Admin",
"last_change": "2016-03-07T10:20:05.499",
"revision": "7ddfafe6daaf57fc8654cc852ea6be212b015792",
"share_url": "http://example.com/engage/hello/cs/",
"total": 4,
"total_words": 15,
"translate_url": "http://example.com/translate/hello/weblate/cs/",
"translated": 4,
"translated_percent": 100.0,
"translated_words": 15,
"url": "http://example.com/api/translations/hello/weblate/cs/",
"web_url": "http://example.com/projects/hello/weblate/cs/"

}

1.12. Weblate’s REST API 111



The Weblate Manual, Release 4.5.3

DELETE /api/translations/(string: project)/
string: component/string: language/ New in version 3.9.
Deletes a translation.

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug
• language (string) – Translation language code

GET /api/translations/(string: project)/
string: component/string: language/changes/ Returns a list of translation changes. This is es-
sentially a translations-scoped GET /api/changes/ accepting the same parameters.

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug
• language (string) – Translation language code

Response JSON Object
• results (array) – array of component objects; see GET /api/changes/
(int:id)/

GET /api/translations/(string: project)/
string: component/string: language/units/ Returns a list of translation units.

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug
• language (string) – Translation language code
• q (string) – Search query string Searching (optional)

Response JSON Object
• results (array) – array of component objects; see GET /api/units/
(int:id)/

POST /api/translations/(string: project)/
string: component/string: language/units/ Add new monolingual unit.

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug
• language (string) – Translation language code

Request JSON Object
• key (string) – Name of translation unit
• value (string) – The translation unit value

See also:
Manage strings, adding-new-strings

POST /api/translations/(string: project)/
string: component/string: language/autotranslate/ Trigger automatic translation.

Parameters
• project (string) – Project URL slug

112 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

• component (string) – Component URL slug
• language (string) – Translation language code

Request JSON Object
• mode (string) – Automatic translation mode
• filter_type (string) – Automatic translation filter type
• auto_source (string) – Automatic translation source
• component (string) – Turn on contribution to shared translation memory for the
project to get access to additional components.

• engines (string) – Machine translation engines
• threshold (string) – Score threshold

GET /api/translations/(string: project)/
string: component/string: language/file/ Download current translation file as it is stored in the
VCS (without the format parameter) or converted to another format (see Downloading translations).

Note: This API endpoint uses different logic for output than rest of API as it operates on whole file rather
than on data. Set of accepted format parameter differs and without such parameter you get translation file as
stored in VCS.

Query Parameters
• format – File format to use; if not specified no format conversion happens; supported file
formats:po,mo,xliff,xliff11,tbx,csv,xlsx,json,aresource,strings

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug
• language (string) – Translation language code

POST /api/translations/(string: project)/
string: component/string: language/file/ Upload new file with translations.

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug
• language (string) – Translation language code

Form Parameters
• string conflicts – How to deal with conflicts (ignore, replace-
translated or replace-approved)

• file file – Uploaded file
• string email – Author e-mail
• string author – Author name
• string method – Upload method (translate, approve, suggest, fuzzy,
replace, source, add), see Import methods

• string fuzzy – Fuzzy (marked for edit) strings processing (empty, process, ap-
prove)

CURL example:

1.12. Weblate’s REST API 113



The Weblate Manual, Release 4.5.3

curl -X POST \
-F file=@strings.xml \
-H "Authorization: Token TOKEN" \
http://example.com/api/translations/hello/android/cs/file/

GET /api/translations/(string: project)/
string: component/string: language/repository/ Returns information about VCS repository
status.
The response is same as for GET /api/components/(string:project)/
(string:component)/repository/.

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug
• language (string) – Translation language code

POST /api/translations/(string: project)/
string: component/string: language/repository/ Performs given operation on the VCS repo-
sitory.
See POST /api/projects/(string:project)/repository/ for documentation.

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug
• language (string) – Translation language code

Request JSON Object
• operation (string) – Operation to perform: one of push, pull, commit, re-
set, cleanup

Response JSON Object
• result (boolean) – result of the operation

GET /api/translations/(string: project)/
string: component/string: language/statistics/ Returns detailed translation statistics.
New in version 2.7.

Parameters
• project (string) – Project URL slug
• component (string) – Component URL slug
• language (string) – Translation language code

Response JSON Object
• code (string) – language code
• failing (int) – number of failing checks
• failing_percent (float) – percentage of failing checks
• fuzzy (int) – number of fuzzy (marked for edit) strings
• fuzzy_percent (float) – percentage of fuzzy (marked for edit) strings
• total_words (int) – total number of words
• translated_words (int) – number of translated words
• last_author (string) – name of last author

114 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

• last_change (timestamp) – date of last change
• name (string) – language name
• total (int) – total number of strings
• translated (int) – number of translated strings
• translated_percent (float) – percentage of translated strings
• url (string) – URL to access the translation (engagement URL)
• url_translate (string) – URL to access the translation (real translation URL)

1.12.10 Units

A unit is a single piece of a translation which pairs a source string with a corresponding translated string and also
contains some related metadata. The term is derived from the Translate Toolkit and XLIFF.
New in version 2.10.
GET /api/units/

Returns list of translation units.
See also:
Unit object attributes are documented at GET /api/units/(int:id)/.

GET /api/units/(int: id)/
Changed in version 4.3: The target and source are now arrays to properly handle plural strings.
Returns information about translation unit.

Parameters
• id (int) – Unit ID

Response JSON Object
• translation (string) – URL of a related translation object
• source (array) – source string
• previous_source (string) – previous source string used for fuzzy matching
• target (array) – target string
• id_hash (string) – unique identifier of the unit
• content_hash (string) – unique identifier of the source string
• location (string) – location of the unit in source code
• context (string) – translation unit context
• note (string) – translation unit note
• flags (string) – translation unit flags
• state (int) – unit state, 0 - not translated, 10 - needs editing, 20 - translated, 30 -
approved, 100 - read only

• fuzzy (boolean) – whether the unit is fuzzy or marked for review
• translated (boolean) – whether the unit is translated
• approved (boolean) – whether the translation is approved
• position (int) – unit position in translation file
• has_suggestion (boolean) – whether the unit has suggestions
• has_comment (boolean) – whether the unit has comments

1.12. Weblate’s REST API 115

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/api/storage.html#translate.storage.base.TranslationUnit


The Weblate Manual, Release 4.5.3

• has_failing_check (boolean) – whether the unit has failing checks
• num_words (int) – number of source words
• priority (int) – translation priority; 100 is default
• id (int) – unit identifier
• explanation (string) – String explanation, available on source units, seeAdditional

info on source strings

• extra_flags (string) – Additional string flags, available on source units, see Custo-
mizing behavior using flags

• web_url (string) – URL where the unit can be edited
• souce_unit (string) – Source unit link; see GET /api/units/(int:id)/

PATCH /api/units/(int: id)/
New in version 4.3.
Performs partial update on translation unit.

Parameters
• id (int) – Unit ID

Request JSON Object
• state (int) – unit state, 0 - not translated, 10 - needs editing, 20 - translated, 30 -
approved (need review workflow enabled, see Dedicated reviewers)

• target (array) – target string
• explanation (string) – String explanation, available on source units, seeAdditional

info on source strings

• extra_flags (string) – Additional string flags, available on source units, see Custo-
mizing behavior using flags

PUT /api/units/(int: id)/
New in version 4.3.
Performs full update on translation unit.

Parameters
• id (int) – Unit ID

Request JSON Object
• state (int) – unit state, 0 - not translated, 10 - needs editing, 20 - translated, 30 -
approved (need review workflow enabled, see Dedicated reviewers)

• target (array) – target string
• explanation (string) – String explanation, available on source units, seeAdditional

info on source strings

• extra_flags (string) – Additional string flags, available on source units, see Custo-
mizing behavior using flags

DELETE /api/units/(int: id)/
New in version 4.3.
Deletes a translation unit.

Parameters
• id (int) – Unit ID

116 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

1.12.11 Changes

New in version 2.10.
GET /api/changes/

Changed in version 4.1: Filtering of changes was introduced in the 4.1 release.
Returns a list of translation changes.
See also:
Change object attributes are documented at GET /api/changes/(int:id)/.

Query Parameters
• user (string) – Username of user to filters
• action (int) – Action to filter, can be used several times
• timestamp_after (timestamp) – ISO 8601 formatted timestamp to list changes
after

• timestamp_before (timestamp) – ISO 8601 formatted timestamp to list changes
before

GET /api/changes/(int: id)/
Returns information about translation change.

Parameters
• id (int) – Change ID

Response JSON Object
• unit (string) – URL of a related unit object
• translation (string) – URL of a related translation object
• component (string) – URL of a related component object
• user (string) – URL of a related user object
• author (string) – URL of a related author object
• timestamp (timestamp) – event timestamp
• action (int) – numeric identification of action
• action_name (string) – text description of action
• target (string) – event changed text or detail
• id (int) – change identifier

1.12.12 Screenshots

New in version 2.14.
GET /api/screenshots/

Returns a list of screenshot string information.
See also:
Screenshot object attributes are documented at GET /api/screenshots/(int:id)/.

GET /api/screenshots/(int: id)/
Returns information about screenshot information.

Parameters
• id (int) – Screenshot ID

1.12. Weblate’s REST API 117



The Weblate Manual, Release 4.5.3

Response JSON Object
• name (string) – name of a screenshot
• component (string) – URL of a related component object
• file_url (string) – URL to download a file; see GET /api/screenshots/
(int:id)/file/

• units (array) – link to associated source string information; see GET /api/
units/(int:id)/

GET /api/screenshots/(int: id)/file/
Download the screenshot image.

Parameters
• id (int) – Screenshot ID

POST /api/screenshots/(int: id)/file/
Replace screenshot image.

Parameters
• id (int) – Screenshot ID

Form Parameters
• file image – Uploaded file

CURL example:

curl -X POST \
-F image=@image.png \
-H "Authorization: Token TOKEN" \
http://example.com/api/screenshots/1/file/

POST /api/screenshots/(int: id)/units/
Associate source string with screenshot.

Parameters
• id (int) – Screenshot ID

Form Parameters
• string unit_id – Unit ID

Response JSON Object
• name (string) – name of a screenshot
• translation (string) – URL of a related translation object
• file_url (string) – URL to download a file; see GET /api/screenshots/
(int:id)/file/

• units (array) – link to associated source string information; see GET /api/
units/(int:id)/

DELETE /api/screenshots/(int: id)/units/
int: unit_id Remove source string association with screenshot.

Parameters
• id (int) – Screenshot ID
• unit_id – Source string unit ID

POST /api/screenshots/
Creates a new screenshot.

Form Parameters

118 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

• file image – Uploaded file
• string name – Screenshot name
• string project_slug – Project slug
• string component_slug – Component slug
• string language_code – Language code

Response JSON Object
• name (string) – name of a screenshot
• component (string) – URL of a related component object
• file_url (string) – URL to download a file; see GET /api/screenshots/
(int:id)/file/

• units (array) – link to associated source string information; see GET /api/
units/(int:id)/

PATCH /api/screenshots/(int: id)/
Edit partial information about screenshot.

Parameters
• id (int) – Screenshot ID

Response JSON Object
• name (string) – name of a screenshot
• component (string) – URL of a related component object
• file_url (string) – URL to download a file; see GET /api/screenshots/
(int:id)/file/

• units (array) – link to associated source string information; see GET /api/
units/(int:id)/

PUT /api/screenshots/(int: id)/
Edit full information about screenshot.

Parameters
• id (int) – Screenshot ID

Response JSON Object
• name (string) – name of a screenshot
• component (string) – URL of a related component object
• file_url (string) – URL to download a file; see GET /api/screenshots/
(int:id)/file/

• units (array) – link to associated source string information; see GET /api/
units/(int:id)/

DELETE /api/screenshots/(int: id)/
Delete screenshot.

Parameters
• id (int) – Screenshot ID

1.12. Weblate’s REST API 119



The Weblate Manual, Release 4.5.3

1.12.13 Addons

New in version 4.4.1.
GET /api/addons/

Returns a list of addons.
See also:
Addon object attributes are documented at GET /api/addons/(int:id)/.

GET /api/addons/(int: id)/
Returns information about addon information.

Parameters
• id (int) – Addon ID

Response JSON Object
• name (string) – name of an addon
• component (string) – URL of a related component object
• configuration (object) – Optional addon configuration

POST /api/components/(string: project)/
string: component/addons/ Creates a new addon.

Parameters
• project_slug (string) – Project slug
• component_slug (string) – Component slug

Request JSON Object
• name (string) – name of an addon
• configuration (object) – Optional addon configuration

PATCH /api/addons/(int: id)/
Edit partial information about addon.

Parameters
• id (int) – Addon ID

Response JSON Object
• configuration (object) – Optional addon configuration

PUT /api/addons/(int: id)/
Edit full information about addon.

Parameters
• id (int) – Addon ID

Response JSON Object
• configuration (object) – Optional addon configuration

DELETE /api/addons/(int: id)/
Delete addon.

Parameters
• id (int) – Addon ID

120 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

1.12.14 Component lists

New in version 4.0.
GET /api/component-lists/

Returns a list of component lists.
See also:
Component list object attributes are documented at GET /api/component-lists/(str:slug)/.

GET /api/component-lists/(str: slug)/
Returns information about component list.

Parameters
• slug (string) – Component list slug

Response JSON Object
• name (string) – name of a component list
• slug (string) – slug of a component list
• show_dashboard (boolean) – whether to show it on a dashboard
• components (array) – link to associated components; see GET /api/
components/(string:project)/(string:component)/

• auto_assign (array) – automatic assignment rules
PUT /api/component-lists/(str: slug)/

Changes the component list parameters.
Parameters

• slug (string) – Component list slug
Request JSON Object

• name (string) – name of a component list
• slug (string) – slug of a component list
• show_dashboard (boolean) – whether to show it on a dashboard

PATCH /api/component-lists/(str: slug)/
Changes the component list parameters.

Parameters
• slug (string) – Component list slug

Request JSON Object
• name (string) – name of a component list
• slug (string) – slug of a component list
• show_dashboard (boolean) – whether to show it on a dashboard

DELETE /api/component-lists/(str: slug)/
Deletes the component list.

Parameters
• slug (string) – Component list slug

POST /api/component-lists/(str: slug)/components/
Associate component with a component list.

Parameters
• slug (string) – Component list slug

1.12. Weblate’s REST API 121



The Weblate Manual, Release 4.5.3

Form Parameters
• string component_id – Component ID

DELETE /api/component-lists/(str: slug)/components/
str: component_slug Disassociate a component from the component list.

Parameters
• slug (string) – Component list slug
• component_slug (string) – Component slug

1.12.15 Glossary

Changed in version 4.5: Glossaries are now stored as regular components, translations and strings, please use respec-
tive API instead.

1.12.16 Tasks

New in version 4.4.
GET /api/tasks/

Listing of the tasks is currently not available.
GET /api/tasks/(str: uuid)/

Returns information about a task
Parameters

• uuid (string) – Task UUID
Response JSON Object

• completed (boolean) – Whether the task has completed
• progress (int) – Task progress in percent
• result (object) – Task result or progress details
• log (string) – Task log

1.12.17 Notification hooks

Notification hooks allow external applications to notify Weblate that the VCS repository has been updated.
You can use repository endpoints for projects, components and translations to update individual repositories; see
POST /api/projects/(string:project)/repository/ for documentation.
GET /hooks/update/(string: project)/

string: component/ Deprecated since version 2.6: Please use POST /api/components/
(string:project)/(string:component)/repository/ instead which works properly with
authentication for ACL limited projects.
Triggers update of a component (pulling from VCS and scanning for translation changes).

GET /hooks/update/(string: project)/
Deprecated since version 2.6: Please use POST /api/projects/(string:project)/
repository/ instead which works properly with authentication for ACL limited projects.
Triggers update of all components in a project (pulling from VCS and scanning for translation changes).

122 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

POST /hooks/github/
Special hook for handling GitHub notifications and automatically updating matching components.

Note: GitHub includes direct support for notifyingWeblate: enableWeblate service hook in repository settings
and set the URL to the URL of your Weblate installation.

See also:

Automatically receiving changes from GitHub For instruction on setting up GitHub integration
https://docs.github.com/en/github/extending-github/about-webhooks Generic information about Git-

Hub Webhooks
ENABLE_HOOKS For enabling hooks for whole Weblate

POST /hooks/gitlab/
Special hook for handling GitLab notifications and automatically updating matching components.
See also:

Automatically receiving changes from GitLab For instruction on setting up GitLab integration
https://docs.gitlab.com/ce/user/project/integrations/webhooks.html Generic information about GitLab

Webhooks
ENABLE_HOOKS For enabling hooks for whole Weblate

POST /hooks/bitbucket/
Special hook for handling Bitbucket notifications and automatically updating matching components.
See also:

Automatically receiving changes from Bitbucket For instruction on setting up Bitbucket integration
https://support.atlassian.com/bitbucket-cloud/docs/manage-webhooks/ Generic information about Bit-

bucket Webhooks
ENABLE_HOOKS For enabling hooks for whole Weblate

POST /hooks/pagure/
New in version 3.3.
Special hook for handling Pagure notifications and automatically updating matching components.
See also:

Automatically receiving changes from Pagure For instruction on setting up Pagure integration
https://docs.pagure.org/pagure/usage/using_webhooks.html Generic information about Pagure Web-

hooks
ENABLE_HOOKS For enabling hooks for whole Weblate

POST /hooks/azure/
New in version 3.8.
Special hook for handling Azure Repos notifications and automatically updating matching components.
See also:

Automatically receiving changes from Azure Repos For instruction on setting up Azure integration
https://docs.microsoft.com/en-us/azure/devops/service-hooks/services/webhooks?view=azure-devops

Generic information about Azure Repos Web Hooks

1.12. Weblate’s REST API 123

https://docs.github.com/en/github/extending-github/about-webhooks
https://docs.gitlab.com/ce/user/project/integrations/webhooks.html
https://support.atlassian.com/bitbucket-cloud/docs/manage-webhooks/
https://docs.pagure.org/pagure/usage/using_webhooks.html
https://docs.microsoft.com/en-us/azure/devops/service-hooks/services/webhooks?view=azure-devops


The Weblate Manual, Release 4.5.3

ENABLE_HOOKS For enabling hooks for whole Weblate

POST /hooks/gitea/
New in version 3.9.
Special hook for handling Gitea Webhook notifications and automatically updating matching components.
See also:

Automatically receiving changes from Gitea Repos For instruction on setting up Gitea integration
https://docs.gitea.io/en-us/webhooks/ Generic information about Gitea Webhooks
ENABLE_HOOKS For enabling hooks for whole Weblate

POST /hooks/gitee/
New in version 3.9.
Special hook for handling Gitee Webhook notifications and automatically updating matching components.
See also:

Automatically receiving changes from Gitee Repos For instruction on setting up Gitee integration
https://gitee.com/help/categories/40 Generic information about Gitee Webhooks
ENABLE_HOOKS For enabling hooks for whole Weblate

1.12.18 Exports

Weblate provides various exports to allow you to further process the data.
GET /exports/stats/(string: project)/

string: component/

Query Parameters
• format (string) – Output format: either json or csv

Deprecated since version 2.6: Please use GET /api/components/(string:project)/
(string:component)/statistics/ and GET /api/translations/
(string:project)/(string:component)/(string:language)/statistics/ instead;
it allows access to ACL controlled projects as well.
Retrieves statistics for given component in given format.
Example request:

GET /exports/stats/weblate/main/ HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

[
{

"code": "cs",
"failing": 0,
"failing_percent": 0.0,
"fuzzy": 0,
"fuzzy_percent": 0.0,

(continues on next page)

124 Kapittel 1. User docs

https://docs.gitea.io/en-us/webhooks/
https://gitee.com/help/categories/40


The Weblate Manual, Release 4.5.3

(continued from previous page)
"last_author": "Michal Čihař",
"last_change": "2012-03-28T15:07:38+00:00",
"name": "Czech",
"total": 436,
"total_words": 15271,
"translated": 436,
"translated_percent": 100.0,
"translated_words": 3201,
"url": "http://hosted.weblate.org/engage/weblate/cs/",
"url_translate": "http://hosted.weblate.org/projects/weblate/main/cs/"

},
{

"code": "nl",
"failing": 21,
"failing_percent": 4.8,
"fuzzy": 11,
"fuzzy_percent": 2.5,
"last_author": null,
"last_change": null,
"name": "Dutch",
"total": 436,
"total_words": 15271,
"translated": 319,
"translated_percent": 73.2,
"translated_words": 3201,
"url": "http://hosted.weblate.org/engage/weblate/nl/",
"url_translate": "http://hosted.weblate.org/projects/weblate/main/nl/"

},
{

"code": "el",
"failing": 11,
"failing_percent": 2.5,
"fuzzy": 21,
"fuzzy_percent": 4.8,
"last_author": null,
"last_change": null,
"name": "Greek",
"total": 436,
"total_words": 15271,
"translated": 312,
"translated_percent": 71.6,
"translated_words": 3201,
"url": "http://hosted.weblate.org/engage/weblate/el/",
"url_translate": "http://hosted.weblate.org/projects/weblate/main/el/"

}
]

1.12.19 RSS feeds

Changes in translations are exported in RSS feeds.
GET /exports/rss/(string: project)/

string: component/string: language/ Retrieves RSS feed with recent changes for a translation.
GET /exports/rss/(string: project)/

string: component/ Retrieves RSS feed with recent changes for a component.
GET /exports/rss/(string: project)/

Retrieves RSS feed with recent changes for a project.
GET /exports/rss/language/(string: language)/

1.12. Weblate’s REST API 125



The Weblate Manual, Release 4.5.3

Retrieves RSS feed with recent changes for a language.
GET /exports/rss/

Retrieves RSS feed with recent changes for Weblate instance.
See also:
RSS on wikipedia

1.13 Weblate Client

New in version 2.7: There has been full wlc utility support ever since Weblate 2.7. If you are using an older version
some incompatibilities with the API might occur.

1.13.1 Installation

The Weblate Client is shipped separately and includes the Python module. To use the commands below, you need to
install wlc:

pip3 install wlc

1.13.2 Docker usage

The Weblate Client is also available as a Docker image.
The image is published on Docker Hub: https://hub.docker.com/r/weblate/wlc
Installing:

docker pull weblate/wlc

The Docker container uses Weblate’s default settings and connects to the API deployed in localhost. The API URL
and API_KEY can be configured through the arguments accepted by Weblate.
The command to launch the container uses the following syntax:

docker run --rm weblate/wlc [WLC_ARGS]

Example:

docker run --rm weblate/wlc --url https://hosted.weblate.org/api/ list-projects

You might want to pass your Configuration files to the Docker container, the easiest approach is to add your current
directory as /home/weblate volume:

docker run --volume $PWD:/home/weblate --rm weblate/wlc show

1.13.3 Getting started

The wlc configuration is stored in ~/.config/weblate (see Configuration files for other locations), please create
it to match your environment:

[weblate]
url = https://hosted.weblate.org/api/

[keys]
https://hosted.weblate.org/api/ = APIKEY

126 Kapittel 1. User docs

https://en.wikipedia.org/wiki/RSS
https://hub.docker.com/r/weblate/wlc


The Weblate Manual, Release 4.5.3

You can then invoke commands on the default server:

wlc ls
wlc commit sandbox/hello-world

See also:
Configuration files

1.13.4 Synopsis

wlc [arguments] <command> [options]

Commands actually indicate which operation should be performed.

1.13.5 Description

Weblate Client is a Python library and command-line utility to manage Weblate remotely usingWeblate’s REST API.
The command-line utility can be invoked as wlc and is built-in on wlc.

Arguments

The program accepts the following arguments which define output format or which Weblate instance to use. These
must be entered before any command.
--format {csv,json,text,html}

Specify the output format.
--url URL

Specify the API URL. Overrides any value found in the configuration file, see Configuration files. The URL
should end with /api/, for example https://hosted.weblate.org/api/.

--key KEY
Specify the API user key to use. Overrides any value found in the configuration file, see Configuration files.
You can find your key in your profile on Weblate.

--config PATH
Overrides the configuration file path, see Configuration files.

--config-section SECTION
Overrides configuration file section in use, see Configuration files.

Commands

The following commands are available:
version

Prints the current version.
list-languages

Lists used languages in Weblate.
list-projects

Lists projects in Weblate.
list-components

Lists components in Weblate.
list-translations

Lists translations in Weblate.

1.13. Weblate Client 127



The Weblate Manual, Release 4.5.3

show
Shows Weblate object (translation, component or project).

ls
Lists Weblate object (translation, component or project).

commit
Commits changes made in a Weblate object (translation, component or project).

pull
Pulls remote repository changes into Weblate object (translation, component or project).

push
Pushes Weblate object changes into remote repository (translation, component or project).

reset
New in version 0.7: Supported since wlc 0.7.
Resets changes in Weblate object to match remote repository (translation, component or project).

cleanup
New in version 0.9: Supported since wlc 0.9.
Removes any untracked changes in a Weblate object to match the remote repository (translation, component
or project).

repo
Displays repository status for a given Weblate object (translation, component or project).

statistics
Displays detailed statistics for a given Weblate object (translation, component or project).

lock-status
New in version 0.5: Supported since wlc 0.5.
Displays lock status.

lock
New in version 0.5: Supported since wlc 0.5.
Locks component from further translation in Weblate.

unlock
New in version 0.5: Supported since wlc 0.5.
Unlocks translation of Weblate component.

changes
New in version 0.7: Supported since wlc 0.7 and Weblate 2.10.
Displays changes for a given object.

download
New in version 0.7: Supported since wlc 0.7.
Downloads a translation file.
--convert

Converts file format, if unspecified no conversion happens on the server and the file is downloaded as is
to the repository.

--output
Specifies file to save output in, if left unspecified it is printed to stdout.

upload
New in version 0.9: Supported since wlc 0.9.
Uploads a translation file.
--overwrite

Overwrite existing translations upon uploading.

128 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

--input
File from which content is read, if left unspecified it is read from stdin.

Hint: You can get more detailed information on invoking individual commands by passing --help, for example:
wlc ls --help.

1.13.6 Configuration files

.weblate, .weblate.ini, weblate.ini Changed in version 1.6: The files with .ini extension are accepted
as well.
Per project configuration file

C:\Users\NAME\AppData\weblate.ini New in version 1.6.
User configuration file on Windows.

~/.config/weblate User configuration file
/etc/xdg/weblate System wide configuration file
The program follows the XDG specification, so you can adjust placement of config files by environment variables
XDG_CONFIG_HOME or XDG_CONFIG_DIRS. On Windows APPDATA directory is preferred location for the
configuration file.
Following settings can be configured in the [weblate] section (you can customize this by --config-
section):
key

API KEY to access Weblate.
url

API server URL, defaults to http://127.0.0.1:8000/api/.
translation

Path to the default translation - component or project.
The configuration file is an INI file, for example:

[weblate]
url = https://hosted.weblate.org/api/
key = APIKEY
translation = weblate/application

Additionally API keys can be stored in the [keys] section:

[keys]
https://hosted.weblate.org/api/ = APIKEY

This allows you to store keys in your personal settings, while using the.weblate configuration in the VCS repository
so that wlc knows which server it should talk to.

1.13. Weblate Client 129



The Weblate Manual, Release 4.5.3

1.13.7 Examples

Print current program version:

$ wlc version
version: 0.1

List all projects:

$ wlc list-projects
name: Hello
slug: hello
url: http://example.com/api/projects/hello/
web: https://weblate.org/
web_url: http://example.com/projects/hello/

You can also designate what project wlc should work on:

$ cat .weblate
[weblate]
url = https://hosted.weblate.org/api/
translation = weblate/application

$ wlc show
branch: main
file_format: po
source_language: en
filemask: weblate/locale/*/LC_MESSAGES/django.po
git_export: https://hosted.weblate.org/git/weblate/application/
license: GPL-3.0+
license_url: https://spdx.org/licenses/GPL-3.0+
name: Application
new_base: weblate/locale/django.pot
project: weblate
repo: git://github.com/WeblateOrg/weblate.git
slug: application
template:
url: https://hosted.weblate.org/api/components/weblate/application/
vcs: git
web_url: https://hosted.weblate.org/projects/weblate/application/

With this setup it is easy to commit pending changes in the current project:

$ wlc commit

1.14 Weblate’s Python API

1.14.1 Installation

The Python API is shipped separately, you need to install theWeblate Client: (wlc) to have it.

pip install wlc

130 Kapittel 1. User docs



The Weblate Manual, Release 4.5.3

1.14.2 wlc

WeblateException

exception wlc.WeblateException
Base class for all exceptions.

Weblate

class wlc.Weblate(key='', url=None, config=None)
Parameters

• key (str) – User key
• url (str) – API server URL, if not specified default is used
• config (wlc.config.WeblateConfig) – Configuration object, overrides any ot-
her parameters.

Access class to the API, define API key and optionally API URL.
get(path)

Parameters path (str) – Request path
Return type object

Performs a single API GET call.
post(path, **kwargs)

Parameters path (str) – Request path
Return type object

Performs a single API GET call.

1.14.3 wlc.config

WeblateConfig

class wlc.config.WeblateConfig(section='wlc')

Parameters section (str) – Configuration section to use
Configuration file parser following XDG specification.
load(path=None)

Parameters path (str) – Path from which to load configuration.
Loads configuration from a file, if none is specified, it loads from thewlc configuration file (~/.config/
wlc) placed in your XDG configuration path (/etc/xdg/wlc).

1.14. Weblate’s Python API 131

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#object
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#object
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/stdtypes.html#str


The Weblate Manual, Release 4.5.3

1.14.4 wlc.main

wlc.main.main(settings=None, stdout=None, args=None)
Parameters

• settings (list) – Settings to override as list of tuples
• stdout (object) – stdout file object for printing output, uses sys.stdout as default
• args (list) – Command-line arguments to process, uses sys.args as default

Main entry point for command-line interface.
@wlc.main.register_command(command)

Decorator to register Command class in main parser used by main().

Command

class wlc.main.Command(args, config, stdout=None)
Main class for invoking commands.

132 Kapittel 1. User docs

https://docs.python.org/3.9/library/stdtypes.html#list
https://docs.python.org/3.9/library/functions.html#object
https://docs.python.org/3.9/library/stdtypes.html#list


KAPITTEL2

Administrator docs

2.1 Configuration instructions

2.1.1 Installing Weblate

Installing using Docker

With dockerized Weblate deployment you can get your personal Weblate instance up and running in seconds. All of
Weblate’s dependencies are already included. PostgreSQL is set up as the default database.

Hardware requirements

Weblate should run on any contemporary hardware without problems, the following is the minimal configuration
required to run Weblate on a single host (Weblate, database and webserver):

• 2 GB of RAM
• 2 CPU cores
• 1 GB of storage space

The more memory the better - it is used for caching on all levels (filesystem, database and Weblate).
Many concurrent users increases the amount of needed CPU cores. For hundreds of translation components at least
4 GB of RAM is recommended.
The typical database storage usage is around 300 MB per 1 million hosted words. Storage space needed for cloned
repositories varies, but Weblate tries to keep their size minimal by doing shallow clones.

Note: Actual requirements for your installation ofWeblate vary heavily based on the size of the translations managed
in it.

133



The Weblate Manual, Release 4.5.3

Installation

The following examples assume you have a working Docker environment, with docker-compose installed. Please
check the Docker documentation for instructions.

1. Clone the weblate-docker repo:

git clone https://github.com/WeblateOrg/docker-compose.git weblate-docker
cd weblate-docker

2. Create a docker-compose.override.yml file with your settings. See Docker environment variables
for full list of environment variables.

version: '3'
services:
weblate:
ports:

- 80:8080
environment:

WEBLATE_EMAIL_HOST: smtp.example.com
WEBLATE_EMAIL_HOST_USER: user
WEBLATE_EMAIL_HOST_PASSWORD: pass
WEBLATE_SERVER_EMAIL: weblate@example.com
WEBLATE_DEFAULT_FROM_EMAIL: weblate@example.com
WEBLATE_SITE_DOMAIN: weblate.example.com
WEBLATE_ADMIN_PASSWORD: password for the admin user
WEBLATE_ADMIN_EMAIL: weblate.admin@example.com

Note: If WEBLATE_ADMIN_PASSWORD is not set, the admin user is created with a random password shown
on first startup.
The provided example makes Weblate listen on port 80, edit the port mapping in the docker-compose.
override.yml file to change it.

3. Start Weblate containers:

docker-compose up

Enjoy your Weblate deployment, it’s accessible on port 80 of the weblate container.
Changed in version 2.15-2: The setup has changed recently, priorly there was separate web server container, since
2.15-2 the web server is embedded in the Weblate container.
Changed in version 3.7.1-6: In July 2019 (starting with the 3.7.1-6 tag), the containers are not running as a root user.
This has changed the exposed port from 80 to 8080.
See also:
Invoking management commands

134 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

Docker container with HTTPS support

Please see Installation for generic deployment instructions, this section only mentions differences compared to it.

Using own SSL certificates

New in version 3.8-3.
In case you have own SSL certificate you want to use, simply place the files into the Weblate data volume (see Docker
container volumes):

• ssl/fullchain.pem containing the certificate including any needed CA certificates
• ssl/privkey.pem containing the private key

Both of these files must be owned by the same user as the one starting the docker container and have file mask set to
600 (readable and writable only by the owning user).
Additionally, Weblate container will now accept SSL connections on port 4443, you will want to include the port
forwarding for HTTPS in docker compose override:

version: '3'
services:

weblate:
ports:

- 80:8080
- 443:4443

If you already host other sites on the same server, it is likely ports 80 and 443 are used by a reverse proxy, such as
NGINX. To pass the HTTPS connection from NGINX to the docker container, you can use the following configu-
ration:

server {
listen 443;
listen [::]:443;

server_name <SITE_URL>;
ssl_certificate /etc/letsencrypt/live/<SITE>/fullchain.pem;
ssl_certificate_key /etc/letsencrypt/live/<SITE>/privkey.pem;

location / {
proxy_set_header HOST $host;
proxy_set_header X-Forwarded-Proto https;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Host $server_name;
proxy_pass https://127.0.0.1:<EXPOSED_DOCKER_PORT>;

}
}

Replace <SITE_URL>, <SITE> and <EXPOSED_DOCKER_PORT> with actual values from your environment.

2.1. Configuration instructions 135



The Weblate Manual, Release 4.5.3

Automatic SSL certificates using Let’s Encrypt

In case you want to use Let’s Encrypt automatically generated SSL certificates on public installation, you need to add
a reverse HTTPS proxy an additional Docker container, https-portal will be used for that. This is made use of in the
docker-compose-https.yml file. Then create a docker-compose-https.override.yml file with
your settings:

version: '3'
services:

weblate:
environment:

WEBLATE_EMAIL_HOST: smtp.example.com
WEBLATE_EMAIL_HOST_USER: user
WEBLATE_EMAIL_HOST_PASSWORD: pass
WEBLATE_SITE_DOMAIN: weblate.example.com
WEBLATE_ADMIN_PASSWORD: password for admin user

https-portal:
environment:

DOMAINS: 'weblate.example.com -> http://weblate:8080'

Whenever invoking docker-compose you need to pass both files to it, and then do:

docker-compose -f docker-compose-https.yml -f docker-compose-https.override.yml␣
↪→build
docker-compose -f docker-compose-https.yml -f docker-compose-https.override.yml up

Upgrading the Docker container

Usually it is good idea to only update the Weblate container and keep the PostgreSQL container at the version you
have, as upgrading PostgreSQL is quite painful and in most cases does not bring many benefits.
You can do this by sticking with the existing docker-compose and just pull the latest images and then restart:

docker-compose stop
docker-compose pull
docker-compose up

The Weblate database should be automatically migrated on first startup, and there should be no need for additional
manual actions.

Note: Upgrades across 3.0 are not supported by Weblate. If you are on 2.x series and want to upgrade to 3.x, first
upgrade to the latest 3.0.1-x (at time of writing this it is the 3.0.1-7) image, which will do the migration and then
continue upgrading to newer versions.

Youmight also want to update the docker-compose repository, though it’s not needed inmost case. Please beware
of PostgreSQL version changes in this case as it’s not straightforward to upgrade the database, see GitHub issue for
more info.

136 Kapittel 2. Administrator docs

https://letsencrypt.org/
https://hub.docker.com/r/steveltn/https-portal/
https://github.com/docker-library/postgres/issues/37


The Weblate Manual, Release 4.5.3

Admin sign in

After container setup, you can sign in as admin user with password provided in WEBLATE_ADMIN_PASSWORD, or
a random password generated on first start if that was not set.
To reset admin password, restart the container with WEBLATE_ADMIN_PASSWORD set to new password.
See also:
WEBLATE_ADMIN_PASSWORD, WEBLATE_ADMIN_NAME, WEBLATE_ADMIN_EMAIL

Docker environment variables

Many of Weblate’s Configuration can be set in the Docker container using environment variables:

Generic settings

WEBLATE_DEBUG
Configures Django debug mode using DEBUG.
Example:

environment:
WEBLATE_DEBUG: 1

See also:
Disable debug mode

WEBLATE_LOGLEVEL
Configures the logging verbosity.

WEBLATE_SITE_TITLE
Changes the site-title shown in the header of all pages.

WEBLATE_SITE_DOMAIN
Configures the site domain. This parameter is required.
See also:
Set correct site domain, SITE_DOMAIN

WEBLATE_ADMIN_NAME

WEBLATE_ADMIN_EMAIL
Configures the site-admin’s name and e-mail. It is used for both ADMINS setting and creating admin user (see
WEBLATE_ADMIN_PASSWORD for more info on that).
Example:

environment:
WEBLATE_ADMIN_NAME: Weblate admin
WEBLATE_ADMIN_EMAIL: noreply@example.com

See also:
Admin sign in, Properly configure admins, ADMINS

WEBLATE_ADMIN_PASSWORD
Sets the password for the admin user.

• If not set and admin user does not exist, it is created with a random password shown on first container
startup.

• If not set and admin user exists, no action is performed.

2.1. Configuration instructions 137



The Weblate Manual, Release 4.5.3

• If set the admin user is adjusted on every container startup to match WEBLATE_ADMIN_PASSWORD,
WEBLATE_ADMIN_NAME and WEBLATE_ADMIN_EMAIL.

Warning: It might be a security risk to store password in the configuration file. Consider using this variable
only for initial setup (or let Weblate generate random password on initial startup) or for password recovery.

See also:
Admin sign in, WEBLATE_ADMIN_PASSWORD, WEBLATE_ADMIN_NAME, WEBLATE_ADMIN_EMAIL

WEBLATE_SERVER_EMAIL

WEBLATE_DEFAULT_FROM_EMAIL
Configures the address for outgoing e-mails.
See also:
Configure e-mail sending

WEBLATE_ALLOWED_HOSTS
Configures allowed HTTP hostnames using ALLOWED_HOSTS.
Defaults to * which allows all hostnames.
Example:

environment:
WEBLATE_ALLOWED_HOSTS: weblate.example.com,example.com

See also:
ALLOWED_HOSTS, Allowed hosts setup, Set correct site domain

WEBLATE_REGISTRATION_OPEN
Configures whether registrations are open by toggling REGISTRATION_OPEN .
Example:

environment:
WEBLATE_REGISTRATION_OPEN: 0

WEBLATE_REGISTRATION_ALLOW_BACKENDS
Configure which authentication methods can be used to create new account via REGISTRA-
TION_ALLOW_BACKENDS.

Example:

environment:
WEBLATE_REGISTRATION_OPEN: 0
WEBLATE_REGISTRATION_ALLOW_BACKENDS: azuread-oauth2,azuread-tenant-

↪→oauth2

WEBLATE_TIME_ZONE
Configures the used time zone in Weblate, see TIME_ZONE.

Note: To change the time zone of the Docker container itself, use the TZ environment variable.

Example:

environment:
WEBLATE_TIME_ZONE: Europe/Prague

138 Kapittel 2. Administrator docs

https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-TIME_ZONE


The Weblate Manual, Release 4.5.3

WEBLATE_ENABLE_HTTPS
Makes Weblate assume it is operated behind a reverse HTTPS proxy, it makes Weblate use HTTPS in e-mail
and API links or set secure flags on cookies.

Hint: Please see ENABLE_HTTPS documentation for possible caveats.

Note: This does not make the Weblate container accept HTTPS connections, you need to configure that as
well, see Docker container with HTTPS support for examples.

Example:

environment:
WEBLATE_ENABLE_HTTPS: 1

See also:
ENABLE_HTTPS Set correct site domain, WEBLATE_SECURE_PROXY_SSL_HEADER

WEBLATE_IP_PROXY_HEADER
Lets Weblate fetch the IP address from any given HTTP header. Use this when using a reverse proxy in front
of the Weblate container.
Enables IP_BEHIND_REVERSE_PROXY and sets IP_PROXY_HEADER.

Note: The format must conform to Django’s expectations. Django transforms raw HTTP header names as
follows:

• converts all characters to uppercase
• replaces any hyphens with underscores
• prepends HTTP_ prefix

So X-Forwarded-For would be mapped to HTTP_X_FORWARDED_FOR.

Example:

environment:
WEBLATE_IP_PROXY_HEADER: HTTP_X_FORWARDED_FOR

WEBLATE_SECURE_PROXY_SSL_HEADER
A tuple representing a HTTP header/value combination that signifies a request is secure. This is needed when
Weblate is running behind a reverse proxy doing SSL terminationwhich does not pass standardHTTPS headers.
Example:

environment:
WEBLATE_SECURE_PROXY_SSL_HEADER: HTTP_X_FORWARDED_PROTO,https

See also:
SECURE_PROXY_SSL_HEADER

WEBLATE_REQUIRE_LOGIN
Enables REQUIRE_LOGIN to enforce authentication on whole Weblate.
Example:

environment:
WEBLATE_REQUIRE_LOGIN: 1

WEBLATE_LOGIN_REQUIRED_URLS_EXCEPTIONS

2.1. Configuration instructions 139

https://docs.djangoproject.com/en/2.2/ref/request-response/#django.http.HttpRequest.META
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECURE_PROXY_SSL_HEADER


The Weblate Manual, Release 4.5.3

WEBLATE_ADD_LOGIN_REQUIRED_URLS_EXCEPTIONS

WEBLATE_REMOVE_LOGIN_REQUIRED_URLS_EXCEPTIONS
Adds URL exceptions for authentication required for the whole Weblate installation using
LOGIN_REQUIRED_URLS_EXCEPTIONS.
You can either replace whole settings, or modify default value using ADD and REMOVE variables.

WEBLATE_GOOGLE_ANALYTICS_ID
Configures ID for Google Analytics by changing GOOGLE_ANALYTICS_ID.

WEBLATE_GITHUB_USERNAME
Configures GitHub username for GitHub pull-requests by changing GITHUB_USERNAME.
See also:
GitHub

WEBLATE_GITHUB_TOKEN
New in version 4.3.
Configures GitHub personal access token for GitHub pull-requests via API by changing GITHUB_TOKEN .
See also:
GitHub

WEBLATE_GITLAB_USERNAME
Configures GitLab username for GitLab merge-requests by changing GITLAB_USERNAME
See also:
GitLab

WEBLATE_GITLAB_TOKEN
Configures GitLab personal access token for GitLab merge-requests via API by changing GITLAB_TOKEN
See also:
GitLab

WEBLATE_PAGURE_USERNAME
Configures Pagure username for Pagure merge-requests by changing PAGURE_USERNAME
See also:
Pagure

WEBLATE_PAGURE_TOKEN
Configures Pagure personal access token for Pagure merge-requests via API by changing PAGURE_TOKEN
See also:
Pagure

WEBLATE_SIMPLIFY_LANGUAGES
Configures the language simplification policy, see SIMPLIFY_LANGUAGES.

WEBLATE_DEFAULT_ACCESS_CONTROL
Configures the default Access control for new projects, see DEFAULT_ACCESS_CONTROL.

WEBLATE_DEFAULT_RESTRICTED_COMPONENT
Configures the default value for Restricted access for new components, see DE-
FAULT_RESTRICTED_COMPONENT.

WEBLATE_DEFAULT_TRANSLATION_PROPAGATION
Configures the default value for Allow translation propagation for new components, see DE-
FAULT_TRANSLATION_PROPAGATION .

WEBLATE_DEFAULT_COMMITER_EMAIL
Configures DEFAULT_COMMITER_EMAIL.

140 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

WEBLATE_DEFAULT_COMMITER_NAME
Configures DEFAULT_COMMITER_NAME.

WEBLATE_DEFAULT_SHARED_TM
Configures DEFAULT_SHARED_TM .

WEBLATE_AKISMET_API_KEY
Configures the Akismet API key, see AKISMET_API_KEY.

WEBLATE_GPG_IDENTITY
Configures GPG signing of commits, see WEBLATE_GPG_IDENTITY.
See also:
Signing Git commits with GnuPG

WEBLATE_URL_PREFIX
Configures URL prefix where Weblate is running, see URL_PREFIX.

WEBLATE_SILENCED_SYSTEM_CHECKS
Configures checks which you do not want to be displayed, see SILENCED_SYSTEM_CHECKS.

WEBLATE_CSP_SCRIPT_SRC

WEBLATE_CSP_IMG_SRC

WEBLATE_CSP_CONNECT_SRC

WEBLATE_CSP_STYLE_SRC

WEBLATE_CSP_FONT_SRC
Allows to customize Content-Security-Policy HTTP header.
See also:
Content security policy, CSP_SCRIPT_SRC, CSP_IMG_SRC, CSP_CONNECT_SRC, CSP_STYLE_SRC,
CSP_FONT_SRC

WEBLATE_LICENSE_FILTER
Configures LICENSE_FILTER.

WEBLATE_LICENSE_REQUIRED
Configures LICENSE_REQUIRED

WEBLATE_WEBSITE_REQUIRED
Configures WEBSITE_REQUIRED

WEBLATE_HIDE_VERSION
Configures HIDE_VERSION .

WEBLATE_BASIC_LANGUAGES
Configures BASIC_LANGUAGES.

WEBLATE_DEFAULT_AUTO_WATCH
Configures DEFAULT_AUTO_WATCH.

Machine translation settings

WEBLATE_MT_APERTIUM_APY
Enables Apertium machine translation and sets MT_APERTIUM_APY

WEBLATE_MT_AWS_REGION

WEBLATE_MT_AWS_ACCESS_KEY_ID

WEBLATE_MT_AWS_SECRET_ACCESS_KEY
Configures AWS machine translation.

2.1. Configuration instructions 141

https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SILENCED_SYSTEM_CHECKS


The Weblate Manual, Release 4.5.3

environment:
WEBLATE_MT_AWS_REGION: us-east-1
WEBLATE_MT_AWS_ACCESS_KEY_ID: AKIAIOSFODNN7EXAMPLE
WEBLATE_MT_AWS_SECRET_ACCESS_KEY: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

WEBLATE_MT_DEEPL_KEY
Enables DeepL machine translation and sets MT_DEEPL_KEY

WEBLATE_MT_DEEPL_API_VERSION
Configures DeepL API version to use, see MT_DEEPL_API_VERSION .

WEBLATE_MT_GOOGLE_KEY
Enables Google Translate and sets MT_GOOGLE_KEY

WEBLATE_MT_MICROSOFT_COGNITIVE_KEY
Enables Microsoft Cognitive Services Translator and sets MT_MICROSOFT_COGNITIVE_KEY

WEBLATE_MT_MICROSOFT_ENDPOINT_URL
Sets MT_MICROSOFT_ENDPOINT_URL, please note this is supposed to contain domain name only.

WEBLATE_MT_MICROSOFT_REGION
Sets MT_MICROSOFT_REGION

WEBLATE_MT_MICROSOFT_BASE_URL
Sets MT_MICROSOFT_BASE_URL

WEBLATE_MT_MODERNMT_KEY
Enables ModernMT and sets MT_MODERNMT_KEY.

WEBLATE_MT_MYMEMORY_ENABLED

Enables MyMemory machine translation and sets MT_MYMEMORY_EMAIL to WEBLA-
TE_ADMIN_EMAIL.

Example:

environment:
WEBLATE_MT_MYMEMORY_ENABLED: 1

WEBLATE_MT_GLOSBE_ENABLED
Enables Glosbe machine translation.

environment:
WEBLATE_MT_GLOSBE_ENABLED: 1

WEBLATE_MT_MICROSOFT_TERMINOLOGY_ENABLED
Enables Microsoft Terminology Service machine translation.

environment:
WEBLATE_MT_MICROSOFT_TERMINOLOGY_ENABLED: 1

WEBLATE_MT_SAP_BASE_URL

WEBLATE_MT_SAP_SANDBOX_APIKEY

WEBLATE_MT_SAP_USERNAME

WEBLATE_MT_SAP_PASSWORD

WEBLATE_MT_SAP_USE_MT
Configures SAP Translation Hub machine translation.

environment:
WEBLATE_MT_SAP_BASE_URL: "https://example.hana.ondemand.com/translationhub/

↪→api/v1/"
WEBLATE_MT_SAP_USERNAME: "user"

(continues on next page)

142 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

(continued from previous page)
WEBLATE_MT_SAP_PASSWORD: "password"
WEBLATE_MT_SAP_USE_MT: 1

Authentication settings

LDAP

WEBLATE_AUTH_LDAP_SERVER_URI

WEBLATE_AUTH_LDAP_USER_DN_TEMPLATE

WEBLATE_AUTH_LDAP_USER_ATTR_MAP

WEBLATE_AUTH_LDAP_BIND_DN

WEBLATE_AUTH_LDAP_BIND_PASSWORD

WEBLATE_AUTH_LDAP_CONNECTION_OPTION_REFERRALS

WEBLATE_AUTH_LDAP_USER_SEARCH

WEBLATE_AUTH_LDAP_USER_SEARCH_FILTER

WEBLATE_AUTH_LDAP_USER_SEARCH_UNION

WEBLATE_AUTH_LDAP_USER_SEARCH_UNION_DELIMITER
LDAP authentication configuration.
Example for direct bind:

environment:
WEBLATE_AUTH_LDAP_SERVER_URI: ldap://ldap.example.org
WEBLATE_AUTH_LDAP_USER_DN_TEMPLATE: uid=%(user)s,ou=People,dc=example,dc=net
# map weblate 'full_name' to ldap 'name' and weblate 'email' attribute to

↪→'mail' ldap attribute.
# another example that can be used with OpenLDAP: 'full_name:cn,email:mail'
WEBLATE_AUTH_LDAP_USER_ATTR_MAP: full_name:name,email:mail

Example for search and bind:

environment:
WEBLATE_AUTH_LDAP_SERVER_URI: ldap://ldap.example.org
WEBLATE_AUTH_LDAP_BIND_DN: CN=ldap,CN=Users,DC=example,DC=com
WEBLATE_AUTH_LDAP_BIND_PASSWORD: password
WEBLATE_AUTH_LDAP_USER_ATTR_MAP: full_name:name,email:mail
WEBLATE_AUTH_LDAP_USER_SEARCH: CN=Users,DC=example,DC=com

Example for union search and bind:

environment:
WEBLATE_AUTH_LDAP_SERVER_URI: ldap://ldap.example.org
WEBLATE_AUTH_LDAP_BIND_DN: CN=ldap,CN=Users,DC=example,DC=com
WEBLATE_AUTH_LDAP_BIND_PASSWORD: password
WEBLATE_AUTH_LDAP_USER_ATTR_MAP: full_name:name,email:mail
WEBLATE_AUTH_LDAP_USER_SEARCH_UNION: ou=users,dc=example,

↪→dc=com|ou=otherusers,dc=example,dc=com

Example with search and bind against Active Directory:

environment:
WEBLATE_AUTH_LDAP_BIND_DN: CN=ldap,CN=Users,DC=example,DC=com
WEBLATE_AUTH_LDAP_BIND_PASSWORD: password

(continues on next page)

2.1. Configuration instructions 143



The Weblate Manual, Release 4.5.3

(continued from previous page)
WEBLATE_AUTH_LDAP_SERVER_URI: ldap://ldap.example.org
WEBLATE_AUTH_LDAP_CONNECTION_OPTION_REFERRALS: 0
WEBLATE_AUTH_LDAP_USER_ATTR_MAP: full_name:name,email:mail
WEBLATE_AUTH_LDAP_USER_SEARCH: CN=Users,DC=example,DC=com
WEBLATE_AUTH_LDAP_USER_SEARCH_FILTER: (sAMAccountName=%(user)s)

See also:
LDAP authentication

GitHub

WEBLATE_SOCIAL_AUTH_GITHUB_KEY

WEBLATE_SOCIAL_AUTH_GITHUB_SECRET
Enables GitHub authentication.

Bitbucket

WEBLATE_SOCIAL_AUTH_BITBUCKET_KEY

WEBLATE_SOCIAL_AUTH_BITBUCKET_SECRET
Enables Bitbucket authentication.

Facebook

WEBLATE_SOCIAL_AUTH_FACEBOOK_KEY

WEBLATE_SOCIAL_AUTH_FACEBOOK_SECRET
Enables Facebook OAuth 2.

Google

WEBLATE_SOCIAL_AUTH_GOOGLE_OAUTH2_KEY

WEBLATE_SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET

WEBLATE_SOCIAL_AUTH_GOOGLE_OAUTH2_WHITELISTED_DOMAINS

WEBLATE_SOCIAL_AUTH_GOOGLE_OAUTH2_WHITELISTED_EMAILS
Enables Google OAuth 2.

GitLab

WEBLATE_SOCIAL_AUTH_GITLAB_KEY

WEBLATE_SOCIAL_AUTH_GITLAB_SECRET

WEBLATE_SOCIAL_AUTH_GITLAB_API_URL
Enables GitLab OAuth 2.

144 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

Azure Active Directory

WEBLATE_SOCIAL_AUTH_AZUREAD_OAUTH2_KEY

WEBLATE_SOCIAL_AUTH_AZUREAD_OAUTH2_SECRET
Enables Azure Active Directory authentication, see Microsoft Azure Active Directory.

Azure Active Directory with Tenant support

WEBLATE_SOCIAL_AUTH_AZUREAD_TENANT_OAUTH2_KEY

WEBLATE_SOCIAL_AUTH_AZUREAD_TENANT_OAUTH2_SECRET

WEBLATE_SOCIAL_AUTH_AZUREAD_TENANT_OAUTH2_TENANT_ID
Enables Azure Active Directory authentication with Tenant support, see Microsoft Azure Active Directory.

Keycloak

WEBLATE_SOCIAL_AUTH_KEYCLOAK_KEY

WEBLATE_SOCIAL_AUTH_KEYCLOAK_SECRET

WEBLATE_SOCIAL_AUTH_KEYCLOAK_PUBLIC_KEY

WEBLATE_SOCIAL_AUTH_KEYCLOAK_ALGORITHM

WEBLATE_SOCIAL_AUTH_KEYCLOAK_AUTHORIZATION_URL

WEBLATE_SOCIAL_AUTH_KEYCLOAK_ACCESS_TOKEN_URL
Enables Keycloak authentication, see documentation.

Linux vendors

You can enable authentication using Linux vendors authentication services by setting following variables to any value.

WEBLATE_SOCIAL_AUTH_FEDORA

WEBLATE_SOCIAL_AUTH_OPENSUSE

WEBLATE_SOCIAL_AUTH_UBUNTU

Slack

WEBLATE_SOCIAL_AUTH_SLACK_KEY

SOCIAL_AUTH_SLACK_SECRET
Enables Slack authentication, see Slack.

2.1. Configuration instructions 145

https://github.com/python-social-auth/social-core/blob/master/social_core/backends/keycloak.py


The Weblate Manual, Release 4.5.3

SAML

Self-signed SAML keys are automatically generated on first container startup. In case you want to use own keys, place
the certificate and private key in /app/data/ssl/saml.crt and /app/data/ssl/saml.key.
WEBLATE_SAML_IDP_ENTITY_ID

WEBLATE_SAML_IDP_URL

WEBLATE_SAML_IDP_X509CERT
SAML Identity Provider settings, see SAML authentication.

Other authentication settings

WEBLATE_NO_EMAIL_AUTH
Disables e-mail authentication when set to any value.

PostgreSQL database setup

The database is created by docker-compose.yml, so these settings affect both Weblate and PostgreSQL con-
tainers.
See also:
Database setup for Weblate

POSTGRES_PASSWORD
PostgreSQL password.

POSTGRES_USER
PostgreSQL username.

POSTGRES_DATABASE
PostgreSQL database name.

POSTGRES_HOST
PostgreSQL server hostname or IP address. Defaults to database.

POSTGRES_PORT
PostgreSQL server port. Defaults to none (uses the default value).

POSTGRES_SSL_MODE
Configure how PostgreSQL handles SSL in connection to the server, for possible choices see SSL Mode De-
scriptions

POSTGRES_ALTER_ROLE
Configures name of role to alter during migrations, see Configuring Weblate to use PostgreSQL.

Database backup settings

See also:
Dumped data for backups

WEBLATE_DATABASE_BACKUP
Configures the daily database dump using DATABASE_BACKUP. Defaults to plain.

146 Kapittel 2. Administrator docs

https://www.postgresql.org/docs/11/libpq-ssl.html#LIBPQ-SSL-SSLMODE-STATEMENTS
https://www.postgresql.org/docs/11/libpq-ssl.html#LIBPQ-SSL-SSLMODE-STATEMENTS


The Weblate Manual, Release 4.5.3

Caching server setup

Using Redis is strongly recommended by Weblate and you have to provide a Redis instance when running Weblate
in Docker.
See also:
Enable caching

REDIS_HOST
The Redis server hostname or IP address. Defaults to cache.

REDIS_PORT
The Redis server port. Defaults to 6379.

REDIS_DB
The Redis database number, defaults to 1.

REDIS_PASSWORD
The Redis server password, not used by default.

REDIS_TLS
Enables using SSL for Redis connection.

REDIS_VERIFY_SSL
Can be used to disable SSL certificate verification for Redis connection.

Email server setup

To make outgoing e-mail work, you need to provide a mail server.
Example TLS configuration:

environment:
WEBLATE_EMAIL_HOST: smtp.example.com
WEBLATE_EMAIL_HOST_USER: user
WEBLATE_EMAIL_HOST_PASSWORD: pass

Example SSL configuration:

environment:
WEBLATE_EMAIL_HOST: smtp.example.com
WEBLATE_EMAIL_PORT: 465
WEBLATE_EMAIL_HOST_USER: user
WEBLATE_EMAIL_HOST_PASSWORD: pass
WEBLATE_EMAIL_USE_TLS: 0
WEBLATE_EMAIL_USE_SSL: 1

See also:
Configuring outgoing e-mail

WEBLATE_EMAIL_HOST
Mail server hostname or IP address.
See also:
WEBLATE_EMAIL_PORT, WEBLATE_EMAIL_USE_SSL, WEBLATE_EMAIL_USE_TLS,
EMAIL_HOST

WEBLATE_EMAIL_PORT
Mail server port, defaults to 25.
See also:
EMAIL_PORT

2.1. Configuration instructions 147

https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_HOST
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_PORT


The Weblate Manual, Release 4.5.3

WEBLATE_EMAIL_HOST_USER
E-mail authentication user.
See also:
EMAIL_HOST_USER

WEBLATE_EMAIL_HOST_PASSWORD
E-mail authentication password.
See also:
EMAIL_HOST_PASSWORD

WEBLATE_EMAIL_USE_SSL
Whether to use an implicit TLS (secure) connection when talking to the SMTP server. In most e-mail do-
cumentation, this type of TLS connection is referred to as SSL. It is generally used on port 465. If you are
experiencing problems, see the explicit TLS setting WEBLATE_EMAIL_USE_TLS.
See also:
WEBLATE_EMAIL_PORT, WEBLATE_EMAIL_USE_TLS, EMAIL_USE_SSL

WEBLATE_EMAIL_USE_TLS
Whether to use a TLS (secure) connection when talking to the SMTP server. This is used for explicit TLS
connections, generally on port 587 or 25. If you are experiencing connections that hang, see the implicit TLS
setting WEBLATE_EMAIL_USE_SSL.
See also:
WEBLATE_EMAIL_PORT, WEBLATE_EMAIL_USE_SSL, EMAIL_USE_TLS

WEBLATE_EMAIL_BACKEND
Configures Django back-end to use for sending e-mails.
See also:
Configure e-mail sending, EMAIL_BACKEND

Site integration

WEBLATE_GET_HELP_URL
Configures GET_HELP_URL.

WEBLATE_STATUS_URL
Configures STATUS_URL.

WEBLATE_LEGAL_URL
Configures LEGAL_URL.

Error reporting

It is recommended to collect errors from the installation systematically, see Collecting error reports.
To enable support for Rollbar, set the following:
ROLLBAR_KEY

Your Rollbar post server access token.
ROLLBAR_ENVIRONMENT

Your Rollbar environment, defaults to production.
To enable support for Sentry, set following:
SENTRY_DSN

Your Sentry DSN.

148 Kapittel 2. Administrator docs

https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_HOST_USER
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_HOST_PASSWORD
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_USE_SSL
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_USE_TLS
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_BACKEND


The Weblate Manual, Release 4.5.3

SENTRY_ENVIRONMENT
Your Sentry Environment (optional).

Localization CDN

WEBLATE_LOCALIZE_CDN_URL

WEBLATE_LOCALIZE_CDN_PATH
New in version 4.2.1.
Configuration for JavaScript localization CDN.
The WEBLATE_LOCALIZE_CDN_PATH is path within the container. It should be stored on the persistent
volume and not in the transient storage.
One of possibilities is storing that inside the Weblate data dir:

environment:
WEBLATE_LOCALIZE_CDN_URL: https://cdn.example.com/
WEBLATE_LOCALIZE_CDN_PATH: /app/data/l10n-cdn

Note: You are responsible for setting up serving of the files generated by Weblate, it only does stores the files
in configured location.

See also:
weblate-cdn, LOCALIZE_CDN_URL, LOCALIZE_CDN_PATH

Changing enabled apps, checks, addons or autofixes

New in version 3.8-5.
The built-in configuration of enabled checks, addons or autofixes can be adjusted by the following variables:
WEBLATE_ADD_APPS

WEBLATE_REMOVE_APPS

WEBLATE_ADD_CHECK

WEBLATE_REMOVE_CHECK

WEBLATE_ADD_AUTOFIX

WEBLATE_REMOVE_AUTOFIX

WEBLATE_ADD_ADDONS

WEBLATE_REMOVE_ADDONS

Example:

environment:
WEBLATE_REMOVE_AUTOFIX: weblate.trans.autofixes.whitespace.

↪→SameBookendingWhitespace
WEBLATE_ADD_ADDONS: customize.addons.MyAddon,customize.addons.OtherAddon

See also:
CHECK_LIST, AUTOFIX_LIST, WEBLATE_ADDONS, INSTALLED_APPS

2.1. Configuration instructions 149

https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS


The Weblate Manual, Release 4.5.3

Container settings

CELERY_MAIN_OPTIONS

CELERY_NOTIFY_OPTIONS

CELERY_MEMORY_OPTIONS

CELERY_TRANSLATE_OPTIONS

CELERY_BACKUP_OPTIONS

CELERY_BEAT_OPTIONS
These variables allow you to adjust Celery worker options. It can be useful to adjust concurrency (--
concurrency 16) or use different pool implementation (--pool=gevent).
By default, the number of concurrent workers matches the number of processors (except the backup worker,
which is supposed to run only once).
Example:

environment:
CELERY_MAIN_OPTIONS: --concurrency 16

See also:
Celery worker options, Background tasks using Celery

UWSGI_WORKERS
Configure how many uWSGI workers should be executed.
It defaults to number of processors + 1.
Example:

environment:
UWSGI_WORKERS: 32

In case you have a lot of CPU cores and hit out of memory issues, try reducing number of workers:

environment:
UWSGI_WORKERS: 4
CELERY_MAIN_OPTIONS: --concurrency 2
CELERY_NOTIFY_OPTIONS: --concurrency 1
CELERY_TRANSLATE_OPTIONS: --concurrency 1

Docker container volumes

There is single data volume exported by the Weblate container. The other service containers (PostgreSQL or Redis)
have their data volumes as well, but those are not covered by this document.
The data volume is used to store Weblate persistent data such as cloned repositories or to customize Weblate instal-
lation.
The placement of the Docker volume on host system depends on your Docker configuration, but usually it is sto-
red in /var/lib/docker/volumes/weblate-docker_weblate-data/_data/. In the container it
is mounted as /app/data.
See also:
Docker volumes documentation

150 Kapittel 2. Administrator docs

https://docs.celeryproject.org/en/latest/reference/celery.bin.worker.html
https://docs.docker.com/storage/volumes/


The Weblate Manual, Release 4.5.3

Further configuration customization

You can further customize Weblate installation in the data volume, see Docker container volumes.

Custom configuration files

You can additionally override the configuration in /app/data/settings-override.py (see Docker contai-
ner volumes). This is executed at the end of built-in settings, after all environment settings are loaded, and you can
adjust or override them.

Replacing logo and other static files

New in version 3.8-5.
The static files coming with Weblate can be overridden by placing into /app/data/python/customize/
static (see Docker container volumes). For example creating /app/data/python/customize/static/
favicon.ico will replace the favicon.

Hint: The files are copied to the corresponding location upon container startup, so a restart of Weblate is needed
after changing the content of the volume.

Alternatively you can also include own module (see Customizing Weblate) and add it as separate volume to the Docker
container, for example:

weblate:
volumes:
- weblate-data:/app/data
- ./weblate_customization/weblate_customization:/app/data/python/weblate_

↪→customization
environment:
WEBLATE_ADD_APPS: weblate_customization

Adding own Python modules

New in version 3.8-5.
You can place own Python modules in /app/data/python/ (see Docker container volumes) and they can be
then loaded by Weblate, most likely by using Custom configuration files.
See also:
Customizing Weblate

Select your machine - local or cloud providers

With Docker Machine you can create your Weblate deployment either on your local machine, or on any large number
of cloud-based deployments on e.g. Amazon AWS, Greenhost, and many other providers.

2.1. Configuration instructions 151



The Weblate Manual, Release 4.5.3

Installing on Debian and Ubuntu

Hardware requirements

Weblate should run on any contemporary hardware without problems, the following is the minimal configuration
required to run Weblate on a single host (Weblate, database and webserver):

• 2 GB of RAM
• 2 CPU cores
• 1 GB of storage space

The more memory the better - it is used for caching on all levels (filesystem, database and Weblate).
Many concurrent users increases the amount of needed CPU cores. For hundreds of translation components at least
4 GB of RAM is recommended.
The typical database storage usage is around 300 MB per 1 million hosted words. Storage space needed for cloned
repositories varies, but Weblate tries to keep their size minimal by doing shallow clones.

Note: Actual requirements for your installation ofWeblate vary heavily based on the size of the translations managed
in it.

Installation

System requirements

Install the dependencies needed to build the Python modules (see Software requirements):

apt install \
libxml2-dev libxslt-dev libfreetype6-dev libjpeg-dev libz-dev libyaml-dev \
libcairo-dev gir1.2-pango-1.0 libgirepository1.0-dev libacl1-dev libssl-dev \
build-essential python3-gdbm python3-dev python3-pip python3-virtualenv␣

↪→virtualenv git

Install wanted optional dependencies depending on features you intend to use (see Optional dependencies):

apt install tesseract-ocr libtesseract-dev libleptonica-dev

Optionally install software for running production server, seeRunning server,Database setup forWeblate, Background
tasks using Celery. Depending on size of your installation you might want to run these components on dedicated
servers.
The local installation instructions:

# Web server option 1: NGINX and uWSGI
apt install nginx uwsgi uwsgi-plugin-python3

# Web server option 2: Apache with ``mod_wsgi``
apt install apache2 libapache2-mod-wsgi

# Caching backend: Redis
apt install redis-server

# Database server: PostgreSQL
apt install postgresql postgresql-contrib

# SMTP server
apt install exim4

152 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

Python modules

Hint: We’re using virtualenv to install Weblate in a separate environment from your system. If you are not familiar
with it, check virtualenv User Guide.

1. Create the virtualenv for Weblate:

virtualenv --python=python3 ~/weblate-env

2. Activate the virtualenv for Weblate:

. ~/weblate-env/bin/activate

3. Install Weblate including all dependencies:

pip install Weblate

4. Install database driver:

pip install psycopg2-binary

5. Install wanted optional dependencies depending on features you intend to use (some might require additional
system libraries, check Optional dependencies):

pip install ruamel.yaml aeidon boto3 zeep chardet tesserocr

Configuring Weblate

Note: Following steps assume virtualenv used by Weblate is active (what can be done by . ~/weblate-
env/bin/activate). In case this is not true, you will have to specify full path to weblate command as ~/
weblate-env/bin/weblate.

1. Copy the file ~/weblate-env/lib/python3.7/site-packages/weblate/
settings_example.py to ~/weblate-env/lib/python3.7/site-packages/weblate/
settings.py.

2. Adjust the values in the new settings.py file to your liking. You can stick with shipped example for testing
purposes, but you will want changes for production setup, see Adjusting configuration.

3. Create the database and its structure for Weblate (the example settings use PostgreSQL, check Database setup
for Weblate for production ready setup):

weblate migrate

4. Create the administrator user account and copy the password it outputs to the clipboard, and also save it for
later use:

weblate createadmin

5. Collect static files for web server (see Running server and Serving static files):

weblate collectstatic

6. Compress JavaScript and CSS files (optional, see Compressing client assets):

weblate compress

2.1. Configuration instructions 153

https://virtualenv.pypa.io/en/stable/user_guide.html


The Weblate Manual, Release 4.5.3

7. Start Celery workers. This is not necessary for development purposes, but strongly recommended otherwise.
See Background tasks using Celery for more info:

~/weblate-env/lib/python3.7/site-packages/weblate/examples/celery start

8. Start the development server (see Running server for production setup):

weblate runserver

After installation

Congratulations, your Weblate server is now running and you can start using it.
• You can now access Weblate on http://localhost:8000/.
• Login with admin credentials obtained during installation or register with new users.
• You can now run Weblate commands using weblate command when Weblate virtualenv is active, see Ma-

nagement commands.
• You can stop the test server with Ctrl+C.
• Review potential issues with your installation either on/manage/performance/URL or usingweblate
check --deploy, see Production setup.

Adding translation

1. Open the admin interface (http://localhost:8000/create/project/) and create the project you
want to translate. See Project configuration for more details.
All you need to specify here is the project name and its website.

2. Create a component which is the real object for translation - it points to the VCS repository, and selects which
files to translate. See Component configuration for more details.
The important fields here are: Component name, VCS repository address and mask for finding translatable
files. Weblate supports a wide range of formats including gettext PO files, Android resource strings, iOS string
properties, Java properties or Qt Linguist files, see Supported file formats for more details.

3. Once the above is completed (it can be lengthy process depending on the size of your VCS repository, and
number of messages to translate), you can start translating.

Installing on SUSE and openSUSE

Hardware requirements

Weblate should run on any contemporary hardware without problems, the following is the minimal configuration
required to run Weblate on a single host (Weblate, database and webserver):

• 2 GB of RAM
• 2 CPU cores
• 1 GB of storage space

The more memory the better - it is used for caching on all levels (filesystem, database and Weblate).
Many concurrent users increases the amount of needed CPU cores. For hundreds of translation components at least
4 GB of RAM is recommended.
The typical database storage usage is around 300 MB per 1 million hosted words. Storage space needed for cloned
repositories varies, but Weblate tries to keep their size minimal by doing shallow clones.

154 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

Note: Actual requirements for your installation ofWeblate vary heavily based on the size of the translations managed
in it.

Installation

System requirements

Install the dependencies needed to build the Python modules (see Software requirements):

zypper install \
libxslt-devel libxml2-devel freetype-devel libjpeg-devel zlib-devel libyaml-

↪→devel \
cairo-devel typelib-1_0-Pango-1_0 gobject-introspection-devel libacl-devel \
python3-pip python3-virtualenv python3-devel git

Install wanted optional dependencies depending on features you intend to use (see Optional dependencies):

zypper install tesseract-ocr tesseract-devel leptonica-devel

Optionally install software for running production server, seeRunning server,Database setup forWeblate, Background
tasks using Celery. Depending on size of your installation you might want to run these components on dedicated
servers.
The local installation instructions:

# Web server option 1: NGINX and uWSGI
zypper install nginx uwsgi uwsgi-plugin-python3

# Web server option 2: Apache with ``mod_wsgi``
zypper install apache2 apache2-mod_wsgi

# Caching backend: Redis
zypper install redis-server

# Database server: PostgreSQL
zypper install postgresql postgresql-contrib

# SMTP server
zypper install postfix

Python modules

Hint: We’re using virtualenv to install Weblate in a separate environment from your system. If you are not familiar
with it, check virtualenv User Guide.

1. Create the virtualenv for Weblate:

virtualenv --python=python3 ~/weblate-env

2. Activate the virtualenv for Weblate:

. ~/weblate-env/bin/activate

3. Install Weblate including all dependencies:

2.1. Configuration instructions 155

https://virtualenv.pypa.io/en/stable/user_guide.html


The Weblate Manual, Release 4.5.3

pip install Weblate

4. Install database driver:

pip install psycopg2-binary

5. Install wanted optional dependencies depending on features you intend to use (some might require additional
system libraries, check Optional dependencies):

pip install ruamel.yaml aeidon boto3 zeep chardet tesserocr

Configuring Weblate

Note: Following steps assume virtualenv used by Weblate is active (what can be done by . ~/weblate-
env/bin/activate). In case this is not true, you will have to specify full path to weblate command as ~/
weblate-env/bin/weblate.

1. Copy the file ~/weblate-env/lib/python3.7/site-packages/weblate/
settings_example.py to ~/weblate-env/lib/python3.7/site-packages/weblate/
settings.py.

2. Adjust the values in the new settings.py file to your liking. You can stick with shipped example for testing
purposes, but you will want changes for production setup, see Adjusting configuration.

3. Create the database and its structure for Weblate (the example settings use PostgreSQL, check Database setup
for Weblate for production ready setup):

weblate migrate

4. Create the administrator user account and copy the password it outputs to the clipboard, and also save it for
later use:

weblate createadmin

5. Collect static files for web server (see Running server and Serving static files):

weblate collectstatic

6. Compress JavaScript and CSS files (optional, see Compressing client assets):

weblate compress

7. Start Celery workers. This is not necessary for development purposes, but strongly recommended otherwise.
See Background tasks using Celery for more info:

~/weblate-env/lib/python3.7/site-packages/weblate/examples/celery start

8. Start the development server (see Running server for production setup):

weblate runserver

156 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

After installation

Congratulations, your Weblate server is now running and you can start using it.
• You can now access Weblate on http://localhost:8000/.
• Login with admin credentials obtained during installation or register with new users.
• You can now run Weblate commands using weblate command when Weblate virtualenv is active, see Ma-

nagement commands.
• You can stop the test server with Ctrl+C.
• Review potential issues with your installation either on/manage/performance/URL or usingweblate
check --deploy, see Production setup.

Adding translation

1. Open the admin interface (http://localhost:8000/create/project/) and create the project you
want to translate. See Project configuration for more details.
All you need to specify here is the project name and its website.

2. Create a component which is the real object for translation - it points to the VCS repository, and selects which
files to translate. See Component configuration for more details.
The important fields here are: Component name, VCS repository address and mask for finding translatable
files. Weblate supports a wide range of formats including gettext PO files, Android resource strings, iOS string
properties, Java properties or Qt Linguist files, see Supported file formats for more details.

3. Once the above is completed (it can be lengthy process depending on the size of your VCS repository, and
number of messages to translate), you can start translating.

Installing on RedHat, Fedora and CentOS

Hardware requirements

Weblate should run on any contemporary hardware without problems, the following is the minimal configuration
required to run Weblate on a single host (Weblate, database and webserver):

• 2 GB of RAM
• 2 CPU cores
• 1 GB of storage space

The more memory the better - it is used for caching on all levels (filesystem, database and Weblate).
Many concurrent users increases the amount of needed CPU cores. For hundreds of translation components at least
4 GB of RAM is recommended.
The typical database storage usage is around 300 MB per 1 million hosted words. Storage space needed for cloned
repositories varies, but Weblate tries to keep their size minimal by doing shallow clones.

Note: Actual requirements for your installation ofWeblate vary heavily based on the size of the translations managed
in it.

2.1. Configuration instructions 157



The Weblate Manual, Release 4.5.3

Installation

System requirements

Install the dependencies needed to build the Python modules (see Software requirements):

dnf install \
libxslt-devel libxml2-devel freetype-devel libjpeg-devel zlib-devel libyaml-

↪→devel \
cairo-devel pango-devel gobject-introspection-devel libacl-devel \
python3-pip python3-virtualenv python3-devel git

Install wanted optional dependencies depending on features you intend to use (see Optional dependencies):

dnf install tesseract-langpack-eng tesseract-devel leptonica-devel

Optionally install software for running production server, seeRunning server,Database setup forWeblate, Background
tasks using Celery. Depending on size of your installation you might want to run these components on dedicated
servers.
The local installation instructions:

# Web server option 1: NGINX and uWSGI
dnf install nginx uwsgi uwsgi-plugin-python3

# Web server option 2: Apache with ``mod_wsgi``
dnf install apache2 apache2-mod_wsgi

# Caching backend: Redis
dnf install redis

# Database server: PostgreSQL
dnf install postgresql postgresql-contrib

# SMTP server
dnf install postfix

Python modules

Hint: We’re using virtualenv to install Weblate in a separate environment from your system. If you are not familiar
with it, check virtualenv User Guide.

1. Create the virtualenv for Weblate:

virtualenv --python=python3 ~/weblate-env

2. Activate the virtualenv for Weblate:

. ~/weblate-env/bin/activate

3. Install Weblate including all dependencies:

pip install Weblate

4. Install database driver:

pip install psycopg2-binary

158 Kapittel 2. Administrator docs

https://virtualenv.pypa.io/en/stable/user_guide.html


The Weblate Manual, Release 4.5.3

5. Install wanted optional dependencies depending on features you intend to use (some might require additional
system libraries, check Optional dependencies):

pip install ruamel.yaml aeidon boto3 zeep chardet tesserocr

Configuring Weblate

Note: Following steps assume virtualenv used by Weblate is active (what can be done by . ~/weblate-
env/bin/activate). In case this is not true, you will have to specify full path to weblate command as ~/
weblate-env/bin/weblate.

1. Copy the file ~/weblate-env/lib/python3.7/site-packages/weblate/
settings_example.py to ~/weblate-env/lib/python3.7/site-packages/weblate/
settings.py.

2. Adjust the values in the new settings.py file to your liking. You can stick with shipped example for testing
purposes, but you will want changes for production setup, see Adjusting configuration.

3. Create the database and its structure for Weblate (the example settings use PostgreSQL, check Database setup
for Weblate for production ready setup):

weblate migrate

4. Create the administrator user account and copy the password it outputs to the clipboard, and also save it for
later use:

weblate createadmin

5. Collect static files for web server (see Running server and Serving static files):

weblate collectstatic

6. Compress JavaScript and CSS files (optional, see Compressing client assets):

weblate compress

7. Start Celery workers. This is not necessary for development purposes, but strongly recommended otherwise.
See Background tasks using Celery for more info:

~/weblate-env/lib/python3.7/site-packages/weblate/examples/celery start

8. Start the development server (see Running server for production setup):

weblate runserver

After installation

Congratulations, your Weblate server is now running and you can start using it.
• You can now access Weblate on http://localhost:8000/.
• Login with admin credentials obtained during installation or register with new users.
• You can now run Weblate commands using weblate command when Weblate virtualenv is active, see Ma-

nagement commands.
• You can stop the test server with Ctrl+C.

2.1. Configuration instructions 159



The Weblate Manual, Release 4.5.3

• Review potential issues with your installation either on/manage/performance/URL or usingweblate
check --deploy, see Production setup.

Adding translation

1. Open the admin interface (http://localhost:8000/create/project/) and create the project you
want to translate. See Project configuration for more details.
All you need to specify here is the project name and its website.

2. Create a component which is the real object for translation - it points to the VCS repository, and selects which
files to translate. See Component configuration for more details.
The important fields here are: Component name, VCS repository address and mask for finding translatable
files. Weblate supports a wide range of formats including gettext PO files, Android resource strings, iOS string
properties, Java properties or Qt Linguist files, see Supported file formats for more details.

3. Once the above is completed (it can be lengthy process depending on the size of your VCS repository, and
number of messages to translate), you can start translating.

Installing on macOS

Hardware requirements

Weblate should run on any contemporary hardware without problems, the following is the minimal configuration
required to run Weblate on a single host (Weblate, database and webserver):

• 2 GB of RAM
• 2 CPU cores
• 1 GB of storage space

The more memory the better - it is used for caching on all levels (filesystem, database and Weblate).
Many concurrent users increases the amount of needed CPU cores. For hundreds of translation components at least
4 GB of RAM is recommended.
The typical database storage usage is around 300 MB per 1 million hosted words. Storage space needed for cloned
repositories varies, but Weblate tries to keep their size minimal by doing shallow clones.

Note: Actual requirements for your installation ofWeblate vary heavily based on the size of the translations managed
in it.

Installation

System requirements

Install the dependencies needed to build the Python modules (see Software requirements):

brew install python pango cairo gobject-introspection libffi glib libyaml
pip3 install virtualenv

Make sure pip will be able to find the libffi version provided by homebrew — this will be needed during the
installation build step.

export PKG_CONFIG_PATH="/usr/local/opt/libffi/lib/pkgconfig"

Install wanted optional dependencies depending on features you intend to use (see Optional dependencies):

160 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

brew install tesseract

Optionally install software for running production server, seeRunning server,Database setup forWeblate, Background
tasks using Celery. Depending on size of your installation you might want to run these components on dedicated
servers.
The local installation instructions:

# Web server option 1: NGINX and uWSGI
brew install nginx uwsgi

# Web server option 2: Apache with ``mod_wsgi``
brew install httpd

# Caching backend: Redis
brew install redis

# Database server: PostgreSQL
brew install postgresql

Python modules

Hint: We’re using virtualenv to install Weblate in a separate environment from your system. If you are not familiar
with it, check virtualenv User Guide.

1. Create the virtualenv for Weblate:

virtualenv --python=python3 ~/weblate-env

2. Activate the virtualenv for Weblate:

. ~/weblate-env/bin/activate

3. Install Weblate including all dependencies:

pip install Weblate

4. Install database driver:

pip install psycopg2-binary

5. Install wanted optional dependencies depending on features you intend to use (some might require additional
system libraries, check Optional dependencies):

pip install ruamel.yaml aeidon boto3 zeep chardet tesserocr

Configuring Weblate

Note: Following steps assume virtualenv used by Weblate is active (what can be done by . ~/weblate-
env/bin/activate). In case this is not true, you will have to specify full path to weblate command as ~/
weblate-env/bin/weblate.

1. Copy the file ~/weblate-env/lib/python3.7/site-packages/weblate/
settings_example.py to ~/weblate-env/lib/python3.7/site-packages/weblate/
settings.py.

2.1. Configuration instructions 161

https://virtualenv.pypa.io/en/stable/user_guide.html


The Weblate Manual, Release 4.5.3

2. Adjust the values in the new settings.py file to your liking. You can stick with shipped example for testing
purposes, but you will want changes for production setup, see Adjusting configuration.

3. Create the database and its structure for Weblate (the example settings use PostgreSQL, check Database setup
for Weblate for production ready setup):

weblate migrate

4. Create the administrator user account and copy the password it outputs to the clipboard, and also save it for
later use:

weblate createadmin

5. Collect static files for web server (see Running server and Serving static files):

weblate collectstatic

6. Compress JavaScript and CSS files (optional, see Compressing client assets):

weblate compress

7. Start Celery workers. This is not necessary for development purposes, but strongly recommended otherwise.
See Background tasks using Celery for more info:

~/weblate-env/lib/python3.7/site-packages/weblate/examples/celery start

8. Start the development server (see Running server for production setup):

weblate runserver

After installation

Congratulations, your Weblate server is now running and you can start using it.
• You can now access Weblate on http://localhost:8000/.
• Login with admin credentials obtained during installation or register with new users.
• You can now run Weblate commands using weblate command when Weblate virtualenv is active, see Ma-

nagement commands.
• You can stop the test server with Ctrl+C.
• Review potential issues with your installation either on/manage/performance/URL or usingweblate
check --deploy, see Production setup.

Adding translation

1. Open the admin interface (http://localhost:8000/create/project/) and create the project you
want to translate. See Project configuration for more details.
All you need to specify here is the project name and its website.

2. Create a component which is the real object for translation - it points to the VCS repository, and selects which
files to translate. See Component configuration for more details.
The important fields here are: Component name, VCS repository address and mask for finding translatable
files. Weblate supports a wide range of formats including gettext PO files, Android resource strings, iOS string
properties, Java properties or Qt Linguist files, see Supported file formats for more details.

3. Once the above is completed (it can be lengthy process depending on the size of your VCS repository, and
number of messages to translate), you can start translating.

162 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

Installing from sources

1. Please follow the installation instructions for your system first:
• Installing on Debian and Ubuntu

• Installing on SUSE and openSUSE

• Installing on RedHat, Fedora and CentOS

2. Grab the latest Weblate sources using Git (or download a tarball and unpack that):

git clone https://github.com/WeblateOrg/weblate.git weblate-src

Alternatively you can use released archives. You can download them from our website <https://weblate.org/>.
Those downloads are cryptographically signed, please see Verifying release signatures.

3. Install current Weblate code into the virtualenv:

. ~/weblate-env/bin/activate
pip install -e weblate-src

4. Copy weblate/settings_example.py to weblate/settings.py.
5. Adjust the values in the new settings.py file to your liking. You can stick with shipped example for testing

purposes, but you will want changes for production setup, see Adjusting configuration.
6. Create the database used by Weblate, see Database setup for Weblate.
7. Build Django tables, static files and initial data (see Filling up the database and Serving static files):

weblate migrate
weblate collectstatic
weblate compress
weblate compilemessages

Note: This step should be repeated whenever you update the repository.

Installing on OpenShift

With the OpenShift Weblate template you can get your personal Weblate instance up and running in seconds. All
of Weblate’s dependencies are already included. PostgreSQL is set up as the default database and persistent volume
claims are used.
You can find the template at <https://github.com/WeblateOrg/openshift/>.

Installation

The following examples assume you have a working OpenShift v3.x environment, with oc client tool installed. Please
check the OpenShift documentation for instructions.

2.1. Configuration instructions 163

https://weblate.org/
https://github.com/WeblateOrg/openshift/


The Weblate Manual, Release 4.5.3

Web Console

Copy the raw content from template.yml and import them into your project, then use the Create button in
the OpenShift web console to create your application. The web console will prompt you for the values for all of the
parameters used by the template.

CLI

To upload the Weblate template to your current project’s template library, pass the template.yml file with the
following command:

$ oc create -f https://raw.githubusercontent.com/WeblateOrg/openshift/main/
↪→template.yml \

-n <PROJECT>

The template is now available for selection using the web console or the CLI.

Parameters

The parameters that you can override are listed in the parameters section of the template. You can list them with the
CLI by using the following command and specifying the file to be used:

$ oc process --parameters -f https://raw.githubusercontent.com/WeblateOrg/
↪→openshift/main/template.yml

# If the template is already uploaded
$ oc process --parameters -n <PROJECT> weblate

Provisioning

You can also use the CLI to process templates and use the configuration that is generated to create objects immediately.

$ oc process -f https://raw.githubusercontent.com/WeblateOrg/openshift/main/
↪→template.yml \

-p APPLICATION_NAME=weblate \
-p WEBLATE_VERSION=4.3.1-1 \
-p WEBLATE_SITE_DOMAIN=weblate.app-openshift.example.com \
-p POSTGRESQL_IMAGE=docker-registry.default.svc:5000/openshift/postgresql:9.6 \
-p REDIS_IMAGE=docker-registry.default.svc:5000/openshift/redis:3.2 \
| oc create -f

The Weblate instance should be available after successful migration and deployment at the specified WEBLA-
TE_SITE_DOMAIN parameter.
After container setup, you can sign in as admin user with password provided in WEBLATE_ADMIN_PASSWORD, or
a random password generated on first start if that was not set.
To reset admin password, restart the container with WEBLATE_ADMIN_PASSWORD set to new password in the
respective Secret.

164 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

Eliminate

$ oc delete all -l app=<APPLICATION_NAME>
$ oc delete configmap -l app= <APPLICATION_NAME>
$ oc delete secret -l app=<APPLICATION_NAME>
# ATTTENTION! The following command is only optional and will permanently delete␣
↪→all of your data.
$ oc delete pvc -l app=<APPLICATION_NAME>

$ oc delete all -l app=weblate \
&& oc delete secret -l app=weblate \
&& oc delete configmap -l app=weblate \
&& oc delete pvc -l app=weblate

Configuration

By processing the template a respective ConfigMapwill be created and which can be used to customize theWeblate
image. The ConfigMap is directly mounted as environment variables and triggers a new deployment every time it
is changed. For further configuration options, see Docker environment variables for full list of environment variables.

Installing on Kubernetes

Note: This guide is looking for contributors experienced with Kubernetes to cover the setup in more details.

With the Kubernetes Helm chart you can get your personal Weblate instance up and running in seconds. All of
Weblate’s dependencies are already included. PostgreSQL is set up as the default database and persistent volume
claims are used.
You can find the chart at <https://github.com/WeblateOrg/helm/> and it can be displayed at <https://artifacthub.io/
packages/helm/weblate/weblate>.

Installation

helm repo add weblate https://helm.weblate.org
helm install my-release weblate/weblate

Depending on your setup and experience, choose an appropriate installation method for you:
• Installing using Docker, recommended for production setups.
• Virtualenv installation, recommended for production setups:

– Installing on Debian and Ubuntu

– Installing on SUSE and openSUSE

– Installing on RedHat, Fedora and CentOS

– Installing on macOS

• Installing from sources, recommended for development.
• Installing on OpenShift

• Installing on Kubernetes

2.1. Configuration instructions 165

https://github.com/WeblateOrg/helm/
https://artifacthub.io/packages/helm/weblate/weblate
https://artifacthub.io/packages/helm/weblate/weblate


The Weblate Manual, Release 4.5.3

2.1.2 Software requirements

Operating system

Weblate is known to work on Linux, FreeBSD and macOS. Other Unix like systems will most likely work too.
Weblate is not supported on Windows. But it may still work and patches are happily accepted.

Other services

Weblate is using other services for its operation. You will need at least following services running:
• PostgreSQL database server, see Database setup for Weblate.
• Redis server for cache and tasks queue, see Background tasks using Celery.
• SMTP server for outgoing e-mail, see Configuring outgoing e-mail.

Python dependencies

Weblate is written in Python and supports Python 3.6 or newer. You can install dependencies using pip or from your
distribution packages, full list is available in requirements.txt.
Most notable dependencies:
Django https://www.djangoproject.com/
Celery https://docs.celeryproject.org/
Translate Toolkit https://toolkit.translatehouse.org/
translation-finder https://github.com/WeblateOrg/translation-finder
Python Social Auth https://python-social-auth.readthedocs.io/
Django REST Framework https://www.django-rest-framework.org/

Optional dependencies

Following modules are necessary for some Weblate features. You can find all of them in requirements-
optional.txt.
Mercurial (optional for Mercurial repositories support) https://www.mercurial-scm.org/
phply (optional for PHP support) https://github.com/viraptor/phply
tesserocr (optional for screenshots OCR) https://github.com/sirfz/tesserocr
akismet (optional for suggestion spam protection) https://github.com/ubernostrum/akismet
ruamel.yaml (optional for YAML files) https://pypi.org/project/ruamel.yaml/
Zeep (optional forMicrosoft Terminology Service) https://docs.python-zeep.org/
aeidon (optional for Subtitle files) https://pypi.org/project/aeidon/

166 Kapittel 2. Administrator docs

https://www.python.org/
https://www.djangoproject.com/
https://docs.celeryproject.org/
https://toolkit.translatehouse.org/
https://github.com/WeblateOrg/translation-finder
https://python-social-auth.readthedocs.io/
https://www.django-rest-framework.org/
https://www.mercurial-scm.org/
https://github.com/viraptor/phply
https://github.com/sirfz/tesserocr
https://github.com/ubernostrum/akismet
https://pypi.org/project/ruamel.yaml/
https://docs.python-zeep.org/
https://pypi.org/project/aeidon/


The Weblate Manual, Release 4.5.3

Database backend dependencies

Weblate supports PostgreSQL, MySQL and MariaDB, see Database setup for Weblate and backends documentation
for more details.

Other system requirements

The following dependencies have to be installed on the system:
Git https://git-scm.com/
Pango, Cairo and related header files and gir introspection data https://cairographics.org/, https://pango.

gnome.org/, see Pango and Cairo

git-review (optional for Gerrit support) https://pypi.org/project/git-review/
git-svn (optional for Subversion support) https://git-scm.com/docs/git-svn
tesseract and its data (optional for screenshots OCR) https://github.com/tesseract-ocr/tesseract
licensee (optional for detecting license when creating component) https://github.com/licensee/licensee

Build-time dependencies

To build some of the Python dependencies you might need to install their dependencies. This depends on how you
install them, so please consult individual packages for documentation. You won’t need those if using prebuilt Wheels
while installing using pip or when you use distribution packages.

Pango and Cairo

Changed in version 3.7.
Weblate uses Pango and Cairo for rendering bitmap widgets (see promotion) and rendering checks (see Managing
fonts). To properly install Python bindings for those you need to install system libraries first - you need both Cairo
and Pango, which in turn need GLib. All those should be installed with development files and GObject introspection
data.

2.1.3 Verifying release signatures

Weblate release are cryptographically signed by the releasing developer. Currently this is Michal Čihař. Fingerprint
of his PGP key is:

63CB 1DF1 EF12 CF2A C0EE 5A32 9C27 B313 42B7 511D

and you can get more identification information from <https://keybase.io/nijel>.
You should verify that the signature matches the archive you have downloaded. This way you can be sure that you
are using the same code that was released. You should also verify the date of the signature to make sure that you
downloaded the latest version.
Each archive is accompanied with .asc files which contain the PGP signature for it. Once you have both of them
in the same folder, you can verify the signature:

$ gpg --verify Weblate-3.5.tar.xz.asc
gpg: assuming signed data in 'Weblate-3.5.tar.xz'
gpg: Signature made Ne 3. března 2019, 16:43:15 CET
gpg: using RSA key 87E673AF83F6C3A0C344C8C3F4AA229D4D58C245
gpg: Can't check signature: public key not found

2.1. Configuration instructions 167

https://git-scm.com/
https://cairographics.org/
https://pango.gnome.org/
https://pango.gnome.org/
https://pypi.org/project/git-review/
https://git-scm.com/docs/git-svn
https://github.com/tesseract-ocr/tesseract
https://github.com/licensee/licensee
https://keybase.io/nijel


The Weblate Manual, Release 4.5.3

As you can see GPG complains that it does not know the public key. At this point you should do one of the following
steps:

• Use wkd to download the key:

$ gpg --auto-key-locate wkd --locate-keys michal@cihar.com
pub rsa4096 2009-06-17 [SC]

63CB1DF1EF12CF2AC0EE5A329C27B31342B7511D
uid [ultimate] Michal Čihař <michal@cihar.com>
uid [ultimate] Michal Čihař <nijel@debian.org>
uid [ultimate] [jpeg image of size 8848]
uid [ultimate] Michal Čihař (Braiins) <michal.cihar@braiins.cz>
sub rsa4096 2009-06-17 [E]
sub rsa4096 2015-09-09 [S]

• Download the keyring from Michal’s server, then import it with:

$ gpg --import wmxth3chu9jfxdxywj1skpmhsj311mzm

• Download and import the key from one of the key servers:

$ gpg --keyserver hkp://pgp.mit.edu --recv-keys␣
↪→87E673AF83F6C3A0C344C8C3F4AA229D4D58C245
gpg: key 9C27B31342B7511D: "Michal Čihař <michal@cihar.com>" imported
gpg: Total number processed: 1
gpg: unchanged: 1

This will improve the situation a bit - at this point you can verify that the signature from the given key is correct but
you still can not trust the name used in the key:

$ gpg --verify Weblate-3.5.tar.xz.asc
gpg: assuming signed data in 'Weblate-3.5.tar.xz'
gpg: Signature made Ne 3. března 2019, 16:43:15 CET
gpg: using RSA key 87E673AF83F6C3A0C344C8C3F4AA229D4D58C245
gpg: Good signature from "Michal Čihař <michal@cihar.com>" [ultimate]
gpg: aka "Michal Čihař <nijel@debian.org>" [ultimate]
gpg: aka "[jpeg image of size 8848]" [ultimate]
gpg: aka "Michal Čihař (Braiins) <michal.cihar@braiins.cz>"␣
↪→[ultimate]
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: 63CB 1DF1 EF12 CF2A C0EE 5A32 9C27 B313 42B7 511D

The problem here is that anybody could issue the key with this name. You need to ensure that the key is actually
owned by the mentioned person. The GNU Privacy Handbook covers this topic in the chapter Validating other keys
on your public keyring. The most reliable method is to meet the developer in person and exchange key fingerprints,
however you can also rely on the web of trust. This way you can trust the key transitively though signatures of others,
who have met the developer in person.
Once the key is trusted, the warning will not occur:

$ gpg --verify Weblate-3.5.tar.xz.asc
gpg: assuming signed data in 'Weblate-3.5.tar.xz'
gpg: Signature made Sun Mar 3 16:43:15 2019 CET
gpg: using RSA key 87E673AF83F6C3A0C344C8C3F4AA229D4D58C245
gpg: Good signature from "Michal Čihař <michal@cihar.com>" [ultimate]
gpg: aka "Michal Čihař <nijel@debian.org>" [ultimate]
gpg: aka "[jpeg image of size 8848]" [ultimate]
gpg: aka "Michal Čihař (Braiins) <michal.cihar@braiins.cz>"␣
↪→[ultimate]

Should the signature be invalid (the archive has been changed), you would get a clear error regardless of the fact that
the key is trusted or not:

168 Kapittel 2. Administrator docs

https://cihar.com/.well-known/openpgpkey/hu/wmxth3chu9jfxdxywj1skpmhsj311mzm
https://www.gnupg.org/gph/en/manual.html#AEN335
https://www.gnupg.org/gph/en/manual.html#AEN335


The Weblate Manual, Release 4.5.3

$ gpg --verify Weblate-3.5.tar.xz.asc
gpg: Signature made Sun Mar 3 16:43:15 2019 CET
gpg: using RSA key 87E673AF83F6C3A0C344C8C3F4AA229D4D58C245
gpg: BAD signature from "Michal Čihař <michal@cihar.com>" [ultimate]

2.1.4 Filesystem permissions

The Weblate process needs to be able to read and write to the directory where it keeps data - DATA_DIR. All files
within this directory should be owned and writable by the user running all Weblate processes (typically WSGI and
Celery, see Running server and Background tasks using Celery).
The default configuration places them in the same tree as the Weblate sources, however you might prefer to move
these to a better location such as: /var/lib/weblate.
Weblate tries to create these directories automatically, but it will fail when it does not have permissions to do so.
You should also take care when runningManagement commands, as they should be ran under the same user asWeblate
itself is running, otherwise permissions on some files might be wrong.
In the Docker container, all files in the /app/data volume have to be owned by weblate user inside the container
(UID 1000).
See also:
Serving static files

2.1.5 Database setup for Weblate

It is recommended to run Weblate with a PostgreSQL database server.
See also:
Use a powerful database engine, Databases, Migrating from other databases to PostgreSQL

PostgreSQL

PostgreSQL is usually the best choice for Django-based sites. It’s the reference database used for implementingDjango
database layer.

Note: Weblate uses trigram extension which has to be installed separately in some cases. Look for postgresql-
contrib or a similarly named package.

See also:
PostgreSQL notes

Creating a database in PostgreSQL

It is usually a good idea to run Weblate in a separate database, and separate user account:

# If PostgreSQL was not installed before, set the main password
sudo -u postgres psql postgres -c "\password postgres"

# Create a database user called "weblate"
sudo -u postgres createuser --superuser --pwprompt weblate

# Create the database "weblate" owned by "weblate"
sudo -u postgres createdb -O weblate weblate

2.1. Configuration instructions 169

https://docs.djangoproject.com/en/stable/ref/databases/
https://docs.djangoproject.com/en/stable/ref/databases/#postgresql-notes


The Weblate Manual, Release 4.5.3

Hint: If you don’t want to make the Weblate user a superuser in PostgreSQL, you can omit that. In that case you
will have to perform some of the migration steps manually as a PostgreSQL superuser in schema Weblate will use:

CREATE EXTENSION IF NOT EXISTS pg_trgm WITH SCHEMA weblate;

Configuring Weblate to use PostgreSQL

The settings.py snippet for PostgreSQL:

DATABASES = {
"default": {

# Database engine
"ENGINE": "django.db.backends.postgresql",
# Database name
"NAME": "weblate",
# Database user
"USER": "weblate",
# Name of role to alter to set parameters in PostgreSQL,
# use in case role name is different than user used for authentication.
# "ALTER_ROLE": "weblate",
# Database password
"PASSWORD": "password",
# Set to empty string for localhost
"HOST": "database.example.com",
# Set to empty string for default
"PORT": "",

}
}

The database migration performs ALTER ROLE on database role used by Weblate. In most cases the name of the
role matches username. In more complex setups the role name is different than username and you will get error about
non-existing role during the database migration (psycopg2.errors.UndefinedObject: role "web-
late@hostname" does not exist). This is known to happen with Azure Database for PostgreSQL, but it’s
not limited to this environment. Please set ALTER_ROLE to change name of the role Weblate should alter during
the database migration.

MySQL and MariaDB

Hint: Some Weblate features will perform better with PostgreSQL. This includes searching and translation memory,
which both utilize full-text features in the database and PostgreSQL implementation is superior.

Weblate can be also used with MySQL or MariaDB, please see MySQL notes and MariaDB notes for caveats using
Django with those. Because of the limitations it is recommended to use PostgreSQL for new installations.
Weblate requires MySQL at least 5.7.8 or MariaDB at least 10.2.7.
Following configuration is recommended for Weblate:

• Use the utf8mb4 charset to allow representation of higher Unicode planes (for example emojis).
• Configure the server with innodb_large_prefix to allow longer indices on text fields.
• Set the isolation level to READ COMMITTED.
• The SQL mode should be set to STRICT_TRANS_TABLES.

MySQL 8.x, MariaDB 10.5.x or newer have reasonable default configuration so that no server tweaking should be
necessary and all what is needed can be configured on the client side.

170 Kapittel 2. Administrator docs

https://www.postgresql.org/docs/12/sql-alterrole.html
https://docs.djangoproject.com/en/stable/ref/databases/#mysql-notes
https://docs.djangoproject.com/en/stable/ref/databases/#mariadb-notes


The Weblate Manual, Release 4.5.3

Below is an example /etc/my.cnf.d/server.cnf for a server with 8 GB of RAM. These settings should be
sufficient for most installs. MySQL and MariaDB have tunables that will increase the performance of your server
that are considered not necessary unless you are planning on having large numbers of concurrent users accessing the
system. See the various vendors documentation on those details.
It is absolutely critical to reduce issues when installing that the setting innodb_file_per_table is set properly
and MySQL/MariaDB restarted before you start your Weblate install.

[mysqld]
character-set-server = utf8mb4
character-set-client = utf8mb4
collation-server = utf8mb4_unicode_ci

datadir=/var/lib/mysql

log-error=/var/log/mariadb/mariadb.log

innodb_large_prefix=1
innodb_file_format=Barracuda
innodb_file_per_table=1
innodb_buffer_pool_size=2G
sql_mode=STRICT_TRANS_TABLES

Hint: In case you are getting #1071 - Specified key was too long; max key length is 767
bytes error, please update your configuration to include the innodb settings above and restart your install.

Hint: In case you are getting #2006 - MySQL server has gone away error, configuring CONN_MAX_AGE
might help.

Configuring Weblate to use MySQL/MariaDB

The settings.py snippet for MySQL and MariaDB:

DATABASES = {
"default": {

# Database engine
"ENGINE": "django.db.backends.mysql",
# Database name
"NAME": "weblate",
# Database user
"USER": "weblate",
# Database password
"PASSWORD": "password",
# Set to empty string for localhost
"HOST": "127.0.0.1",
# Set to empty string for default
"PORT": "3306",
# In case you wish to use additional
# connection options
"OPTIONS": {},

}
}

You should also create the weblate user account in MySQL or MariaDB before you begin the install. Use the
commands below to achieve that:

2.1. Configuration instructions 171

https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-CONN_MAX_AGE


The Weblate Manual, Release 4.5.3

GRANT ALL ON weblate.* to 'weblate'@'localhost' IDENTIFIED BY 'password';
FLUSH PRIVILEGES;

2.1.6 Other configurations

Configuring outgoing e-mail

Weblate sends out e-mails on various occasions - for account activation and on various notifications configured by
users. For this it needs access to an SMTP server.
The mail server setup is configured using these settings: EMAIL_HOST, EMAIL_HOST_PASSWORD,
EMAIL_USE_TLS, EMAIL_USE_SSL, EMAIL_HOST_USER and EMAIL_PORT. Their names are quite self-
explanatory, but you can find more info in the Django documentation.

Hint: In case you get error about not supported authentication (for example SMTP AUTH extension not
supported by server), it is most likely caused by using insecure connection and server refuses to authenticate
this way. Try enabling EMAIL_USE_TLS in such case.

See also:
Not receiving e-mails from Weblate, Configuring outgoing e-mail in Docker container

Running behind reverse proxy

Several features in Weblate rely on being able to get client IP address. This includes Rate limiting, Spam protection or
Audit log.
In default configuration Weblate parses IP address from REMOTE_ADDR which is set by the WSGI handler.
In case you are running a reverse proxy, this field will most likely contain its address. You need to configureWeblate to
trust additional HTTP headers and parse the IP address from these. This can not be enabled by default as it would allow
IP address spoofing for installations not using a reverse proxy. Enabling IP_BEHIND_REVERSE_PROXY might be
enough for the most usual setups, but you might need to adjust IP_PROXY_HEADER and IP_PROXY_OFFSET as
well.
See also:
Spam protection, Rate limiting, Audit log, IP_BEHIND_REVERSE_PROXY, IP_PROXY_HEADER,
IP_PROXY_OFFSET, SECURE_PROXY_SSL_HEADER

HTTP proxy

Weblate does execute VCS commands and those accept proxy configuration from environment. The recommended
approach is to define proxy settings in settings.py:

import os

os.environ["http_proxy"] = "http://proxy.example.com:8080"
os.environ["HTTPS_PROXY"] = "http://proxy.example.com:8080"

See also:
Proxy Environment Variables

172 Kapittel 2. Administrator docs

https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_HOST
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_HOST_PASSWORD
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_USE_TLS
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_USE_SSL
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_HOST_USER
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_PORT
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_USE_TLS
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECURE_PROXY_SSL_HEADER
https://ec.haxx.se/usingcurl/usingcurl-proxies#proxy-environment-variables


The Weblate Manual, Release 4.5.3

2.1.7 Adjusting configuration

See also:
Sample configuration

Copy weblate/settings_example.py to weblate/settings.py and adjust it to match your setup.
You will probably want to adjust the following options: ADMINS

List of site administrators to receive notifications when something goes wrong, for example notifications
on failed merges, or Django errors.
See also:
ADMINS

ALLOWED_HOSTS

You need to set this to list the hosts your site is supposed to serve. For example:

ALLOWED_HOSTS = ["demo.weblate.org"]

Alternatively you can include wildcard:

ALLOWED_HOSTS = ["*"]

See also:
ALLOWED_HOSTS, WEBLATE_ALLOWED_HOSTS, Allowed hosts setup

SESSION_ENGINE

Configure how your sessions will be stored. In case you keep the default database backend engine, you
should schedule: weblate clearsessions to remove stale session data from the database.
If you are using Redis as cache (see Enable caching) it is recommended to use it for sessions as well:

SESSION_ENGINE = "django.contrib.sessions.backends.cache"

See also:
Configuring the session engine, SESSION_ENGINE

DATABASES

Connectivity to database server, please check Django’s documentation for more details.
See also:
Database setup for Weblate, DATABASES, Databases

DEBUG

Disable this for any production server. With debug mode enabled, Django will show backtraces in case
of error to users, when you disable it, errors will be sent per e-mail to ADMINS (see above).
Debug mode also slows down Weblate, as Django stores much more info internally in this case.
See also:
DEBUG

DEFAULT_FROM_EMAIL

E-mail sender address for outgoing e-mail, for example registration e-mails.
See also:
DEFAULT_FROM_EMAIL

SECRET_KEY

2.1. Configuration instructions 173

https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-ADMINS
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-ALLOWED_HOSTS
https://docs.djangoproject.com/en/stable/topics/http/sessions/#configuring-sessions
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SESSION_ENGINE
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DATABASES
https://docs.djangoproject.com/en/stable/ref/databases/
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DEBUG
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DEFAULT_FROM_EMAIL


The Weblate Manual, Release 4.5.3

Key used by Django to sign some info in cookies, see Django secret key for more info.
See also:
SECRET_KEY

SERVER_EMAIL

E-mail used as sender address for sending e-mails to the administrator, for example notifications on
failed merges.
See also:
SERVER_EMAIL

2.1.8 Filling up the database

After your configuration is ready, you can run weblate migrate to create the database structure. Now you should
be able to create translation projects using the admin interface.
In case you want to run an installation non interactively, you can use weblate migrate --noinput, and then
create an admin user using createadmin command.
Once you are done, you should also check the Performance report in the admin interface, which will give you hints
of potential non optimal configuration on your site.
See also:
Configuration, List of privileges

2.1.9 Production setup

For a production setup you should carry out adjustments described in the following sections. The most critical settings
will trigger a warning, which is indicated by an exclamation mark in the top bar if signed in as a superuser:

It is also recommended to inspect checks triggered by Django (though you might not need to fix all of them):

weblate check --deploy

You can also review the very same checklist from the Management interface.
See also:
Deployment checklist

174 Kapittel 2. Administrator docs

https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECRET_KEY
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SERVER_EMAIL
https://docs.djangoproject.com/en/stable/howto/deployment/checklist/


The Weblate Manual, Release 4.5.3

Disable debug mode

Disable Django’s debug mode (DEBUG) by:

DEBUG = False

With debug mode on, Django stores all executed queries and shows users backtraces of errors, which is not desired
in a production setup.
See also:
Adjusting configuration

Properly configure admins

Set the correct admin addresses to the ADMINS setting to defining who will receive e-mails in case something goes
wrong on the server, for example:

ADMINS = (("Your Name", "your_email@example.com"),)

See also:
Adjusting configuration

Set correct site domain

Adjust site name and domain in the admin interface, otherwise links in RSS or registration e-mails will not work.
This is configured using SITE_DOMAIN which should contain site domain name.
Changed in version 4.2: Prior to the 4.2 release the Django sites framework was used instead, please see The “sites”
framework.
See also:
Allowed hosts setup, Correctly configure HTTPS SITE_DOMAIN , WEBLATE_SITE_DOMAIN , ENABLE_HTTPS

Correctly configure HTTPS

It is strongly recommended to run Weblate using the encrypted HTTPS protocol. After enabling it, you should set
ENABLE_HTTPS in the settings:

ENABLE_HTTPS = True

Hint: You might want to set up HSTS as well, see SSL/HTTPS for more details.

See also:
ENABLE_HTTPS, Allowed hosts setup, Set correct site domain

2.1. Configuration instructions 175

https://docs.djangoproject.com/en/stable/ref/contrib/sites/
https://docs.djangoproject.com/en/stable/ref/contrib/sites/
https://docs.djangoproject.com/en/stable/topics/security/#security-recommendation-ssl


The Weblate Manual, Release 4.5.3

Set properly SECURE_HSTS_SECONDS

If your site is served over SSL, you have to consider setting a value for SECURE_HSTS_SECONDS in the
settings.py to enable HTTP Strict Transport Security. By default it’s set to 0 as shown below.

SECURE_HSTS_SECONDS = 0

If set to a non-zero integer value, the django.middleware.security.SecurityMiddleware sets the
HTTP Strict Transport Security header on all responses that do not already have it.

Warning: Setting this incorrectly can irreversibly (for some time) break your site. Read the HTTP Strict Trans-
port Security documentation first.

Use a powerful database engine

Please use PostgreSQL for a production environment, see Database setup for Weblate for more info.
See also:
Database setup for Weblate, Migrating from other databases to PostgreSQL, Adjusting configuration, Databases

Enable caching

If possible, use Redis from Django by adjusting the CACHES configuration variable, for example:

CACHES = {
"default": {

"BACKEND": "django_redis.cache.RedisCache",
"LOCATION": "redis://127.0.0.1:6379/0",
# If redis is running on same host as Weblate, you might
# want to use unix sockets instead:
# 'LOCATION': 'unix:///var/run/redis/redis.sock?db=0',
"OPTIONS": {

"CLIENT_CLASS": "django_redis.client.DefaultClient",
"PARSER_CLASS": "redis.connection.HiredisParser",

},
}

}

Hint: In case you change Redis settings for the cache, you might need to adjust them for Celery as well, see Back-
ground tasks using Celery.

See also:
Avatar caching, Django’s cache framework

176 Kapittel 2. Administrator docs

https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECURE_HSTS_SECONDS
https://docs.djangoproject.com/en/stable/ref/middleware/#django.middleware.security.SecurityMiddleware
https://docs.djangoproject.com/en/stable/ref/middleware/#http-strict-transport-security
https://docs.djangoproject.com/en/stable/ref/middleware/#http-strict-transport-security
https://docs.djangoproject.com/en/stable/ref/middleware/#http-strict-transport-security
https://docs.djangoproject.com/en/stable/ref/databases/
https://docs.djangoproject.com/en/stable/topics/cache/


The Weblate Manual, Release 4.5.3

Avatar caching

In addition to caching of Django, Weblate performs caching of avatars. It is recommended to use a separate, file-
backed cache for this purpose:

CACHES = {
"default": {

# Default caching backend setup, see above
"BACKEND": "django_redis.cache.RedisCache",
"LOCATION": "unix:///var/run/redis/redis.sock?db=0",
"OPTIONS": {

"CLIENT_CLASS": "django_redis.client.DefaultClient",
"PARSER_CLASS": "redis.connection.HiredisParser",

},
},
"avatar": {

"BACKEND": "django.core.cache.backends.filebased.FileBasedCache",
"LOCATION": os.path.join(DATA_DIR, "avatar-cache"),
"TIMEOUT": 604800,
"OPTIONS": {

"MAX_ENTRIES": 1000,
},

},
}

See also:
ENABLE_AVATARS, AVATAR_URL_PREFIX, Avatars, Enable caching, Django’s cache framework

Configure e-mail sending

Weblate needs to send out e-mails on several occasions, and these e-mails should have a correct sender address, please
configure SERVER_EMAIL and DEFAULT_FROM_EMAIL to match your environment, for example:

SERVER_EMAIL = "admin@example.org"
DEFAULT_FROM_EMAIL = "weblate@example.org"

Note: To disable sending e-mails by Weblate set EMAIL_BACKEND to django.core.mail.backends.
dummy.EmailBackend.
This will disable all e-mail delivery including registration or password reset e-mails.

See also:
Adjusting configuration, Configuring outgoing e-mail, EMAIL_BACKEND, DEFAULT_FROM_EMAIL, SER-
VER_EMAIL

Allowed hosts setup

Django requires ALLOWED_HOSTS to hold a list of domain names your site is allowed to serve, leaving it empty will
block any requests.
In case this is not configured tomatch your HTTP server, you will get errors likeInvalid HTTP_HOST header:
'1.1.1.1'. You may need to add '1.1.1.1' to ALLOWED_HOSTS.

Hint: On Docker container, this is available as WEBLATE_ALLOWED_HOSTS.

2.1. Configuration instructions 177

https://docs.djangoproject.com/en/stable/topics/cache/
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_BACKEND
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_BACKEND
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DEFAULT_FROM_EMAIL
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SERVER_EMAIL
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SERVER_EMAIL


The Weblate Manual, Release 4.5.3

See also:
ALLOWED_HOSTS, WEBLATE_ALLOWED_HOSTS, Set correct site domain

Django secret key

The SECRET_KEY setting is used by Django to sign cookies, and you should really generate your own value rather
than using the one from the example setup.
You can generate a new key using weblate/examples/generate-secret-key shipped with Weblate.
See also:
SECRET_KEY

Home directory

Changed in version 2.1: This is no longer required, Weblate now stores all its data in DATA_DIR.
The home directory for the user running Weblate should exist and be writable by this user. This is especially needed
if you want to use SSH to access private repositories, but Git might need to access this directory as well (depending
on the Git version you use).
You can change the directory used by Weblate in settings.py, for example to set it to configuration
directory under the Weblate tree:

os.environ["HOME"] = os.path.join(BASE_DIR, "configuration")

Note: On Linux, and other UNIX like systems, the path to user’s home directory is defined in /etc/passwd. Many
distributions default to a non-writable directory for users used for serving web content (such as apache, www-data
or wwwrun), so you either have to run Weblate under a different user, or change this setting.

See also:
Accessing repositories

Template loading

It is recommended to use a cached template loader for Django. It caches parsed templates and avoids the need to do
parsing with every single request. You can configure it using the following snippet (the loaders setting is important
here):

TEMPLATES = [
{

"BACKEND": "django.template.backends.django.DjangoTemplates",
"DIRS": [

os.path.join(BASE_DIR, "templates"),
],
"OPTIONS": {

"context_processors": [
"django.contrib.auth.context_processors.auth",
"django.template.context_processors.debug",
"django.template.context_processors.i18n",
"django.template.context_processors.request",
"django.template.context_processors.csrf",
"django.contrib.messages.context_processors.messages",
"weblate.trans.context_processors.weblate_context",

],
"loaders": [

(continues on next page)

178 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

(continued from previous page)
(

"django.template.loaders.cached.Loader",
[

"django.template.loaders.filesystem.Loader",
"django.template.loaders.app_directories.Loader",

],
),

],
},

},
]

See also:
django.template.loaders.cached.Loader

Running maintenance tasks

For optimal performance, it is good idea to run some maintenance tasks in the background. This is now automatically
done by Background tasks using Celery and covers following tasks:

• Configuration health check (hourly).
• Committing pending changes (hourly), see Lazy commits and commit_pending.
• Updating component alerts (daily).
• Update remote branches (nightly), see AUTO_UPDATE.
• Translation memory backup to JSON (daily), see dump_memory.
• Fulltext and database maintenance tasks (daily and weekly tasks), see cleanuptrans.

Changed in version 3.2: Since version 3.2, the default way of executing these tasks is using Celery andWeblate already
comes with proper configuration, see Background tasks using Celery.

System locales and encoding

The system locales should be configured to UTF-8 capable ones. Onmost Linux distributions this is the default setting.
In case it is not the case on your system, please change locales to UTF-8 variant.
For example by editing /etc/default/locale and setting there LANG="C.UTF-8".
In some cases the individual services have separate configuration for locales. For example when using Apache you
might want to set it in /etc/apache2/envvars:

export LANG='en_US.UTF-8'
export LC_ALL='en_US.UTF-8'

Using custom certificate authority

Weblate does verify SSL certificates during HTTP requests. In case you are using custom certificate authority which
is not trusted in default bundles, you will have to add its certificate as trusted.
The preferred approach is to do this at system level, please check your distro documentation for more de-
tails (for example on debian this can be done by placing the CA certificate into /usr/local/share/ca-
certificates/ and running update-ca-certificates).
Once this is done, system tools will trust the certificate and this includes Git.
For Python code, you will need to configure requests to use system CA bundle instead of the one shipped with it.
This can be achieved by placing following snippet to settings.py (the path is Debian specific):

2.1. Configuration instructions 179

https://docs.djangoproject.com/en/stable/ref/templates/api/#django.template.loaders.cached.Loader


The Weblate Manual, Release 4.5.3

import os

os.environ["REQUESTS_CA_BUNDLE"] = "/etc/ssl/certs/ca-certificates.crt"

Compressing client assets

Weblate comes with a bunch of JavaScript and CSS files. For performance reasons it is good to compress them before
sending to a client. In default configuration this is done on the fly at cost of little overhead. On big installations, it is
recommended to enable offline compression mode. This needs to be done in the configuration and the compression
has to be triggered on every Weblate upgrade.
The configuration switch is simple by enabling django.conf.settings.COMPRESS_OFFLINE and con-
figuring django.conf.settings.COMPRESS_OFFLINE_CONTEXT (the latter is already included in the
example configuration):

COMPRESS_OFFLINE = True

On each deploy you need to compress the files to match current version:

weblate compress

Hint: The official Docker image has this feature already enabled.

See also:
Common Deployment Scenarios, Serving static files

2.1.10 Running server

Hint: In case you are not experienced with services described below, you might want to try Installing using Docker.

You will need several services to run Weblate, the recommended setup consists of:
• Database server (see Database setup for Weblate)
• Cache server (see Enable caching)
• Frontend web server for static files and SSL termination (see Serving static files)
• WSGI server for dynamic content (see Sample configuration for NGINX and uWSGI)
• Celery for executing background tasks (see Background tasks using Celery)

Note: There are some dependencies between the services, for example cache and database should be running when
starting up Celery or uwsgi processes.

In most cases, you will run all services on single (virtual) server, but in case your installation is heavy loaded, you can
split up the services. The only limitation on this is that Celery and Wsgi servers need access to DATA_DIR.

Note: The WSGI process has to be executed under the same user the Celery process, otherwise files in the
DATA_DIR will be stored with mixed ownership, leading to runtime issues.
See also Filesystem permissions and Background tasks using Celery.

180 Kapittel 2. Administrator docs

https://django-compressor.readthedocs.io/en/stable/settings/#django.conf.settings.COMPRESS_OFFLINE
https://django-compressor.readthedocs.io/en/stable/settings/#django.conf.settings.COMPRESS_OFFLINE_CONTEXT
https://django-compressor.readthedocs.io/en/stable/scenarios/#scenarios


The Weblate Manual, Release 4.5.3

Running web server

RunningWeblate is not different from running any other Django based program. Django is usually executed as uWSGI
or fcgi (see examples for different webservers below).
For testing purposes, you can use the built-in web server in Django:

weblate runserver

Warning: DO NOT USE THIS SERVER IN A PRODUCTION SETTING. It has not gone through security
audits or performance tests. See also Django documentation on runserver.

Hint: The Django built-in server serves static files only with DEBUG enabled as it is intended for development only.
For production use, please see wsgi setups in Sample configuration for NGINX and uWSGI, Sample configuration for
Apache, Sample configuration for Apache and Gunicorn, and Serving static files.

Serving static files

Changed in version 2.4: Prior to version 2.4, Weblate didn’t properly use the Django static files framework and the
setup was more complex.
Django needs to collect its static files in a single directory. To do so, execute weblate collectstatic --
noinput. This will copy the static files into a directory specified by the STATIC_ROOT setting (this defaults to a
static directory inside DATA_DIR).
It is recommended to serve static files directly from your web server, you should use that for the following paths:
/static/ Serves static files for Weblate and the admin interface (from defined by STATIC_ROOT).
/media/ Used for user media uploads (e.g. screenshots).
/favicon.ico Should be rewritten to rewrite a rule to serve /static/favicon.ico.
See also:
Sample configuration for NGINX and uWSGI, Sample configuration for Apache, Sample configuration for Apache and
Gunicorn, Compressing client assets, Deploying Django, Deploying static files

Content security policy

The default Weblate configuration enables weblate.middleware.SecurityMiddleware middleware
which sets security related HTTP headers like Content-Security-Policy or X-XSS-Protection. These
are by default set up to work with Weblate and its configuration, but this might need customization for your environ-
ment.
See also:
CSP_SCRIPT_SRC, CSP_IMG_SRC, CSP_CONNECT_SRC, CSP_STYLE_SRC, CSP_FONT_SRC

2.1. Configuration instructions 181

https://docs.djangoproject.com/en/stable/ref/django-admin/#django-admin-runserver
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-STATIC_ROOT
https://docs.djangoproject.com/en/stable/howto/deployment/
https://docs.djangoproject.com/en/stable/howto/static-files/deployment/


The Weblate Manual, Release 4.5.3

Sample configuration for NGINX and uWSGI

To run production webserver, use the wsgi wrapper installed with Weblate (in virtual env case it is installed as ~/
weblate-env/lib/python3.7/site-packages/weblate/wsgi.py). Don’t forget to set the Python
search path to your virtualenv as well (for example using virtualenv = /home/user/weblate-env in
uWSGI).
The following configuration runs Weblate as uWSGI under the NGINX webserver.
Configuration for NGINX (also available as weblate/examples/weblate.nginx.conf):

# This example assumes Weblate is installed in virtualenv in /home/weblate/weblate-
↪→env
# and DATA_DIR is set to /home/weblate/data, please adjust paths to match your␣
↪→setup.
server {

listen 80;
server_name weblate;
# Not used
root /var/www/html;

location ~ ^/favicon.ico$ {
# DATA_DIR/static/favicon.ico
alias /home/weblate/data/static/favicon.ico;
expires 30d;

}

location /static/ {
# DATA_DIR/static/
alias /home/weblate/data/static/;
expires 30d;

}

location /media/ {
# DATA_DIR/media/
alias /home/weblate/data/media/;
expires 30d;

}

location / {
include uwsgi_params;
# Needed for long running operations in admin interface
uwsgi_read_timeout 3600;
# Adjust based to uwsgi configuration:
uwsgi_pass unix:///run/uwsgi/app/weblate/socket;
# uwsgi_pass 127.0.0.1:8080;

}
}

Configuration for uWSGI (also available as weblate/examples/weblate.uwsgi.ini):

# This example assumes Weblate is installed in virtualenv in /home/weblate/weblate-
↪→env
# and DATA_DIR is set to /home/weblate/data, please adjust paths to match your␣
↪→setup.
[uwsgi]
plugins = python3
master = true
protocol = uwsgi
socket = 127.0.0.1:8080
wsgi-file = /home/weblate/weblate-env/lib/python3.7/site-packages/weblate/wsgi.
↪→py

(continues on next page)

182 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

(continued from previous page)
# Add path to Weblate checkout if you did not install
# Weblate by pip
# python-path = /path/to/weblate

# In case you're using virtualenv uncomment this:
virtualenv = /home/weblate/weblate-env

# Needed for OAuth/OpenID
buffer-size = 8192

# Reload when consuming too much of memory
reload-on-rss = 250

# Increase number of workers for heavily loaded sites
workers = 8

# Enable threads for Sentry error submission
enable-threads = true

# Child processes do not need file descriptors
close-on-exec = true

# Avoid default 0000 umask
umask = 0022

# Run as weblate user
uid = weblate
gid = weblate

# Enable harakiri mode (kill requests after some time)
# harakiri = 3600
# harakiri-verbose = true

# Enable uWSGI stats server
# stats = :1717
# stats-http = true

# Do not log some errors caused by client disconnects
ignore-sigpipe = true
ignore-write-errors = true
disable-write-exception = true

See also:
How to use Django with uWSGI

Sample configuration for Apache

It is recommended to use prefork MPM when using WSGI with Weblate.
The following configuration runs Weblate as WSGI, you need to have enabled mod_wsgi (available as weblate/
examples/apache.conf):

#
# VirtualHost for Weblate
#
# This example assumes Weblate is installed in virtualenv in /home/weblate/weblate-
↪→env
# and DATA_DIR is set to /home/weblate/data, please adjust paths to match your␣
↪→setup.
#

(continues on next page)

2.1. Configuration instructions 183

https://docs.djangoproject.com/en/stable/howto/deployment/wsgi/uwsgi/


The Weblate Manual, Release 4.5.3

(continued from previous page)
<VirtualHost *:80>

ServerAdmin admin@weblate.example.org
ServerName weblate.example.org

# DATA_DIR/static/favicon.ico
Alias /favicon.ico /home/weblate/data/static/favicon.ico

# DATA_DIR/static/
Alias /static/ /home/weblate/data/static/
<Directory /home/weblate/data/static/>

Require all granted
</Directory>

# DATA_DIR/media/
Alias /media/ /home/weblate/data/media/
<Directory /home/weblate/data/media/>

Require all granted
</Directory>

# Path to your Weblate virtualenv
WSGIDaemonProcess weblate python-home=/home/weblate/weblate-env user=weblate
WSGIProcessGroup weblate
WSGIApplicationGroup %{GLOBAL}

WSGIScriptAlias / /home/weblate/weblate-env/lib/python3.7/site-packages/
↪→weblate/wsgi.py process-group=weblate request-timeout=600

WSGIPassAuthorization On

<Directory /home/weblate/weblate-env/lib/python3.7/site-packages/weblate/>
<Files wsgi.py>
Require all granted
</Files>

</Directory>

</VirtualHost>

Note: Weblate requires Python 3, so please make sure you are running Python 3 variant of the modwsgi. Usually it
is available as a separate package, for example libapache2-mod-wsgi-py3.

See also:
System locales and encoding, How to use Django with Apache and mod_wsgi

Sample configuration for Apache and Gunicorn

The following configuration runs Weblate in Gunicorn and Apache 2.4 (available as weblate/examples/
apache.gunicorn.conf):

#
# VirtualHost for Weblate using gunicorn on localhost:8000
#
# This example assumes Weblate is installed in virtualenv in /home/weblate/weblate-
↪→env
# and DATA_DIR is set to /home/weblate/data, please adjust paths to match your␣
↪→setup.
#
<VirtualHost *:443>

ServerAdmin admin@weblate.example.org

(continues on next page)

184 Kapittel 2. Administrator docs

https://docs.djangoproject.com/en/stable/howto/deployment/wsgi/modwsgi/


The Weblate Manual, Release 4.5.3

(continued from previous page)
ServerName weblate.example.org

# DATA_DIR/static/favicon.ico
Alias /favicon.ico /home/weblate/data/static/favicon.ico

# DATA_DIR/static/
Alias /static/ /home/weblate/data/static/
<Directory /home/weblate/data/static/>

Require all granted
</Directory>

# DATA_DIR/media/
Alias /media/ /home/weblate/data/media/
<Directory /home/weblate/data/media/>

Require all granted
</Directory>

SSLEngine on
SSLCertificateFile /etc/apache2/ssl/https_cert.cert
SSLCertificateKeyFile /etc/apache2/ssl/https_key.pem
SSLProxyEngine On

ProxyPass /favicon.ico !
ProxyPass /static/ !
ProxyPass /media/ !

ProxyPass / http://localhost:8000/
ProxyPassReverse / http://localhost:8000/
ProxyPreserveHost On

</VirtualHost>

See also:
How to use Django with Gunicorn

Running Weblate under path

New in version 1.3.
It is recommended to use prefork MPM when using WSGI with Weblate.
A sample Apache configuration to serve Weblate under /weblate. Again using mod_wsgi (also available as
weblate/examples/apache-path.conf):

#
# VirtualHost for Weblate, running under /weblate path
#
# This example assumes Weblate is installed in virtualenv in /home/weblate/weblate-
↪→env
# and DATA_DIR is set to /home/weblate/data, please adjust paths to match your␣
↪→setup.
#
<VirtualHost *:80>

ServerAdmin admin@weblate.example.org
ServerName weblate.example.org

# DATA_DIR/static/favicon.ico
Alias /weblate/favicon.ico /home/weblate/data/static/favicon.ico

# DATA_DIR/static/
Alias /weblate/static/ /home/weblate/data/static/

(continues on next page)

2.1. Configuration instructions 185

https://docs.djangoproject.com/en/stable/howto/deployment/wsgi/gunicorn/


The Weblate Manual, Release 4.5.3

(continued from previous page)
<Directory /home/weblate/data/static/>

Require all granted
</Directory>

# DATA_DIR/media/
Alias /weblate/media/ /home/weblate/data/media/
<Directory /home/weblate/data/media/>

Require all granted
</Directory>

# Path to your Weblate virtualenv
WSGIDaemonProcess weblate python-home=/home/weblate/weblate-env user=weblate
WSGIProcessGroup weblate
WSGIApplicationGroup %{GLOBAL}

WSGIScriptAlias /weblate /home/weblate/weblate-env/lib/python3.7/site-packages/
↪→weblate/wsgi.py process-group=weblate request-timeout=600

WSGIPassAuthorization On

<Directory /home/weblate/weblate-env/lib/python3.7/site-packages/weblate/>
<Files wsgi.py>
Require all granted
</Files>

</Directory>

</VirtualHost>

Additionally, you will have to adjust weblate/settings.py:

URL_PREFIX = "/weblate"

2.1.11 Background tasks using Celery

New in version 3.2.
Weblate uses Celery to process background tasks. A typical setup using Redis as a backend looks like this:

CELERY_TASK_ALWAYS_EAGER = False
CELERY_BROKER_URL = "redis://localhost:6379"
CELERY_RESULT_BACKEND = CELERY_BROKER_URL

See also:
Redis broker configuration in Celery
For development, you might want to use eager configuration, which does process all tasks in place, but this will have
performance impact on Weblate:

CELERY_TASK_ALWAYS_EAGER = True
CELERY_BROKER_URL = "memory://"
CELERY_TASK_EAGER_PROPAGATES = True

You should also start the Celery worker to process the tasks and start scheduled tasks, this can be done directly on
the command line (which is mostly useful when debugging or developing):

./weblate/examples/celery start

./weblate/examples/celery stop

Note: The Celery process has to be executed under the same user as the WSGI process, otherwise files in the
DATA_DIR will be stored with mixed ownership, leading to runtime issues.

186 Kapittel 2. Administrator docs

https://docs.celeryproject.org/en/latest/getting-started/backends-and-brokers/redis.html#broker-redis-configuration


The Weblate Manual, Release 4.5.3

See also Filesystem permissions and Running server.

Running Celery as system service

Most likely you will want to run Celery as a daemon and that is covered by Daemonization. For the most common
Linux setup using systemd, you can use the example files shipped in the examples folder listed below.
Systemd unit to be placed as /etc/systemd/system/celery-weblate.service:

[Unit]
Description=Celery Service (Weblate)
After=network.target

[Service]
Type=forking
User=weblate
Group=weblate
EnvironmentFile=/etc/default/celery-weblate
WorkingDirectory=/home/weblate
RuntimeDirectory=celery
RuntimeDirectoryPreserve=restart
LogsDirectory=celery
ExecStart=/bin/sh -c '${CELERY_BIN} multi start ${CELERYD_NODES} \

-A ${CELERY_APP} --pidfile=${CELERYD_PID_FILE} \
--logfile=${CELERYD_LOG_FILE} --loglevel=${CELERYD_LOG_LEVEL} ${CELERYD_OPTS}'

ExecStop=/bin/sh -c '${CELERY_BIN} multi stopwait ${CELERYD_NODES} \
--pidfile=${CELERYD_PID_FILE}'

ExecReload=/bin/sh -c '${CELERY_BIN} multi restart ${CELERYD_NODES} \
-A ${CELERY_APP} --pidfile=${CELERYD_PID_FILE} \
--logfile=${CELERYD_LOG_FILE} --loglevel=${CELERYD_LOG_LEVEL} ${CELERYD_OPTS}'

[Install]
WantedBy=multi-user.target

Environment configuration to be placed as /etc/default/celery-weblate:

# Name of nodes to start
CELERYD_NODES="celery notify memory backup translate"

# Absolute or relative path to the 'celery' command:
CELERY_BIN="/home/weblate/weblate-env/bin/celery"

# App instance to use
# comment out this line if you don't use an app
CELERY_APP="weblate.utils"

# Extra command-line arguments to the worker,
# increase concurency if you get weblate.E019
CELERYD_OPTS="--beat:celery --queues:celery=celery --prefetch-multiplier:celery=4 \

--queues:notify=notify --prefetch-multiplier:notify=10 \
--queues:memory=memory --prefetch-multiplier:memory=10 \
--queues:translate=translate --prefetch-multiplier:translate=4 \
--concurrency:backup=1 --queues:backup=backup --prefetch-multiplier:backup=2"

# Logging configuration
# - %n will be replaced with the first part of the nodename.
# - %I will be replaced with the current child process index
# and is important when using the prefork pool to avoid race conditions.
CELERYD_PID_FILE="/run/celery/weblate-%n.pid"
CELERYD_LOG_FILE="/var/log/celery/weblate-%n%I.log"
CELERYD_LOG_LEVEL="INFO"

(continues on next page)

2.1. Configuration instructions 187

https://docs.celeryproject.org/en/latest/userguide/daemonizing.html


The Weblate Manual, Release 4.5.3

(continued from previous page)

# Internal Weblate variable to indicate we're running inside Celery
CELERY_WORKER_RUNNING="1"

Additional configuration to rotate Celery logs using logrotate to be placed as /etc/logrotate.d/celery:

/var/log/celery/*.log {
weekly
missingok
rotate 12
compress
notifempty

}

Periodic tasks using Celery beat

Weblate comes with built-in setup for scheduled tasks. You can however define additional tasks in settings.py,
for example see Lazy commits.
The tasks are supposed to be executed by Celery beats daemon. In case it is not working properly, it might not be
running or its database was corrupted. Check the Celery startup logs in such case to figure out root cause.

Monitoring Celery status

You can use celery_queues to see current length of Celery task queues. In case the queue will get too long, you
will also get configuration error in the admin interface.

Warning: The Celery errors are by default only logged into Celery log and are not visible to user. In case you
want to have overview on such failures, it is recommended to configure Collecting error reports.

See also:
Configuration and defaults,Workers Guide, Daemonization,Monitoring andManagement Guide,celery_queues

2.1.12 Monitoring Weblate

Weblate provides the /healthz/ URL to be used in simple health checks, for example using Kubernetes.

2.1.13 Collecting error reports

Weblate, as any other software, can fail. In order to collect useful failure states we recommend to use third party
services to collect such information. This is especially useful in case of failing Celery tasks, which would otherwise
only report error to the logs and you won’t get notified on them. Weblate has support for the following services:

188 Kapittel 2. Administrator docs

https://docs.celeryproject.org/en/latest/userguide/configuration.html
https://docs.celeryproject.org/en/latest/userguide/workers.html
https://docs.celeryproject.org/en/latest/userguide/daemonizing.html
https://docs.celeryproject.org/en/latest/userguide/monitoring.html


The Weblate Manual, Release 4.5.3

Sentry

Weblate has built-in support for Sentry. To use it, it’s enough to set SENTRY_DSN in the settings.py:

SENTRY_DSN = "https://id@your.sentry.example.com/"

Rollbar

Weblate has built-in support for Rollbar. To use it, it’s enough to follow instructions for Rollbar notifier for Python.
In short, you need to adjust settings.py:

# Add rollbar as last middleware:
MIDDLEWARE = [

# … other middleware classes …
"rollbar.contrib.django.middleware.RollbarNotifierMiddleware",

]

# Configure client access
ROLLBAR = {

"access_token": "POST_SERVER_ITEM_ACCESS_TOKEN",
"client_token": "POST_CLIENT_ITEM_ACCESS_TOKEN",
"environment": "development" if DEBUG else "production",
"branch": "main",
"root": "/absolute/path/to/code/root",

}

Everything else is integrated automatically, you will now collect both server and client side errors.

2.1.14 Migrating Weblate to another server

Migrating Weblate to another server should be pretty easy, however it stores data in few locations which you should
migrate carefully. The best approach is to stop Weblate for the migration.

Migrating database

Depending on your database backend, you might have several options to migrate the database. The most straightfor-
ward one is to dump the database on one server and import it on the new one. Alternatively you can use replication
in case your database supports it.
The best approach is to use database native tools, as they are usually the most effective (e.g. mysqldump or
pg_dump). If you want to migrate between different databases, the only option might be to use Django management
to dump and import the database:

# Export current data
weblate dumpdata > /tmp/weblate.dump
# Import dump
weblate loaddata /tmp/weblate.dump

2.1. Configuration instructions 189

https://sentry.io/
https://rollbar.com/
https://docs.rollbar.com/docs/python/


The Weblate Manual, Release 4.5.3

Migrating VCS repositories

The VCS repositories stored under DATA_DIR need to be migrated as well. You can simply copy them or use rsync
to do the migration more effectively.

Other notes

Don’t forget to move other services Weblate might have been using like Redis, Cron jobs or custom authentication
backends.

2.2 Weblate deployments

Weblate can be easily installed in your cloud. Please find detailed guide for your platform:
• Installing using Docker

• Installing on OpenShift

• Installing on Kubernetes

2.2.1 Third-party deployments for Weblate

Note: Following deployments are not developed or supported by Weblate team. Parts of the setup might vary from
what is described in this documentation.

Bitnami Weblate stack

Bitnami provides a Weblate stack for many platforms at <https://bitnami.com/stack/weblate>. The setup will be
adjusted during installation, see <https://bitnami.com/stack/weblate/README.txt> for more documentation.

Weblate Cloudron Package

Cloudron is a platform for self-hosting web applications. Weblate installed with Cloudron will be automatically kept
up-to-date. The package is maintained by the Cloudron team at their Weblate package repo.

Weblate in YunoHost

The self-hosting project YunoHost provides a package for Weblate. Once you have your YunoHost installation, you
may installWeblate as any other application. It will provide youwith a fully working stack with backup and restoration,
but you may still have to edit your settings file for specific usages.
You may use your administration interface, or this button (it will bring you to your server):

It also is possible to use the commandline interface:

190 Kapittel 2. Administrator docs

https://bitnami.com/stack/weblate
https://bitnami.com/stack/weblate/README.txt
https://cloudron.io/
https://git.cloudron.io/cloudron/weblate-app
https://cloudron.io/button.html?app=org.weblate.cloudronapp
https://yunohost.org/
https://install-app.yunohost.org/?app=weblate


The Weblate Manual, Release 4.5.3

yunohost app install https://github.com/YunoHost-Apps/weblate_ynh

2.3 Upgrading Weblate

2.3.1 Docker image upgrades

The official Docker image (see Installing using Docker) has all upgrade steps integrated. There are no manual step
besides pulling latest version.

2.3.2 Generic upgrade instructions

Before upgrading, please check the current Software requirements as they might have changed. Once all require-
ments are installed or updated, please adjust your settings.py to match changes in the configuration (consult
settings_example.py for correct values).
Always check Version specific instructions before upgrade. In case you are skipping some versions, please follow
instructions for all versions you are skipping in the upgrade. Sometimes it’s better to upgrade to some intermediate
version to ensure a smooth migration. Upgrading across multiple releases should work, but is not as well tested as
single version upgrades.

Note: It is recommended to perform a full database backup prior to upgrade so that you can roll back the database
in case upgrade fails, see Backing up and moving Weblate.

1. Stop wsgi and Celery processes. The upgrade can perform incompatible changes in the database, so it is always
safer to avoid old processes running while upgrading.

2. Upgrade Weblate code.
For pip installs it can be achieved by:

pip install -U Weblate

With Git checkout you need to fetch new source code and update your installation:

cd weblate-src
git pull
# Update Weblate inside your virtualenv
. ~/weblate-env/bin/pip install -e .
# Install dependencies directly when not using virtualenv
pip install --upgrade -r requirements.txt

3. Upgrade configuration file, refer to settings_example.py or Version specific instructions for needed
steps.

4. Upgrade database structure:

weblate migrate --noinput

5. Collect updated static files (see Running server and Serving static files):

weblate collectstatic --noinput

6. Compress JavaScript and CSS files (optional, see Compressing client assets):

weblate compress

2.3. Upgrading Weblate 191



The Weblate Manual, Release 4.5.3

7. If you are running version from Git, you should also regenerate locale files every time you are upgrading. You
can do this by invoking:

weblate compilemessages

8. Verify that your setup is sane (see also Production setup):

weblate check --deploy

9. Restart celery worker (see Background tasks using Celery).

2.3.3 Version specific instructions

Upgrade from 2.x

If you are upgrading from 2.x release, always first upgrade to 3.0.1 and then continue upgrading in the 3.x series.
Upgrades skipping this step are not supported and will break.
See also:
Upgrade from 2.20 to 3.0 in Weblate 3.0 documentation

Upgrade from 3.x

If you are upgrading from 3.x release, always first upgrade to 4.0.4 or 4.1.1 and then continue upgrading in the 4.x
series. Upgrades skipping this step are not supported and will break.
See also:
Upgrade from 3.11 to 4.0 in Weblate 4.0 documentation

Upgrade from 4.0 to 4.1

Please follow Generic upgrade instructions in order to perform update.
Notable configuration or dependencies changes:

• There are several changes in settings_example.py, most notable middleware changes, please adjust
your settings accordingly.

• There are new file formats, you might want to include them in case you modified the WEBLATE_FORMATS.
• There are new quality checks, you might want to include them in case you modified the CHECK_LIST.
• There is change in DEFAULT_THROTTLE_CLASSES setting to allow reporting of rate limiting in the API.
• There are some new and updated requirements.
• There is a change in INSTALLED_APPS.
• TheDeepLmachine translation now defaults to v2API, youmight need to adjustMT_DEEPL_API_VERSION
in case your current DeepL subscription does not support that.

See also:
Generic upgrade instructions

192 Kapittel 2. Administrator docs

https://docs.weblate.org/en/weblate-3.0.1/admin/upgrade.html#upgrade-3
https://docs.weblate.org/en/weblate-4.0.4/admin/upgrade.html#upgrade-from-3-11-to-4-0
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS


The Weblate Manual, Release 4.5.3

Upgrade from 4.1 to 4.2

Please follow Generic upgrade instructions in order to perform update.
Notable configuration or dependencies changes:

• Upgrade from 3.x releases is not longer supported, please upgrade to 4.0 or 4.1 first.
• There are some new and updated requirements.
• There are several changes in settings_example.py, most notable new middleware and changed appli-
cation ordering.

• The keys for JSON based formats no longer include leading dot. The strings are adjusted during the database
migration, but external components might need adjustment in case you rely on keys in exports or API.

• The Celery configuration was changed to no longer use memory queue. Please adjust your startup scripts and
CELERY_TASK_ROUTES setting.

• TheWeblate domain is now configured in the settings, see SITE_DOMAIN (or WEBLATE_SITE_DOMAIN).
You will have to configure it before running Weblate.

• The username and email fields on user database now should be case insensitive unique. It was mistakenly not
enforced with PostgreSQL.

See also:
Generic upgrade instructions

Upgrade from 4.2 to 4.3

Please follow Generic upgrade instructions in order to perform update.
Notable configuration or dependencies changes:

• There are some changes in quality checks, you might want to include them in case you modified the
CHECK_LIST.

• The source language attribute was moved from project to a component what is exposed in the API. You will
need to updateWeblate Client in case you are using it.

• The database migration to 4.3 might take long depending on number of strings you are translating (expect
around one hour of migration time per 100,000 source strings).

• There is a change in INSTALLED_APPS.
• There is a new setting SESSION_COOKIE_AGE_AUTHENTICATED which complements SES-
SION_COOKIE_AGE.

• In case you were using hub or lab to integrate with GitHub or GitLab, you will need to reconfigure this, see
GITHUB_CREDENTIALS and GITLAB_CREDENTIALS.
Changed in version 4.3.1: The Celery configuration was changed to add memory queue. Please adjust your
startup scripts and CELERY_TASK_ROUTES setting.
Changed in version 4.3.2: The post_update method of addons now takes extra skip_push parameter.

See also:
Generic upgrade instructions

2.3. Upgrading Weblate 193

https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SESSION_COOKIE_AGE
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SESSION_COOKIE_AGE


The Weblate Manual, Release 4.5.3

Upgrade from 4.3 to 4.4

Please follow Generic upgrade instructions in order to perform update.
Notable configuration or dependencies changes:

••• There is a change in INSTALLED_APPS, weblate.configuration has to be added there.
• Django 3.1 is now required.
• In case you are using MySQL or MariaDB, the minimal required versions have increased, see MySQL and

MariaDB.
Changed in version 4.4.1: Monolingual gettext now uses both msgid and msgctxt when present. This will
change identification of translation strings in such files breaking links to Weblate extended data such as scre-
enshots or review states. Please make sure you commit pending changes in such files prior upgrading and it is
recommeded to force loading of affected component using loadpo. Increased minimal required version of
translate-toolkit to address several file format issues.

See also:
Generic upgrade instructions

Upgrade from 4.4 to 4.5

Please follow Generic upgrade instructions in order to perform update.
Notable configuration or dependencies changes:

••• The migration might take considerable time if you had big glossaries.
• Glossaries are now stored as regular components.
• The glossary API is removed, use regular translation API to access glossaries.
• There is a change in INSTALLED_APPS - weblate.metrics should be added.
Changed in version 4.5.1: There is a new dependency on the pyahocorasick module.

See also:
Generic upgrade instructions

2.3.4 Upgrading from Python 2 to Python 3

Weblate no longer supports Python older than 3.5. In case you are still running on older version, please perform
migration to Python 3 first on existing version and upgrade later. See Upgrading from Python 2 to Python 3 in the
Weblate 3.11.1 documentation.

2.3.5 Migrating from other databases to PostgreSQL

If you are running Weblate on other dabatase than PostgreSQL, you should migrate to PostgreSQL as that will be
the only supported database backend in the 4.0 release. The following steps will guide you in migrating your data
between the databases. Please remember to stop both web and Celery servers prior to the migration, otherwise you
might end up with inconsistent data.

194 Kapittel 2. Administrator docs

https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS
https://docs.weblate.org/en/weblate-3.11.1/admin/upgrade.html#upgrading-from-python-2-to-python-3
https://docs.weblate.org/en/weblate-3.11.1/admin/upgrade.html#upgrading-from-python-2-to-python-3


The Weblate Manual, Release 4.5.3

Creating a database in PostgreSQL

It is usually a good idea to run Weblate in a separate database, and separate user account:

• # If PostgreSQL was not installed before, set the main password
sudo -u postgres psql postgres -c "\password postgres"

# Create a database user called "weblate"
sudo -u postgres createuser -D -P weblate

# Create the database "weblate" owned by "weblate"
sudo -u postgres createdb -O weblate weblate

Migrating using Django JSON dumps

The simplest approach for migration is to utilize Django JSON dumps. This works well for smaller installations. On
bigger sites you might want to use pgloader instead, see Migrating to PostgreSQL using pgloader.

1. Add PostgreSQL as additional database connection to the settings.py:

DATABASES = {
"default": {

# Database engine
"ENGINE": "django.db.backends.mysql",
# Database name
"NAME": "weblate",
# Database user
"USER": "weblate",
# Database password
"PASSWORD": "password",
# Set to empty string for localhost
"HOST": "database.example.com",
# Set to empty string for default
"PORT": "",
# Additional database options
"OPTIONS": {

# In case of using an older MySQL server, which has MyISAM as a␣
↪→default storage

# 'init_command': 'SET storage_engine=INNODB',
# Uncomment for MySQL older than 5.7:
# 'init_command': "SET sql_mode='STRICT_TRANS_TABLES'",
# If your server supports it, see the Unicode issues above
"charset": "utf8mb4",
# Change connection timeout in case you get MySQL gone away error:
"connect_timeout": 28800,

},
},
"postgresql": {

# Database engine
"ENGINE": "django.db.backends.postgresql",
# Database name
"NAME": "weblate",
# Database user
"USER": "weblate",
# Database password
"PASSWORD": "password",
# Set to empty string for localhost
"HOST": "database.example.com",
# Set to empty string for default
"PORT": "",

(continues on next page)

2.3. Upgrading Weblate 195



The Weblate Manual, Release 4.5.3

(continued from previous page)
},

}

2. Run migrations and drop any data inserted into the tables:

weblate migrate --database=postgresql
weblate sqlflush --database=postgresql | weblate dbshell --database=postgresql

3. Dump legacy database and import to PostgreSQL

weblate dumpdata --all --output weblate.json
weblate loaddata weblate.json --database=postgresql

4. Adjust DATABASES to use just PostgreSQL database as default, remove legacy connection.
Weblate should be now ready to run from the PostgreSQL database.

Migrating to PostgreSQL using pgloader

The pgloader is a generic migration tool to migrate data to PostgreSQL. You can use it to migrate Weblate database.
1. Adjust your settings.py to use PostgreSQL as a database.
2. Migrate the schema in the PostgreSQL database:

weblate migrate
weblate sqlflush | weblate dbshell

3. Run the pgloader to transfer the data. The following script can be used to migrate the database, but you might
want to learn more about pgloader to understand what it does and tweak it to match your setup:

LOAD DATABASE
FROM mysql://weblate:password@localhost/weblate
INTO postgresql://weblate:password@localhost/weblate

WITH include no drop, truncate, create no tables, create no indexes, no␣
↪→foreign keys, disable triggers, reset sequences, data only

ALTER SCHEMA 'weblate' RENAME TO 'public'
;

2.3.6 Migrating from Pootle

As Weblate was originally written as replacement from Pootle, it is supported to migrate user accounts from Pootle.
You can dump the users from Pootle and import them using importusers.

2.4 Backing up and moving Weblate

2.4.1 Automated backup using BorgBackup

New in version 3.9.
Weblate has built-in support for creating service backups using BorgBackup. Borg creates space-effective encrypted
backups which can be safely stored in the cloud. The backups can be controlled in the management interface from
the Backups tab.
Changed in version 4.4.1: Both PostgreSQL andMySQL/MariaDB databases are included in the automated backups.

196 Kapittel 2. Administrator docs

https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DATABASES
https://pgloader.io/
https://pgloader.io/
https://www.borgbackup.org/


The Weblate Manual, Release 4.5.3

The backups using Borg are incremental and Weblate is configured to keep following backups:
• Daily backups for 14 days back
• Weekly backups for 8 weeks back
• Monthly backups for 6 months back

2.4. Backing up and moving Weblate 197



The Weblate Manual, Release 4.5.3

Borg encryption key

BorgBackup creates encrypted backups and you wouldn’t be able to restore them without the passphrase. The passph-
rase is generated when adding a new backup service and you should copy it and keep it in a secure place.
If you are using Weblate provisioned backup storage, please backup your private SSH key too, as it’s used to access
your backups.
See also:
borg init

2.4.2 Weblate provisioned backup storage

The easiest way of backing up your Weblate instance is purchasing the backup service at weblate.org. This is how
you get it running:

1. Purchase the Backup service on https://weblate.org/support/#backup.
2. Enter the obtained key in the management interface, see Integrating support.
3. Weblate connects to the cloud service and obtains access info for the backups.
4. Turn on the new backup configuration from the Backups tab.
5. Backup your Borg credentials to be able to restore the backups, see Borg encryption key.

Hint: The manual step of turning everything on is there for your safety. Without your consent no data is sent to the
backup repository obtained through the registration process.

2.4.3 Using custom backup storage

You can also use your own storage for the backups. SSH can be used to store backups in the remote destination, the
target server needs to have BorgBackup installed.
See also:
General in the Borg documentation

Local filesystem

It is recommended to specify the absolute path for the local backup, for example /path/to/backup. The directory has
to be writable by the user running Weblate (see Filesystem permissions). If it doesn’t exist, Weblate attempts to create
it but needs the appropriate permissions to do so.

Hint: When running Weblate in Docker, please ensure the backup location is exposed as a volume from the Weblate
container. Otherwise the backups will be discarded by Docker upon restarting the container it is in.
One option is to place backups into an existing volume, for example/app/data/borgbackup. This is an existing
volume in the container.
You can also add a new container for the backups in the Docker Compose file for example by using /borgbackup:

services:
weblate:
volumes:

- /home/weblate/data:/app/data
- /home/weblate/borgbackup:/borgbackup

198 Kapittel 2. Administrator docs

https://www.borgbackup.org/
https://borgbackup.readthedocs.io/en/stable/usage/init.html
https://weblate.org/support/#backup
https://weblate.org/support/#backup
https://www.borgbackup.org/
https://borgbackup.readthedocs.io/en/stable/usage/general.html


The Weblate Manual, Release 4.5.3

The directory where backups will be stored have to be owned by UID 1000, otherwise Weblate won’t be able to write
the backups there.

Remote backups

In order to create the remote backups, you will have to install BorgBackup onto another server that’s accessible via
SSH. Make sure that it accepts the Weblate’s client SSH key, i.e. the one it uses to connect to other servers.

Hint: Weblate provisioned backup storage provides you automated remote backups.

See also:
Weblate SSH key

2.4.4 Restoring from BorgBackup

1. Restore access to your backup repository and prepare your backup passphrase.
2. List all the backups on the server using borg list REPOSITORY.
3. Restore the desired backup to the current directory using borg extract REPOSITORY::ARCHIVE.
4. Restore the database from the SQL dump placed in the backup directory in theWeblate data dir (seeDumped

data for backups).
5. Copy the Weblate configuration (backups/settings.py, see Dumped data for backups) to the correct

location, see Adjusting configuration.
6. Copy the whole restored data dir to the location configured by DATA_DIR.

The Borg session might look like this:

$ borg list /tmp/xxx
Enter passphrase for key /tmp/xxx:
2019-09-26T14:56:08 Thu, 2019-09-26 14:56:08␣
↪→[de0e0f13643635d5090e9896bdaceb92a023050749ad3f3350e788f1a65576a5]
$ borg extract /tmp/xxx::2019-09-26T14:56:08
Enter passphrase for key /tmp/xxx:

See also:
borg list, borg extract

2.4.5 Manual backup

Depending on what you want to save, back up the type of data Weblate stores in each respective place.

Hint: If you are doing the manual backups, you might want to silence Weblate’s warning about a lack
of backups by adding weblate.I028 to SILENCED_SYSTEM_CHECKS in settings.py or WEBLA-
TE_SILENCED_SYSTEM_CHECKS for Docker.

SILENCED_SYSTEM_CHECKS.append("weblate.I028")

2.4. Backing up and moving Weblate 199

https://www.borgbackup.org/
https://borgbackup.readthedocs.io/en/stable/usage/list.html
https://borgbackup.readthedocs.io/en/stable/usage/extract.html
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SILENCED_SYSTEM_CHECKS


The Weblate Manual, Release 4.5.3

Database

The actual storage location depends on your database setup.

Hint: The database is the most important storage. Set up regular backups of your database. Without the database,
all the translations are gone.

Native database backup

The recommended approach is to save a dump of the database using database-native tools such as pg_dump or
mysqldump. It usually performs better than Django backup, and it restores complete tables with all their data.
You can restore this backup in a newer Weblate release, it will perform all the necessary migrations when running in
migrate. Please consult Upgrading Weblate on more detailed info on how to upgrade between versions.

Django database backup

Alternatively, you can back up your database using Django’s dumpdata command. That way the backup is database
agnostic and can be used in case you want to change the database backend.
Prior to restoring the database you need to be running exactly the same Weblate version the backup was made on.
This is necessary as the database structure does change between releases and you would end up corrupting the data
in some way. After installing the same version, run all database migrations using migrate.
Afterwards some entries will already be created in the database and you will have them in the database backup as well.
The recommended approach is to delete such entries manually using the management shell (see Invoking management
commands):

weblate shell
>>> from weblate.auth.models import User
>>> User.objects.get(username='anonymous').delete()

Files

If you have enough backup space, simply back up the whole DATA_DIR. This is a safe bet even if it includes some
files you don’t want. The following sections describe what you should back up and what you can skip in detail.

Dumped data for backups

Stored in DATA_DIR /backups.
Weblate dumps various data here, and you can include these files for more complete backups. The files are updated
daily (requires a running Celery beats server, see Background tasks using Celery). Currently, this includes:

• Weblate settings as settings.py (there is also expanded version in settings-expanded.py).
• PostgreSQL database backup as database.sql.

The database backups are saved as plain text by default, but they can also be compressed or entirely skipped using
DATABASE_BACKUP.

200 Kapittel 2. Administrator docs

https://docs.djangoproject.com/en/stable/ref/django-admin/#django-admin-migrate
https://docs.djangoproject.com/en/stable/ref/django-admin/#django-admin-dumpdata
https://docs.djangoproject.com/en/stable/ref/django-admin/#django-admin-migrate


The Weblate Manual, Release 4.5.3

Version control repositories

Stored in DATA_DIR /vcs.
The version control repositories contain a copy of your upstream repositories with Weblate changes. If you have Push
on commit enabled for all your translation components, all Weblate changes are included upstream. No need to back
up the repositories on the Weblate side as they can be cloned again from the upstream location(s) with no data loss.

SSH and GPG keys

Stored in DATA_DIR /ssh and DATA_DIR /home.
If you are using SSH or GPG keys generated by Weblate, you should back up these locations. Otherwise you will lose
the private keys and you will have to regenerate new ones.

User uploaded files

Stored in DATA_DIR /media.
You should back up all user uploaded files (e.g. Visual context for strings).

Celery tasks

The Celery task queue might contain some info, but is usually not needed for a backup. At most you will lose updates
not yet been processed to translation memory. It is recommended to perform the fulltext or repository update upon
restoration anyhow, so there is no problem in losing these.
See also:
Background tasks using Celery

Command line for manual backup

Using a cron job, you can set up a Bash command to be executed on a daily basis, for example:

$ XZ_OPT="-9" tar -Jcf ~/backup/weblate-backup-$(date -u +%Y-%m-%d_%H%M%S).xz␣
↪→backups vcs ssh home media fonts secret

The string between the quotes afterXZ_OPT allows you to choose your xz options, for instance the amount of memory
used for compression; see https://linux.die.net/man/1/xz
You can adjust the list of folders and files to your needs. To avoid saving the translation memory (in backups folder),
you can use:

$ XZ_OPT="-9" tar -Jcf ~/backup/weblate-backup-$(date -u +%Y-%m-%d_%H%M%S).xz␣
↪→backups/database.sql backups/settings.py vcs ssh home media fonts secret

2.4. Backing up and moving Weblate 201

https://linux.die.net/man/1/xz


The Weblate Manual, Release 4.5.3

2.4.6 Restoring manual backup

1. Restore all data you have backed up.
2. Update all repositories using updategit.

weblate updategit --all

2.4.7 Moving a Weblate installation

Relocate your installation to a different system by following the backing up and restoration instructions above.
See also:
Upgrading from Python 2 to Python 3, Migrating from other databases to PostgreSQL

2.5 Authentication

2.5.1 User registration

The default setup for Weblate is to use python-social-auth, a form on the website to handle registration of new users.
After confirming their e-mail a new user can contribute or authenticate by using one of the third party services.
You can also turn off registration of new users using REGISTRATION_OPEN .
The authentication attempts are subject to Rate limiting.

2.5.2 Authentication backends

The built-in solution of Django is used for authentication, including various social options to do so. Using it means
you can import the user database of other Django-based projects (see Migrating from Pootle).
Django can additionally be set up to authenticate against other means too.
See also:
Authentication settings describes how to configure authentication in the official Docker image.

2.5.3 Social authentication

Thanks to Welcome to Python Social Auth’s documentation!, Weblate support authentication using many third party
services such as GitLab, Ubuntu, Fedora, etc.
Please check their documentation for generic configuration instructions in Django Framework.

Note: By default, Weblate relies on third-party authentication services to provide a validated e-mail address. If some
of the services you want to use don’t support this, please enforce e-mail validation on the Weblate side by configuring
FORCE_EMAIL_VALIDATION for them. For example:

SOCIAL_AUTH_OPENSUSE_FORCE_EMAIL_VALIDATION = True

See also:
Pipeline

Enabling individual backends is quite easy, it’s just a matter of adding an entry to the AUTHENTICA-
TION_BACKENDS setting and possibly adding keys needed for a given authentication method. Please note that

202 Kapittel 2. Administrator docs

https://python-social-auth.readthedocs.io/en/latest/index.html
https://python-social-auth.readthedocs.io/en/latest/configuration/django.html
https://python-social-auth.readthedocs.io/en/latest/pipeline.html
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-AUTHENTICATION_BACKENDS
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-AUTHENTICATION_BACKENDS


The Weblate Manual, Release 4.5.3

some backends do not provide user e-mail by default, you have to request it explicitly, otherwise Weblate will not be
able to properly credit contributions users make.
See also:
Python Social Auth backend

OpenID authentication

For OpenID-based services it’s usually just a matter of enabling them. The following section enables OpenID aut-
hentication for OpenSUSE, Fedora and Ubuntu:

# Authentication configuration
AUTHENTICATION_BACKENDS = (

"social_core.backends.email.EmailAuth",
"social_core.backends.suse.OpenSUSEOpenId",
"social_core.backends.ubuntu.UbuntuOpenId",
"social_core.backends.fedora.FedoraOpenId",
"weblate.accounts.auth.WeblateUserBackend",

)

See also:
OpenID

GitHub authentication

You need to register an OAuth application on GitHub and then tell Weblate all its secrets:

# Authentication configuration
AUTHENTICATION_BACKENDS = (

"social_core.backends.github.GithubOAuth2",
"social_core.backends.email.EmailAuth",
"weblate.accounts.auth.WeblateUserBackend",

)

# Social auth backends setup
SOCIAL_AUTH_GITHUB_KEY = "GitHub Client ID"
SOCIAL_AUTH_GITHUB_SECRET = "GitHub Client Secret"
SOCIAL_AUTH_GITHUB_SCOPE = ["user:email"]

TheGitHub should be configured to have callbackURL ashttps://example.com/accounts/complete/
github/.

Note: Weblate provided callback URL during the authentication includes configured domain. In case you get errors
about URL mismatch, you might want to fix this, see Set correct site domain.

See also:
GitHub

2.5. Authentication 203

https://python-social-auth.readthedocs.io/en/latest/backends/index.html
https://python-social-auth.readthedocs.io/en/latest/backends/openid.html
https://python-social-auth.readthedocs.io/en/latest/backends/github.html


The Weblate Manual, Release 4.5.3

Bitbucket authentication

You need to register an application on Bitbucket and then tell Weblate all its secrets:

# Authentication configuration
AUTHENTICATION_BACKENDS = (

"social_core.backends.bitbucket.BitbucketOAuth",
"social_core.backends.email.EmailAuth",
"weblate.accounts.auth.WeblateUserBackend",

)

# Social auth backends setup
SOCIAL_AUTH_BITBUCKET_KEY = "Bitbucket Client ID"
SOCIAL_AUTH_BITBUCKET_SECRET = "Bitbucket Client Secret"
SOCIAL_AUTH_BITBUCKET_VERIFIED_EMAILS_ONLY = True

Note: Weblate provided callback URL during the authentication includes configured domain. In case you get errors
about URL mismatch, you might want to fix this, see Set correct site domain.

See also:
Bitbucket

Google OAuth 2

To use Google OAuth 2, you need to register an application on <https://console.developers.google.com/> and enable
the Google+ API.
The redirect URL is https://WEBLATE SERVER/accounts/complete/google-oauth2/

# Authentication configuration
AUTHENTICATION_BACKENDS = (

"social_core.backends.google.GoogleOAuth2",
"social_core.backends.email.EmailAuth",
"weblate.accounts.auth.WeblateUserBackend",

)

# Social auth backends setup
SOCIAL_AUTH_GOOGLE_OAUTH2_KEY = "Client ID"
SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET = "Client secret"

Note: Weblate provided callback URL during the authentication includes configured domain. In case you get errors
about URL mismatch, you might want to fix this, see Set correct site domain.

See also:
Google

204 Kapittel 2. Administrator docs

https://python-social-auth.readthedocs.io/en/latest/backends/bitbucket.html
https://console.developers.google.com/
https://python-social-auth.readthedocs.io/en/latest/backends/google.html


The Weblate Manual, Release 4.5.3

Facebook OAuth 2

As per usual with OAuth 2 services, you need to register your application with Facebook. Once this is done, you can
set up Weblate to use it:
The redirect URL is https://WEBLATE SERVER/accounts/complete/facebook/

# Authentication configuration
AUTHENTICATION_BACKENDS = (

"social_core.backends.facebook.FacebookOAuth2",
"social_core.backends.email.EmailAuth",
"weblate.accounts.auth.WeblateUserBackend",

)

# Social auth backends setup
SOCIAL_AUTH_FACEBOOK_KEY = "key"
SOCIAL_AUTH_FACEBOOK_SECRET = "secret"
SOCIAL_AUTH_FACEBOOK_SCOPE = ["email", "public_profile"]

Note: Weblate provided callback URL during the authentication includes configured domain. In case you get errors
about URL mismatch, you might want to fix this, see Set correct site domain.

See also:
Facebook

GitLab OAuth 2

For using GitLab OAuth 2, you need to register an application on <https://gitlab.com/profile/applications>.
The redirect URL is https://WEBLATE SERVER/accounts/complete/gitlab/ and ensure you mark
the read_user scope.

# Authentication configuration
AUTHENTICATION_BACKENDS = (

"social_core.backends.gitlab.GitLabOAuth2",
"social_core.backends.email.EmailAuth",
"weblate.accounts.auth.WeblateUserBackend",

)

# Social auth backends setup
SOCIAL_AUTH_GITLAB_KEY = "Application ID"
SOCIAL_AUTH_GITLAB_SECRET = "Secret"
SOCIAL_AUTH_GITLAB_SCOPE = ["read_user"]

# If you are using your own GitLab
# SOCIAL_AUTH_GITLAB_API_URL = 'https://gitlab.example.com/'

Note: Weblate provided callback URL during the authentication includes configured domain. In case you get errors
about URL mismatch, you might want to fix this, see Set correct site domain.

See also:
GitLab

2.5. Authentication 205

https://python-social-auth.readthedocs.io/en/latest/backends/facebook.html
https://gitlab.com/profile/applications
https://python-social-auth.readthedocs.io/en/latest/backends/gitlab.html


The Weblate Manual, Release 4.5.3

Microsoft Azure Active Directory

Weblate can be configured to use common or specific tenants for authentication.
The redirect URL is https://WEBLATE SERVER/accounts/complete/azuread-oauth2/ for com-
mon andhttps://WEBLATE SERVER/accounts/complete/azuread-tenant-oauth2/ for tenant-
specific authentication.

# Azure AD common

# Authentication configuration
AUTHENTICATION_BACKENDS = (

"social_core.backends.azuread.AzureADOAuth2",
"social_core.backends.email.EmailAuth",
"weblate.accounts.auth.WeblateUserBackend",

)

# OAuth2 keys
SOCIAL_AUTH_AZUREAD_OAUTH2_KEY = ""
SOCIAL_AUTH_AZUREAD_OAUTH2_SECRET = ""

# Azure AD Tenant

# Authentication configuration
AUTHENTICATION_BACKENDS = (

"social_core.backends.azuread_tenant.AzureADTenantOAuth2",
"social_core.backends.email.EmailAuth",
"weblate.accounts.auth.WeblateUserBackend",

)

# OAuth2 keys
SOCIAL_AUTH_AZUREAD_TENANT_OAUTH2_KEY = ""
SOCIAL_AUTH_AZUREAD_TENANT_OAUTH2_SECRET = ""
# Tenant ID
SOCIAL_AUTH_AZUREAD_TENANT_OAUTH2_TENANT_ID = ""

Note: Weblate provided callback URL during the authentication includes configured domain. In case you get errors
about URL mismatch, you might want to fix this, see Set correct site domain.

See also:
Microsoft Azure Active Directory

Slack

For using Slack OAuth 2, you need to register an application on <https://api.slack.com/apps>.
The redirect URL is https://WEBLATE SERVER/accounts/complete/slack/.

# Authentication configuration
AUTHENTICATION_BACKENDS = (

"social_core.backends.slack.SlackOAuth2",
"social_core.backends.email.EmailAuth",
"weblate.accounts.auth.WeblateUserBackend",

)

# Social auth backends setup
SOCIAL_AUTH_SLACK_KEY = ""
SOCIAL_AUTH_SLACK_SECRET = ""

206 Kapittel 2. Administrator docs

https://python-social-auth.readthedocs.io/en/latest/backends/azuread.html
https://api.slack.com/apps


The Weblate Manual, Release 4.5.3

Note: Weblate provided callback URL during the authentication includes configured domain. In case you get errors
about URL mismatch, you might want to fix this, see Set correct site domain.

See also:
Slack

Turning off password authentication

E-mail and password authentication can be turned off by removing social_core.backends.email.
EmailAuth from AUTHENTICATION_BACKENDS. Always keep weblate.accounts.auth.
WeblateUserBackend there, it is needed for core Weblate functionality.

Tip: You can still use password authentication for the admin interface, for users you manually create there. Just
navigate to /admin/.

For example authentication using only the openSUSE Open ID provider can be achieved using the following:

# Authentication configuration
AUTHENTICATION_BACKENDS = (

"social_core.backends.suse.OpenSUSEOpenId",
"weblate.accounts.auth.WeblateUserBackend",

)

2.5.4 Password authentication

The default settings.py comes with a reasonable set of AUTH_PASSWORD_VALIDATORS:
• Passwords can’t be too similar to your other personal info.
• Passwords must contain at least 10 characters.
• Passwords can’t be a commonly used password.
• Passwords can’t be entirely numeric.
• Passwords can’t consist of a single character or only whitespace.
• Passwords can’t match a password you have used in the past.

You can customize this setting to match your password policy.
Additionally you can also install django-zxcvbn-password which gives quite realistic estimates of password difficulty
and allows rejecting passwords below a certain threshold.

2.5.5 SAML authentication

New in version 4.1.1.
Please follow the Python Social Auth instructions for configuration. Notable differences:

• Weblate supports single IDP which has to be called weblate in SOCIAL_AUTH_SAML_ENABLED_IDPS.
• The SAML XML metadata URL is /accounts/metadata/saml/.
• Following settings are automatically filled in: SOCIAL_AUTH_SAML_SP_ENTITY_ID, SOCI-
AL_AUTH_SAML_TECHNICAL_CONTACT, SOCIAL_AUTH_SAML_SUPPORT_CONTACT

Example configuration:

2.5. Authentication 207

https://python-social-auth.readthedocs.io/en/latest/backends/slack.html
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-AUTHENTICATION_BACKENDS
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-AUTH_PASSWORD_VALIDATORS
https://pypi.org/project/django-zxcvbn-password/


The Weblate Manual, Release 4.5.3

# Authentication configuration
AUTHENTICATION_BACKENDS = (

"social_core.backends.email.EmailAuth",
"social_core.backends.saml.SAMLAuth",
"weblate.accounts.auth.WeblateUserBackend",

)

# Social auth backends setup
SOCIAL_AUTH_SAML_SP_PUBLIC_CERT = "-----BEGIN CERTIFICATE-----"
SOCIAL_AUTH_SAML_SP_PRIVATE_KEY = "-----BEGIN PRIVATE KEY-----"
SOCIAL_AUTH_SAML_ENABLED_IDPS = {

"weblate": {
"entity_id": "https://idp.testshib.org/idp/shibboleth",
"url": "https://idp.testshib.org/idp/profile/SAML2/Redirect/SSO",
"x509cert": "MIIEDjCCAvagAwIBAgIBADA ... 8Bbnl+ev0peYzxFyF5sQA==",
"attr_name": "full_name",
"attr_username": "username",
"attr_email": "email",

}
}

See also:
Configuring SAML in Docker, SAML

2.5.6 LDAP authentication

LDAP authentication can be best achieved using the django-auth-ldap package. You can install it via usual means:

# Using PyPI
pip install django-auth-ldap>=1.3.0

# Using apt-get
apt-get install python-django-auth-ldap

Warning: With django-auth-ldap older than 1.3.0 the Automatic group assignments will not work properly for
newly created users.

Note: There are some incompatibilities in the Python LDAP 3.1.0 module, which might prevent you from using that
version. If you get error AttributeError: ’module’ object has no attribute ’_trace_level’, downgrading python-ldap to
3.0.0 might help.

Once you have the package installed, you can hook it into the Django authentication:

# Add LDAP backed, keep Django one if you want to be able to sign in
# even without LDAP for admin account
AUTHENTICATION_BACKENDS = (

"django_auth_ldap.backend.LDAPBackend",
"weblate.accounts.auth.WeblateUserBackend",

)

# LDAP server address
AUTH_LDAP_SERVER_URI = "ldaps://ldap.example.net"

# DN to use for authentication
AUTH_LDAP_USER_DN_TEMPLATE = "cn=%(user)s,o=Example"

(continues on next page)

208 Kapittel 2. Administrator docs

https://python-social-auth.readthedocs.io/en/latest/backends/saml.html
https://github.com/python-ldap/python-ldap/issues/226


The Weblate Manual, Release 4.5.3

(continued from previous page)
# Depending on your LDAP server, you might use a different DN
# like:
# AUTH_LDAP_USER_DN_TEMPLATE = 'ou=users,dc=example,dc=com'

# List of attributes to import from LDAP upon sign in
# Weblate stores full name of the user in the full_name attribute
AUTH_LDAP_USER_ATTR_MAP = {

"full_name": "name",
# Use the following if your LDAP server does not have full name
# Weblate will merge them later
# 'first_name': 'givenName',
# 'last_name': 'sn',
# Email is required for Weblate (used in VCS commits)
"email": "mail",

}

# Hide the registration form
REGISTRATION_OPEN = False

Note: You should remove 'social_core.backends.email.EmailAuth' from the AUTHENTICA-
TION_BACKENDS setting, otherwise users will be able to set their password in Weblate, and authenticate using
that. Keeping 'weblate.accounts.auth.WeblateUserBackend' is still needed in order to make perm-
issions and facilitate anonymous users. It will also allow you to sign in using a local admin account, if you have created
it (e.g. by using createadmin).

Using bind password

If you can not use direct bind for authentication, you will need to use search, and provide a user to bind for the search.
For example:

import ldap
from django_auth_ldap.config import LDAPSearch

AUTH_LDAP_BIND_DN = ""
AUTH_LDAP_BIND_PASSWORD = ""
AUTH_LDAP_USER_SEARCH = LDAPSearch(

"ou=users,dc=example,dc=com", ldap.SCOPE_SUBTREE, "(uid=%(user)s)"
)

Active Directory integration

import ldap
from django_auth_ldap.config import LDAPSearch, NestedActiveDirectoryGroupType

AUTH_LDAP_BIND_DN = "CN=ldap,CN=Users,DC=example,DC=com"
AUTH_LDAP_BIND_PASSWORD = "password"

# User and group search objects and types
AUTH_LDAP_USER_SEARCH = LDAPSearch(

"CN=Users,DC=example,DC=com", ldap.SCOPE_SUBTREE, "(sAMAccountName=%(user)s)"
)

# Make selected group a superuser in Weblate
AUTH_LDAP_USER_FLAGS_BY_GROUP = {

# is_superuser means user has all permissions

(continues on next page)

2.5. Authentication 209

https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-AUTHENTICATION_BACKENDS
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-AUTHENTICATION_BACKENDS


The Weblate Manual, Release 4.5.3

(continued from previous page)
"is_superuser": "CN=weblate_AdminUsers,OU=Groups,DC=example,DC=com",

}

# Map groups from AD to Weblate
AUTH_LDAP_GROUP_SEARCH = LDAPSearch(

"OU=Groups,DC=example,DC=com", ldap.SCOPE_SUBTREE, "(objectClass=group)"
)
AUTH_LDAP_GROUP_TYPE = NestedActiveDirectoryGroupType()
AUTH_LDAP_FIND_GROUP_PERMS = True

# Optionally enable group mirroring from LDAP to Weblate
# AUTH_LDAP_MIRROR_GROUPS = True

See also:
Django Authentication Using LDAP, Authentication

2.5.7 CAS authentication

CAS authentication can be achieved using a package such as django-cas-ng.
Step one is disclosing the e-mail field of the user via CAS. This has to be configured on the CAS server itself, and
requires you run at least CAS v2 since CAS v1 doesn’t support attributes at all.
Step two is updating Weblate to use your CAS server and attributes.
To install django-cas-ng:

pip install django-cas-ng

Once you have the package installed you can hook it up to the Django authentication system by modifying the
settings.py file:

# Add CAS backed, keep the Django one if you want to be able to sign in
# even without LDAP for the admin account
AUTHENTICATION_BACKENDS = (

"django_cas_ng.backends.CASBackend",
"weblate.accounts.auth.WeblateUserBackend",

)

# CAS server address
CAS_SERVER_URL = "https://cas.example.net/cas/"

# Add django_cas_ng somewhere in the list of INSTALLED_APPS
INSTALLED_APPS = (..., "django_cas_ng")

Finally, a signal can be used to map the e-mail field to the user object. For this to work you have to import the signal
from the django-cas-ng package and connect your code with this signal. Doing this in settings file can cause problems,
therefore it’s suggested to put it:

• In your app config’s django.apps.AppConfig.ready() method
• In the project’s urls.py file (when no models exist)

from django_cas_ng.signals import cas_user_authenticated
from django.dispatch import receiver

@receiver(cas_user_authenticated)
def update_user_email_address(sender, user=None, attributes=None, **kwargs):

# If your CAS server does not always include the email attribute

(continues on next page)

210 Kapittel 2. Administrator docs

https://django-auth-ldap.readthedocs.io/en/latest/index.html
https://django-auth-ldap.readthedocs.io/en/latest/authentication.html
https://docs.djangoproject.com/en/stable/ref/applications/#django.apps.AppConfig.ready


The Weblate Manual, Release 4.5.3

(continued from previous page)
# you can wrap the next two lines of code in a try/catch block.
user.email = attributes["email"]
user.save()

See also:
Django CAS NG

2.5.8 Configuring third party Django authentication

Generally any Django authentication plugin should work with Weblate. Just follow the instructions for the plugin, just
remember to keep the Weblate user backend installed.
See also:
LDAP authentication, CAS authentication

Typically the installation will consist of adding an authentication backend to AUTHENTICATION_BACKENDS and
installing an authentication app (if there is any) into INSTALLED_APPS:

AUTHENTICATION_BACKENDS = (
# Add authentication backend here
"weblate.accounts.auth.WeblateUserBackend",

)

INSTALLED_APPS += (
# Install authentication app here

)

2.6 Access control

Weblate comes with a fine-grained privilege system to assign user permissions for the whole instance, or in a limited
scope.
Changed in version 3.0: Before Weblate 3.0, the privilege system was based on Django privilege system only, but is
specifically built for Weblate now. If using anything older, please consult the documentation for the specific version
you are using.

2.6.1 Simple access control

If you are not administrating the whole Weblate installation and just have access to manage certain projects (like on
Hosted Weblate), your access control management options are limited to following settings. If you don’t need any
complex setup, those are sufficient for you.

Project access control

Note: This feature is unavailable for the projects running Libre plan on Hosted Weblate.

You can limit user’s access to individual projects by selecting a different Access control setting. Available options are:
Public Publicly visible, translatable for all logged-in users.
Protected Publicly visible, but translatable only for selected users.
Private Visible and translatable only for selected users.

2.6. Access control 211

https://github.com/django-cas-ng/django-cas-ng
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-AUTHENTICATION_BACKENDS
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS
https://hosted.weblate.org/


The Weblate Manual, Release 4.5.3

Custom User management features will be disabled; by default all users are forbidden to performed any actions on
the project. You will have to set up all the permissions using Custom access control.

Access control can be changed in the Access tab of the configuration (Manage ↓ Settings) of each respective project.

The default value can be changed by DEFAULT_ACCESS_CONTROL.

Note: Even for Private projects, some info about your project will be exposed: statistics and language summary for
the whole instance will include counts for all projects despite the access control setting. Your project name and other
information can’t be revealed through this.

Note: The actual set of permissions available for users by default in Public, Protected, and Private projects can be
redefined by Weblate instance administrator using custom settings.

Warning: By turning onCustom access control,Weblate will remove all special groups it has created for a selected
project. If you are doing this without admin permission for the whole Weblate instance, you will instantly lose
your access to manage the project.

See also:
Access control

Managing per-project access control

Users with the Manage project access privilege (see List of privileges) can manage users in projects with non-Custom
access control. They can assign users to one of the following groups.
For Public, Protected and Private projects:
Administration Includes all permissions available for the project.
Review (only if review workflow is turned on) Can approve translations during review.
For Protected and Private projects only:
Translate Can translate the project and upload translations made offline.
Sources Can edit source strings (if allowed in the project settings) and source string info.

212 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

Languages Can manage translated languages (add or remove translations).
Glossary Can manage glossary (add or remove entries, also upload).
Memory Can manage translation memory.
Screenshots Can manage screenshots (add or remove them, and associate them to source strings).
VCS Can manage VCS and access the exported repository.
Billing Can access billing info and settings (see Billing).
Unfortunately, it’s not possible to change this predefined set of groups for now. Also this way it’s not possible to give
just some additional permissions to all users.

Note: For non-Custom access control an instance of each group described above is actually defined for each project.
The actual name of those groups will be Project@Group, also displayed in the Django admin interface this way.
Although they can’t be edited from Weblate user-interface.

These features are available on the Access control page, which can be accessed from the project’s menu Manage ↓
Users.

2.6. Access control 213



The Weblate Manual, Release 4.5.3

New user invitation

Also, besides adding an existing user to the project, it is possible to invite new ones. Any new user will be created
immediately, but the account will remain inactive until signing in with a link in the invitation sent via an e-mail. It is
not required to have any site-wide privileges in order to do so, access management permission on the project’s scope
(e.g. a membership in the Administration group) would be sufficient.

Hint: If the invited user missed the validity of the invitation, they can set their password using invited e-mail address
in the password reset form as the account is created already.

New in version 3.11: It is possible to resend the e-mail for user invitations (invalidating any previously sent invitation).
The same kind of invitations are available site-wide from the management interface on the Users tab.

Per-project permission management

You can set your projects to Protected or Private, and manage users per-project in the Weblate user interface.
By default this prevents Weblate from granting access provided by Users and Viewers default groups due to these
groups’ own configuration. This doesn’t prevent you from granting permissions to those projects site-wide by altering
default groups, creating a new one, or creating additional custom settings for individual component as described in
Custom access control below.
One of the main benefits of managing permissions through the Weblate user interface is that you can delegate it to
other users without giving them the superuser privilege. In order to do so, add them to the Administration group of
the project.

2.6.2 Custom access control

Note: This feature is unavailable for the projects running Libre plan on Hosted Weblate.

The permission system is based on groups and roles, where roles define a set of permissions, and groups link them to
users and translations, see Users, roles, groups, and permissions for more details.
The most powerful features of the Weblate’s access control system for now are available only through the Django
admin interface. You can use it to manage permissions of any project. You don’t necessarily have to switch it to
Custom access control to utilize it. However you must have superuser privileges in order to use it.
If you are not interested in details of implementation, and just want to create a simple-enough configuration based on
the defaults, or don’t have a site-wide access to the whole Weblate installation (like on Hosted Weblate), please refer
to the Simple access control section.

Common setups

This section contains an overview of some common configurations you may be interested in.

214 Kapittel 2. Administrator docs

https://hosted.weblate.org/


The Weblate Manual, Release 4.5.3

Site-wide permission management

To manage permissions for a whole instance at once, add users to appropriate default groups:
• Users (this is done by default by the automatic group assignment).
• Reviewers (if you are using review workflow with dedicated reviewers).
• Managers (if you want to delegate most of the management operations to somebody else).

You should keep all projects configured as Public (see Project access control), otherwise the site-wide permissions
provided by membership in the Users and Reviewers groups won’t have any effect.
You may also grant some additional permissions of your choice to the default groups. For example, you may want to
give a permission to manage screenshots to all the Users.
You can define some new custom groups as well. If you want to keep managing your permissions site-wide for these
groups, choose an appropriate value for the Project selection (e.g. All projects or All public projects).

Custom permissions for languages, components or projects

You can create your own dedicated groups to manage permissions for distinct objects such as languages, components,
and projects. Although these groups can only grant additional privileges, you can’t revoke any permission granted by
site-wide or per-project groups by adding another custom group.
Example:

If you want (for whatever reason) to allow translation to a specific language (lets say Czech) only to a
closed set of reliable translators while keeping translations to other languages public, you will have to:
1. Remove the permission to translate Czech from all the users. In the default configuration this can

be done by altering the Users default group.

Table 1: Group Users
Language selection As defined
Languages All but Czech

2. Add a dedicated group for Czech translators.

Table 2: Group Czech translators
Roles Power users
Project selection All public projects
Language selection As defined
Languages Czech

3. Add users you wish to give the permissions to into this group.
As you can see, permissions management this way is powerful, but can be quite a tedious job. You can’t delegate it
to another user, unless granting superuser permissions.

2.6. Access control 215



The Weblate Manual, Release 4.5.3

Users, roles, groups, and permissions

The authentication models consist of several objects:
Permission Individual permission defined by Weblate. Permissions cannot be assigned to users. This can only be

done through assignment of roles.
Role A role defines a set of permissions. This allows reuse of these sets in several places, making the administration

easier.
User User can belong to several groups.
Group Group connect roles, users, and authentication objects (projects, languages, and component lists).

User

Group

Role Project Language Components Component list

Permission

Note: A group can have no roles assigned to it, in that case access to browse the project by anyone is assumed (see
below).

Access for browse to a project

A user has to be a member of a group linked to the project, or any component inside that project. Having membership
is enough, no specific permissions are needed to browse the project (this is used in the default Viewers group, see List
of groups).

Access for browse to a component

A user can access unrestricted components once able to access the components’ project (and will have all the permis-
sions the user was granted for the project). With Restricted access turned on, access to the component requires explicit
permissions for the component (or a component list the component is in).

216 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

Scope of groups

The scope of the permission assigned by the roles in the groups are applied by the following rules:
• If the group specifies any Component list, all the permissions given to members of that group are granted for
all the components in the component lists attached to the group, and an access with no additional permissions
is granted for all the projects these components are in. Components and Projects are ignored.

• If the group specifies any Components, all the permissions given to the members of that group are granted for
all the components attached to the group, and an access with no additional permissions is granted for all the
projects these components are in. Projects are ignored.

• Otherwise, if the group specifies any Projects, either by directly listing them or by having Selected projects set
to a value like All public, all those permissions are applied to all the projects, which effectively grants the same
permissions to access all projects unrestricted components.

• The restrictions imposed by a group’s Languages are applied separately, when it’s verified if a user has an access
to perform certain actions. Namely, it’s applied only to actions directly related to the translation process itself
like reviewing, saving translations, adding suggestions, etc.

Hint: Use Language selection or Project selection to automate inclusion of all languages or projects.

Example:
Let’s say there is a project foowith the components: foo/bar and foo/baz and the following group:

Table 3: Group Spanish Admin-Reviewers
Roles Review Strings, Manage repository
Components foo/bar
Languages Spanish

Members of that group will have following permissions (assuming the default role settings):
• General (browsing) access to the whole project foo including both components in it: foo/bar
and foo/baz.

• Review strings in foo/bar Spanish translation (not elsewhere).
• Manage VCS for the whole foo/bar repository e.g. commit pending changes made by translators
for all languages.

Automatic group assignments

On the bottom of theGroup editing page in theDjango admin interface, you can specify Automatic group assignments,
which is a list of regular expressions used to automatically assign newly created users to a group based on their e-mail
addresses. This assignment only happens upon account creation.
The most common use-case for the feature is to assign all new users to some default group. In order to do so, you will
probably want to keep the default value (^.*$) in the regular expression field. Another use-case for this option might
be to give some additional privileges to employees of your company by default. Assuming all of them use corporate
e-mail addresses on your domain, this can be accomplished with an expression like ^.*@mycompany.com.

Note: Automatic group assignment to Users and Viewers is always recreated when upgrading from one Weblate
version to another. If you want to turn it off, set the regular expression to ^$ (which won’t match anything).

Note: As for now, there is no way to bulk-add already existing users to some group via the user interface. For that,
you may resort to using the REST API.

2.6. Access control 217



The Weblate Manual, Release 4.5.3

Default groups and roles

After installation, a default set of groups is created (see List of groups).
These roles and groups are created upon installation. The built-in roles are always kept up to date by the database
migration when upgrading. You can’t actually change them, please define a new role if you want to define your own
set of permissions.

List of privileges

Billing (see Billing) View billing info [Administration, Billing]
Changes Download changes [Administration]
Comments Post comment [Administration, Edit source, Power user, Review strings, Translate]

Delete comment [Administration]
Component Edit component settings [Administration]

Lock component, preventing translations [Administration]
Glossary Add glossary entry [Administration, Manage glossary, Power user]

Edit glossary entry [Administration, Manage glossary, Power user]
Delete glossary entry [Administration, Manage glossary, Power user]
Upload glossary entries [Administration, Manage glossary, Power user]

Automatic suggestions Use automatic suggestions [Administration, Edit source, Power user, Review strings, Trans-
late]

Translation memory Edit translation memory [Administration, Manage translation memory]
Delete translation memory [Administration, Manage translation memory]

Projects Edit project settings [Administration]
Manage project access [Administration]

Reports Download reports [Administration]
Screenshots Add screenshot [Administration, Manage screenshots]

Edit screenshot [Administration, Manage screenshots]
Delete screenshot [Administration, Manage screenshots]

Source strings Edit additional string info [Administration, Edit source]
Strings Add new string [Administration]

Remove a string [Administration]
Ignore failing check [Administration, Edit source, Power user, Review strings, Translate]
Edit strings [Administration, Edit source, Power user, Review strings, Translate]
Review strings [Administration, Review strings]
Edit string when suggestions are enforced [Administration, Review strings]
Edit source strings [Administration, Edit source, Power user]

Suggestions Accept suggestion [Administration, Edit source, Power user, Review strings, Translate]
Add suggestion [Administration, Edit source, Add suggestion, Power user, Review strings, Translate]
Delete suggestion [Administration, Power user]
Vote on suggestion [Administration, Edit source, Power user, Review strings, Translate]

218 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

Translations Add language for translation [Administration, Power user, Manage languages]
Perform automatic translation [Administration, Manage languages]
Delete existing translation [Administration, Manage languages]
Add several languages for translation [Administration, Manage languages]

Uploads Define author of uploaded translation [Administration]
Overwrite existing strings with upload [Administration, Edit source, Power user, Review strings, Translate]
Upload translations [Administration, Edit source, Power user, Review strings, Translate]

VCS Access the internal repository [Administration, Access repository, Power user, Manage repository]
Commit changes to the internal repository [Administration, Manage repository]
Push change from the internal repository [Administration, Manage repository]
Reset changes in the internal repository [Administration, Manage repository]
View upstream repository location [Administration, Access repository, Power user, Manage repository]
Update the internal repository [Administration, Manage repository]

Site wide privileges Use management interface
Add new projects
Add language definitions
Manage language definitions
Manage groups
Manage users
Manage roles
Manage announcements
Manage translation memory
Manage component lists

Note: Site-wide privileges are not granted to any default role. These are powerful and quite close to superuser status.
Most of them affect all projects in your Weblate installation.

List of groups

The following groups are created upon installation (or after executing setupgroups) and you are free to modify
them. The migration will, however, re-create them if you delete or rename them.
Guests Defines permissions for non-authenticated users.

This group only contains anonymous users (see ANONYMOUS_USER_NAME).
You can remove roles from this group to limit permissions for non-authenticated users.
Default roles: Add suggestion, Access repository

Viewers This role ensures visibility of public projects for all users. By default, all users are members of this group.
By default, automatic group assignment makes all new accounts members of this group when they join.
Default roles: none

2.6. Access control 219



The Weblate Manual, Release 4.5.3

Users Default group for all users.
By default, automatic group assignment makes all new accounts members of this group when they join.
Default roles: Power user

Reviewers Group for reviewers (see Translation workflows).
Default roles: Review strings

Managers Group for administrators.
Default roles: Administration

Warning: Never remove the predefined Weblate groups and users as this can lead to unexpected problems! If
you have no use for them, you can removing all their privileges instead.

2.6.3 Additional access restrictions

If you want to use your Weblate installation in a less public manner, i.e. allow new users on an invitational basis only,
it can be done by configuring Weblate in such a way that only known users have an access to it. In order to do so, you
can set REGISTRATION_OPEN to False to prevent registrations of any new users, and set REQUIRE_LOGIN
to /.* to require logging-in to access all the site pages. This is basically the way to lock your Weblate installation.

Hint: You can use built-in invitations to add new users.

2.7 Translation projects

2.7.1 Translation organization

Weblate organizes translatable VCS content of project/components into a tree-like structure.
• The bottom level object is Project configuration, which should hold all translations belonging together (for
example translation of an application in several versions and/or accompanying documentation).

• On the level above, Component configuration, which is actually the component to translate, you define the VCS
repository to use, and the mask of files to translate.

• Above Component configuration there are individual translations, handled automatically by Weblate as trans-
lation files (which match File mask defined in Component configuration) appear in the VCS repository.

Weblate supports a wide range of translation formats (both bilingual and monolingual ones) supported by Translate
Toolkit, see Supported file formats.

Note: You can share cloned VCS repositories usingWeblate internal URLs. Using this feature is highly recommended
when you have many components sharing the same VCS. It improves performance and decreases required disk space.

220 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

2.7.2 Adding translation projects and components

Changed in version 3.2: An interface for adding projects and components is included, and you no longer have to use
The Django admin interface.
Changed in version 3.4: The process of adding components is now multi staged, with automated discovery of most
parameters.
Based on your permissions, new translation projects and components can be created. It is always permitted for users
with the Add new projects permission, and if your instance uses billing (e.g. like https://hosted.weblate.org/ see Bil-
ling), you can also create those based on your plans allowance from the user account that manages billing.
You can view your current billing plan on a separate page:

The project creation can be initiated from there, or using the menu in the navigation bar, filling in basic info about
the translation project to complete addition of it:

2.7. Translation projects 221

https://hosted.weblate.org/


The Weblate Manual, Release 4.5.3

After creating the project, you are taken directly to the project page:

Creating a new translation component can be initiated via a single click there. The process of creating a compo-
nent is multi-staged and automatically detects most translation parameters. There are several approaches to creating
component:
From version control Creates component from remote version control repository.
From existing component Creates additional component to existing one by choosing different files.
Additional branch Creates additional component to existing one, just for different branch.
Upload translations files Upload translation files to Weblate in case you do not have version control or do not want

to integrate it with Weblate. You can later update the content using the web interface orWeblate’s REST API.
Translate document Upload single document and translate that.
Start from scratch Create blank translation project and add strings manually.

222 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

Once you have existing translation components, you can also easily add new ones for additional files or branches using
same repository.
First you need to fill in name and repository location:

On the next page, you are presented with a list of discovered translatable resources:

As a last step, you review the translation component info and fill in optional details:

2.7. Translation projects 223



The Weblate Manual, Release 4.5.3

224 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

See also:
The Django admin interface, Project configuration, Component configuration

2.7.3 Project configuration

Create a translation project and then add a new component for translation in it. The project is like a shelf, in which real
translations are stacked. All components in the same project share suggestions and their dictionary; the translations
are also automatically propagated through all components in a single project (unless turned off in the component
configuration), see Translation Memory.
See also:
/devel/integration
These basic attributes set up and inform translators of a project:

Project name

Verbose project name, used to display the project name.

URL slug

Project name suitable for URLs.

Project website

URL where translators can find more info about the project.
This is a required parameter unless turned off by WEBSITE_REQUIRED.

Translation instructions

URL to more site with more detailed instructions for translators.

Set «Language-Team» header

Whether Weblate should manage the Language-Team header (this is a GNU gettext only feature right now).

Use shared translation memory

Whether to use shared translation memory, see Shared translation memory for more details.
Default value is determined by DEFAULT_SHARED_TM .

2.7. Translation projects 225



The Weblate Manual, Release 4.5.3

Contribute to shared translation memory

Whether to contribute to shared translation memory, see Shared translation memory for more details.
Default value is determined by DEFAULT_SHARED_TM .

Access control

Configure per project access control, see Project access control for more details.
Default value can be changed by DEFAULT_ACCESS_CONTROL.

Enable reviews

Enable review workflow for translations, see Dedicated reviewers.

Enable source reviews

Enable review workflow for source strings, see Source strings reviews.
See also:
report-source, Comments

Enable hooks

Whether unauthenticated Notification hooks are to be used for this repository.
See also:
Intermediate language file, Quality gateway for the source strings, Bilingual and monolingual formats, Language defi-
nitions

Language aliases

Define language codes mapping when importing translations into Weblate. Use this when language codes are incon-
sistent in your repositories and you want to get a consistent view in Weblate or in case you want to use non-standard
naming of your translation files.
The typical use case might be mapping American English to English: en_US:en
Multiple mappings to be separated by comma: en_GB:en,en_US:en
Using non standard code: ia_FOO:ia

Hint: The language codes are mapped when matching the translation files and the matches are case sensitive, so
make sure you use the source language codes in same form as used in the filenames.

See also:
Parsing language codes

226 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

2.7.4 Component configuration

A component is a grouping of something for translation. You enter a VCS repository location and file mask for which
files you want translated, and Weblate automatically fetches from this VCS, and finds all matching translatable files.
See also:
/devel/integration
You can find some examples of typical configurations in the Supported file formats.

Note: It is recommended to keep translation components to a reasonable size - split the translation by anything that
makes sense in your case (individual apps or addons, book chapters or websites).
Weblate easily handles translations with 10000s of strings, but it is harder to split work and coordinate among trans-
lators with such large translation components.

Should the language definition for a translation be missing, an empty definition is created and named as «cs_CZ (ge-
nerated)». You should adjust the definition and report this back to the Weblate authors, so that the missing languages
can be included in next release.
The component contains all important parameters for working with the VCS, and for getting translations out of it:

Component name

Verbose component name, used to display the component name.

Component slug

Component name suitable for URLs.

Component project

Project configuration where the component belongs.

Version control system

VCS to use, see Version control integration for details.
See also:
Pushing changes from Weblate

Source code repository

VCS repository used to pull changes.
See also:
See Accessing repositories for more details on specifying URLs.

Hint: This can either be a real VCS URL or weblate://project/component indicating that the repository
should be shared with another component. SeeWeblate internal URLs for more details.

2.7. Translation projects 227



The Weblate Manual, Release 4.5.3

Repository push URL

Repository URL used for pushing. This setting is used only for Git and Mercurial and push support is turned off for
these when this is empty.
See also:
See Accessing repositories for more details on how to specify a repository URL and Pushing changes from Weblate
for more details on pushing changes from Weblate.

Repository browser

URL of repository browser used to display source files (location of used messages). When empty, no such links will
be generated. You can use Template markup.
For example on GitHub, use something like: https://github.com/WeblateOrg/hello/blob/
{{branch}}/{{filename}}#L{{line}}

In case your paths are relative to different folder, you might want to strip leading directory by parent-
dir filter (see Template markup): https://github.com/WeblateOrg/hello/blob/{{branch}}/
{{filename|parentdir}}#L{{line}}

Exported repository URL

URL where changes made by Weblate are exported. This is important when Continuous localization is not used, or
when there is a need to manually merge changes. You can use Git exporter to automate this for Git repositories.

Repository branch

Which branch to checkout from the VCS, and where to look for translations.

Push branch

Branch for pushing changes, leave empty to use Repository branch.

Note: This is currently only supported for Git, GitLab and GitHub, it is ignored for other VCS integrations.

See also:
Pushing changes from Weblate

File mask

Mask of files to translate, including path. It should include one «*» replacing language code (see Language definitions
for info on how this is processed). In case your repository contains more than one translation file (e.g. more gettext
domains), you need to create a component for each of them.
For example po/*.po or locale/*/LC_MESSAGES/django.po.
In case your filename contains special characters such as [, ], these need to be escaped as [[] or []].
See also:
Bilingual and monolingual formats,What does mean «There are more files for the single language (en)»?

228 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

Monolingual base language file

Base file containing string definitions for Monolingual components.
See also:
Bilingual and monolingual formats,What does mean «There are more files for the single language (en)»?

Edit base file

Whether to allow editing the base file for Monolingual components.

Intermediate language file

Intermediate language file forMonolingual components. In most cases this is a translation file provided by developers
and is used when creating actual source strings.
When set, the source strings are based on this file, but all other languages are based on Monolingual base language
file. In case the string is not translated into the source langugage, translating to other languages is prohibited. This
provides Quality gateway for the source strings.
See also:
Quality gateway for the source strings, Bilingual and monolingual formats,What does mean «There are more files for
the single language (en)»?

Template for new translations

Base file used to generate new translations, e.g. .pot file with gettext.

Hint: In many monolingual formats Weblate starts with blank file by default. Use this in case you want to have all
strings present with empty value when creating new translation.

See also:
adding-translation, Adding new translations, Adding new translation, Bilingual and monolingual formats, What does
mean «There are more files for the single language (en)»?

File format

Translation file format, see also Supported file formats.

Source string bug reporting address

Email address used for reporting upstream bugs. This address will also receive notification about any source string
comments made in Weblate.

2.7. Translation projects 229



The Weblate Manual, Release 4.5.3

Allow translation propagation

You can turn off propagation of translations to this component from other components within same project. This
really depends on what you are translating, sometimes it’s desirable to have make use of a translation more than once.
It’s usually a good idea to turn this off for monolingual translations, unless you are using the same IDs across the
whole project.
Default value can be changed by DEFAULT_TRANSLATION_PROPAGATION .

Enable suggestions

Whether translation suggestions are accepted for this component.

Suggestion voting

Turns on vote casting for suggestions, see Suggestion voting.

Autoaccept suggestions

Automatically accept voted suggestions, see Suggestion voting.

Translation flags

Customization of quality checks and other Weblate behavior, see Customizing behavior using flags.

Enforced checks

List of checks which can not be ignored, see Enforcing checks.

Note: Enforcing the check does not automatically enable it, you still should enabled it using Customizing behavior
using flags in Translation flags or Additional info on source strings.

Translation license

License of the translation (does not need to be the same as the source code license).

Contributor agreement

User agreement which needs to be approved before a user can translate this component.

Adding new translation

How to handle requests for creation of new languages. Available options:
Contact maintainers User can select desired language and the project maintainers will receive a notification about

this. It is up to them to add (or not) the language to the repository.
Point to translation instructions URL User is presented a link to page which describes process of starting new

translations. Use this in case more formal process is desired (for example forming a team of people before
starting actual translation).

230 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

Create new language file User can select language and Weblate automatically creates the file for it and translation
can begin.

Disable adding new translations There will be no option for user to start new translation.

Hint: The project admins can add new translations even if it is disabled here when it is possible (either Template for
new translations or the file format supports starting from an empty file).

See also:
adding-translation, Adding new translations

Manage strings

New in version 4.5.
Configures whether users inWeblate will be allowed to add new strings and remove existing ones. Adjust this to match
your localization workflow - how the new strings are supposed to be introduced.
For bilingual formats, the strings are typically extracted from the source code (for example by using xgettext)
and adding new strings in Weblate should be disabled (they would be discarded next time you update the translation
files). In Weblate you can manage strings for every translation and it does not enforce the strings in all translations to
be consistent.
For monolingual formats, the strings are managed only on source language and are automatically added or removed
in the translations. The strings appear in the translation files once they are translated.
See also:
Bilingual and monolingual formats, adding-new-strings, POST /api/translations/
(string:project)/(string:component)/(string:language)/units/

Language code style

Customize language code used to generate the filename for translations created by Weblate.
See also:
Adding new translations, Language code, Parsing language codes

Merge style

You can configure how updates from the upstream repository are handled. This might not be supported for some
VCSs. See Merge or rebase for more details.
Default value can be changed by DEFAULT_MERGE_STYLE.

Commit, add, delete, merge and addon messages

Message used when committing a translation, see Template markup.
Default value can be changed by DEFAULT_ADD_MESSAGE, DEFAULT_ADDON_MESSAGE, DE-
FAULT_COMMIT_MESSAGE, DEFAULT_DELETE_MESSAGE, DEFAULT_MERGE_MESSAGE.

2.7. Translation projects 231



The Weblate Manual, Release 4.5.3

Push on commit

Whether committed changes should be automatically pushed to the upstream repository. When enabled, the push is
initiated once Weblate commits changes to its underlying repository (see Lazy commits). To actually enable pushing
Repository push URL has to be configured as well.

Age of changes to commit

Sets how old (in hours) changes have to be before they are committed by background task or the commit_pending
management command. All changes in a component are committed once there is at least one change older than this
period.
Default value can be changed by COMMIT_PENDING_HOURS.

Hint: There are other situations where pending changes might be committed, see Lazy commits.

Lock on error

Locks the component (and linked components, seeWeblate internal URLs) upon the first failed push or merge into its
upstream repository, or pull from it. This avoids adding another conflicts, which would have to be resolved manually.
The component will be automatically unlocked once there are no repository errors left.

Source language

Language used for source strings. Change this if you are translating from something else than English.

Hint: In case you are translating bilingual files from English, but want to be able to do fixes in the English translation
as well, choose English (Developer) as a source language to avoid conflict between the name of the source language
and the existing translation.
For monolingual translations, you can use intermediate translation in this case, see Intermediate language file.

Language filter

Regular expression used to filter the translation when scanning for filemask. It can be used to limit the list of languages
managed by Weblate.

Note: You need to list language codes as they appear in the filename.

Some examples of filtering:

Filter description Regular expression
Selected languages only ^(cs|de|es)$
Exclude languages ^(?!(it|fr)$).+$
Filter two letter codes only ^..$
Exclude non language files ^(?!(blank)$).+$
Include all files (default) ^[^.]+$

232 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

Variants regular expression

Regular expression used to determine the variants of a string, see variants.

Note: Most of the fields can be edited by project owners or managers, in the Weblate interface.

See also:
Does Weblate support other VCSes than Git and Mercurial?, alerts

Priority

Components with higher priority are offered first to translators.

Restricted access

By default the component is visible to anybody who has access to the project, even if the person can not perform any
changes in the component. This makes it easier to keep translation consistency within the project.
Restricting access at a component, or component-list level takes over access permission to a component, regardless
of project-level permissions. You will have to grant access to it explicitly. This can be done through granting access
to a new user group and putting users in it, or using the default custom or private access control groups.
The default value can be changed in DEFAULT_RESTRICTED_COMPONENT.

Hint: This applies to project admins as well — please make sure you will not loose access to the component after
toggling the status.

Share in projects

You can choose additional projects where the component will be visible. Useful for shared libraries which you use in
several projects.

Note: Sharing a component doesn’t change its access control. It only makes it visible when browsing other projects.
Users still need access to the actual component to browse or translate it.

Use as a glossary

New in version 4.5.
Allows using this component as a glossary. You can configure how it will be listed using Glossary color.
The glossary will be accessible in all projects defined by Share in projects.
It is recommended to enable Manage strings on glossaries in order to allow adding new words to them.
See also:
Glossary

2.7. Translation projects 233



The Weblate Manual, Release 4.5.3

Glossary color

Display color for a glossary used when showing word matches.

2.7.5 Template markup

Weblate uses simple markup language in several places where text rendering is needed. It is based on The Django
template language, so it can be quite powerful.
Currently it is used in:

• Commit message formatting, see Component configuration

• Several addons
– Component discovery

– Statistics generator

– Executing scripts from addon

There following variables are available in the component templates:
{{ language_code }} Language code
{{ language_name }} Language name
{{ component_name }} Component name
{{ component_slug }} Component slug
{{ project_name }} Project name
{{ project_slug }} Project slug
{{ url }} Translation URL
{{ filename }} Translation filename
{{ stats }} Translation stats, this has further attributes, examples below.
{{ stats.all }} Total strings count
{{ stats.fuzzy }} Count of strings needing review
{{ stats.fuzzy_percent }} Percent of strings needing review
{{ stats.translated }} Translated strings count
{{ stats.translated_percent }} Translated strings percent
{{ stats.allchecks }} Number of strings with failing checks
{{ stats.allchecks_percent }} Percent of strings with failing checks
{{ author }} Author of current commit, available only in the commit scope.
{{ addon_name }} Name of currently executed addon, available only in the addon commit message.
The following variables are available in the repository browser or editor templates:
{{branch}} current branch
{{line}} line in file
{{filename}} filename, you can also strip leading parts using the parentdir filter, for example {{file-

name|parentdir}}

You can combine them with filters:

{{ component|title }}

234 Kapittel 2. Administrator docs

https://docs.djangoproject.com/en/stable/ref/templates/language/
https://docs.djangoproject.com/en/stable/ref/templates/language/


The Weblate Manual, Release 4.5.3

You can use conditions:

{% if stats.translated_percent > 80 %}Well translated!{% endif %}

There is additional tag available for replacing characters:

{% replace component "-" " " %}

You can combine it with filters:

{% replace component|capfirst "-" " " %}

There are also additional filter to manipulate with filenames:

Directory of a file: {{ filename|dirname }}
File without extension: {{ filename|stripext }}
File in parent dir: {{ filename|parentdir }}
It can be used multiple times: {{ filename|parentdir|parentdir }}

…and other Django template features.

2.7.6 Importing speed

Fetching VCS repository and importing translations to Weblate can be a lengthy process, depending on size of your
translations. Here are some tips:

Optimize configuration

The default configuration is useful for testing and debugging Weblate, while for a production setup, you should do
some adjustments. Many of them have quite a big impact on performance. Please check Production setup for more
details, especially:

• Configure Celery for executing background tasks (see Background tasks using Celery)
• Enable caching

• Use a powerful database engine

• Disable debug mode

Check resource limits

If you are importing huge translations or repositories, you might be hit by resource limitations of your server.
• Check the amount of free memory, having translation files cached by the operating system will greatly improve
performance.

• Disk operations might be bottleneck if there is a lot of strings to process—the disk is pushed by both Weblate
and the database.

• Additional CPU cores might help improve performance of background tasks (see Background tasks using Ce-
lery).

2.7. Translation projects 235



The Weblate Manual, Release 4.5.3

Disable unneeded checks

Some quality checks can be quite expensive, and if not needed, can save you some time during import if omitted. See
CHECK_LIST for info on configuration.

2.7.7 Automatic creation of components

In case your project has dozen of translation files (e.g. for different gettext domains, or parts of Android apps),
you might want to import them automatically. This can either be achieved from the command line by using im-
port_project or import_json, or by installing the Component discovery addon.
To use the addon, you first need to create a component for one translation file (choose the one that is the least likely
to be renamed or removed in future), and install the addon on this component.
For the management commands, you need to create a project which will contain all components and then run im-
port_project or import_json.
See also:
Management commands, Component discovery

2.8 Language definitions

To present different translations properly, info about language name, text direction, plural definitions and language
code is needed.

2.8.1 Parsing language codes

While parsing translations, Weblate attempts to map language code (usually the ISO 639-1 one) to any existing
language object.
You can further adjust this mapping at project level by Language aliases.
If no exact match can be found, an attempt will be made to best fit it into an existing language. Following steps are
tried:

• Case insensitive lookups.
• Normalizing underscores and dashes.
• Looking up built in language aliases.
• Looking up by language name.
• Ignoring the default country code for a given language—choosing cs instead of cs_CZ.

Should that also fail, a new language definition will be created using the defaults (left to right text direction, one
plural). The automatically created language with code xx_XX will be named as xx_XX (generated). You might want
to change this in the admin interface later, (see Changing language definitions) and report it to the issue tracker (see
Contributing to Weblate), so that the proper definition can be added to the upcoming Weblate release.

Hint: In case you see something unwanted as a language, you might want to adjust Language filter to ignore such
file when parsing translations.

See also:
Language code, Adding new translations

236 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

2.8.2 Changing language definitions

You can change language definitions in the languages interface (/languages/ URL).
While editing, make sure all fields are correct (especially plurals and text direction), otherwise translators will be
unable to properly edit those translations.

2.8.3 Built-in language definitions

Definitions for about 600 languages are included in Weblate and the list is extended in every release. Whenever
Weblate is upgraded (more specifically wheneverweblate migrate is executed, seeGeneric upgrade instructions)
the database of languages is updated to include all language definitions shipped in Weblate.
This feature can be disable using UPDATE_LANGUAGES. You can also enforce updating the database to match
Weblate built-in data using setuplang.
See also:
The language definitions are in the weblate-language-data repository.

2.8.4 Ambiguous language codes and macrolanguages

In many cases it is not a good idea to use macro language code for a translation. The typical problematic case might
be Kurdish language, which might be written in Arabic or Latin script, depending on actual variant. To get correct
behavior in Weblate, it is recommended to use individual language codes only and avoid macro languages.
See also:
Macrolanguages definition, List of macrolanguages

2.8.5 Language definitions

Each language consists of following fields:

Language code

Code identifying the language. Weblate prefers two letter codes as defined by ISO 639-1, but uses ISO 639-2 or ISO
639-3 codes for languages that do not have two letter code. It can also support extended codes as defined by BCP 47.
See also:
Parsing language codes, Adding new translations

Language name

Visible name of the language. The language names included in Weblate are also being localized depending on user
interface language.

2.8. Language definitions 237

https://github.com/WeblateOrg/language-data/
https://iso639-3.sil.org/about/scope#Macrolanguages
https://iso639-3.sil.org/code_tables/macrolanguage_mappings/data
https://en.wikipedia.org/wiki/ISO_639-1
https://en.wikipedia.org/wiki/ISO_639-2
https://en.wikipedia.org/wiki/ISO_639-3
https://en.wikipedia.org/wiki/ISO_639-3
https://tools.ietf.org/html/bcp47


The Weblate Manual, Release 4.5.3

Text direction

Determines whether language is written right to left or left to right. This property is autodetected correctly for most
of the languages.

Plural number

Number of plurals used in the language.

Plural formula

Gettext compatible plural formula used to determine which plural form is used for given count.
See also:
Plurals, GNU gettext utilities: Plural forms, Language Plural Rules by the Unicode Consortium

2.8.6 Adding new translations

Changed in version 2.18: In versions prior to 2.18 the behaviour of adding new translations was file format specific.
Weblate can automatically start new translation for all of the file formats.
Some formats expect to start with an empty file and only translated strings to be included (for example Android string
resources), while others expect to have all keys present (for exampleGNU gettext). In some situations this really doesn’t
depend on the format, but rather on the framework you use to handle the translation (for example with JSON files).
When you specify Template for new translations in Component configuration, Weblate will use this file to start new
translations. Any exiting translations will be removed from the file when doing so.
When Template for new translations is empty and the file format supports it, an empty file is created where new strings
will be added once they are translated.
The Language code style allows you to customize language code used in generated filenames:
Default based on the file format Dependent on file format, for most of them POSIX is used.
POSIX style using underscore as a separator Typically used by gettext and related tools, produces language co-

des like pt_BR.
POSIX style using underscore as a separator, including country code POSIX style language code including the

country code even when not necessary (for example cs_CZ).
BCP style using hyphen as a separator Typically used on web platforms, produces language codes like pt-BR.
BCP style using hyphen as a separator, including country code BCP style language code including the country

code even when not necessary (for example cs-CZ).
Android style Only used in Android apps, produces language codes like pt-rBR.
Java style Used by Java—mostly BCP with legacy codes for Chinese.
Additionally, any mappings defined in Language aliases are applied in reverse.

Note: Weblate recognizes any of these when parsing translation files, the above settings only influences how new
files are created.

See also:
Language code, Parsing language codes

238 Kapittel 2. Administrator docs

https://www.gnu.org/software/gettext/manual/html_node/Plural-forms.html
https://unicode-org.github.io/cldr-staging/charts/37/supplemental/language_plural_rules.html


The Weblate Manual, Release 4.5.3

2.9 Continuous localization

There is infrastructure in place so that your translation closely follows development. This way translators can work
on translations the entire time, instead of working through huge amount of new text just prior to release.
See also:
/devel/integration describes basic ways to integrate your development with Weblate.
This is the process:

1. Developers make changes and push them to the VCS repository.
2. Optionally the translation files are updated (this depends on the file format, see Why does Weblate still show

old translation strings when I’ve updated the template?).
3. Weblate pulls changes from the VCS repository, see Updating repositories.
4. Once Weblate detects changes in translations, translators are notified based on their subscription settings.
5. Translators submit translations using the Weblate web interface, or upload offline changes.
6. Once the translators are finished, Weblate commits the changes to the local repository (see Lazy commits) and

pushes them back if it has permissions to do so (see Pushing changes from Weblate).

Developers

VCS repository

 1. Push 

Translators

Weblate

 5. Translate 

 2. Updating translations 

 3. Pull 

 4. Notification 

 6. Push 

2.9. Continuous localization 239



The Weblate Manual, Release 4.5.3

2.9.1 Updating repositories

You should set up some way of updating backend repositories from their source.
• Use Notification hooks to integrate with most of common code hosting services:

– Automatically receiving changes from GitHub

– Automatically receiving changes from GitLab

– Automatically receiving changes from Bitbucket

– Automatically receiving changes from Pagure

– Automatically receiving changes from Azure Repos

• Manually trigger update either in the repository management or usingWeblate’s REST API orWeblate Client

• Enable AUTO_UPDATE to automatically update all components on your Weblate instance
• Execute updategit (with selection of project or –all to update all)

Whenever Weblate updates the repository, the post-update addons will be triggered, see Addons.

Avoiding merge conflicts

The merge conflicts from Weblate arise when same file was changed both in Weblate and outside it. There are two
approaches to deal with that - avoid edits outside Weblate or integrate Weblate into your updating process, so that it
flushes changes prior to updating the files outside Weblate.
The first approach is easy with monolingual files - you can add new strings within Weblate and leave whole editing
of the files there. For bilingual files, there is usually some kind of message extraction process to generate translatable
files from the source code. In some cases this can be split into two parts - one for the extraction generates template
(for example gettext POT is generated using xgettext) and then further process merges it into actual translations
(the gettext PO files are updated using msgmerge). You can perform the second step within Weblate and it will
make sure that all pending changes are included prior to this operation.
The second approach can be achieved by usingWeblate’s REST API to force Weblate to push all pending changes and
lock the translation while you are doing changes on your side.
The script for doing updates can look like this:

# Lock Weblate translation
wlc lock
# Push changes from Weblate to upstream repository
wlc push
# Pull changes from upstream repository to your local copy
git pull
# Update translation files, this example is for Django
./manage.py makemessages --keep-pot -a
git commit -m 'Locale updates' -- locale
# Push changes to upstream repository
git push
# Tell Weblate to pull changes (not needed if Weblate follows your repo
# automatically)
wlc pull
# Unlock translations
wlc unlock

If you have multiple components sharing same repository, you need to lock them all separately:

wlc lock foo/bar
wlc lock foo/baz
wlc lock foo/baj

240 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

Note: The example usesWeblate Client, which needs configuration (API keys) to be able to controlWeblate remotely.
You can also achieve this using any HTTP client instead of wlc, e.g. curl, seeWeblate’s REST API.

See also:
Weblate Client

Automatically receiving changes from GitHub

Weblate comes with native support for GitHub.
If you are using Hosted Weblate, the recommended approach is to install the Weblate app, that way you will get the
correct setup without having to set much up. It can also be used for pushing changes back.
To receive notifications on every push to a GitHub repository, add the Weblate Webhook in the repository settings
(Webhooks) as shown on the image below:

For the payload URL, append /hooks/github/ to your Weblate URL, for example for the Hosted Weblate
service, this is https://hosted.weblate.org/hooks/github/.
You can leave other values at default settings (Weblate can handle both content types and consumes just the push
event).
See also:
POST /hooks/github/, Accessing repositories from Hosted Weblate

2.9. Continuous localization 241

https://github.com/apps/weblate


The Weblate Manual, Release 4.5.3

Automatically receiving changes from Bitbucket

Weblate has support for Bitbucket webhooks, add a webhook which triggers upon repository push, with destination to
/hooks/bitbucket/ URL on your Weblate installation (for example https://hosted.weblate.org/
hooks/bitbucket/).

See also:
POST /hooks/bitbucket/, Accessing repositories from Hosted Weblate

Automatically receiving changes from GitLab

Weblate has support for GitLab hooks, add a project webhook with destination to /hooks/gitlab/URL on your
Weblate installation (for example https://hosted.weblate.org/hooks/gitlab/).
See also:
POST /hooks/gitlab/, Accessing repositories from Hosted Weblate

Automatically receiving changes from Pagure

New in version 3.3.
Weblate has support for Pagure hooks, add a webhook with destination to /hooks/pagure/URL on yourWeblate
installation (for example https://hosted.weblate.org/hooks/pagure/). This can be done in Activate
Web-hooks under Project options:

242 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

See also:
POST /hooks/pagure/, Accessing repositories from Hosted Weblate

Automatically receiving changes from Azure Repos

New in version 3.8.
Weblate has support for Azure Repos web hooks, add a webhook for Code pushed event with destination
to /hooks/azure/ URL on your Weblate installation (for example https://hosted.weblate.org/
hooks/azure/). This can be done in Service hooks under Project settings.
See also:
Web hooks in Azure DevOps manual, POST /hooks/azure/, Accessing repositories from Hosted Weblate

2.9. Continuous localization 243

https://docs.microsoft.com/en-us/azure/devops/service-hooks/services/webhooks?view=azure-devops


The Weblate Manual, Release 4.5.3

Automatically receiving changes from Gitea Repos

New in version 3.9.
Weblate has support for Gitea webhooks, add a Gitea Webhook for Push events event with destination to
/hooks/gitea/ URL on your Weblate installation (for example https://hosted.weblate.org/
hooks/gitea/). This can be done inWebhooks under repository Settings.
See also:
Webhooks in Gitea manual, POST /hooks/gitea/, Accessing repositories from Hosted Weblate

Automatically receiving changes from Gitee Repos

New in version 3.9.
Weblate has support for Gitee webhooks, add aWebHook for Push event with destination to /hooks/gitee/URL
on your Weblate installation (for example https://hosted.weblate.org/hooks/gitee/). This can be
done inWebHooks under repository Management.
See also:
Webhooks in Gitee manual, POST /hooks/gitee/, Accessing repositories from Hosted Weblate

Automatically updating repositories nightly

Weblate automatically fetches remote repositories nightly to improve performance when merging changes later. You
can optionally turn this into doing nightly merges as well, by enabling AUTO_UPDATE.

2.9.2 Pushing changes from Weblate

Each translation component can have a push URL set up (see Repository push URL), and in that case Weblate will
be able to push change to the remote repository. Weblate can be also be configured to automatically push changes on
every commit (this is default, see Push on commit). If you do not want changes to be pushed automatically, you can
do that manually under Repository maintenance or using API via wlc push.
The push options differ based on the Version control integration used, more details are found in that chapter.
In case you do not want direct pushes by Weblate, there is support for GitHub, GitLab, Pagure pull requests or Gerrit
reviews, you can activate these by choosing GitHub, GitLab, Gerrit or Pagure as Version control system in Component
configuration.
Overall, following options are available with Git, GitHub and GitLab:

Desired setup Version control system Repository push URL Push branch
No push Git empty empty
Push directly Git SSH URL empty
Push to separate branch Git SSH URL Branch name
GitHub pull request from fork GitHub empty empty
GitHub pull request from branch GitHub SSH URL1 Branch name
GitLab merge request from fork GitLab empty empty
GitLab merge request from branch GitLab SSH URLSide 59, 1 Branch name
Pagure merge request from fork Pagure empty empty
Pagure merge request from branch Pagure SSH URLSide 59, 1 Branch name

Note: You can also enable automatic pushing of changes after Weblate commits, this can be done in Push on commit.

1 Can be empty in case Source code repository supports pushing.

244 Kapittel 2. Administrator docs

https://docs.gitea.io/en-us/webhooks/
https://gitee.com/help/categories/40


The Weblate Manual, Release 4.5.3

See also:
See Accessing repositories for setting up SSH keys, and Lazy commits for info about when Weblate decides to commit
changes.

Protected branches

If you are using Weblate on protected branch, you can configure it to use pull requests and perform actual review on
the translations (what might be problematic for languages you do not know). An alternative approach is to waive this
limitation for the Weblate push user.
For example on GitHub this can be done in the repository configuration:

2.9.3 Merge or rebase

By default, Weblate merges the upstream repository into its own. This is the safest way in case you also access the
underlying repository by other means. In case you don’t need this, you can enable rebasing of changes on upstream,
which will produce a history with fewer merge commits.

Note: Rebasing can cause you trouble in case of complicated merges, so carefully consider whether or not you want
to enable them.

2.9. Continuous localization 245



The Weblate Manual, Release 4.5.3

2.9.4 Interacting with others

Weblate makes it easy to interact with others using its API.
See also:
Weblate’s REST API

2.9.5 Lazy commits

The behaviour ofWeblate is to group commits from the same author into one commit if possible. This greatly reduces
the number of commits, however you might need to explicitly tell it to do the commits in case you want to get the
VCS repository in sync, e.g. for merge (this is by default allowed for the Managers group, see List of privileges).
The changes in this mode are committed once any of the following conditions are fulfilled:

• Somebody else changes an already changed string.
• A merge from upstream occurs.
• An explicit commit is requested.
• Change is older than period defined as Age of changes to commit on Component configuration.

Hint: Commits are created for every component. So in case you have many components you will still see lot of
commits. You might utilize Squash Git commits addon in that case.

If you want to commit changes more frequently and without checking of age, you can schedule a regular task to
perform a commit:

CELERY_BEAT_SCHEDULE = {
# Unconditionally commit all changes every 2 minutes
"commit": {

"task": "weblate.trans.tasks.commit_pending",
# Ommiting hours will honor per component settings,
# otherwise components with no changes older than this
# won't be committed
"kwargs": {"hours": 0},
# How frequently to execute the job in seconds
"schedule": 120,

}
}

2.9.6 Processing repository with scripts

The way to customize how Weblate interacts with the repository is Addons. Consult Executing scripts from addon for
info on how to execute external scripts through addons.

2.9.7 Keeping translations same across components

Once you have multiple translation components, you might want to ensure that the same strings have same translation.
This can be achieved at several levels.

246 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

Translation propagation

With translation propagation enabled (what is the default, see Component configuration), all new translations are
automatically done in all components with matching strings. Such translations are properly credited to currently
translating user in all components.

Note: The translation propagation requires the key to be match for monolingual translation formats, so keep that in
mind when creating translation keys.

Consistency check

The Inconsistent check fires whenever the strings are different. You can utilize this to review such differences manually
and choose the right translation.

Automatic translation

Automatic translation based on different components can be way to synchronize the translations across components.
You can either trigger it manually (see Automatic translation) or make it run automatically on repository update using
addon (see Automatic translation).

2.10 Licensing translations

You can specify which license translations are contributed under. This is especially important to do if translations are
open to the public, to stipulate what they can be used for.
You should specify Component configuration license info. You should avoid requiring a contributor license agreement,
though it is possible.

2.10.1 License info

Upon specifying license info (license name andURL), this info is shown in the translation info section of the respective
Component configuration.
Usually this is best place to post licensing info if no explicit consent is required. If your project or translation is not
libre you most probably need prior consent.

2.10.2 Contributor agreement

If you specify a contributor license agreement, only users who have agreed to it will be able to contribute. This is a
clearly visible step when accessing the translation:

2.10. Licensing translations 247



The Weblate Manual, Release 4.5.3

The entered text is formatted into paragraphs and external links can be included. HTML markup can not be used.

2.10.3 User licenses

Any user can review all translation licenses of all public projects on the instance from their profile:

248 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

2.11 Translation process

2.11.1 Suggestion voting

Everyone can add suggestions by default, to be accepted by signed in users. Suggestion voting can be used to make
use of a string when more than one signed-in user agrees, by setting up the Component configuration configuration
with Suggestion voting to turn on voting, and Autoaccept suggestions to set a threshold for accepted suggestions (this
includes a vote from the user making the suggestion if it is cast).

Note: Once automatic acceptance is set up, normal users lose the privilege to directly save translations or accept
suggestions. This can be overridden with the Edit string when suggestions are enforced permission.

You can combine these with access control into one of the following setups:
• Users suggest and vote for suggestions and a limited group controls what is accepted. - Turn on voting. - Turn
off automatic acceptance. - Don’t let users save translations.

• Users suggest and vote for suggestions with automatic acceptance once the defined number of them agree. -
Turn on voting. - Set the desired number of votes for automatic acceptance.

• Optional voting for suggestions. (Can optionally be used by users when they are unsure about a translation by
making multiple suggestions.) - Only turn on voting.

2.11.2 Additional info on source strings

Enhance the translation process by adding additional info to the strings including explanations, string priorities, check
flags and visual context. Some of that infomay be extracted from the translation files and somemay be added by editing
the additional string info:

2.11. Translation process 249



The Weblate Manual, Release 4.5.3

Access this directly from the translation interface by clicking the «Edit» icon next to Screenshot context or Flags.

250 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

2.11. Translation process 251



The Weblate Manual, Release 4.5.3

Strings prioritization

New in version 2.0.
String priority can be changed to offer higher priority strings for translation earlier by using the priority flag.

Hint: This can be used to order the flow of translation in a logical manner.

See also:
Quality checks

Translation flags

New in version 2.4.
Changed in version 3.3: Previously called Quality checks flags, it no longer configures only checks.
The default set of translation flags is determined by the translation Component configuration and the translation file.
However, you might want to use it to customize this per source string.
See also:
Quality checks

Explanation

Changed in version 4.1: In previous versions this has been called Extra context.
Use the explanation to clarify scope or usage of the translation. You can use Markdown to include links and other
markup.

252 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

Visual context for strings

New in version 2.9.
You can upload a screenshot showing a given source string in use within your program. This helps translators under-
stand where it is used, and how it should be translated.
The uploaded screenshot is shown in the translation context sidebar:

In addition to Additional info on source strings, screenshots have a separate management interface under the Tools
menu. Upload screenshots, assign them to source strings manually, or use optical character recognition to do so.
Once a screenshot is uploaded, this interface handles management and source string association:

2.11. Translation process 253



The Weblate Manual, Release 4.5.3

254 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

2.12 Checks and fixups

2.12.1 Custom automatic fixups

You can also implement your own automatic fixup in addition to the standard ones and include them in AUTO-
FIX_LIST.
The automatic fixes are powerful, but can also cause damage; be careful when writing one.
For example, the following automatic fixup would replace every occurrence of the string foo in a translation with
bar:

#
# Copyright © 2012 - 2021 Michal Čihař <michal@cihar.com>
#
# This file is part of Weblate <https://weblate.org/>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#

from django.utils.translation import gettext_lazy as _

from weblate.trans.autofixes.base import AutoFix

class ReplaceFooWithBar(AutoFix):
"""Replace foo with bar."""

name = _("Foobar")

def fix_single_target(self, target, source, unit):
if "foo" in target:

return target.replace("foo", "bar"), True
return target, False

To install custom checks, provide a fully-qualified path to the Python class in the AUTOFIX_LIST, see Custom
quality checks, addons and auto-fixes.

2.12.2 Customizing behavior using flags

You can fine-tune the behavior of Weblate (mostly checks) for each source string (in source strings review, see
Additional info on source strings) or in the Component configuration (Translation flags). Some file formats also allow
to specify flags directly in the format (see Supported file formats).
The flags are comma-separated, the parameters are separated with colon. You can use quotes to include whitespace
or special chars in the string. For example:

placeholders:"special:value":"other value", regex:.*

Here is a list of flags currently accepted:

2.12. Checks and fixups 255



The Weblate Manual, Release 4.5.3

rst-text Treat a text as an reStructuredText document, affects Unchanged translation.
md-text Treat text as a Markdown document.
dos-eol Uses DOS end-of-line markers instead of Unix ones (\r\n instead of \n).
url The string should consist of only a URL.
safe-html The string should be HTML safe, see Unsafe HTML.
read-only The string is read-only and should not be edited in Weblate, see Read only strings.
priority:N Priority of the string. Higher priority strings are presented first for translation. The default priority

is 100, the higher priority a string has, the earlier it is offered for translation.
max-length:N Limit the maximal length for a string to N characters, see Maximum length of translation.
xml-text Treat text as XML document, affects XML syntax and XML markup.
font-family:NAME Define font-family for rendering checks, see Managing fonts.
font-weight:WEIGHT Define font-weight for rendering checks, see Managing fonts.
font-size:SIZE Define font-size for rendering checks, see Managing fonts.
font-spacing:SPACING Define letter spacing for rendering checks, see Managing fonts.
placeholders:NAME:NAME2:... Placeholder strings expected in translation, see Placeholders.
replacements:FROM:TO:FROM2:TO2... Replacements to perform when checking resulting text parame-

ters (for example in Maximum size of translation or Maximum length of translation). The typical use case
for this is to expand placeables to ensure that the text fits even with long values, for example: replace-
ments:%s:"John Doe".

variants:SOURCE Mark this string as a variant of string with matching source. See variants.
regex:REGEX Regular expression to match translation, see Regular expression.
forbidden Indicates forbidden translation in a glossary, see Forbidden translations.
python-format, c-format, php-format, python-brace-format, javascript-format, c-sharp-format, java-format, java-messageformat, lua-format, auto-java-messageformat, qt-format, qt-plural-format, ruby-format, vue-format

Treats all strings like format strings, affects Formatted strings, Formatted strings, Formatted strings, Formatted
strings, Formatted strings, Formatted strings, Formatted strings, Formatted strings, Formatted strings, Formatted
strings, Formatted strings, Formatted strings, Formatted strings, Unchanged translation.

strict-same Make «Unchanged translation» avoid using built-in words blacklist, see Unchanged translation.
check-glossary Enable the «Does not follow glossary» quality check.
ignore-bbcode Skip the «BBcode markup» quality check.
ignore-duplicate Skip the «Consecutive duplicated words» quality check.
ignore-check-glossary Skip the «Does not follow glossary» quality check.
ignore-double-space Skip the «Double space» quality check.
ignore-angularjs-format Skip the «AngularJS interpolation string» quality check.
ignore-c-format Skip the «C format» quality check.
ignore-c-sharp-format Skip the «C# format» quality check.
ignore-es-format Skip the «ECMAScript template literals» quality check.
ignore-i18next-interpolation Skip the «i18next interpolation» quality check.
ignore-java-format Skip the «Java format» quality check.
ignore-java-messageformat Skip the «Java MessageFormat» quality check.
ignore-javascript-format Skip the «JavaScript format» quality check.
ignore-lua-format Skip the «Lua format» quality check.

256 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

ignore-percent-placeholders Skip the «Percent placeholders» quality check.
ignore-perl-format Skip the «Perl format» quality check.
ignore-php-format Skip the «PHP format» quality check.
ignore-python-brace-format Skip the «Python brace format» quality check.
ignore-python-format Skip the «Python format» quality check.
ignore-qt-format Skip the «Qt format» quality check.
ignore-qt-plural-format Skip the «Qt plural format» quality check.
ignore-ruby-format Skip the «Ruby format» quality check.
ignore-vue-format Skip the «Vue I18n formatting» quality check.
ignore-translated Skip the «Has been translated» quality check.
ignore-inconsistent Skip the «Inconsistent» quality check.
ignore-kashida Skip the «Kashida letter used» quality check.
ignore-md-link Skip the «Markdown links» quality check.
ignore-md-reflink Skip the «Markdown references» quality check.
ignore-md-syntax Skip the «Markdown syntax» quality check.
ignore-max-length Skip the «Maximum length of translation» quality check.
ignore-max-size Skip the «Maximum size of translation» quality check.
ignore-escaped-newline Skip the «Mismatched n» quality check.
ignore-end-colon Skip the «Mismatched colon» quality check.
ignore-end-ellipsis Skip the «Mismatched ellipsis» quality check.
ignore-end-exclamation Skip the «Mismatched exclamation mark» quality check.
ignore-end-stop Skip the «Mismatched full stop» quality check.
ignore-end-question Skip the «Mismatched question mark» quality check.
ignore-end-semicolon Skip the «Mismatched semicolon» quality check.
ignore-newline-count Skip the «Mismatching line breaks» quality check.
ignore-plurals Skip the «Missing plurals» quality check.
ignore-placeholders Skip the «Placeholders» quality check.
ignore-punctuation-spacing Skip the «Punctuation spacing» quality check.
ignore-regex Skip the «Regular expression» quality check.
ignore-same-plurals Skip the «Same plurals» quality check.
ignore-begin-newline Skip the «Starting newline» quality check.
ignore-begin-space Skip the «Starting spaces» quality check.
ignore-end-newline Skip the «Trailing newline» quality check.
ignore-end-space Skip the «Trailing space» quality check.
ignore-same Skip the «Unchanged translation» quality check.
ignore-safe-html Skip the «Unsafe HTML» quality check.
ignore-url Skip the «URL» quality check.
ignore-xml-tags Skip the «XML markup» quality check.
ignore-xml-invalid Skip the «XML syntax» quality check.

2.12. Checks and fixups 257



The Weblate Manual, Release 4.5.3

ignore-zero-width-space Skip the «Zero-width space» quality check.
ignore-ellipsis Skip the «Ellipsis» quality check.
ignore-long-untranslated Skip the «Long untranslated» quality check.
ignore-multiple-failures Skip the «Multiple failing checks» quality check.
ignore-unnamed-format Skip the «Multiple unnamed variables» quality check.
ignore-optional-plural Skip the «Unpluralised» quality check.

Note: Generally the rule is named ignore-* for any check, using its identifier, so you can use this even for your
custom checks.

These flags are understood both in Component configuration settings, per source string settings and in the translation
file itself (for example in GNU gettext).

2.12.3 Enforcing checks

New in version 3.11.
You can configure a list of checks which can not be ignored by setting Enforced checks in Component configuration.
Each listed check can not be ignored in the user interface and any string failing this check is marked as Needs editing
(see Translation states).

2.12.4 Managing fonts

New in version 3.7.

Hint: Fonts uploaded into Weblate are used purely for purposes of the Maximum size of translation check, they do
not have an effect in Weblate user interface.

TheMaximum size of translation check used to calculate dimensions of the rendered text needs font to be loaded into
Weblate and selected using a translation flag (see Customizing behavior using flags).
Weblate font management tool in Fonts under the Manage menu of your translation project provides interface to
upload and manage fonts. TrueType or OpenType fonts can be uploaded, set up font-groups and use those in the
check.
The font-groups allow you to define different fonts for different languages, which is typically needed for non-latin
languages:

258 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

The font-groups are identified by name, which can not contain whitespace or special characters, so that it can be easily
used in the check definition:

2.12. Checks and fixups 259



The Weblate Manual, Release 4.5.3

Font-family and style is automatically recognized after uploading them:

You can have a number of fonts loaded into Weblate:

260 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

To use the fonts for checking the string length, pass it the appropriate flags (see Customizing behavior using flags).
You will probably need the following ones:
max-size:500 Defines maximal width.
font-family:ubuntu Defines font group to use by specifying its identifier.
font-size:22 Defines font size.

2.12.5 Writing own checks

A wide range of quality checks are built-in, (see Quality checks), though they might not cover everything you want to
check. The list of performed checks can be adjusted using CHECK_LIST, and you can also add custom checks.

1. Subclass the weblate.checks.Check

2. Set a few attributes.
3. Implement either the check (if you want to deal with plurals in your code) or the check_single method

(which does it for you).
Some examples:
To install custom checks, provide a fully-qualified path to the Python class in the CHECK_LIST, see Custom quality
checks, addons and auto-fixes.

Checking translation text does not contain «foo»

This is a pretty simple check which just checks whether the translation is missing the string «foo».

#
# Copyright © 2012 - 2021 Michal Čihař <michal@cihar.com>
#
# This file is part of Weblate <https://weblate.org/>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.

(continues on next page)

2.12. Checks and fixups 261



The Weblate Manual, Release 4.5.3

(continued from previous page)
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#
"""Simple quality check example."""

from django.utils.translation import gettext_lazy as _

from weblate.checks.base import TargetCheck

class FooCheck(TargetCheck):

# Used as identifier for check, should be unique
# Has to be shorter than 50 characters
check_id = "foo"

# Short name used to display failing check
name = _("Foo check")

# Description for failing check
description = _("Your translation is foo")

# Real check code
def check_single(self, source, target, unit):

return "foo" in target

Checking that Czech translation text plurals differ

Check using language info to verify the two plural forms in Czech language are not same.

#
# Copyright © 2012 - 2021 Michal Čihař <michal@cihar.com>
#
# This file is part of Weblate <https://weblate.org/>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#
"""Quality check example for Czech plurals."""

from django.utils.translation import gettext_lazy as _

from weblate.checks.base import TargetCheck

(continues on next page)

262 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

(continued from previous page)

class PluralCzechCheck(TargetCheck):

# Used as identifier for check, should be unique
# Has to be shorter than 50 characters
check_id = "foo"

# Short name used to display failing check
name = _("Foo check")

# Description for failing check
description = _("Your translation is foo")

# Real check code
def check_target_unit(self, sources, targets, unit):

if self.is_language(unit, ("cs",)):
return targets[1] == targets[2]

return False

def check_single(self, source, target, unit):
"""We don't check target strings here."""
return False

2.13 Machine translation

Built-in support for several machine translation services and can be turned on by the administrator using
MT_SERVICES for each one. They come subject to their terms of use, so ensure you are allowed to use them
how you want.
The source language can be configured at Project configuration.

2.13.1 amaGama

Special installation of tmserver run by the authors of Virtaal.
Turn on this service by adding weblate.machinery.tmserver.AmagamaTranslation to
MT_SERVICES.
See also:
Installing amaGama, Amagama, amaGama Translation Memory

2.13.2 Apertium

A libre software machine translation platform providing translations to a limited set of languages.
The recommended way to use Apertium is to run your own Apertium-APy server.
Turn on this service by adding weblate.machinery.apertium.ApertiumAPYTranslation to
MT_SERVICES and set MT_APERTIUM_APY.
See also:
MT_APERTIUM_APY, Apertium website, Apertium APy documentation

2.13. Machine translation 263

https://docs.translatehouse.org/projects/amagama/en/latest/installation.html#installation
http://docs.translatehouse.org/projects/virtaal/en/latest/amagama.html
https://amagama.translatehouse.org/
https://www.apertium.org/
https://wiki.apertium.org/wiki/Apertium-apy


The Weblate Manual, Release 4.5.3

2.13.3 AWS

New in version 3.1.
Amazon Translate is a neural machine translation service for translating text to and from English across a breadth of
supported languages.
1. Turn on this service by adding weblate.machinery.aws.AWSTranslation to MT_SERVICES.

2. Install the boto3 module.
3. Configure Weblate.

See also:
MT_AWS_REGION , MT_AWS_ACCESS_KEY_ID, MT_AWS_SECRET_ACCESS_KEY Amazon Translate Docu-
mentation

2.13.4 Baidu API machine translation

New in version 3.2.
Machine translation service provided by Baidu.
This service uses an API and you need to obtain an ID and API key from Baidu to use it.
Turn on this service by adding weblate.machinery.baidu.BaiduTranslation to MT_SERVICES and
set MT_BAIDU_ID and MT_BAIDU_SECRET.
See also:
MT_BAIDU_ID, MT_BAIDU_SECRET Baidu Translate API

2.13.5 DeepL

New in version 2.20.
DeepL is paid service providing good machine translation for a few languages. You need to purchase DeepL API
subscription or you can use legacy DeepL Pro (classic) plan.
Turn on this service by adding weblate.machinery.deepl.DeepLTranslation to MT_SERVICES and
set MT_DEEPL_KEY.

Hint: In case you have subscription for CAT tools, you are supposed to use «v1 API» instead of default «v2» used
by Weblate (it is not really an API version in this case). You can toggle this by MT_DEEPL_API_VERSION .

See also:
MT_DEEPL_KEY, MT_DEEPL_API_VERSION , DeepL website, DeepL pricing, DeepL API documentation

2.13.6 Glosbe

Free dictionary and translation memory for almost every living language.
The API is gratis to use, but subject to the used data source license. There is a limit of calls that may be done from
one IP in a set period of time, to prevent abuse.
Turn on this service by adding weblate.machinery.glosbe.GlosbeTranslation to MT_SERVICES.
See also:
Glosbe website

264 Kapittel 2. Administrator docs

https://docs.aws.amazon.com/translate/
https://docs.aws.amazon.com/translate/
https://api.fanyi.baidu.com/api/trans/product/index
https://www.deepl.com/
https://www.deepl.com/pro
https://www.deepl.com/api.html
https://glosbe.com/


The Weblate Manual, Release 4.5.3

2.13.7 Google Translate

Machine translation service provided by Google.
This service uses the Google Translation API, and you need to obtain an API key and turn on billing in the Google
API console.
To turn on this service, add weblate.machinery.google.GoogleTranslation to MT_SERVICES and
set MT_GOOGLE_KEY.
See also:
MT_GOOGLE_KEY, Google translate documentation

2.13.8 Google Translate API V3 (Advanced)

Machine translation service provided by Google Cloud services.
This service differs from the former one in how it authenticates. To enable service, add weblate.machinery.
googlev3.GoogleV3Translation to MT_SERVICES and set

• MT_GOOGLE_CREDENTIALS

• MT_GOOGLE_PROJECT

If location fails, you may also need to specify MT_GOOGLE_LOCATION .
See also:
MT_GOOGLE_CREDENTIALS, MT_GOOGLE_PROJECT, MT_GOOGLE_LOCATION Google translate documen-
tation

2.13.9 Microsoft Cognitive Services Translator

New in version 2.10.
Machine translation service provided by Microsoft in Azure portal as a one of Cognitive Services.
Weblate implements Translator API V3.
To enable this service, add weblate.machinery.microsoft.MicrosoftCognitiveTranslation
to MT_SERVICES and set MT_MICROSOFT_COGNITIVE_KEY.

Translator Text API V2

The key you use with Translator API V2 can be used with API 3.

Translator Text API V3

You need to register at Azure portal and use the key you obtain there. With new Azure keys, you also need to set
MT_MICROSOFT_REGION to locale of your service.
See also:
MT_MICROSOFT_COGNITIVE_KEY, MT_MICROSOFT_REGION , Cognitive Services - Text Translation API,
Microsoft Azure Portal

2.13. Machine translation 265

https://cloud.google.com/translate/docs
https://cloud.google.com/translate/docs
https://cloud.google.com/translate/docs
https://azure.microsoft.com/en-us/services/cognitive-services/translator/
https://portal.azure.com/


The Weblate Manual, Release 4.5.3

2.13.10 Microsoft Terminology Service

New in version 2.19.
The Microsoft Terminology Service API allows you to programmatically access the terminology, definitions and user
interface (UI) strings available in the Language Portal through a web service.
Turn this service on by adding weblate.machinery.microsoftterminology.
MicrosoftTerminologyService to MT_SERVICES.
See also:
Microsoft Terminology Service API

2.13.11 ModernMT

New in version 4.2.
Turn this service on by adding weblate.machinery.modernmt.ModernMTTranslation to
MT_SERVICES and configure MT_MODERNMT_KEY.
See also:
ModernMT API, MT_MODERNMT_KEY, MT_MODERNMT_URL

2.13.12 MyMemory

Huge translation memory with machine translation.
Free, anonymous usage is currently limited to 100 requests/day, or to 1000 requests/day when you provide a contact
e-mail address in MT_MYMEMORY_EMAIL. You can also ask them for more.
Turn on this service by adding weblate.machinery.mymemory.MyMemoryTranslation to
MT_SERVICES and set MT_MYMEMORY_EMAIL.
See also:
MT_MYMEMORY_EMAIL, MT_MYMEMORY_USER, MT_MYMEMORY_KEY, MyMemory website

2.13.13 NetEase Sight API machine translation

New in version 3.3.
Machine translation service provided by Netease.
This service uses an API, and you need to obtain key and secret from NetEase.
Turn on this service by adding weblate.machinery.youdao.NeteaseSightTranslation to
MT_SERVICES and set MT_NETEASE_KEY and MT_NETEASE_SECRET.
See also:
MT_NETEASE_KEY, MT_NETEASE_SECRET Netease Sight Translation Platform

266 Kapittel 2. Administrator docs

https://www.microsoft.com/en-us/language/Microsoft-Terminology-API
https://www.modernmt.com/api/translate/
https://mymemory.translated.net/
https://sight.youdao.com/


The Weblate Manual, Release 4.5.3

2.13.14 tmserver

You can run your own translation memory server by using the one bundled with Translate-toolkit and let Weblate
talk to it. You can also use it with an amaGama server, which is an enhanced version of tmserver.

1. First you will want to import some data to the translation memory:
2. Turn on this service by adding weblate.machinery.tmserver.TMServerTranslation to
MT_SERVICES.

build_tmdb -d /var/lib/tm/db -s en -t cs locale/cs/LC_MESSAGES/django.po
build_tmdb -d /var/lib/tm/db -s en -t de locale/de/LC_MESSAGES/django.po
build_tmdb -d /var/lib/tm/db -s en -t fr locale/fr/LC_MESSAGES/django.po

3. Start tmserver to listen to your requests:

tmserver -d /var/lib/tm/db

4. Configure Weblate to talk to it:

MT_TMSERVER = "http://localhost:8888/tmserver/"

See also:
MT_TMSERVER, tmserver Installing amaGama, Amagama, Amagama Translation Memory

2.13.15 Yandex Translate

Machine translation service provided by Yandex.
This service uses a Translation API, and you need to obtain an API key from Yandex.
Turn on this service by adding weblate.machinery.yandex.YandexTranslation to MT_SERVICES,
and set MT_YANDEX_KEY.
See also:
MT_YANDEX_KEY, Yandex Translate API, Powered by Yandex.Translate

2.13.16 Youdao Zhiyun API machine translation

New in version 3.2.
Machine translation service provided by Youdao.
This service uses an API, and you need to obtain an ID and an API key from Youdao.
Turn on this service by adding weblate.machinery.youdao.YoudaoTranslation to MT_SERVICES
and set MT_YOUDAO_ID and MT_YOUDAO_SECRET.
See also:
MT_YOUDAO_ID, MT_YOUDAO_SECRET Youdao Zhiyun Natural Language Translation Service

2.13. Machine translation 267

http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/tmserver.html
https://docs.translatehouse.org/projects/amagama/en/latest/installation.html#installation
http://docs.translatehouse.org/projects/virtaal/en/latest/amagama.html
https://amagama.translatehouse.org/
https://yandex.com/dev/translate/
https://translate.yandex.com/
https://ai.youdao.com/product-fanyi-text.s


The Weblate Manual, Release 4.5.3

2.13.17 Weblate

Weblate can be the source of machine translations as well. It is based on the Woosh fulltext engine, and provides both
exact and inexact matches.
Turn on these services by adding weblate.machinery.weblatetm.WeblateTranslation to
MT_SERVICES.

2.13.18 Weblate Translation Memory

New in version 2.20.
The Translation Memory can be used as a source for machine translation suggestions as well.
Turn on these services by adding weblate.memory.machine.WeblateMemory to the MT_SERVICES.
This service is turned on by default.

2.13.19 SAP Translation Hub

Machine translation service provided by SAP.
You need to have a SAP account (and enabled the SAP Translation Hub in the SAP Cloud Platform) to use this
service.
Turn on this service by adding weblate.machinery.saptranslationhub.SAPTranslationHub to
MT_SERVICES and set the appropriate access to either sandbox or the productive API.

Note: To access the Sandbox API, you need to set MT_SAP_BASE_URL and MT_SAP_SANDBOX_APIKEY.
To access the productive API, you need to set MT_SAP_BASE_URL, MT_SAP_USERNAME and
MT_SAP_PASSWORD.

See also:
MT_SAP_BASE_URL, MT_SAP_SANDBOX_APIKEY, MT_SAP_USERNAME, MT_SAP_PASSWORD,
MT_SAP_USE_MT SAP Translation Hub API

2.13.20 Custom machine translation

You can also implement your own machine translation services using a few lines of Python code. This example
implements machine translation in a fixed list of languages using dictionary Python module:

#
# Copyright © 2012 - 2021 Michal Čihař <michal@cihar.com>
#
# This file is part of Weblate <https://weblate.org/>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License

(continues on next page)

268 Kapittel 2. Administrator docs

https://api.sap.com/shell/discover/contentpackage/SAPTranslationHub/api/translationhub


The Weblate Manual, Release 4.5.3

(continued from previous page)
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#
"""Machine translation example."""

import dictionary

from weblate.machinery.base import MachineTranslation

class SampleTranslation(MachineTranslation):
"""Sample machine translation interface."""

name = "Sample"

def download_languages(self):
"""Return list of languages your machine translation supports."""
return {"cs"}

def download_translations(
self,
source,
language,
text: str,
unit,
user,
search: bool,
threshold: int = 75,

):
"""Return tuple with translations."""
for t in dictionary.translate(text):

yield {"text": t, "quality": 100, "service": self.name, "source": text}

You can list own class in MT_SERVICES and Weblate will start using that.

2.14 Addons

New in version 2.19.
Addons provide ways to customize and automate the translation workflow. Admins can add and mangage addons from
the Manage ↓ Addons menu of each respective translation component.

2.14. Addons 269



The Weblate Manual, Release 4.5.3

2.14.1 Built-in addons

Automatic translation

New in version 3.9.
Automatically translates strings using machine translation or other components.
It is triggered:

• When new strings appear in a component.
• Once in a month for every component, this can be configured using BACKGROUND_TASKS.

See also:
Automatic translation, Keeping translations same across components

270 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

JavaScript localization CDN

New in version 4.2.
Publishes translations into content delivery network for use in JavaScript or HTML localization.
Can be used to localize static HTML pages, or to load localization in the JavaScript code.
Generates a unique URL for your component you can include in HTML pages to localize them. See weblate-cdn for
more details.
See also:
cdn-addon-config, weblate-cdn, cdn-addon-extract, cdn-addon-html

Remove blank strings

New in version 4.4.
Removes strings without a translation from translation files.
Use this to not have any empty strings in translation files (for example if your localization library displays them as
missing instead of falling back to the source string).
See also:
Does Weblate update translation files besides translations?

Cleanup translation files

Update all translation files to match the monolingual base file. For most file formats, this means removing stale
translation keys no longer present in the base file.
See also:
Does Weblate update translation files besides translations?

Language consistency

Ensures all components within a project have translations for every added translated language by creating empty
translations in languages that have unadded components.
Missing languages are checked once every 24 hours, and when new languages are added in Weblate.
Unlike most others, this addon affects the whole project.

Hint: Auto-translate the newly added strings with Automatic translation.

Component discovery

Automatically adds or removes project components based on file changes in the version control system.
Triggered each time the VCS is updated, and otherwise similar to the import_project management command.
This way you can track multiple translation components within one VCS.
The matching is done using regular expressions enabling complex configuration, but some knowledge is required to
do so. Some examples for common use cases can be found in the addon help section.
Once you hit Save, a preview of matching components will be presented, from where you can check whether the
configuration actually matches your needs:

2.14. Addons 271



The Weblate Manual, Release 4.5.3

272 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

Hint: Component discovery addon uses Weblate internal URLs. It’s a convenient way to share VCS setup betwe-
en multiple components. Linked components use the local repository of the main component set up by filling
weblate://project/main-component into the Source code repository field (inManage ↓ Settings ↓ Version
control system) of each respective component. This saves time with configuration and system resources too.

See also:
Template markup

Bulk edit

New in version 3.11.
Bulk edit flags, labels, or states of strings.
Automate labeling by starting out with the search query NOT has:label and add labels till all strings have all
required labels. Other automated operations for Weblate metadata can also be done.
Examples:

Table 4: Label new strings automatically
Search query NOT has:label
Labels to add recent

Table 5: Marking all App store metadata files changelog entries read-only
Search query language:en AND key:changelogs/
Translation flags to add read-only

See also:
Bulk edit, Customizing behavior using flags, labels

Flag unchanged translations as «Needs editing»

New in version 3.1.
Whenever a new translatable string is imported from the VCS and it matches a source string, it is flagged as needing
editing in Weblate. Especially useful for file formats that include source strings for untranslated strings.

Hint: Youmight also want to tighthen theUnchanged translation check by addingstrict-same flag toTranslation
flags.

See also:
Translation states

2.14. Addons 273



The Weblate Manual, Release 4.5.3

Flag new source strings as «Needs editing»

Whenever a new source string is imported from the VCS, it is flagged as needing editing in Weblate. This way you
can easily filter and edit source strings written by the developers.
See also:
Translation states

Flag new translations as «Needs editing»

Whenever a new translatable string is imported from the VCS, it is flagged as needing editing in Weblate. This way
you can easily filter and edit translations created by the developers.
See also:
Translation states

Statistics generator

Generates a file containing detailed info about the translation status.
You can use a Django template in both filename and content, see Template markup for a detailed markup description.
For example generating a summary file for each translation:
Name of generated file locale/{{ language_code }}.json

Content

{
"language": "{{ language_code }}",
"strings": "{{ stats.all }}",
"translated": "{{ stats.translated }}",
"last_changed": "{{ stats.last_changed }}",
"last_author": "{{ stats.last_author }}",

}

See also:
Template markup

Pseudolocale generation

Generates a translation by adding prefix and suffix to source strings automatically.
Pseudolocales are useful to find strings that are not prepared for localization. This is done by altering all translatable
source strings to make it easy to spot unaltered strings when running the application in the pseudolocale language.
Finding strings whose localized counterparts might not fit the layout is also possible.

Hint: You can use real languages for testing, but there are dedicated pseudolocales available in Weblate - en_XA
and ar_XB.

274 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

Contributors in comment

Updates the comment part of the PO file header to include contributor names and years of contributions.
The PO file header will look like this:

# Michal Čihař <michal@cihar.com>, 2012, 2018, 2019, 2020.
# Pavel Borecki <pavel@example.com>, 2018, 2019.
# Filip Hron <filip@example.com>, 2018, 2019.
# anonymous <noreply@weblate.org>, 2019.

Update ALL_LINGUAS variable in the «configure» file

Updates the ALL_LINGUAS variable in configure, configure.in or any configure.ac files, when a
new translation is added.

Customize gettext output

Allows customization of gettext output behavior, for example line wrapping.
It offers the following options:

• Wrap lines at 77 characters and at newlines
• Only wrap lines at newlines
• No line wrapping

Note: By default gettext wraps lines at 77 characters and at newlines. With the --no-wrap parameter, wrapping
is only done at newlines.

Update LINGUAS file

Updates the LINGUAS file when a new translation is added.

Generate MO files

Automatically generates a MO file for every changed PO file.
The location of the generated MO file can be customized and the field for it uses Template markup.

Update PO files to match POT (msgmerge)

Updates all PO files (as configured byFile mask) tomatch the POTfile (as configured byTemplate for new translations)
using msgmerge.
Triggered whenever new changes are pulled from the upstream repository. Most msgmerge command-line options
can be set up through the addon configuration.
See also:
Does Weblate update translation files besides translations?

2.14. Addons 275



The Weblate Manual, Release 4.5.3

Squash Git commits

Squash Git commits prior to pushing changes.
Git commits can be squashed prior to pushing changes in one of the following modes:
New in version 3.4.

• All commits into one
• Per language
• Per file

New in version 3.5.
• Per author

Original commit messages are kept, but authorship is lost unless Per author is selected, or the commit message is
customized to include it.
New in version 4.1.
The original commit messages can optionally be overridden with a custom commit message.
Trailers (commit lines like Co-authored-by: …) can optionally be removed from the original commit messages
and appended to the end of the squashed commit message. This also generates proper Co-authored-by: credit
for every translator.

Customize JSON output

Allows adjusting JSON output behavior, for example indentation or sorting.

Formats the Java properties file

Sorts the Java properties file.

Stale comment removal

New in version 3.7.
Set a timeframe for removal of comments.
This can be useful to remove old comments which might have become outdated. Use with care as comments getting
old does not mean they have lost their importance.

Stale suggestion removal

New in version 3.7.
Set a timeframe for removal of suggestions.
Can be very useful in connection with suggestion voting (see Peer review) to remove suggestions which don’t receive
enough positive votes in a given timeframe.

276 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

Update RESX files

New in version 3.9.
Update all translation files to match the monolingual upstream base file. Unused strings are removed, and new ones
added as copies of the source string.

Hint: Use Cleanup translation files if you only want to remove stale translation keys.

See also:
Does Weblate update translation files besides translations?

Customize YAML output

New in version 3.10.2.
Allows adjusting YAML output behavior, for example line-length or newlines.

2.14.2 Customizing list of addons

The list of addons is configured by WEBLATE_ADDONS. To add another addon, simply include the absolute class
name in this setting.

2.14.3 Writing addon

You can write your own addons too, create a subclass of weblate.addons.base.BaseAddon to define the
addon metadata, and then implement a callback to do the processing.
See also:
Developing addons

2.14.4 Executing scripts from addon

Addons can also be used to execute external scripts. This used to be integrated in Weblate, but now you have to write
some code to wrap your script with an addon.

#
# Copyright © 2012 - 2021 Michal Čihař <michal@cihar.com>
#
# This file is part of Weblate <https://weblate.org/>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#
"""Example pre commit script."""

(continues on next page)

2.14. Addons 277



The Weblate Manual, Release 4.5.3

(continued from previous page)

from django.utils.translation import gettext_lazy as _

from weblate.addons.events import EVENT_PRE_COMMIT
from weblate.addons.scripts import BaseScriptAddon

class ExamplePreAddon(BaseScriptAddon):
# Event used to trigger the script
events = (EVENT_PRE_COMMIT,)
# Name of the addon, has to be unique
name = "weblate.example.pre"
# Verbose name and long descrption
verbose = _("Execute script before commit")
description = _("This addon executes a script.")

# Script to execute
script = "/bin/true"
# File to add in commit (for pre commit event)
# does not have to be set
add_file = "po/{{ language_code }}.po"

For installation instructions see Custom quality checks, addons and auto-fixes.
The script is executed with the current directory set to the root of the VCS repository for any given component.
Additionally, the following environment variables are available:
WL_VCS

Version control system used.
WL_REPO

Upstream repository URL.
WL_PATH

Absolute path to VCS repository.
WL_BRANCH

New in version 2.11.
Repository branch configured in the current component.

WL_FILEMASK
Filemask for current component.

WL_TEMPLATE
Filename of template for monolingual translations (can be empty).

WL_NEW_BASE
New in version 2.14.
Filename of the file used for creating new translations (can be empty).

WL_FILE_FORMAT
File format used in current component.

WL_LANGUAGE
Language of currently processed translation (not available for component-level hooks).

WL_PREVIOUS_HEAD
Previous HEAD after update (only available after running the post-update hook).

WL_COMPONENT_SLUG
New in version 3.9.
Component slug used to construct URL.

278 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

WL_PROJECT_SLUG
New in version 3.9.
Project slug used to construct URL.

WL_COMPONENT_NAME
New in version 3.9.
Component name.

WL_PROJECT_NAME
New in version 3.9.
Project name.

WL_COMPONENT_URL
New in version 3.9.
Component URL.

WL_ENGAGE_URL
New in version 3.9.
Project engage URL.

See also:
Component configuration

Post-update repository processing

Can be used to update translation files when the VCS upstream source changes. To achieve this, please remember
Weblate only sees files committed to the VCS, so you need to commit changes as a part of the script.
For example with Gulp you can do it using following code:

#! /bin/sh
gulp --gulpfile gulp-i18n-extract.js
git commit -m 'Update source strings' src/languages/en.lang.json

Pre-commit processing of translations

Use the commit script to automatically change a translation before it is committed to the repository.
It is passed as a single parameter consisting of the filename of a current translation.

2.15 Translation Memory

New in version 2.20.
Weblate comes with a built-in translation memory consisting of the following:

• Manually imported translation memory (see User interface).
• Automatically stored translations performed in Weblate (depending on Translation memory scopes).
• Automatically imported past translations.

Content in the translation memory can be applied one of two ways:
• Manually, Automatic suggestions view while translating.
• Automatically, by translating strings using Automatic translation, or Automatic translation addon.

For installation tips, seeWeblate Translation Memory, which is turned on by default.

2.15. Translation Memory 279



The Weblate Manual, Release 4.5.3

2.15.1 Translation memory scopes

New in version 3.2: In earlier versions translation memory could be only loaded from a file corresponding to the
current imported translation memory scope.
The translation memory scopes are there to allow both privacy and sharing of translations, to suit the desired behavior.

Imported translation memory

Importing arbitrary translation memory data using the import_memory command makes memory content avai-
lable to all users and projects.

Per user translation memory

Stores all user translations automatically in the personal translation memory of each respective user.

Per project translation memory

All translations within a project are automatically stored in a project translation memory only available for this project.

Shared translation memory

All translation within projects with shared translation memory turned on are stored in a shared translation memory
available to all projects.
Please consider carefully whether to turn this feature on for shared Weblate installations, as it can have severe impli-
cations:

• The translations can be used by anybody else.
• This might lead to disclosing secret information.

2.15.2 Managing translation memory

User interface

New in version 3.2.
In the basic user interface you can manage per user and per project translation memories. It can be used to download,
wipe or import translation memory.

Hint: Translation memory in JSON can be imported into Weblate, TMX is provided for interoperability with other
tools.

See also:
Weblate Translation Memory Schema

280 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

Management interface

There are several management commands to manipulate the translation memory content. These operate on the trans-
lation memory as whole, unfiltered by scopes (unless requested by parameters):
dump_memory Exports the memory into JSON
import_memory Imports TMX or JSON files into the translation memory

2.16 Configuration

All settings are stored in settings.py (as is usual for Django).

Note: After changing any of these settings, you need to restart Weblate - both WSGI and Celery processes.
In case it is run as mod_wsgi, you need to restart Apache to reload the configuration.

See also:
Please also check Django’s documentation for parameters configuring Django itself.

2.16.1 AKISMET_API_KEY

Weblate can use Akismet to check incoming anonymous suggestions for spam. Visit akismet.com to purchase an API
key and associate it with a site.

2.16. Configuration 281

https://docs.djangoproject.com/en/stable/ref/settings/
https://akismet.com/


The Weblate Manual, Release 4.5.3

2.16.2 ANONYMOUS_USER_NAME

Username of users that are not signed in.
See also:
Access control

2.16.3 AUDITLOG_EXPIRY

New in version 3.6.
How many days Weblate should keep audit logs, which contain info about account activity.
Defaults to 180 days.

2.16.4 AUTH_LOCK_ATTEMPTS

New in version 2.14.
Maximum number of failed authentication attempts before rate limiting is applied.
This is currently applied in the following locations:

• Logins. Deletes the account password, preventing the user from signing in without requesting a new password.
• Password resets. Prevents new e-mails from being sent, avoiding spamming users with too many password reset
attempts.

Defaults to 10.
See also:
Rate limiting,

2.16.5 AUTO_UPDATE

New in version 3.2.
Changed in version 3.11: The original on/off option was changed to differentiate which strings are accepted.
Updates all repositories on a daily basis.

Hint: Useful if you are not using Notification hooks to update Weblate repositories automatically.

Note: On/off options exist in addition to string selection for backward compatibility.

Options are:
"none" No daily updates.
"remote" also False Only update remotes.
"full" also True Update remotes and merge working copy.

Note: This requires that Background tasks using Celery is working, and will take effect after it is restarted.

282 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

2.16.6 AVATAR_URL_PREFIX

Prefix for constructing avatar URLs as:${AVATAR_URL_PREFIX}/avatar/${MAIL_HASH}?${PARAMS}.
The following services are known to work:
Gravatar (default), as per https://gravatar.com/ AVATAR_URL_PREFIX = 'https://www.

gravatar.com/'

Libravatar, as per https://www.libravatar.org/ AVATAR_URL_PREFIX = 'https://www.
libravatar.org/'

See also:
Avatar caching, ENABLE_AVATARS, Avatars

2.16.7 AUTH_TOKEN_VALID

New in version 2.14.
How long the authentication token and temporary password from password reset e-mails is valid for. Set in number
of seconds, defaulting to 172800 (2 days).

2.16.8 AUTH_PASSWORD_DAYS

New in version 2.15.
How many days using the same password should be allowed.

Note: Password changes made prior to Weblate 2.15 will not be accounted for in this policy.

Defaults to 180 days.

2.16.9 AUTOFIX_LIST

List of automatic fixes to apply when saving a string.

Note: Provide a fully-qualified path to the Python class that implementing the autofixer interface.

Available fixes:
weblate.trans.autofixes.whitespace.SameBookendingWhitespace Matches whitespace at

the start and end of the string to the source.
weblate.trans.autofixes.chars.ReplaceTrailingDotsWithEllipsis Replaces trailing

dots (…) if the source string has a corresponding ellipsis (…).
weblate.trans.autofixes.chars.RemoveZeroSpace Removes zero-width space characters if the

source does not contain any.
weblate.trans.autofixes.chars.RemoveControlChars Removes control characters if the source

does not contain any.
weblate.trans.autofixes.html.BleachHTML Removes unsafe HTMLmarkup from strings flagged as

safe-html (see Unsafe HTML).
You can select which ones to use:

2.16. Configuration 283

https://gravatar.com/
https://www.libravatar.org/


The Weblate Manual, Release 4.5.3

AUTOFIX_LIST = (
"weblate.trans.autofixes.whitespace.SameBookendingWhitespace",
"weblate.trans.autofixes.chars.ReplaceTrailingDotsWithEllipsis",

)

See also:
Automatic fixups, Custom automatic fixups

2.16.10 BACKGROUND_TASKS

New in version 4.5.2.
Defines how often lengthy maintenance tasks should be triggered for a component.
Right now this controls:

• Automatic translation addon
• Checks and fixups recalculation

Possible choices:
• monthly (this is the default)
• weekly

• daily

• never

Note: Increasing the frequency is not recommended when Weblate contains thousands of components.

2.16.11 BASE_DIR

Base directory where Weblate sources are located. Used to derive several other paths by default:
• DATA_DIR

Default value: Top level directory of Weblate sources.

2.16.12 BASIC_LANGUAGES

New in version 4.4.
List of languages to offer users for starting new translation. When not specified built in list is used which includes all
commonly used languages, but without country specific variants.
This only limits non privileged users to add unwanted languages. The project admins are still presented with full
selection of languages defined in Weblate.

Note: This does not define new languages for Weblate, it only filters existing ones in the database.

Example:

BASIC_LANGUAGES = {"cs", "it", "ja", "en"}

See also:
Language definitions

284 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

2.16.13 CSP_SCRIPT_SRC, CSP_IMG_SRC, CSP_CONNECT_SRC,
CSP_STYLE_SRC, CSP_FONT_SRC

Customize Content-Security-Policy header for Weblate. The header is automatically generated based on
enabled integrations with third-party services (Matomo, Google Analytics, Sentry, …).
All these default to empty list.
Example:

# Enable Cloudflare Javascript optimizations
CSP_SCRIPT_SRC = ["ajax.cloudflare.com"]

See also:
Content security policy, Content Security Policy (CSP)

2.16.14 CHECK_LIST

List of quality checks to perform on a translation.

Note: Provide a fully-qualified path to the Python class implementing the check interface.

Adjust the list of checks to include ones relevant to you.
All built-in Quality checks are turned on by default, from where you can change these settings. By default they are
commented out in Sample configuration so that default values are used. New checks then carried out for each new
Weblate version.
You can turn off all checks:

CHECK_LIST = ()

You can turn on only a few:

CHECK_LIST = (
"weblate.checks.chars.BeginNewlineCheck",
"weblate.checks.chars.EndNewlineCheck",
"weblate.checks.chars.MaxLengthCheck",

)

Note: Changing this setting only affects newly changed translations, existing checks will still be stored in the database.
To also apply changes to the stored translations, run updatechecks.

See also:
Quality checks, Customizing behavior using flags

2.16. Configuration 285

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP


The Weblate Manual, Release 4.5.3

2.16.15 COMMENT_CLEANUP_DAYS

New in version 3.6.
Delete comments after a given number of days. Defaults to None, meaning no deletion at all.

2.16.16 COMMIT_PENDING_HOURS

New in version 2.10.
Number of hours between committing pending changes by way of the background task.
See also:
Component configuration, Age of changes to commit, Running maintenance tasks, commit_pending

2.16.17 DATA_DIR

The folder Weblate stores all data in. It contains links to VCS repositories, a fulltext index and various configuration
files for external tools.
The following subdirectories usually exist:
home Home directory used for invoking scripts.
ssh SSH keys and configuration.
static Default location for static Django files, specified by STATIC_ROOT. See Serving static files.
media Default location for Django media files, specified by MEDIA_ROOT. Contains uploaded screenshots.
vcs Version control repositories for translations.
backups Daily backup data, please check Dumped data for backups for details.
celery Celery scheduler data, see Background tasks using Celery.
fonts: User-uploaded fonts, see Managing fonts.

Note: This directory has to be writable by Weblate. Running it as uWSGI means the www-data user should have
write access to it.
The easiest way to achieve this is to make the user the owner of the directory:

sudo chown www-data:www-data -R $DATA_DIR

Defaults to $BASE_DIR/data.
See also:
BASE_DIR, Filesystem permissions, Backing up and moving Weblate

286 Kapittel 2. Administrator docs

https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-STATIC_ROOT
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-MEDIA_ROOT


The Weblate Manual, Release 4.5.3

2.16.18 DATABASE_BACKUP

New in version 3.1.
Whether the database backups should be stored as plain text, compressed or skipped. The authorized values are:

• "plain"

• "compressed"

• "none"

See also:
Backing up and moving Weblate

2.16.19 DEFAULT_ACCESS_CONTROL

New in version 3.3.
The default access control setting for new projects:
0 Public

1 Protected

100 Private

200 Custom

Use Custom if you are managing ACL manually, which means not relying on the internal Weblate management.
See also:
Project access control, Access control

2.16.20 DEFAULT_AUTO_WATCH

New in version 4.5.
Configures whetherAutomatically watch projects on contribution should be turned on for new users. Defaults to True.
See also:
Notifications

2.16.21 DEFAULT_RESTRICTED_COMPONENT

New in version 4.1.
The default value for component restriction.
See also:
Restricted access, Scope of groups

2.16. Configuration 287



The Weblate Manual, Release 4.5.3

2.16.22 DEFAULT_ADD_MESSAGE, DEFAULT_ADDON_MESSAGE, DE-
FAULT_COMMIT_MESSAGE, DEFAULT_DELETE_MESSAGE, DE-
FAULT_MERGE_MESSAGE

Default commit messages for different operations, please check Component configuration for details.
See also:
Template markup, Component configuration, Commit, add, delete, merge and addon messages

2.16.23 DEFAULT_ADDONS

Default addons to install on every created component.

Note: This setting affects only newly created components.

Example:

DEFAULT_ADDONS = {
# Addon with no parameters
"weblate.flags.target_edit": {},
# Addon with parameters
"weblate.autotranslate.autotranslate": {

"mode": "suggest",
"filter_type": "todo",
"auto_source": "mt",
"component": "",
"engines": ["weblate-translation-memory"],
"threshold": "80",

},
}

See also:
install_addon, WEBLATE_ADDONS

2.16.24 DEFAULT_COMMITER_EMAIL

New in version 2.4.
Committer e-mail address defaulting to noreply@weblate.org.
See also:
DEFAULT_COMMITER_NAME

2.16.25 DEFAULT_COMMITER_NAME

New in version 2.4.
Committer name defaulting to Weblate.
See also:
DEFAULT_COMMITER_EMAIL

288 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

2.16.26 DEFAULT_LANGUAGE

New in version 4.3.2.
Default source language to use for example in Source language.
Defaults to en. The matching language object needs to exist in the database.
See also:
Language definitions, Source language

2.16.27 DEFAULT_MERGE_STYLE

New in version 3.4.
Merge style for any new components.

• rebase - default
• merge

See also:
Component configuration, Merge style

2.16.28 DEFAULT_SHARED_TM

New in version 3.2.
Configures default value of Use shared translation memory and Contribute to shared translation memory.

2.16.29 DEFAULT_TRANSLATION_PROPAGATION

New in version 2.5.
Default setting for translation propagation, defaults to True.
See also:
Component configuration, Allow translation propagation

2.16.30 DEFAULT_PULL_MESSAGE

Title for new pull requests, defaulting to 'Update from Weblate'.

2.16.31 ENABLE_AVATARS

Whether to turn on Gravatar-based avatars for users. By default this is on.
Avatars are fetched and cached on the server, lowering the risk of leaking private info, speeding up the user experience.
See also:
Avatar caching, AVATAR_URL_PREFIX, Avatars

2.16. Configuration 289



The Weblate Manual, Release 4.5.3

2.16.32 ENABLE_HOOKS

Whether to enable anonymous remote hooks.
See also:
Notification hooks

2.16.33 ENABLE_HTTPS

Whether to send links toWeblate as HTTPS or HTTP. This setting affects sent e-mails and generated absolute URLs.
In the default configuration this is also used for several Django settings related to HTTPS - it enables secure cookies,
toggles HSTS or enables redirection to HTTPS URL.
The HTTPS redirection might be problematic in some cases and you might hit issue with infinite redirection in
case you are using a reverse proxy doing SSL termination which does not correctly pass protocol headers to Djan-
go. Please tweak your reverse proxy configuration to emit X-Forwarded-Proto or Forwarded headers or
configure SECURE_PROXY_SSL_HEADER to let Django correctly detect the SSL status.
See also:
SESSION_COOKIE_SECURE, CSRF_COOKIE_SECURE, SECURE_SSL_REDIRECT, SECU-
RE_PROXY_SSL_HEADER Set correct site domain

2.16.34 ENABLE_SHARING

Turn on/off the Share menu so users can share translation progress on social networks.

2.16.35 GET_HELP_URL

New in version 4.5.2.
URL where support for your Weblate instance can be found.

2.16.36 GITLAB_CREDENTIALS

New in version 4.3.
List for credentials for GitLab servers.

Hint: Use this in case you want Weblate to interact with more of them, for single GitLab endpoint stick with
GITLAB_USERNAME and GITLAB_TOKEN .

GITLAB_CREDENTIALS = {
"gitlab.com": {

"username": "weblate",
"token": "your-api-token",

},
"gitlab.example.com": {

"username": "weblate",
"token": "another-api-token",

},
}

290 Kapittel 2. Administrator docs

https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECURE_PROXY_SSL_HEADER
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SESSION_COOKIE_SECURE
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-CSRF_COOKIE_SECURE
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECURE_SSL_REDIRECT
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECURE_PROXY_SSL_HEADER
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECURE_PROXY_SSL_HEADER


The Weblate Manual, Release 4.5.3

2.16.37 GITLAB_USERNAME

GitLab username used to send merge requests for translation updates.
See also:
GITLAB_CREDENTIALS, GitLab

2.16.38 GITLAB_TOKEN

New in version 4.3.
GitLab personal access token used to make API calls for translation updates.
See also:
GITLAB_CREDENTIALS, GitLab, GitLab: Personal access token

2.16.39 GITHUB_CREDENTIALS

New in version 4.3.
List for credentials for GitHub servers.

Hint: Use this in case you want Weblate to interact with more of them, for single GitHub endpoint stick with
GITHUB_USERNAME and GITHUB_TOKEN .

GITHUB_CREDENTIALS = {
"api.github.com": {

"username": "weblate",
"token": "your-api-token",

},
"github.example.com": {

"username": "weblate",
"token": "another-api-token",

},
}

2.16.40 GITHUB_USERNAME

GitHub username used to send pull requests for translation updates.
See also:
GITHUB_CREDENTIALS, GitHub

2.16.41 GITHUB_TOKEN

New in version 4.3.
GitHub personal access token used to make API calls to send pull requests for translation updates.
See also:
GITHUB_CREDENTIALS, GitHub, Creating a personal access token

2.16. Configuration 291

https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html
https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token


The Weblate Manual, Release 4.5.3

2.16.42 GOOGLE_ANALYTICS_ID

Google Analytics ID to turn on monitoring of Weblate using Google Analytics.

2.16.43 HIDE_REPO_CREDENTIALS

Hide repository credentials from the web interface. In case you have repository URL with user and password,Weblate
will hide it when related info is shown to users.
For example instead of https://user:password@git.example.com/repo.git it will show just
https://git.example.com/repo.git. It tries to clean up VCS error messages too in a similar manner.

Note: This is turned on by default.

2.16.44 HIDE_VERSION

New in version 4.3.1.
Hides version information from unauthenticated users. This also makes all documentation links point to latest version
instead of the documentation matching currently installed version.
Hiding version is recommended security practice in some corporations, but it doesn’t prevent attacker to figure out
version by probing the behavior.

Note: This is turned off by default.

2.16.45 IP_BEHIND_REVERSE_PROXY

New in version 2.14.
Indicates whether Weblate is running behind a reverse proxy.
If set to True, Weblate gets IP address from a header defined by IP_PROXY_HEADER.

Warning: Ensure you are actually using a reverse proxy and that it sets this header, otherwise users will be able
to fake the IP address.

Note: This is not on by default.

See also:
Running behind reverse proxy, Rate limiting, IP_PROXY_HEADER, IP_PROXY_OFFSET

292 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

2.16.46 IP_PROXY_HEADER

New in version 2.14.
Indicates which headerWeblate should obtain the IP address from when IP_BEHIND_REVERSE_PROXY is turned
on.
Defaults to HTTP_X_FORWARDED_FOR.
See also:
Running behind reverse proxy,Rate limiting, SECURE_PROXY_SSL_HEADER, IP_BEHIND_REVERSE_PROXY,
IP_PROXY_OFFSET

2.16.47 IP_PROXY_OFFSET

New in version 2.14.
Indicates which part of IP_PROXY_HEADER is used as client IP address.
Depending on your setup, this header might consist of several IP addresses, (for example X-Forwarded-For:
a, b, client-ip) and you can configure which address from the header is used as client IP address here.

Warning: Setting this affects the security of your installation, you should only configure it to use trusted proxies
for determining IP address.

Defaults to 0.
See also:
Running behind reverse proxy,Rate limiting, SECURE_PROXY_SSL_HEADER, IP_BEHIND_REVERSE_PROXY,
IP_PROXY_HEADER

2.16.48 LEGAL_URL

New in version 3.5.
URL where your Weblate instance shows its legal documents.

Hint: Useful if you host your legal documents outside Weblate for embedding them inside Weblate, please check
Legal for details.

Example:

LEGAL_URL = "https://weblate.org/terms/"

2.16.49 LICENSE_EXTRA

Additional licenses to include in the license choices.

Note: Each license definition should be tuple of its short name, a long name and an URL.

For example:

2.16. Configuration 293

https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECURE_PROXY_SSL_HEADER
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SECURE_PROXY_SSL_HEADER


The Weblate Manual, Release 4.5.3

LICENSE_EXTRA = [
(

"AGPL-3.0",
"GNU Affero General Public License v3.0",
"https://www.gnu.org/licenses/agpl-3.0-standalone.html",

),
]

2.16.50 LICENSE_FILTER

Changed in version 4.3: Setting this to blank value now disables license alert.
Filter list of licenses to show. This also disables the license alert when set to empty.

Note: This filter uses the short license names.

For example:

LICENSE_FILTER = {"AGPL-3.0", "GPL-3.0-or-later"}

Following disables the license alert:

LICENSE_FILTER = set()

See also:
alerts

2.16.51 LICENSE_REQUIRED

Defines whether the license attribute in Component configuration is required.

Note: This is off by default.

2.16.52 LIMIT_TRANSLATION_LENGTH_BY_SOURCE_LENGTH

Whether the length of a given translation should be limited. The restriction is the length of the source string * 10
characters.

Hint: Set this to False to allow longer translations (up to 10.000 characters) irrespective of source string length.

Note: Defaults to True.

294 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

2.16.53 LOCALIZE_CDN_URL and LOCALIZE_CDN_PATH

These settings configure the JavaScript localization CDN addon. LOCALIZE_CDN_URL defines root URL where the
localization CDN is available and LOCALIZE_CDN_PATH defines path where Weblate should store generated files
which will be served at the LOCALIZE_CDN_URL.

Hint: On Hosted Weblate, this uses https://weblate-cdn.com/.

See also:
JavaScript localization CDN

2.16.54 LOGIN_REQUIRED_URLS

A list of URLs you want to require logging into. (Besides the standard rules built into Weblate).

Hint: This allows you to password protect a whole installation using:

LOGIN_REQUIRED_URLS = (r"/(.*)$",)
REST_FRAMEWORK["DEFAULT_PERMISSION_CLASSES"] = [

"rest_framework.permissions.IsAuthenticated"
]

Hint: It is desirable to lock down API access as well, as shown in the above example.

See also:
REQUIRE_LOGIN

2.16.55 LOGIN_REQUIRED_URLS_EXCEPTIONS

List of exceptions for LOGIN_REQUIRED_URLS. If not specified, users are allowed to access the sign in page.
Some of exceptions you might want to include:

LOGIN_REQUIRED_URLS_EXCEPTIONS = (
r"/accounts/(.*)$", # Required for sign in
r"/static/(.*)$", # Required for development mode
r"/widgets/(.*)$", # Allowing public access to widgets
r"/data/(.*)$", # Allowing public access to data exports
r"/hooks/(.*)$", # Allowing public access to notification hooks
r"/api/(.*)$", # Allowing access to API
r"/js/i18n/$", # JavaScript localization

)

2.16. Configuration 295



The Weblate Manual, Release 4.5.3

2.16.56 MATOMO_SITE_ID

ID of a site in Matomo (formerly Piwik) you want to track.

Note: This integration does not support the Matomo Tag Manager.

See also:
MATOMO_URL

2.16.57 MATOMO_URL

Full URL (including trailing slash) of a Matomo (formerly Piwik) installation you want to use to track Weblate use.
Please check <https://matomo.org/> for more details.

Hint: This integration does not support the Matomo Tag Manager.

For example:

MATOMO_SITE_ID = 1
MATOMO_URL = "https://example.matomo.cloud/"

See also:
MATOMO_SITE_ID

2.16.58 MT_SERVICES

Changed in version 3.0: The setting was renamed from MACHINE_TRANSLATION_SERVICES to
MT_SERVICES to be consistent with other machine translation settings.
List of enabled machine translation services to use.

Note: Many of the services need additional configuration like API keys, please check their documentation Machine
translation for more details.

MT_SERVICES = (
"weblate.machinery.apertium.ApertiumAPYTranslation",
"weblate.machinery.deepl.DeepLTranslation",
"weblate.machinery.glosbe.GlosbeTranslation",
"weblate.machinery.google.GoogleTranslation",
"weblate.machinery.microsoft.MicrosoftCognitiveTranslation",
"weblate.machinery.microsoftterminology.MicrosoftTerminologyService",
"weblate.machinery.mymemory.MyMemoryTranslation",
"weblate.machinery.tmserver.AmagamaTranslation",
"weblate.machinery.tmserver.TMServerTranslation",
"weblate.machinery.yandex.YandexTranslation",
"weblate.machinery.weblatetm.WeblateTranslation",
"weblate.machinery.saptranslationhub.SAPTranslationHub",
"weblate.memory.machine.WeblateMemory",

)

See also:
Machine translation, Automatic suggestions

296 Kapittel 2. Administrator docs

https://matomo.org/


The Weblate Manual, Release 4.5.3

2.16.59 MT_APERTIUM_APY

URL of the Apertium-APy server, https://wiki.apertium.org/wiki/Apertium-apy
See also:
Apertium, Machine translation, Automatic suggestions

2.16.60 MT_AWS_ACCESS_KEY_ID

Access key ID for Amazon Translate.
See also:
AWS, Machine translation, Automatic suggestions

2.16.61 MT_AWS_SECRET_ACCESS_KEY

API secret key for Amazon Translate.
See also:
AWS, Machine translation, Automatic suggestions

2.16.62 MT_AWS_REGION

Region name to use for Amazon Translate.
See also:
AWS, Machine translation, Automatic suggestions

2.16.63 MT_BAIDU_ID

Client ID for the Baidu Zhiyun API, you can register at https://api.fanyi.baidu.com/api/trans/product/index
See also:
Baidu API machine translation, Machine translation, Automatic suggestions

2.16.64 MT_BAIDU_SECRET

Client secret for the Baidu Zhiyun API, you can register at https://api.fanyi.baidu.com/api/trans/product/index
See also:
Baidu API machine translation, Machine translation, Automatic suggestions

2.16.65 MT_DEEPL_API_VERSION

New in version 4.1.1.
API version to use with DeepL service. The version limits scope of usage:
v1 Is meant for CAT tools and is usable with user-based subscription.
v2 Is meant for API usage and the subscription is usage based.

2.16. Configuration 297

https://wiki.apertium.org/wiki/Apertium-apy
https://api.fanyi.baidu.com/api/trans/product/index
https://api.fanyi.baidu.com/api/trans/product/index


The Weblate Manual, Release 4.5.3

Previously Weblate was classified as a CAT tool by DeepL, so it was supposed to use the v1 API, but now is supposed
to use the v2API. Therefore it defaults to v2, and you can change it to v1 in case you have an existing CAT subscription
and want Weblate to use that.
See also:
DeepL, Machine translation, Automatic suggestions

2.16.66 MT_DEEPL_KEY

API key for the DeepL API, you can register at https://www.deepl.com/pro.html
See also:
DeepL, Machine translation, Automatic suggestions

2.16.67 MT_GOOGLE_KEY

API key for Google Translate API v2, you can register at https://cloud.google.com/translate/docs
See also:
Google Translate, Machine translation, Automatic suggestions

2.16.68 MT_GOOGLE_CREDENTIALS

API v3 JSON credentials file obtained in the Google cloud console. Please provide a full OS path. Credentials
are per service-account affiliated with certain project. Please check https://cloud.google.com/docs/authentication/
getting-started for more details.

2.16.69 MT_GOOGLE_PROJECT

Google Cloud API v3 project id with activated translation service and billing activated. Please check https://cloud.
google.com/appengine/docs/standard/nodejs/building-app/creating-project for more details

2.16.70 MT_GOOGLE_LOCATION

API v3 Google Cloud App Engine may be specific to a location. Change accordingly if the default global fallback
does not work for you.
Please check https://cloud.google.com/appengine/docs/locations for more details
See also:
Google Translate API V3 (Advanced)

2.16.71 MT_MICROSOFT_BASE_URL

Region base URL domain as defined in the «Base URLs» section.
Defaults to api.cognitive.microsofttranslator.com for Azure Global.
For Azure China, please use api.translator.azure.cn.

298 Kapittel 2. Administrator docs

https://www.deepl.com/pro.html
https://cloud.google.com/translate/docs
https://cloud.google.com/docs/authentication/getting-started
https://cloud.google.com/docs/authentication/getting-started
https://cloud.google.com/appengine/docs/standard/nodejs/building-app/creating-project
https://cloud.google.com/appengine/docs/standard/nodejs/building-app/creating-project
https://cloud.google.com/appengine/docs/locations
https://docs.microsoft.com/en-us/azure/cognitive-services/translator/reference/v3-0-reference#base-urls


The Weblate Manual, Release 4.5.3

2.16.72 MT_MICROSOFT_COGNITIVE_KEY

Client key for the Microsoft Cognitive Services Translator API.
See also:
Microsoft Cognitive Services Translator,Machine translation, Automatic suggestions, Cognitive Services - Text Trans-
lation API, Microsoft Azure Portal

2.16.73 MT_MICROSOFT_REGION

Region prefix as defined in the «Authenticating with a Multi-service resource» section.

2.16.74 MT_MICROSOFT_ENDPOINT_URL

Region endpoint URL domain for access token as defined in the «Authenticating with an access token» section.
Defaults to api.cognitive.microsoft.com for Azure Global.
For Azure China, please use your endpoint from the Azure Portal.

2.16.75 MT_MODERNMT_KEY

API key for the ModernMT machine translation engine.
See also:
ModernMT MT_MODERNMT_URL

2.16.76 MT_MODERNMT_URL

URL of ModernMT. It defaults to https://api.modernmt.com/ for the cloud service.
See also:
ModernMT MT_MODERNMT_KEY

2.16.77 MT_MYMEMORY_EMAIL

MyMemory identification e-mail address. It permits 1000 requests per day.
See also:
MyMemory, Machine translation, Automatic suggestions, MyMemory: API technical specifications

2.16.78 MT_MYMEMORY_KEY

MyMemory access key for private translation memory, use it with MT_MYMEMORY_USER.
See also:
MyMemory, Machine translation, Automatic suggestions, MyMemory: API key generator

2.16. Configuration 299

https://azure.microsoft.com/en-us/services/cognitive-services/translator/
https://azure.microsoft.com/en-us/services/cognitive-services/translator/
https://portal.azure.com/
https://docs.microsoft.com/en-us/azure/cognitive-services/translator/reference/v3-0-reference#authenticating-with-a-multi-service-resource
https://docs.microsoft.com/en-us/azure/cognitive-services/translator/reference/v3-0-reference#authenticating-with-an-access-token
https://mymemory.translated.net/doc/spec.php
https://mymemory.translated.net/doc/keygen.php


The Weblate Manual, Release 4.5.3

2.16.79 MT_MYMEMORY_USER

MyMemory user ID for private translation memory, use it with MT_MYMEMORY_KEY.
See also:
MyMemory, Machine translation, Automatic suggestions, MyMemory: API key generator

2.16.80 MT_NETEASE_KEY

App key for NetEase Sight API, you can register at https://sight.youdao.com/
See also:
NetEase Sight API machine translation, Machine translation, Automatic suggestions

2.16.81 MT_NETEASE_SECRET

App secret for the NetEase Sight API, you can register at https://sight.youdao.com/
See also:
NetEase Sight API machine translation, Machine translation, Automatic suggestions

2.16.82 MT_TMSERVER

URL where tmserver is running.
See also:
tmserver, Machine translation, Automatic suggestions, tmserver

2.16.83 MT_YANDEX_KEY

API key for the Yandex Translate API, you can register at https://yandex.com/dev/translate/
See also:
Yandex Translate, Machine translation, Automatic suggestions

2.16.84 MT_YOUDAO_ID

Client ID for the Youdao Zhiyun API, you can register at https://ai.youdao.com/product-fanyi-text.s.
See also:
Youdao Zhiyun API machine translation, Machine translation, Automatic suggestions

2.16.85 MT_YOUDAO_SECRET

Client secret for the Youdao Zhiyun API, you can register at https://ai.youdao.com/product-fanyi-text.s.
See also:
Youdao Zhiyun API machine translation, Machine translation, Automatic suggestions

300 Kapittel 2. Administrator docs

https://mymemory.translated.net/doc/keygen.php
https://sight.youdao.com/
https://sight.youdao.com/
http://docs.translatehouse.org/projects/translate-toolkit/en/latest/commands/tmserver.html
https://yandex.com/dev/translate/
https://ai.youdao.com/product-fanyi-text.s
https://ai.youdao.com/product-fanyi-text.s


The Weblate Manual, Release 4.5.3

2.16.86 MT_SAP_BASE_URL

API URL to the SAP Translation Hub service.
See also:
SAP Translation Hub, Machine translation, Automatic suggestions

2.16.87 MT_SAP_SANDBOX_APIKEY

API key for sandbox API usage
See also:
SAP Translation Hub, Machine translation, Automatic suggestions

2.16.88 MT_SAP_USERNAME

Your SAP username
See also:
SAP Translation Hub, Machine translation, Automatic suggestions

2.16.89 MT_SAP_PASSWORD

Your SAP password
See also:
SAP Translation Hub, Machine translation, Automatic suggestions

2.16.90 MT_SAP_USE_MT

Whether to also use machine translation services, in addition to the term database. Possible values: True or False
See also:
SAP Translation Hub, Machine translation, Automatic suggestions

2.16.91 NEARBY_MESSAGES

How many strings to show around the currently translated string. This is just a default value, users can adjust this in
User profile.

2.16.92 PAGURE_CREDENTIALS

New in version 4.3.2.
List for credentials for Pagure servers.

Hint: Use this in case you want Weblate to interact with more of them, for single Pagure endpoint stick with
PAGURE_USERNAME and PAGURE_TOKEN .

2.16. Configuration 301



The Weblate Manual, Release 4.5.3

PAGURE_CREDENTIALS = {
"pagure.io": {

"username": "weblate",
"token": "your-api-token",

},
"pagure.example.com": {

"username": "weblate",
"token": "another-api-token",

},
}

2.16.93 PAGURE_USERNAME

New in version 4.3.2.
Pagure username used to send merge requests for translation updates.
See also:
PAGURE_CREDENTIALS, Pagure

2.16.94 PAGURE_TOKEN

New in version 4.3.2.
Pagure personal access token used to make API calls for translation updates.
See also:
PAGURE_CREDENTIALS, Pagure, Pagure API

2.16.95 RATELIMIT_ATTEMPTS

New in version 3.2.
Maximum number of authentication attempts before rate limiting is applied.
Defaults to 5.
See also:
Rate limiting, RATELIMIT_WINDOW , RATELIMIT_LOCKOUT

2.16.96 RATELIMIT_WINDOW

New in version 3.2.
How long authentication is accepted after rate limiting applies.
An amount of seconds defaulting to 300 (5 minutes).
See also:
Rate limiting, RATELIMIT_ATTEMPTS, RATELIMIT_LOCKOUT

302 Kapittel 2. Administrator docs

https://pagure.io/api/0/


The Weblate Manual, Release 4.5.3

2.16.97 RATELIMIT_LOCKOUT

New in version 3.2.
How long authentication is locked after rate limiting applies.
An amount of seconds defaulting to 600 (10 minutes).
See also:
Rate limiting, RATELIMIT_ATTEMPTS, RATELIMIT_WINDOW

2.16.98 REGISTRATION_ALLOW_BACKENDS

New in version 4.1.
List of authentication backends to allow registration from. This only limits new registrations, users can still authen-
ticate and add authentication using all configured authentication backends.
It is recommended to keep REGISTRATION_OPEN enabled while limiting registration backends, otherwise users
will be able to register, but Weblate will not show links to register in the user interface.
Example:

REGISTRATION_ALLOW_BACKENDS = ["azuread-oauth2", "azuread-tenant-oauth2"]

Hint: The backend names match names used in URL for authentication.

See also:
REGISTRATION_OPEN , Authentication

2.16.99 REGISTRATION_CAPTCHA

A value of either True or False indicating whether registration of new accounts is protected by CAPTCHA. This
setting is optional, and a default of True will be assumed if it is not supplied.
If turned on, a CAPTCHA is added to all pages where a users enters their e-mail address:

• New account registration.
• Password recovery.
• Adding e-mail to an account.
• Contact form for users that are not signed in.

2.16.100 REGISTRATION_EMAIL_MATCH

New in version 2.17.
Allows you to filter which e-mail addresses can register.
Defaults to .*, which allows any e-mail address to be registered.
You can use it to restrict registration to a single e-mail domain:

REGISTRATION_EMAIL_MATCH = r"^.*@weblate\.org$"

2.16. Configuration 303



The Weblate Manual, Release 4.5.3

2.16.101 REGISTRATION_OPEN

Whether registration of new accounts is currently permitted. This optional setting can remain the default True, or
changed to False.
This setting affects built-in authentication by e-mail address or through the Python Social Auth (you can whitelist
certain back-ends using REGISTRATION_ALLOW_BACKENDS).

Note: If using third-party authentication methods such as LDAP authentication, it just hides the registration form,
but new users might still be able to sign in and create accounts.

See also:
REGISTRATION_ALLOW_BACKENDS, REGISTRATION_EMAIL_MATCH, Authentication

2.16.102 REPOSITORY_ALERT_THRESHOLD

New in version 4.0.2.
Threshold for triggering an alert for outdated repositories, or ones that contain too many changes. Defaults to 25.
See also:
alerts

2.16.103 REQUIRE_LOGIN

New in version 4.1.
This enables LOGIN_REQUIRED_URLS and configures REST framework to require authentication for all API
endpoints.

Note: This is implemented in the Sample configuration. For Docker, use WEBLATE_REQUIRE_LOGIN .

2.16.104 SENTRY_DSN

New in version 3.9.
Sentry DSN to use for Collecting error reports.
See also:
Django integration for Sentry

2.16.105 SESSION_COOKIE_AGE_AUTHENTICATED

New in version 4.3.
Set session expiry for authenticated users. This complements SESSION_COOKIE_AGE which is used for unaut-
henticated users.
See also:
SESSION_COOKIE_AGE

304 Kapittel 2. Administrator docs

https://docs.sentry.io/platforms/python/guides/django/
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SESSION_COOKIE_AGE
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-SESSION_COOKIE_AGE


The Weblate Manual, Release 4.5.3

2.16.106 SIMPLIFY_LANGUAGES

Use simple language codes for default language/country combinations. For example an fr_FR translation will use the
fr language code. This is usually the desired behavior, as it simplifies listing languages for these default combinations.
Turn this off if you want to different translations for each variant.

2.16.107 SITE_DOMAIN

Configures site domain. This is necessary to produce correct absolute links in many scopes (for example activation
e-mails, notifications or RSS feeds).
In case Weblate is running on non-standard port, include it here as well.
Examples:

# Production site with domain name
SITE_DOMAIN = "weblate.example.com"

# Local development with IP address and port
SITE_DOMAIN = "127.0.0.1:8000"

Note: This setting should only contain the domain name. For configuring protocol, (enabling and enforcing HTTPS)
use ENABLE_HTTPS and for changing URL, use URL_PREFIX.

Hint: On a Docker container, the site domain is configured through WEBLATE_ALLOWED_HOSTS.

See also:
Set correct site domain, Allowed hosts setup, Correctly configure HTTPS WEBLATE_SITE_DOMAIN , ENAB-
LE_HTTPS

2.16.108 SITE_TITLE

Site title to be used for the website and sent e-mails.

2.16.109 SPECIAL_CHARS

Additional characters to include in the visual keyboard, Visual keyboard.
The default value is:

SPECIAL_CHARS = ("\t", "\n", "…")

2.16.110 SINGLE_PROJECT

New in version 3.8.
Redirects users directly to a project or component instead of showing the dashboard. You can either set it to True
and in this case it only works in case there is actually only single project in Weblate. Alternatively set the project slug,
and it will redirect unconditionally to this project.
Changed in version 3.11: The setting now also accepts a project slug, to force displaying that single project.
Example:

2.16. Configuration 305



The Weblate Manual, Release 4.5.3

SINGLE_PROJECT = "test"

2.16.111 STATUS_URL

The URL where your Weblate instance reports its status.

2.16.112 SUGGESTION_CLEANUP_DAYS

New in version 3.2.1.
Automatically deletes suggestions after a given number of days. Defaults to None, meaning no deletions.

2.16.113 UPDATE_LANGUAGES

New in version 4.3.2.
Controls whether languages database should be updated when running database migration and is enabled by default.
This setting has no effect on invocation of setuplang.
See also:
Built-in language definitions

2.16.114 URL_PREFIX

This setting allows you to run Weblate under some path (otherwise it relies on being run from the webserver root).

Note: To use this setting, you also need to configure your server to strip this prefix. For example with WSGI, this
can be achieved by setting WSGIScriptAlias.

Hint: The prefix should start with a /.

Example:

URL_PREFIX = "/translations"

Note: This setting does not work with Django’s built-in server, you would have to adjust urls.py to contain this
prefix.

2.16.115 VCS_BACKENDS

Configuration of available VCS backends.

Note: Weblate tries to use all supported back-ends you have the tools for.

Hint: You can limit choices or add custom VCS back-ends by using this.

306 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

VCS_BACKENDS = ("weblate.vcs.git.GitRepository",)

See also:
Version control integration

2.16.116 VCS_CLONE_DEPTH

New in version 3.10.2.
Configures how deep cloning of repositories Weblate should do.

Note: Currently this is only supported in Git. By default Weblate does shallow clones of the repositories to make
cloning faster and save disk space. Depending on your usage (for example when using custom Addons), you might
want to increase the depth or turn off shallow clones completely by setting this to 0.

Hint: In case you get fatal: protocol error: expected old/new/ref, got 'shallow
<commit hash>' error when pushing from Weblate, turn off shallow clones completely by setting:

VCS_CLONE_DEPTH = 0

2.16.117 WEBLATE_ADDONS

List of addons available for use. To use them, they have to be enabled for a given translation component. By default
this includes all built-in addons, when extending the list you will probably want to keep existing ones enabled, for
example:

WEBLATE_ADDONS = (
# Built-in addons
"weblate.addons.gettext.GenerateMoAddon",
"weblate.addons.gettext.UpdateLinguasAddon",
"weblate.addons.gettext.UpdateConfigureAddon",
"weblate.addons.gettext.MsgmergeAddon",
"weblate.addons.gettext.GettextCustomizeAddon",
"weblate.addons.gettext.GettextAuthorComments",
"weblate.addons.cleanup.CleanupAddon",
"weblate.addons.consistency.LangaugeConsistencyAddon",
"weblate.addons.discovery.DiscoveryAddon",
"weblate.addons.flags.SourceEditAddon",
"weblate.addons.flags.TargetEditAddon",
"weblate.addons.flags.SameEditAddon",
"weblate.addons.flags.BulkEditAddon",
"weblate.addons.generate.GenerateFileAddon",
"weblate.addons.json.JSONCustomizeAddon",
"weblate.addons.properties.PropertiesSortAddon",
"weblate.addons.git.GitSquashAddon",
"weblate.addons.removal.RemoveComments",
"weblate.addons.removal.RemoveSuggestions",
"weblate.addons.resx.ResxUpdateAddon",
"weblate.addons.autotranslate.AutoTranslateAddon",
"weblate.addons.yaml.YAMLCustomizeAddon",
"weblate.addons.cdn.CDNJSAddon",
# Addon you want to include
"weblate.addons.example.ExampleAddon",

)

2.16. Configuration 307



The Weblate Manual, Release 4.5.3

Note: Removing the addon from the list does not uninstall it from the components. Weblate will crash in that case.
Please uninstall addon from all components prior to removing it from this list.

See also:
Addons, DEFAULT_ADDONS

2.16.118 WEBLATE_EXPORTERS

New in version 4.2.
List of a available exporters offering downloading translations or glossaries in various file formats.
See also:
Supported file formats

2.16.119 WEBLATE_FORMATS

New in version 3.0.
List of file formats available for use.

Note: The default list already has the common formats.

See also:
Supported file formats

2.16.120 WEBLATE_GPG_IDENTITY

New in version 3.1.
Identity used by Weblate to sign Git commits, for example:

WEBLATE_GPG_IDENTITY = "Weblate <weblate@example.com>"

The Weblate GPG keyring is searched for a matching key (home/.gnupg under DATA_DIR). If not found, a key
is generated, please check Signing Git commits with GnuPG for more details.
See also:
Signing Git commits with GnuPG

2.16.121 WEBSITE_REQUIRED

Defines whether Project website has to be specified when creating a project. Turned on by default as that suits public
server setups.

308 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

2.17 Sample configuration

The following example is shipped as weblate/settings_example.py with Weblate:

#
# Copyright © 2012 - 2021 Michal Čihař <michal@cihar.com>
#
# This file is part of Weblate <https://weblate.org/>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#

import os
import platform
from logging.handlers import SysLogHandler

#
# Django settings for Weblate project.
#

DEBUG = True

ADMINS = (
# ("Your Name", "your_email@example.com"),

)

MANAGERS = ADMINS

DATABASES = {
"default": {

# Use "postgresql" or "mysql".
"ENGINE": "django.db.backends.postgresql",
# Database name.
"NAME": "weblate",
# Database user.
"USER": "weblate",
# Name of role to alter to set parameters in PostgreSQL,
# use in case role name is different than user used for authentication.
# "ALTER_ROLE": "weblate",
# Database password.
"PASSWORD": "",
# Set to empty string for localhost.
"HOST": "127.0.0.1",
# Set to empty string for default.
"PORT": "",
# Customizations for databases.
"OPTIONS": {

# In case of using an older MySQL server,
# which has MyISAM as a default storage
# "init_command": "SET storage_engine=INNODB",

(continues on next page)

2.17. Sample configuration 309



The Weblate Manual, Release 4.5.3

(continued from previous page)
# Uncomment for MySQL older than 5.7:
# "init_command": "SET sql_mode='STRICT_TRANS_TABLES'",
# Set emoji capable charset for MySQL:
# "charset": "utf8mb4",
# Change connection timeout in case you get MySQL gone away error:
# "connect_timeout": 28800,

},
}

}

BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

# Data directory
DATA_DIR = os.path.join(BASE_DIR, "data")

# Local time zone for this installation. Choices can be found here:
# http://en.wikipedia.org/wiki/List_of_tz_zones_by_name
# although not all choices may be available on all operating systems.
# In a Windows environment this must be set to your system time zone.
TIME_ZONE = "UTC"

# Language code for this installation. All choices can be found here:
# http://www.i18nguy.com/unicode/language-identifiers.html
LANGUAGE_CODE = "en-us"

LANGUAGES = (
("ar", ,("العربية"
("az", "Azərbaycan"),
("be", "Беларуская"),
("be@latin", "Biełaruskaja"),
("bg", "Български"),
("br", "Brezhoneg"),
("ca", "Català"),
("cs", "Čeština"),
("da", "Dansk"),
("de", "Deutsch"),
("en", "English"),
("el", "Ελληνικά"),
("en-gb", "English (United Kingdom)"),
("es", "Español"),
("fi", "Suomi"),
("fr", "Français"),
("gl", "Galego"),
("he", ,("עברית"
("hu", "Magyar"),
("hr", "Hrvatski"),
("id", "Indonesia"),
("is", "Íslenska"),
("it", "Italiano"),
("ja", " "),
("kab", "Taqbaylit"),
("kk", "Қазақ тілі"),
("ko", " "),
("nb", "Norsk bokmål"),
("nl", "Nederlands"),
("pl", "Polski"),
("pt", "Português"),
("pt-br", "Português brasileiro"),
("ru", "Русский"),
("sk", "Slovenčina"),
("sl", "Slovenščina"),

(continues on next page)

310 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

(continued from previous page)
("sq", "Shqip"),
("sr", "Српски"),
("sr-latn", "Srpski"),
("sv", "Svenska"),
("tr", "Türkçe"),
("uk", "Українська"),
("zh-hans", " "),
("zh-hant", " "),

)

SITE_ID = 1

# If you set this to False, Django will make some optimizations so as not
# to load the internationalization machinery.
USE_I18N = True

# If you set this to False, Django will not format dates, numbers and
# calendars according to the current locale.
USE_L10N = True

# If you set this to False, Django will not use timezone-aware datetimes.
USE_TZ = True

# Type of automatic primary key, introduced in Django 3.2
DEFAULT_AUTO_FIELD = "django.db.models.AutoField"

# URL prefix to use, please see documentation for more details
URL_PREFIX = ""

# Absolute filesystem path to the directory that will hold user-uploaded files.
MEDIA_ROOT = os.path.join(DATA_DIR, "media")

# URL that handles the media served from MEDIA_ROOT. Make sure to use a
# trailing slash.
MEDIA_URL = f"{URL_PREFIX}/media/"

# Absolute path to the directory static files should be collected to.
# Don't put anything in this directory yourself; store your static files
# in apps' "static/" subdirectories and in STATICFILES_DIRS.
STATIC_ROOT = os.path.join(DATA_DIR, "static")

# URL prefix for static files.
STATIC_URL = f"{URL_PREFIX}/static/"

# Additional locations of static files
STATICFILES_DIRS = (

# Put strings here, like "/home/html/static" or "C:/www/django/static".
# Always use forward slashes, even on Windows.
# Don't forget to use absolute paths, not relative paths.

)

# List of finder classes that know how to find static files in
# various locations.
STATICFILES_FINDERS = (

"django.contrib.staticfiles.finders.FileSystemFinder",
"django.contrib.staticfiles.finders.AppDirectoriesFinder",
"compressor.finders.CompressorFinder",

)

# Make this unique, and don't share it with anybody.
# You can generate it using weblate/examples/generate-secret-key

(continues on next page)

2.17. Sample configuration 311



The Weblate Manual, Release 4.5.3

(continued from previous page)
SECRET_KEY = ""

_TEMPLATE_LOADERS = [
"django.template.loaders.filesystem.Loader",
"django.template.loaders.app_directories.Loader",

]
if not DEBUG:

_TEMPLATE_LOADERS = [("django.template.loaders.cached.Loader", _TEMPLATE_
↪→LOADERS)]
TEMPLATES = [

{
"BACKEND": "django.template.backends.django.DjangoTemplates",
"OPTIONS": {

"context_processors": [
"django.contrib.auth.context_processors.auth",
"django.template.context_processors.debug",
"django.template.context_processors.i18n",
"django.template.context_processors.request",
"django.template.context_processors.csrf",
"django.contrib.messages.context_processors.messages",
"weblate.trans.context_processors.weblate_context",

],
"loaders": _TEMPLATE_LOADERS,

},
}

]

# GitHub username for sending pull requests.
# Please see the documentation for more details.
GITHUB_USERNAME = None
GITHUB_TOKEN = None

# GitLab username for sending merge requests.
# Please see the documentation for more details.
GITLAB_USERNAME = None
GITLAB_TOKEN = None

# Authentication configuration
AUTHENTICATION_BACKENDS = (

"social_core.backends.email.EmailAuth",
# "social_core.backends.google.GoogleOAuth2",
# "social_core.backends.github.GithubOAuth2",
# "social_core.backends.bitbucket.BitbucketOAuth",
# "social_core.backends.suse.OpenSUSEOpenId",
# "social_core.backends.ubuntu.UbuntuOpenId",
# "social_core.backends.fedora.FedoraOpenId",
# "social_core.backends.facebook.FacebookOAuth2",
"weblate.accounts.auth.WeblateUserBackend",

)

# Custom user model
AUTH_USER_MODEL = "weblate_auth.User"

# Social auth backends setup
SOCIAL_AUTH_GITHUB_KEY = ""
SOCIAL_AUTH_GITHUB_SECRET = ""
SOCIAL_AUTH_GITHUB_SCOPE = ["user:email"]

SOCIAL_AUTH_BITBUCKET_KEY = ""
SOCIAL_AUTH_BITBUCKET_SECRET = ""

(continues on next page)

312 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

(continued from previous page)
SOCIAL_AUTH_BITBUCKET_VERIFIED_EMAILS_ONLY = True

SOCIAL_AUTH_FACEBOOK_KEY = ""
SOCIAL_AUTH_FACEBOOK_SECRET = ""
SOCIAL_AUTH_FACEBOOK_SCOPE = ["email", "public_profile"]
SOCIAL_AUTH_FACEBOOK_PROFILE_EXTRA_PARAMS = {"fields": "id,name,email"}

SOCIAL_AUTH_GOOGLE_OAUTH2_KEY = ""
SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET = ""

# Social auth settings
SOCIAL_AUTH_PIPELINE = (

"social_core.pipeline.social_auth.social_details",
"social_core.pipeline.social_auth.social_uid",
"social_core.pipeline.social_auth.auth_allowed",
"social_core.pipeline.social_auth.social_user",
"weblate.accounts.pipeline.store_params",
"weblate.accounts.pipeline.verify_open",
"social_core.pipeline.user.get_username",
"weblate.accounts.pipeline.require_email",
"social_core.pipeline.mail.mail_validation",
"weblate.accounts.pipeline.revoke_mail_code",
"weblate.accounts.pipeline.ensure_valid",
"weblate.accounts.pipeline.remove_account",
"social_core.pipeline.social_auth.associate_by_email",
"weblate.accounts.pipeline.reauthenticate",
"weblate.accounts.pipeline.verify_username",
"social_core.pipeline.user.create_user",
"social_core.pipeline.social_auth.associate_user",
"social_core.pipeline.social_auth.load_extra_data",
"weblate.accounts.pipeline.cleanup_next",
"weblate.accounts.pipeline.user_full_name",
"weblate.accounts.pipeline.store_email",
"weblate.accounts.pipeline.notify_connect",
"weblate.accounts.pipeline.password_reset",

)
SOCIAL_AUTH_DISCONNECT_PIPELINE = (

"social_core.pipeline.disconnect.allowed_to_disconnect",
"social_core.pipeline.disconnect.get_entries",
"social_core.pipeline.disconnect.revoke_tokens",
"weblate.accounts.pipeline.cycle_session",
"weblate.accounts.pipeline.adjust_primary_mail",
"weblate.accounts.pipeline.notify_disconnect",
"social_core.pipeline.disconnect.disconnect",
"weblate.accounts.pipeline.cleanup_next",

)

# Custom authentication strategy
SOCIAL_AUTH_STRATEGY = "weblate.accounts.strategy.WeblateStrategy"

# Raise exceptions so that we can handle them later
SOCIAL_AUTH_RAISE_EXCEPTIONS = True

SOCIAL_AUTH_EMAIL_VALIDATION_FUNCTION = "weblate.accounts.pipeline.send_validation"
SOCIAL_AUTH_EMAIL_VALIDATION_URL = f"{URL_PREFIX}/accounts/email-sent/"
SOCIAL_AUTH_LOGIN_ERROR_URL = f"{URL_PREFIX}/accounts/login/"
SOCIAL_AUTH_EMAIL_FORM_URL = f"{URL_PREFIX}/accounts/email/"
SOCIAL_AUTH_NEW_ASSOCIATION_REDIRECT_URL = f"{URL_PREFIX}/accounts/profile/#account
↪→"
SOCIAL_AUTH_PROTECTED_USER_FIELDS = ("email",)
SOCIAL_AUTH_SLUGIFY_USERNAMES = True

(continues on next page)

2.17. Sample configuration 313



The Weblate Manual, Release 4.5.3

(continued from previous page)
SOCIAL_AUTH_SLUGIFY_FUNCTION = "weblate.accounts.pipeline.slugify_username"

# Password validation configuration
AUTH_PASSWORD_VALIDATORS = [

{
"NAME": "django.contrib.auth.password_validation.

↪→UserAttributeSimilarityValidator" # noqa: E501, pylint: disable=line-too-long
},
{

"NAME": "django.contrib.auth.password_validation.MinimumLengthValidator",
"OPTIONS": {"min_length": 10},

},
{"NAME": "django.contrib.auth.password_validation.CommonPasswordValidator"},
{"NAME": "django.contrib.auth.password_validation.NumericPasswordValidator"},
{"NAME": "weblate.accounts.password_validation.CharsPasswordValidator"},
{"NAME": "weblate.accounts.password_validation.PastPasswordsValidator"},
# Optional password strength validation by django-zxcvbn-password
# {
# "NAME": "zxcvbn_password.ZXCVBNValidator",
# "OPTIONS": {
# "min_score": 3,
# "user_attributes": ("username", "email", "full_name")
# }
# },

]

# Allow new user registrations
REGISTRATION_OPEN = True

# Shortcut for login required setting
REQUIRE_LOGIN = False

# Middleware
MIDDLEWARE = [

"weblate.middleware.RedirectMiddleware",
"weblate.middleware.ProxyMiddleware",
"django.middleware.security.SecurityMiddleware",
"django.contrib.sessions.middleware.SessionMiddleware",
"django.middleware.csrf.CsrfViewMiddleware",
"weblate.accounts.middleware.AuthenticationMiddleware",
"django.contrib.messages.middleware.MessageMiddleware",
"django.middleware.clickjacking.XFrameOptionsMiddleware",
"social_django.middleware.SocialAuthExceptionMiddleware",
"weblate.accounts.middleware.RequireLoginMiddleware",
"weblate.api.middleware.ThrottlingMiddleware",
"weblate.middleware.SecurityMiddleware",

]

ROOT_URLCONF = "weblate.urls"

# Django and Weblate apps
INSTALLED_APPS = [

# Weblate apps on top to override Django locales and templates
"weblate.addons",
"weblate.auth",
"weblate.checks",
"weblate.formats",
"weblate.glossary",
"weblate.machinery",
"weblate.trans",
"weblate.lang",

(continues on next page)

314 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

(continued from previous page)
"weblate_language_data",
"weblate.memory",
"weblate.screenshots",
"weblate.fonts",
"weblate.accounts",
"weblate.configuration",
"weblate.utils",
"weblate.vcs",
"weblate.wladmin",
"weblate.metrics",
"weblate",
# Optional: Git exporter
"weblate.gitexport",
# Standard Django modules
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
"django.contrib.admin.apps.SimpleAdminConfig",
"django.contrib.admindocs",
"django.contrib.sitemaps",
"django.contrib.humanize",
# Third party Django modules
"social_django",
"crispy_forms",
"compressor",
"rest_framework",
"rest_framework.authtoken",
"django_filters",

]

# Custom exception reporter to include some details
DEFAULT_EXCEPTION_REPORTER_FILTER = "weblate.trans.debug.
↪→WeblateExceptionReporterFilter"

# Default logging of Weblate messages
# - to syslog in production (if available)
# - otherwise to console
# - you can also choose "logfile" to log into separate file
# after configuring it below

# Detect if we can connect to syslog
HAVE_SYSLOG = False
if platform.system() != "Windows":

try:
handler = SysLogHandler(address="/dev/log", facility=SysLogHandler.LOG_

↪→LOCAL2)
handler.close()
HAVE_SYSLOG = True

except OSError:
HAVE_SYSLOG = False

if DEBUG or not HAVE_SYSLOG:
DEFAULT_LOG = "console"

else:
DEFAULT_LOG = "syslog"

DEFAULT_LOGLEVEL = "DEBUG" if DEBUG else "INFO"

# A sample logging configuration. The only tangible logging
# performed by this configuration is to send an email to

(continues on next page)

2.17. Sample configuration 315



The Weblate Manual, Release 4.5.3

(continued from previous page)
# the site admins on every HTTP 500 error when DEBUG=False.
# See http://docs.djangoproject.com/en/stable/topics/logging for
# more details on how to customize your logging configuration.
LOGGING = {

"version": 1,
"disable_existing_loggers": True,
"filters": {"require_debug_false": {"()": "django.utils.log.RequireDebugFalse"}

↪→},
"formatters": {

"syslog": {"format": "weblate[%(process)d]: %(levelname)s %(message)s"},
"simple": {"format": "[%(asctime)s: %(levelname)s/%(process)s] %(message)s

↪→"},
"logfile": {"format": "%(asctime)s %(levelname)s %(message)s"},
"django.server": {

"()": "django.utils.log.ServerFormatter",
"format": "[%(server_time)s] %(message)s",

},
},
"handlers": {

"mail_admins": {
"level": "ERROR",
"filters": ["require_debug_false"],
"class": "django.utils.log.AdminEmailHandler",
"include_html": True,

},
"console": {

"level": "DEBUG",
"class": "logging.StreamHandler",
"formatter": "simple",

},
"django.server": {

"level": "INFO",
"class": "logging.StreamHandler",
"formatter": "django.server",

},
"syslog": {

"level": "DEBUG",
"class": "logging.handlers.SysLogHandler",
"formatter": "syslog",
"address": "/dev/log",
"facility": SysLogHandler.LOG_LOCAL2,

},
# Logging to a file
# "logfile": {
# "level":"DEBUG",
# "class":"logging.handlers.RotatingFileHandler",
# "filename": "/var/log/weblate/weblate.log",
# "maxBytes": 100000,
# "backupCount": 3,
# "formatter": "logfile",
# },

},
"loggers": {

"django.request": {
"handlers": ["mail_admins", DEFAULT_LOG],
"level": "ERROR",
"propagate": True,

},
"django.server": {

"handlers": ["django.server"],
"level": "INFO",

(continues on next page)

316 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

(continued from previous page)
"propagate": False,

},
# Logging database queries
# "django.db.backends": {
# "handlers": [DEFAULT_LOG],
# "level": "DEBUG",
# },
"weblate": {"handlers": [DEFAULT_LOG], "level": DEFAULT_LOGLEVEL},
# Logging VCS operations
"weblate.vcs": {"handlers": [DEFAULT_LOG], "level": DEFAULT_LOGLEVEL},
# Python Social Auth
"social": {"handlers": [DEFAULT_LOG], "level": DEFAULT_LOGLEVEL},
# Django Authentication Using LDAP
"django_auth_ldap": {"handlers": [DEFAULT_LOG], "level": DEFAULT_LOGLEVEL},
# SAML IdP
"djangosaml2idp": {"handlers": [DEFAULT_LOG], "level": DEFAULT_LOGLEVEL},

},
}

# Remove syslog setup if it's not present
if not HAVE_SYSLOG:

del LOGGING["handlers"]["syslog"]

# List of machine translations
MT_SERVICES = (

# "weblate.machinery.apertium.ApertiumAPYTranslation",
# "weblate.machinery.baidu.BaiduTranslation",
# "weblate.machinery.deepl.DeepLTranslation",
# "weblate.machinery.glosbe.GlosbeTranslation",
# "weblate.machinery.google.GoogleTranslation",
# "weblate.machinery.googlev3.GoogleV3Translation",
# "weblate.machinery.microsoft.MicrosoftCognitiveTranslation",
# "weblate.machinery.microsoftterminology.MicrosoftTerminologyService",
# "weblate.machinery.modernmt.ModernMTTranslation",
# "weblate.machinery.mymemory.MyMemoryTranslation",
# "weblate.machinery.netease.NeteaseSightTranslation",
# "weblate.machinery.tmserver.AmagamaTranslation",
# "weblate.machinery.tmserver.TMServerTranslation",
# "weblate.machinery.yandex.YandexTranslation",
# "weblate.machinery.saptranslationhub.SAPTranslationHub",
# "weblate.machinery.youdao.YoudaoTranslation",
"weblate.machinery.weblatetm.WeblateTranslation",
"weblate.memory.machine.WeblateMemory",

)

# Machine translation API keys

# URL of the Apertium APy server
MT_APERTIUM_APY = None

# DeepL API key
MT_DEEPL_KEY = None

# Microsoft Cognitive Services Translator API, register at
# https://portal.azure.com/
MT_MICROSOFT_COGNITIVE_KEY = None
MT_MICROSOFT_REGION = None

# ModernMT
MT_MODERNMT_KEY = None

(continues on next page)

2.17. Sample configuration 317



The Weblate Manual, Release 4.5.3

(continued from previous page)
# MyMemory identification email, see
# https://mymemory.translated.net/doc/spec.php
MT_MYMEMORY_EMAIL = None

# Optional MyMemory credentials to access private translation memory
MT_MYMEMORY_USER = None
MT_MYMEMORY_KEY = None

# Google API key for Google Translate API v2
MT_GOOGLE_KEY = None

# Google Translate API3 credentials and project id
MT_GOOGLE_CREDENTIALS = None
MT_GOOGLE_PROJECT = None

# Baidu app key and secret
MT_BAIDU_ID = None
MT_BAIDU_SECRET = None

# Youdao Zhiyun app key and secret
MT_YOUDAO_ID = None
MT_YOUDAO_SECRET = None

# Netease Sight (Jianwai) app key and secret
MT_NETEASE_KEY = None
MT_NETEASE_SECRET = None

# API key for Yandex Translate API
MT_YANDEX_KEY = None

# tmserver URL
MT_TMSERVER = None

# SAP Translation Hub
MT_SAP_BASE_URL = None
MT_SAP_SANDBOX_APIKEY = None
MT_SAP_USERNAME = None
MT_SAP_PASSWORD = None
MT_SAP_USE_MT = True

# Title of site to use
SITE_TITLE = "Weblate"

# Site domain
SITE_DOMAIN = ""

# Whether site uses https
ENABLE_HTTPS = False

# Use HTTPS when creating redirect URLs for social authentication, see
# documentation for more details:
# https://python-social-auth-docs.readthedocs.io/en/latest/configuration/settings.
↪→html#processing-redirects-and-urlopen
SOCIAL_AUTH_REDIRECT_IS_HTTPS = ENABLE_HTTPS

# Make CSRF cookie HttpOnly, see documentation for more details:
# https://docs.djangoproject.com/en/1.11/ref/settings/#csrf-cookie-httponly
CSRF_COOKIE_HTTPONLY = True
CSRF_COOKIE_SECURE = ENABLE_HTTPS
# Store CSRF token in session
CSRF_USE_SESSIONS = True

(continues on next page)

318 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

(continued from previous page)
# Customize CSRF failure view
CSRF_FAILURE_VIEW = "weblate.trans.views.error.csrf_failure"
SESSION_COOKIE_SECURE = ENABLE_HTTPS
SESSION_COOKIE_HTTPONLY = True
# SSL redirect
SECURE_SSL_REDIRECT = ENABLE_HTTPS
# Sent referrrer only for same origin links
SECURE_REFERRER_POLICY = "same-origin"
# SSL redirect URL exemption list
SECURE_REDIRECT_EXEMPT = (r"healthz/$",) # Allowing HTTP access to health check
# Session cookie age (in seconds)
SESSION_COOKIE_AGE = 1000
SESSION_COOKIE_AGE_AUTHENTICATED = 1209600
# Increase allowed upload size
DATA_UPLOAD_MAX_MEMORY_SIZE = 50000000

# Apply session coookie settings to language cookie as ewll
LANGUAGE_COOKIE_SECURE = SESSION_COOKIE_SECURE
LANGUAGE_COOKIE_HTTPONLY = SESSION_COOKIE_HTTPONLY
LANGUAGE_COOKIE_AGE = SESSION_COOKIE_AGE_AUTHENTICATED * 10

# Some security headers
SECURE_BROWSER_XSS_FILTER = True
X_FRAME_OPTIONS = "DENY"
SECURE_CONTENT_TYPE_NOSNIFF = True

# Optionally enable HSTS
SECURE_HSTS_SECONDS = 31536000 if ENABLE_HTTPS else 0
SECURE_HSTS_PRELOAD = ENABLE_HTTPS
SECURE_HSTS_INCLUDE_SUBDOMAINS = ENABLE_HTTPS

# HTTPS detection behind reverse proxy
SECURE_PROXY_SSL_HEADER = None

# URL of login
LOGIN_URL = f"{URL_PREFIX}/accounts/login/"

# URL of logout
LOGOUT_URL = f"{URL_PREFIX}/accounts/logout/"

# Default location for login
LOGIN_REDIRECT_URL = f"{URL_PREFIX}/"

# Anonymous user name
ANONYMOUS_USER_NAME = "anonymous"

# Reverse proxy settings
IP_PROXY_HEADER = "HTTP_X_FORWARDED_FOR"
IP_BEHIND_REVERSE_PROXY = False
IP_PROXY_OFFSET = 0

# Sending HTML in mails
EMAIL_SEND_HTML = True

# Subject of emails includes site title
EMAIL_SUBJECT_PREFIX = f"[{SITE_TITLE}] "

# Enable remote hooks
ENABLE_HOOKS = True

# By default the length of a given translation is limited to the length of

(continues on next page)

2.17. Sample configuration 319



The Weblate Manual, Release 4.5.3

(continued from previous page)
# the source string * 10 characters. Set this option to False to allow longer
# translations (up to 10.000 characters)
LIMIT_TRANSLATION_LENGTH_BY_SOURCE_LENGTH = True

# Use simple language codes for default language/country combinations
SIMPLIFY_LANGUAGES = True

# Render forms using bootstrap
CRISPY_TEMPLATE_PACK = "bootstrap3"

# List of quality checks
# CHECK_LIST = (
# "weblate.checks.same.SameCheck",
# "weblate.checks.chars.BeginNewlineCheck",
# "weblate.checks.chars.EndNewlineCheck",
# "weblate.checks.chars.BeginSpaceCheck",
# "weblate.checks.chars.EndSpaceCheck",
# "weblate.checks.chars.DoubleSpaceCheck",
# "weblate.checks.chars.EndStopCheck",
# "weblate.checks.chars.EndColonCheck",
# "weblate.checks.chars.EndQuestionCheck",
# "weblate.checks.chars.EndExclamationCheck",
# "weblate.checks.chars.EndEllipsisCheck",
# "weblate.checks.chars.EndSemicolonCheck",
# "weblate.checks.chars.MaxLengthCheck",
# "weblate.checks.chars.KashidaCheck",
# "weblate.checks.chars.PunctuationSpacingCheck",
# "weblate.checks.format.PythonFormatCheck",
# "weblate.checks.format.PythonBraceFormatCheck",
# "weblate.checks.format.PHPFormatCheck",
# "weblate.checks.format.CFormatCheck",
# "weblate.checks.format.PerlFormatCheck",
# "weblate.checks.format.JavaScriptFormatCheck",
# "weblate.checks.format.LuaFormatCheck",
# "weblate.checks.format.SchemeFormatCheck",
# "weblate.checks.format.CSharpFormatCheck",
# "weblate.checks.format.JavaFormatCheck",
# "weblate.checks.format.JavaMessageFormatCheck",
# "weblate.checks.format.PercentPlaceholdersCheck",
# "weblate.checks.format.VueFormattingCheck",
# "weblate.checks.format.I18NextInterpolationCheck",
# "weblate.checks.format.ESTemplateLiteralsCheck",
# "weblate.checks.angularjs.AngularJSInterpolationCheck",
# "weblate.checks.qt.QtFormatCheck",
# "weblate.checks.qt.QtPluralCheck",
# "weblate.checks.ruby.RubyFormatCheck",
# "weblate.checks.consistency.PluralsCheck",
# "weblate.checks.consistency.SamePluralsCheck",
# "weblate.checks.consistency.ConsistencyCheck",
# "weblate.checks.consistency.TranslatedCheck",
# "weblate.checks.chars.EscapedNewlineCountingCheck",
# "weblate.checks.chars.NewLineCountCheck",
# "weblate.checks.markup.BBCodeCheck",
# "weblate.checks.chars.ZeroWidthSpaceCheck",
# "weblate.checks.render.MaxSizeCheck",
# "weblate.checks.markup.XMLValidityCheck",
# "weblate.checks.markup.XMLTagsCheck",
# "weblate.checks.markup.MarkdownRefLinkCheck",
# "weblate.checks.markup.MarkdownLinkCheck",
# "weblate.checks.markup.MarkdownSyntaxCheck",
# "weblate.checks.markup.URLCheck",

(continues on next page)

320 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

(continued from previous page)
# "weblate.checks.markup.SafeHTMLCheck",
# "weblate.checks.placeholders.PlaceholderCheck",
# "weblate.checks.placeholders.RegexCheck",
# "weblate.checks.duplicate.DuplicateCheck",
# "weblate.checks.source.OptionalPluralCheck",
# "weblate.checks.source.EllipsisCheck",
# "weblate.checks.source.MultipleFailingCheck",
# "weblate.checks.source.LongUntranslatedCheck",
# "weblate.checks.format.MultipleUnnamedFormatsCheck",
# "weblate.checks.glossary.GlossaryCheck",
# )

# List of automatic fixups
# AUTOFIX_LIST = (
# "weblate.trans.autofixes.whitespace.SameBookendingWhitespace",
# "weblate.trans.autofixes.chars.ReplaceTrailingDotsWithEllipsis",
# "weblate.trans.autofixes.chars.RemoveZeroSpace",
# "weblate.trans.autofixes.chars.RemoveControlChars",
# )

# List of enabled addons
# WEBLATE_ADDONS = (
# "weblate.addons.gettext.GenerateMoAddon",
# "weblate.addons.gettext.UpdateLinguasAddon",
# "weblate.addons.gettext.UpdateConfigureAddon",
# "weblate.addons.gettext.MsgmergeAddon",
# "weblate.addons.gettext.GettextCustomizeAddon",
# "weblate.addons.gettext.GettextAuthorComments",
# "weblate.addons.cleanup.CleanupAddon",
# "weblate.addons.cleanup.RemoveBlankAddon",
# "weblate.addons.consistency.LangaugeConsistencyAddon",
# "weblate.addons.discovery.DiscoveryAddon",
# "weblate.addons.autotranslate.AutoTranslateAddon",
# "weblate.addons.flags.SourceEditAddon",
# "weblate.addons.flags.TargetEditAddon",
# "weblate.addons.flags.SameEditAddon",
# "weblate.addons.flags.BulkEditAddon",
# "weblate.addons.generate.GenerateFileAddon",
# "weblate.addons.generate.PseudolocaleAddon",
# "weblate.addons.json.JSONCustomizeAddon",
# "weblate.addons.properties.PropertiesSortAddon",
# "weblate.addons.git.GitSquashAddon",
# "weblate.addons.removal.RemoveComments",
# "weblate.addons.removal.RemoveSuggestions",
# "weblate.addons.resx.ResxUpdateAddon",
# "weblate.addons.yaml.YAMLCustomizeAddon",
# "weblate.addons.cdn.CDNJSAddon",
# )

# E-mail address that error messages come from.
SERVER_EMAIL = "noreply@example.com"

# Default email address to use for various automated correspondence from
# the site managers. Used for registration emails.
DEFAULT_FROM_EMAIL = "noreply@example.com"

# List of URLs your site is supposed to serve
ALLOWED_HOSTS = ["*"]

# Configuration for caching
CACHES = {

(continues on next page)

2.17. Sample configuration 321



The Weblate Manual, Release 4.5.3

(continued from previous page)
"default": {

"BACKEND": "django_redis.cache.RedisCache",
"LOCATION": "redis://127.0.0.1:6379/1",
# If redis is running on same host as Weblate, you might
# want to use unix sockets instead:
# "LOCATION": "unix:///var/run/redis/redis.sock?db=1",
"OPTIONS": {

"CLIENT_CLASS": "django_redis.client.DefaultClient",
"PARSER_CLASS": "redis.connection.HiredisParser",
# If you set password here, adjust CELERY_BROKER_URL as well
"PASSWORD": None,
"CONNECTION_POOL_KWARGS": {},

},
"KEY_PREFIX": "weblate",

},
"avatar": {

"BACKEND": "django.core.cache.backends.filebased.FileBasedCache",
"LOCATION": os.path.join(DATA_DIR, "avatar-cache"),
"TIMEOUT": 86400,
"OPTIONS": {"MAX_ENTRIES": 1000},

},
}

# Store sessions in cache
SESSION_ENGINE = "django.contrib.sessions.backends.cache"
# Store messages in session
MESSAGE_STORAGE = "django.contrib.messages.storage.session.SessionStorage"

# REST framework settings for API
REST_FRAMEWORK = {

# Use Django's standard `django.contrib.auth` permissions,
# or allow read-only access for unauthenticated users.
"DEFAULT_PERMISSION_CLASSES": [

# Require authentication for login required sites
"rest_framework.permissions.IsAuthenticated"
if REQUIRE_LOGIN
else "rest_framework.permissions.IsAuthenticatedOrReadOnly"

],
"DEFAULT_AUTHENTICATION_CLASSES": (

"rest_framework.authentication.TokenAuthentication",
"weblate.api.authentication.BearerAuthentication",
"rest_framework.authentication.SessionAuthentication",

),
"DEFAULT_THROTTLE_CLASSES": (

"weblate.api.throttling.UserRateThrottle",
"weblate.api.throttling.AnonRateThrottle",

),
"DEFAULT_THROTTLE_RATES": {"anon": "100/day", "user": "5000/hour"},
"DEFAULT_PAGINATION_CLASS": ("rest_framework.pagination.PageNumberPagination"),
"PAGE_SIZE": 20,
"VIEW_DESCRIPTION_FUNCTION": "weblate.api.views.get_view_description",
"UNAUTHENTICATED_USER": "weblate.auth.models.get_anonymous",

}

# Fonts CDN URL
FONTS_CDN_URL = None

# Django compressor offline mode
COMPRESS_OFFLINE = False
COMPRESS_OFFLINE_CONTEXT = [

{"fonts_cdn_url": FONTS_CDN_URL, "STATIC_URL": STATIC_URL, "LANGUAGE_BIDI":␣
↪→True}, (continues on next page)

322 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

(continued from previous page)
{"fonts_cdn_url": FONTS_CDN_URL, "STATIC_URL": STATIC_URL, "LANGUAGE_BIDI":␣

↪→False},
]

# Require login for all URLs
if REQUIRE_LOGIN:

LOGIN_REQUIRED_URLS = (r"/(.*)$",)

# In such case you will want to include some of the exceptions
# LOGIN_REQUIRED_URLS_EXCEPTIONS = (
# rf"{URL_PREFIX}/accounts/(.*)$", # Required for login
# rf"{URL_PREFIX}/admin/login/(.*)$", # Required for admin login
# rf"{URL_PREFIX}/static/(.*)$", # Required for development mode
# rf"{URL_PREFIX}/widgets/(.*)$", # Allowing public access to widgets
# rf"{URL_PREFIX}/data/(.*)$", # Allowing public access to data exports
# rf"{URL_PREFIX}/hooks/(.*)$", # Allowing public access to notification hooks
# rf"{URL_PREFIX}/healthz/$", # Allowing public access to health check
# rf"{URL_PREFIX}/api/(.*)$", # Allowing access to API
# rf"{URL_PREFIX}/js/i18n/$", # JavaScript localization
# rf"{URL_PREFIX}/contact/$", # Optional for contact form
# rf"{URL_PREFIX}/legal/(.*)$", # Optional for legal app
# )

# Silence some of the Django system checks
SILENCED_SYSTEM_CHECKS = [

# We have modified django.contrib.auth.middleware.AuthenticationMiddleware
# as weblate.accounts.middleware.AuthenticationMiddleware
"admin.E408"

]

# Celery worker configuration for testing
# CELERY_TASK_ALWAYS_EAGER = True
# CELERY_BROKER_URL = "memory://"
# CELERY_TASK_EAGER_PROPAGATES = True
# Celery worker configuration for production
CELERY_TASK_ALWAYS_EAGER = False
CELERY_BROKER_URL = "redis://localhost:6379"
CELERY_RESULT_BACKEND = CELERY_BROKER_URL

# Celery settings, it is not recommended to change these
CELERY_WORKER_MAX_MEMORY_PER_CHILD = 200000
CELERY_BEAT_SCHEDULE_FILENAME = os.path.join(DATA_DIR, "celery", "beat-schedule")
CELERY_TASK_ROUTES = {

"weblate.trans.tasks.auto_translate": {"queue": "translate"},
"weblate.accounts.tasks.notify_*": {"queue": "notify"},
"weblate.accounts.tasks.send_mails": {"queue": "notify"},
"weblate.utils.tasks.settings_backup": {"queue": "backup"},
"weblate.utils.tasks.database_backup": {"queue": "backup"},
"weblate.wladmin.tasks.backup": {"queue": "backup"},
"weblate.wladmin.tasks.backup_service": {"queue": "backup"},
"weblate.memory.tasks.*": {"queue": "memory"},

}

# Enable plain database backups
DATABASE_BACKUP = "plain"

# Enable auto updating
AUTO_UPDATE = False

# PGP commits signing
WEBLATE_GPG_IDENTITY = None

(continues on next page)

2.17. Sample configuration 323



The Weblate Manual, Release 4.5.3

(continued from previous page)

# Third party services integration
MATOMO_SITE_ID = None
MATOMO_URL = None
GOOGLE_ANALYTICS_ID = None
SENTRY_DSN = None
AKISMET_API_KEY = None

2.18 Management commands

Note: Running management commands under a different user than the one running your webserver can result in files
getting wrong permissions, please check Filesystem permissions for more details.

You will find basic management commands (available as ./manage.py in the Django sources, or as an extended
set in a script called weblate installable atop Weblate).

2.18.1 Invoking management commands

As mentioned before, invocation depends on how you installed Weblate.
If using virtualenv for Weblate, you can either specify the full path to weblate, or activate the virtualenv prior to
invoking it:

# Direct invocation
~/weblate-env/bin/weblate

# Activating virtualenv adds it to search path
. ~/weblate-env/bin/activate
weblate

If you are using source code directly (either from a tarball or Git checkout), the management script is ./manage.py
available in the Weblate sources. To run it:

python ./manage.py list_versions

If you’ve installed Weblate using the pip or pip3 installer, or by using the ./setup.py script, the weblate is
installed to your path (or virtualenv path), from where you can use it to control Weblate:

weblate list_versions

For the Docker image, the script is installed like above, and you can run it using docker exec:

docker exec --user weblate <container> weblate list_versions

For docker-compose the process is similar, you just have to use docker-compose exec:

docker-compose exec --user weblate weblate weblate list_versions

In case you need to pass it a file, you can temporary add a volume:

docker-compose exec --user weblate /tmp:/tmp weblate weblate importusers /tmp/
↪→users.json

See also:
Installing using Docker, Installing on Debian and Ubuntu, Installing on SUSE and openSUSE, Installing on RedHat,
Fedora and CentOS, Installing from sources

324 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

2.18.2 add_suggestions

weblate add_suggestions <project> <component> <language> <file>

New in version 2.5.
Imports a translation from the file to use as a suggestion for the given translation. It skips duplicated translations; only
different ones are added.
--author USER@EXAMPLE.COM

E-mail of author for the suggestions. This user has to exist prior to importing (you can create one in the admin
interface if needed).

Example:

weblate --author michal@cihar.com add_suggestions weblate application cs /tmp/
↪→suggestions-cs.po

2.18.3 auto_translate

weblate auto_translate <project> <component> <language>

New in version 2.5.
Performs automatic translation based on other component translations.
--source PROJECT/COMPONENT

Specifies the component to use as source available for translation. If not specified all components in the project
are used.

--user USERNAME
Specify username listed as author of the translations. «Anonymous user» is used if not specified.

--overwrite
Whether to overwrite existing translations.

--inconsistent
Whether to overwrite existing translations that are inconsistent (see Inconsistent).

--add
Automatically add language if a given translation does not exist.

--mt MT
Use machine translation instead of other components as machine translations.

--threshold THRESHOLD
Similarity threshold for machine translation, defaults to 80.

Example:

weblate auto_translate --user nijel --inconsistent --source weblate/application␣
↪→weblate website cs

See also:
Automatic translation

2.18. Management commands 325



The Weblate Manual, Release 4.5.3

2.18.4 celery_queues

weblate celery_queues

New in version 3.7.
Displays length of Celery task queues.

2.18.5 checkgit

weblate checkgit <project|project/component>

Prints current state of the back-end Git repository.
You can either define which project or component to update (for example weblate/application), or use --
all to update all existing components.

2.18.6 commitgit

weblate commitgit <project|project/component>

Commits any possible pending changes to the back-end Git repository.
You can either define which project or component to update (for example weblate/application), or use --
all to update all existing components.

2.18.7 commit_pending

weblate commit_pending <project|project/component>

Commits pending changes older than a given age.
You can either define which project or component to update (for example weblate/application), or use --
all to update all existing components.
--age HOURS

Age in hours for committing. If not specified the value configured in Component configuration is used.

Note: This is automatically performed in the background by Weblate, so there no real need to invoke this manually,
besides forcing an earlier commit than specified by Component configuration.

See also:
Running maintenance tasks, COMMIT_PENDING_HOURS

2.18.8 cleanuptrans

weblate cleanuptrans

Cleans up orphaned checks and translation suggestions. There is normally no need to run this manually, as the cleanups
happen automatically in the background.
See also:
Running maintenance tasks

326 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

2.18.9 createadmin

weblate createadmin

Creates an admin account with a random password, unless it is specified.
--password PASSWORD

Provides a password on the command-line, to not generate a random one.
--no-password

Do not set password, this can be useful with –update.
--username USERNAME

Use the given name instead of admin.
--email USER@EXAMPLE.COM

Specify the admin e-mail address.
--name

Specify the admin name (visible).
--update

Update the existing user (you can use this to change passwords).
Changed in version 2.9: Added parameters --username, --email, --name and --update.

2.18.10 dump_memory

weblate dump_memory

New in version 2.20.
Export a JSON file containing Weblate Translation Memory content.
See also:
Translation Memory,Weblate Translation Memory Schema

2.18.11 dumpuserdata

weblate dumpuserdata <file.json>

Dumps userdata to a file for later use by importuserdata

Hint: This comes in handy when migrating or merging Weblate instances.

2.18.12 import_demo

weblate import_demo

New in version 4.1.
Creates a demo project with components based on <https://github.com/WeblateOrg/demo>.
This can be useful when developing Weblate.

2.18. Management commands 327

https://github.com/WeblateOrg/demo


The Weblate Manual, Release 4.5.3

2.18.13 import_json

weblate import_json <json-file>

New in version 2.7.
Batch import of components based on JSON data.
The imported JSON file structure pretty much corresponds to the component object (see GET /api/
components/(string:project)/(string:component)/). You have to include thename andfile-
mask fields.
--project PROJECT

Specifies where the components will be imported from.
--main-component COMPONENT

Use the given VCS repository from this component for all of them.
--ignore

Skip (already) imported components.
--update

Update (already) imported components.
Changed in version 2.9: The parameters --ignore and --update are there to deal with already imported com-
ponents.
Example of JSON file:

[
{
"slug": "po",
"name": "Gettext PO",
"file_format": "po",
"filemask": "po/*.po",
"new_lang": "none"

},
{
"name": "Android",
"filemask": "android/values-*/strings.xml",
"template": "android/values/strings.xml",
"repo": "weblate://test/test",
"file_format": "aresource"

}
]

See also:
import_memory

2.18.14 import_memory

weblate import_memory <file>

New in version 2.20.
Imports a TMX or JSON file into the Weblate translation memory.
--language-map LANGMAP

Allows mapping languages in the TMX to the Weblate translation memory. The language codes are mapped
after normalization usually done by Weblate.
--language-map en_US:en will for example import all en_US strings as en ones.
This can be useful in case your TMX file locales happen not to match what you use in Weblate.

328 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

See also:
Translation Memory,Weblate Translation Memory Schema

2.18.15 import_project

weblate import_project <project> <gitrepo> <branch> <filemask>

Changed in version 3.0: The import_project command is now based on the Component discovery addon, leading to
some changes in behavior and what parameters are accepted.
Batch imports components into project based on filemask.
<project> names an existing project, into which the components are to be imported.
The <gitrepo> defines the Git repository URL to use, and <branch> signifies the Git branch. To import additional
translation components from an existing Weblate component, use a weblate://<project>/<component> URL for the
<gitrepo>.
The <filemask> defines file discovery for the repository. It can be either be made simple using wildcards, or it can
use the full power of regular expressions.
The simple matching uses ** for component name and * for language, for example: **/*.po
The regular expression has to contain groups named component and language. For example: (?P<language>[^/
]*)/(?P<component>[^-/]*)\.po

The import matches existing components based on files and adds the ones that do not exist. It does not change already
existing ones.
--name-template TEMPLATE

Customize the name of a component using Django template syntax.
For example: Documentation: {{ component }}

--base-file-template TEMPLATE
Customize the base file for monolingual translations.
For example: {{ component }}/res/values/string.xml

--new-base-template TEMPLATE
Customize the base file for addition of new translations.
For example: {{ component }}/ts/en.ts

--file-format FORMAT
You can also specify the file format to use (see Supported file formats), the default is auto-detection.

--language-regex REGEX
You can specify language filtering (seeComponent configuration) with this parameter. It has to be a valid regular
expression.

--main-component
You can specify which component will be chosen as the main one—the one actually containing the VCS repo-
sitory.

--license NAME
Specify the overall, project or component translation license.

--license-url URL
Specify the URL where the translation license is to be found.

--vcs NAME
In case you need to specify which version control system to use, you can do it here. The default version control
is Git.

2.18. Management commands 329



The Weblate Manual, Release 4.5.3

To give you some examples, let’s try importing two projects.
First The Debian Handbook translations, where each language has separate a folder with the translations of each
chapter:

weblate import_project \
debian-handbook \
git://anonscm.debian.org/debian-handbook/debian-handbook.git \
squeeze/master \
'*/**.po'

Then the Tanaguru tool, where the file format needs be specified, along with the base file template, and how all
components and translations are located in single folder:

weblate import_project \
--file-format=properties \
--base-file-template=web-app/tgol-web-app/src/main/resources/i18n/%s-I18N.

↪→properties \
tanaguru \
https://github.com/Tanaguru/Tanaguru \
master \
web-app/tgol-web-app/src/main/resources/i18n/**-I18N_*.properties

More complex example of parsing of filenames to get the correct component and language out of a filename like
src/security/Numerous_security_holes_in_0.10.1.de.po:

weblate import_project \
tails \
git://git.tails.boum.org/tails master \
'wiki/src/security/(?P<component>.*)\.(?P<language>[^.]*)\.po$'

Filtering only translations in a chosen language:

./manage import_project \
--language-regex '^(cs|sk)$' \
weblate \
https://github.com/WeblateOrg/weblate.git \
'weblate/locale/*/LC_MESSAGES/**.po'

Importing Sphinx documentation split to multiple files:

$ weblate import_project --name-template 'Documentation: %s' \
--file-format po \
project https://github.com/project/docs.git master \
'docs/locale/*/LC_MESSAGES/**.po'

Importing Sphinx documentation split to multiple files and directories:

$ weblate import_project --name-template 'Directory 1: %s' \
--file-format po \
project https://github.com/project/docs.git master \
'docs/locale/*/LC_MESSAGES/dir1/**.po'

$ weblate import_project --name-template 'Directory 2: %s' \
--file-format po \
project https://github.com/project/docs.git master \
'docs/locale/*/LC_MESSAGES/dir2/**.po'

See also:
More detailed examples can be found in the starting chapter, alternatively you might want to use import_json.

330 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

2.18.16 importuserdata

weblate importuserdata <file.json>

Imports user data from a file created by dumpuserdata

2.18.17 importusers

weblate importusers --check <file.json>

Imports users from JSON dump of the Django auth_users database.
--check

With this option it will just check whether a given file can be imported and report possible conflicts arising
from usernames or e-mails.

You can dump users from the existing Django installation using:

weblate dumpdata auth.User > users.json

2.18.18 install_addon

New in version 3.2.
weblate install_addon --addon ADDON <project|project/component>

Installs an addon to a set of components.
--addon ADDON

Name of the addon to install. For example weblate.gettext.customize.
--configuration CONFIG

JSON encoded configuration of an addon.
--update

Update the existing addon configuration.
You can either define which project or component to install the addon in (for example weblate/application),
or use --all to include all existing components.
To install Customize gettext output for all components:

weblate install_addon --addon weblate.gettext.customize --config '{"width": -1}' --
↪→update --all

See also:
Addons

2.18.19 list_languages

weblate list_languages <locale>

Lists supported languages in MediaWiki markup - language codes, English names and localized names.
This is used to generate <https://wiki.l10n.cz/Slovn%C3%ADk_s_n%C3%A1zvy_jazyk%C5%AF>.

2.18. Management commands 331

https://wiki.l10n.cz/Slovn%C3%ADk_s_n%C3%A1zvy_jazyk%C5%AF


The Weblate Manual, Release 4.5.3

2.18.20 list_translators

weblate list_translators <project|project/component>

Lists translators by contributed language for the given project:

[French]
Jean Dupont <jean.dupont@example.com>
[English]
John Doe <jd@example.com>

--language-code
List names by language code instead of language name.

You can either define which project or component to use (for example weblate/application), or use --all
to list translators from all existing components.

2.18.21 list_versions

weblate list_versions

Lists all Weblate dependencies and their versions.

2.18.22 loadpo

weblate loadpo <project|project/component>

Reloads translations from disk (for example in case you have done some updates in the VCS repository).
--force

Force update, even if the files should be up-to-date.
--lang LANGUAGE

Limit processing to a single language.
You can either define which project or component to update (for example weblate/application), or use --
all to update all existing components.

Note: You seldom need to invoke this, Weblate will automatically load changed files for every VCS update. This is
needed in case you manually changed an underlying Weblate VCS repository or in some special cases following an
upgrade.

2.18.23 lock_translation

weblate lock_translation <project|project/component>

Prevents further translation of a component.

Hint: Useful in case you want to do some maintenance on the underlying repository.

You can either define which project or component to update (for example weblate/application), or use --
all to update all existing components.
See also:
unlock_translation

332 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

2.18.24 move_language

weblate move_language source target

New in version 3.0.
Allows you to merge language content. This is useful when updating to a new version which contains aliases for
previously unknown languages that have been created with the (generated) suffix. It moves all content from the source
language to the target one.
Example:

weblate move_language cze cs

After moving the content, you should check whether there is anything left (this is subject to race conditions when
somebody updates the repository meanwhile) and remove the (generated) language.

2.18.25 pushgit

weblate pushgit <project|project/component>

Pushes committed changes to the upstream VCS repository.
--force-commit

Force commits any pending changes, prior to pushing.
You can either define which project or component to update (for example weblate/application), or use --
all to update all existing components.

Note: Weblate pushes changes automatically if Push on commit in Component configuration is turned on, which is
the default.

2.18.26 unlock_translation

weblate unlock_translation <project|project/component>

Unlocks a given component, making it available for translation.

Hint: Useful in case you want to do some maintenance on the underlying repository.

You can either define which project or component to update (for example weblate/application), or use --
all to update all existing components.
See also:
lock_translation

2.18.27 setupgroups

weblate setupgroups

Configures default groups and optionally assigns all users to that default group.
--no-privs-update

Turns off automatic updating of existing groups (only adds new ones).
--no-projects-update

Prevents automatic updates of groups for existing projects. This allows adding newly added groups to existing
projects, see Project access control.

2.18. Management commands 333



The Weblate Manual, Release 4.5.3

See also:
List of privileges

2.18.28 setuplang

weblate setuplang

Updates list of defined languages in Weblate.
--no-update

Turns off automatic updates of existing languages (only adds new ones).

2.18.29 updatechecks

weblate updatechecks <project|project/component>

Updates all checks for all strings.

Hint: Useful for upgrades which do major changes to checks.

You can either define which project or component to update (for example weblate/application), or use --
all to update all existing components.

2.18.30 updategit

weblate updategit <project|project/component>

Fetches remote VCS repositories and updates the internal cache.
You can either define which project or component to update (for example weblate/application), or use --
all to update all existing components.

Note: Usually it is better to configure hooks in the repository to trigger Notification hooks, instead of regular polling
by updategit.

2.19 Announcements

Changed in version 4.0: In prior releases this feature was called whiteboard messages.
Provide info to your translators by posting announcements, site-wide, per project, component, or language.
Announce the purpose, deadlines, status, or specify targets for translation.
The users will receive notification on the announcements for watched projects (unless they opt out).
This can be useful for various things from announcing the purpose of the website to specifying targets for translations.
The announcements can posted on each level in the Manage menu, using Post announcement:

334 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

It can be also added using the admin interface:

2.19. Announcements 335



The Weblate Manual, Release 4.5.3

The announcements are then shown based on their specified context:
No context specified

Shown on dashboard (landing page).
Project specified

Shown within the project, including all its components and translations.
Component specified

Shown for a given component and all its translations.
Language specified

Shown on the language overview and all translations in that language.
This is how it looks on the language overview page:

336 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

2.20 Component Lists

Specify multiple lists of components to appear as options on the user dashboard, from which users can pick one as
their default view. See Dashboard to learn more.
Changed in version 2.20: A status will be presented for each component list presented on the dashboard.
The names and content of component lists can be specified in the admin interface, in Component lists section. Each
component list must have a name that is displayed to the user, and a slug representing it in the URL.
Changed in version 2.13: Change dashboard settings for anonymous users from the admin interface, altering what
dashboard is presented to unauthenticated users.

2.20.1 Automatic component lists

New in version 2.13.
Add components to the list automatically based on their slug by creating Automatic component list assignment rules.

• Useful for maintaining component lists for large installations, or in case you want to have one component list
with all components on your Weblate installation.

Hint: Make a component list containing all the components of your Weblate installation.

1. DefineAutomatic component list assignment with ^.*$ as regular expression in both the project and the component
fields, as shown on this image:

2.20. Component Lists 337



The Weblate Manual, Release 4.5.3

2.21 Optional Weblate modules

Several optional modules are available for your setup.

338 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

2.21.1 Git exporter

New in version 2.10.
Provides you read-only access to the underlying Git repository using HTTP(S).

Installation

1. Add weblate.gitexport to installed apps in settings.py:

INSTALLED_APPS += ("weblate.gitexport",)

2. Export existing repositories by migrating your database after installation:

weblate migrate

Usage

The module automatically hooks into Weblate and sets the exported repository URL in the Component configuration.
The repositories are accessible under the /git/ part of the Weblate URL, for example https://example.
org/git/weblate/main/.
Repositories for publicly available projects can be cloned without authentication:

git clone 'https://example.org/git/weblate/main/'

Access to browse the repositories with restricted access (with Private access control or when REQUIRE_LOGIN is
enabled) requires an API token which can be obtained in your user profile:

git clone 'https://user:KEY@example.org/git/weblate/main/'

Hint: By default members or Users group and anonymous user have access to the repositories for public projects via
Access repository and Power user roles.

2.21.2 Billing

New in version 2.4.
This is used on Hosted Weblate to define billing plans, track invoices and usage limits.

Installation

1. Add weblate.billing to installed apps in settings.py:

INSTALLED_APPS += ("weblate.billing",)

2. Run the database migration to optionally install additional database structures for the module:

weblate migrate

2.21. Optional Weblate modules 339

https://weblate.org/hosting/


The Weblate Manual, Release 4.5.3

Usage

After installation you can control billing in the admin interface. Users with billing enabled will get new Billing tab in
their User profile.
The billingmodule additionally allows project admins to create new projects and components without being superusers
(see Adding translation projects and components). This is possible when following conditions are met:

• The billing is in its configured limits (any overusage results in blocking of project/component creation) and
paid (if its price is non zero)

• The user is admin of existing project with billing or user is owner of billing (the latter is necessary when creating
new billing for users to be able to import new projects).

Upon project creation user is able to choose which billing should be charged for the project in case he has access to
more of them.

2.21.3 Legal

New in version 2.15.
This is used on Hosted Weblate to provide required legal documents. It comes provided with blank documents, and
you are expected to fill out the following templates in the documents:
legal/documents/tos.html Terms of service document
legal/documents/privacy.html Privacy policy document
legal/documents/summary.html Short overview of the terms of service and privacy policy

Note: Legal documents for the Hosted Weblate service are available in this Git repository <https://github.com/
WeblateOrg/wllegal/tree/main/wllegal/templates/legal/documents>.
Most likely these will not be directly usable to you, but might come in handy as a starting point if adjusted to meet
your needs.

Installation

1. Add weblate.legal to installed apps in settings.py:

INSTALLED_APPS += ("weblate.legal",)

# Optional:

# Social auth pipeline to confirm TOS upon registration/subsequent sign in
SOCIAL_AUTH_PIPELINE += ("weblate.legal.pipeline.tos_confirm",)

# Middleware to enforce TOS confirmation of signed in users
MIDDLEWARE += [

"weblate.legal.middleware.RequireTOSMiddleware",
]

2. Run the database migration to optionally install additional database structures for the module:

weblate migrate

3. Edit the legal documents in the weblate/legal/templates/legal/ folder to match your service.

340 Kapittel 2. Administrator docs

https://weblate.org/hosting/
https://github.com/WeblateOrg/wllegal/tree/main/wllegal/templates/legal/documents
https://github.com/WeblateOrg/wllegal/tree/main/wllegal/templates/legal/documents


The Weblate Manual, Release 4.5.3

Usage

After installation and editing, the legal documents are shown in the Weblate UI.

2.21.4 Avatars

Avatars are downloaded and cached server-side to reduce information leaks to the sites serving them by default.
The built-in support for fetching avatars from e-mails addresses configured for it can be turned off using ENAB-
LE_AVATARS.
Weblate currently supports:

• Gravatar
• Libravatar

See also:
Avatar caching, AVATAR_URL_PREFIX, ENABLE_AVATARS

2.21.5 Spam protection

You can protect against spamming by users by using the Akismet service.
1. Install the akismet Python module (this is already included in the official Docker image).
2. Obtain the Akismet API key.
3. Store it as AKISMET_API_KEY or WEBLATE_AKISMET_API_KEY in Docker.

Following content is sent to Akismet for checking:
• Suggestions from unauthenticated users
• Project and component descriptions and links

Note: This (among other things) relies on IP address of the client, please see Running behind reverse proxy for
properly configuring that.

See also:
Running behind reverse proxy, AKISMET_API_KEY, WEBLATE_AKISMET_API_KEY

2.21.6 Signing Git commits with GnuPG

New in version 3.1.
All commits can be signed by the GnuPG key of the Weblate instance.
1. Turn on WEBLATE_GPG_IDENTITY. (Weblate will generate a GnuPG key when needed and will use it to sign
all translation commits.)
This feature needs GnuPG 2.1 or newer installed.
You can find the key in the DATA_DIR and the public key is shown on the «About» page:

2.21. Optional Weblate modules 341

https://gravatar.com/
https://www.libravatar.org/
https://akismet.com/


The Weblate Manual, Release 4.5.3

2. Alternatively you can also import existing keys into Weblate, just set HOME=$DATA_DIR/home when invoking
gpg.
See also:
WEBLATE_GPG_IDENTITY

2.21.7 Rate limiting

Changed in version 3.2: The rate limiting now accepts more fine-grained configuration.
Several operations in Weblate are rate limited. At most RATELIMIT_ATTEMPTS attempts are allow-
ed within RATELIMIT_WINDOW seconds. The user is then blocked for RATELIMIT_LOCKOUT. The-
re are also settings specific to scopes, for example RATELIMIT_CONTACT_ATTEMPTS or RATELI-
MIT_TRANSLATE_ATTEMPTS. The table below is a full list of available scopes.
The following operations are subject to rate limiting:

Name Scope Allowed
attempts

Ratelimit
window

Lockout peri-
od

Registration REGISTRA-
TION

5 300 600

Sending message to admins MESSAGE 5 300 600
Password authentication on sign in LOGIN 5 300 600
Sitewide search SEARCH 6 60 60
Translating TRANSLATE 30 60 600
Adding to glossary GLOSSARY 30 60 600
Starting translation into a new lan-
guage

LANGUAGE 2 300 600

If a user fails to log in AUTH_LOCK_ATTEMPTS times, password authentication will be turned off on the account
until having gone through the process of having its password reset.

342 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

The API has separate rate limiting settings, see API rate limiting.
See also:
Rate limiting, Running behind reverse proxy, API rate limiting

2.21.8 Fedora Messaging integration

Fedora Messaging is AMQP-based publisher for all changes happening in Weblate. You can hook additional services
on changes happening in Weblate using this.
The Fedora Messaging integration is available as a separate Python module weblate-fedora-messaging.
Please see <https://github.com/WeblateOrg/fedora_messaging/> for setup instructions.

2.22 Customizing Weblate

Extend and customize using Django and Python. Contribute your changes upstream so that everybody can benefit.
This reduces your maintenance costs; code inWeblate is taken care of when changing internal interfaces or refactoring
the code.

Warning: Neither internal interfaces nor templates are considered a stable API. Please review your own custo-
mizations for every upgrade, the interfaces or their semantics might change without notice.

See also:
Contributing to Weblate

2.22.1 Creating a Python module

If you are not familiar with Python, you might want to look into Python For Beginners, explaining the basics and
pointing to further tutorials.
To write some custom Python code (called a module), a place to store it is needed, either in the system path (usually
something like /usr/lib/python3.7/site-packages/) or in the Weblate directory, which is also added
to the interpreter search path.
Better yet, turn your customization into a proper Python package:

1. Create a folder for your package (we will use weblate_customization).
2. Within it, create a setup.py file to describe the package:

from setuptools import setup

setup(
name="weblate_customization",
version="0.0.1",
author="Your name",
author_email="yourname@example.com",
description="Sample Custom check for Weblate.",
license="GPLv3+",
keywords="Weblate check example",
packages=["weblate_customization"],

)

3. Create a folder for the Pythonmodule (also called weblate_customization) for the customization code.
4. Within it, create a __init__.py file to make sure Python can import the module.

2.22. Customizing Weblate 343

https://github.com/WeblateOrg/fedora_messaging/
https://www.python.org/about/gettingstarted/


The Weblate Manual, Release 4.5.3

5. This package can now be installed using pip install -e. More info to be found in “Editable” Installs.
6. Once installed, the module can be used in the Weblate configuration (for example

weblate_customization.checks.FooCheck).
Your module structure should look like this:

weblate_customization
├── setup.py
└── weblate_customization

├── __init__.py
├── addons.py
└── checks.py

You can find an example of customizingWeblate at <https://github.com/WeblateOrg/customize-example>, it covers
all the topics described below.

2.22.2 Changing the logo

1. Create a simple Django app containing the static files you want to overwrite (see Creating a Python module).
Branding appears in the following files:
icons/weblate.svg Logo shown in the navigation bar.
logo-*.png Web icons depending on screen resolution and web-browser.
favicon.ico Web icon used by legacy browsers.
weblate-*.png Avatars for bots or anonymous users. Some web-browsers use these as shortcut icons.
email-logo.png Used in notifications e-mails.

2. Add it to INSTALLED_APPS:

INSTALLED_APPS = (
# Add your customization as first
"weblate_customization",
# Weblate apps are here…

)

3. Run weblate collectstatic --noinput, to collect static files served to clients.
See also:
Managing static files (e.g. images, JavaScript, CSS), Serving static files

2.22.3 Custom quality checks, addons and auto-fixes

To install your code for Custom automatic fixups,Writing own checks orWriting addon in Weblate:
1. Place the files into your Python module containing the Weblate customization (see Creating a Python module).
2. Add its fully-qualified path to the Python class in the dedicated settings (WEBLATE_ADDONS, CHECK_LIST

or AUTOFIX_LIST):

# Checks
CHECK_LIST += ("weblate_customization.checks.FooCheck",)

# Autofixes
AUTOFIX_LIST += ("weblate_customization.autofix.FooFixer",)

# Addons
WEBLATE_ADDONS += ("weblate_customization.addons.ExamplePreAddon",)

344 Kapittel 2. Administrator docs

https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs
https://github.com/WeblateOrg/customize-example
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS
https://docs.djangoproject.com/en/stable/howto/static-files/


The Weblate Manual, Release 4.5.3

See also:
Custom automatic fixups,Writing own checks,Writing addon, Executing scripts from addon

2.23 Management interface

The management interface offer administration settings under the /manage/ URL. It is available for users signed
in with admin privileges, accessible by using the wrench icon top right:

It includes basic overview of your Weblate:
• Support status, see Getting support for Weblate

• Backups, see Backing up and moving Weblate

• Shared translation memory, see Translation Memory

• Performance report to review Weblate health and length of Celery queues
• SSH keys management, see SSH repositories

• Alerts overview for all components, see alerts

2.23.1 The Django admin interface

Warning: Will be removed in the future, as its use is discouraged—most features can be managed directly in
Weblate.

Here you can manage objects stored in the database, such as users, translations and other settings:

2.23. Management interface 345



The Weblate Manual, Release 4.5.3

346 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

In the Reports section, you can check the status of your site, tweak it for Production setup, or manage SSH keys used
to access Accessing repositories.
Manage database objects under any of the sections. The most interesting one is probablyWeblate translations, where
you can manage translatable projects, see Project configuration and Component configuration.
Weblate languages holds language definitions, explained further in Language definitions.

Adding a project

Adding a project serves as container for all components. Usually you create one project for one piece of software, or
book (See Project configuration for info on individual parameters):

See also:
Project configuration

2.23. Management interface 347



The Weblate Manual, Release 4.5.3

Bilingual components

Once you have added a project, translation components can be added to it. (See Component configuration for info
regarding individual parameters):

348 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

2.23. Management interface 349



The Weblate Manual, Release 4.5.3

See also:
Component configuration, Bilingual and monolingual formats

Monolingual components

For easier translation of these, provide a template file containing the mapping of message IDs to its respective source
language (usually English). (See Component configuration for info regarding individual parameters):

350 Kapittel 2. Administrator docs



The Weblate Manual, Release 4.5.3

2.23. Management interface 351



The Weblate Manual, Release 4.5.3

See also:
Component configuration, Bilingual and monolingual formats

2.24 Getting support for Weblate

Weblate is copylefted libre software with community support. Subscribers receive priority support at no extra charge.
Prepaid help packages are available for everyone. You can find more info about current support offerings at <https:
//weblate.org/support/>.

2.24.1 Integrating support

New in version 3.8.
Purchased support packages can optionally be integrated into your Weblate subscription management interface, from
where you will find a link to it. Basic instance details about your installation are also reported back to Weblate this
way.

2.24.2 Data submitted to the Weblate

• URL where your Weblate instance is configured
• Your site title
• The Weblate version you are running
• Tallies of some objects in your Weblate database (projects, components, languages, source strings and users)
• The public SSH key of your instance

Additionally, when Discover Weblate is turned on:
• List of public projects (name, URL and website)

No other data is submitted.

352 Kapittel 2. Administrator docs

https://weblate.org/support/
https://weblate.org/support/
https://weblate.org/user/


The Weblate Manual, Release 4.5.3

2.24.3 Integration services

• See if your support package is still valid
• Weblate provisioned backup storage

• Discover Weblate

Hint: Purchased support packages are already activated upon purchase, and can be used without integrating them.

2.24.4 Discover Weblate

New in version 4.5.2.

Note: This feature is currently in early beta.

Discover Weblate is an opt-in service that makes it easier for users to find Weblate servers and communities. Users
can browse registered services on <https://weblate.org/discover/>, and find there projects to contribute.

Getting listed

Hint: Participating in Discover Weblate makes Weblate submit some information about your server, please see Data
submitted to the Weblate.

To list your server with an active support subscription (see Integrating support) in Discover Weblate all you need to
do is turn this on in the management panel:

Listing your server without a support subsription in Discover Weblate:

2.24. Getting support for Weblate 353

https://weblate.org/discover/


The Weblate Manual, Release 4.5.3

1. Register yourself at <https://weblate.org/user/>
2. Register your Weblate server in the discovery database at <https://weblate.org/subscription/discovery/>
3. Confirm the service activation in your Weblate and turn on the discovery listing in your Weblate management

page using Enable discovery button:

Customizing listing

You can customize the listing by providing a text and image (570 x 260 pixels) at <https://weblate.org/user/>.

2.25 Legal documents

Note: Herein youwill find various legal information youmight need to operateWeblate in certain legal jurisdictions. It
is provided as ameans of guidance, without any warranty of accuracy or correctness. It is ultimately your responsibility
to ensure that your use of Weblate complies with all applicable laws and regulations.

2.25.1 ITAR and other export controls

Weblate can be run within your own datacenter or virtual private cloud. As such, it can be used to store ITAR or
other export-controlled information, however, end users are responsible for ensuring such compliance.
The Hosted Weblate service has not been audited for compliance with ITAR or other export controls, and does not
currently offer the ability to restrict translations access by country.

354 Kapittel 2. Administrator docs

https://weblate.org/user/
https://weblate.org/subscription/discovery/
https://weblate.org/user/


The Weblate Manual, Release 4.5.3

2.25.2 US encryption controls

Weblate does not contain any cryptographic code, but might be subject export controls as it uses third party compo-
nents utilizing cryptography for authentication, data-integrity and -confidentiality.
Most likely Weblate would be classified as ECCN 5D002 or 5D992 and, as publicly available libre software, it should
not be subject to EAR (see Encryption items NOT Subject to the EAR).
Software components used by Weblate (listing only components related to cryptographic function):
Python See https://wiki.python.org/moin/PythonSoftwareFoundationLicenseFaq#Is_Python_subject_to_export_

laws.3F
GnuPG Optionally used by Weblate
Git Optionally used by Weblate
curl Used by Git
OpenSSL Used by Python and cURL
The strength of encryption keys depends on the configuration of Weblate and the third party components it interacts
with, but in any decent setup it will include all export restricted cryptographic functions:

• In excess of 56 bits for a symmetric algorithm
• Factorisation of integers in excess of 512 bits for an asymmetric algorithm
• Computation of discrete logarithms in a multiplicative group of a finite field of size greater than 512 bits for
an asymmetric algorithm

• Discrete logarithms in a group different than above in excess of 112 bits for an asymmetric algorithm
Weblate doesn’t have any cryptographic activation feature, but it can be configured in a way where no cryptography
code would be involved. The cryptographic features include:

• Accessing remote servers using secure protocols (HTTPS)
• Generating signatures for code commits (PGP)

See also:
Export Controls (EAR) on Open Source Software

2.25. Legal documents 355

https://www.bis.doc.gov/index.php/policy-guidance/encryption/1-encryption-items-not-subject-to-the-ear
https://www.python.org/
https://wiki.python.org/moin/PythonSoftwareFoundationLicenseFaq#Is_Python_subject_to_export_laws.3F
https://wiki.python.org/moin/PythonSoftwareFoundationLicenseFaq#Is_Python_subject_to_export_laws.3F
https://www.gnupg.org/
https://git-scm.com/
https://curl.se/
https://www.openssl.org/
https://www.magicsplat.com/blog/ear/


KAPITTEL3

Contributor docs

3.1 Contributing to Weblate

There are dozens of ways to improve Weblate. You can choose the one you feel comfortable with, be it coding,
graphics design, documentation, sponsorship, or an idea:

• Reporting issues in Weblate

• Starting contributing code to Weblate

• Translating Weblate

• Contribute to Weblate documentation

• Weblate discussions

• Funding Weblate development

3.1.1 Translating Weblate

Weblate is continually being translated usingWeblate itself. Feel free to take your part in the effort of makingWeblate
available in as many human languages as possible. It brings Weblate closer to its users!
If you find a possible mistake in the source string, you can mark it with a comment in the Weblate editor. This way,
it can be discussed and corrected. If you’re certain, you can also click on the link in the Source string location section
and submit a PR with your correction.

3.1.2 Contribute to Weblate documentation

You are welcome to improve the documentation page of your choice. Do it easily by clicking the Edit on GitHub
button in the top-right corner of the page.
Please respect these guidelines while writing:

1. Don’t remove part of the documentation if it’s valid.
2. Use clear and easily-understandable language. You are writing tech docs, not a poem. Not all docs readers are

native speakers, be thoughtful.

356

https://hosted.weblate.org/


The Weblate Manual, Release 4.5.3

3. Don’t be affraid to ask if you are not certain. If you have to ask about some feature while editing, don’t change
its docs before you have the answer. This means: You change or ask. Don’t do both at the same time.

4. Verify your changes by performing described actions while following the docs.
5. Send PR with changes in small chunks to make it easier and quicker to review and merge.
6. If you want to rewrite and change the structure of a big article, do it in two steps:

1. Rewrite
2. Once the rewrite is reviewed, polished, and merged, change the structure of the paragraphs in another

PR.

Hint: You can translate the docs.

3.1.3 Weblate discussions

If you have an idea and not sure if it’s suitable for an issue, don’t worry. You can join the community in GitHub
discussions.

3.1.4 Funding Weblate development

You can boost Weblate’s development on the donate page. Funds collected there are used to enable gratis hosting
for libre software projects and further development of Weblate. Please check the donate page for options, such as
funding goals and the rewards you get as a proud funder.

Backers who have funded Weblate

List of Weblate supporters:
• Yashiro Ccs
• Cheng-Chia Tseng
• Timon Reinhard
• Cassidy James
• Loic Dachary
• Marozed
• https://freedombox.org/
• GNU Solidario (GNU Health)
• BallotReady
• Richard Nespithal

Do you want to be in the list? Please see options on the Donate to Weblate.

3.1. Contributing to Weblate 357

https://hosted.weblate.org/projects/weblate/documentation/
https://github.com/WeblateOrg/weblate/discussions
https://github.com/WeblateOrg/weblate/discussions
https://weblate.org/donate/
https://weblate.org/donate/
https://cassidyjames.com/
https://freedombox.org/
https://www.ballotready.org
https://weblate.org/donate/


The Weblate Manual, Release 4.5.3

3.2 Starting contributing code to Weblate

Understand the Weblate source code by going throughWeblate source code,Weblate frontend andWeblate internals.

3.2.1 Starting with the codebase

Familiarize yourself with the Weblate codebase, by having a go at the bugs labelled good first issue.

3.2.2 Running Weblate locally

The most comfortable approach to get started with Weblate development is to follow Installing from sources. It will
get you a virtualenv with editable Weblate sources.

1. Clone the Weblate source code:

git clone https://github.com/WeblateOrg/weblate.git
cd weblate

2. Create a virtualenv:

virtualenv .venv
.venv/bin/activate

3. Install Weblate (for this you need some system dependencies, see Installing from sources):

pip install -e .

3. Install all dependencies useful for development:

pip install -r requirements-dev.txt

4. Start a development server:

weblate runserver

5. Depending on your configuration, you might also want to start Celery workers:

./weblate/examples/celery start

6. To run a test (see Local testing for more details):

. scripts/test-database

./manage.py test

See also:
Installing from sources

358 Kapittel 3. Contributor docs

https://github.com/WeblateOrg/weblate/labels/good%20first%20issue


The Weblate Manual, Release 4.5.3

3.2.3 Running Weblate locally in Docker

If you have Docker and docker-compose installed, you can spin up the development environment by simply running:

./rundev.sh

It will create a development Docker image and start it. Weblate is running on <http://127.0.0.1:8080/> and you can
sign in as the user admin using admin as the password. The new installation is empty, so you might want to continue
with Adding translation projects and components.
The Dockerfile and docker-compose.yml for this are located in the dev-docker directory.
The script also accepts some parameters, to execute tests, run it with the test parameter and then specify any test
parameters, for example:

./rundev.sh test --failfast weblate.trans

Note: Be careful that your Docker containers are up and running before running the tests. You can check that by
running the docker ps command.

To display the logs:

./rundev.sh logs

To stop the background containers, run:

./rundev.sh stop

Running the script without arguments will re-create the Docker container and restart it.

Note: This is not a suitable setup for production, as it includes several hacks which are insecure, but they make
development easier.

3.2.4 Coding Weblate with PyCharm

PyCharm is a known IDE for Python, here are some guidelines to help you set up your Weblate project in it.
Considering you have just cloned the GitHub repository to a folder, just open it with PyCharm. Once the IDE is open,
the first step is to specify the interpreter you want to use:

3.2. Starting contributing code to Weblate 359

http://127.0.0.1:8080/
https://docs.djangoproject.com/en/stable/ref/django-admin/#django-admin-test


The Weblate Manual, Release 4.5.3

You can either choose to let PyCharm create the virtualenv for you, or select an already existing one:

Don’t forget to install the dependencies once the interpreter is set: Either through the console (the console from the
IDE will directly use your virtualenv by default), or through the interface when you get a warning about missing
dependencies.
The second step is to set the right info to use Django natively inside PyCharm: The idea is to be able to immediately
trigger the unit tests in the IDE. For that you need to specify the root path of the Django project and the path to its
settings:

360 Kapittel 3. Contributor docs



The Weblate Manual, Release 4.5.3

Be careful, the Django project root is the actual root of the repository, not the Weblate sub-directory. About the
settings, you could use the weblate/settings_test.py from the repository, but you could create your own
setting and set it there.
The last step is to run the server and to put breakpoints in the code to be able to debug it. This is done by creating a
new Django Server configuration:

3.2. Starting contributing code to Weblate 361



The Weblate Manual, Release 4.5.3

Hint: Be careful with the property called No reload: It prevents the server from being reloaded live if you modify
files. This allows the existing debugger breakpoints to persist, when they normally would be discarded upon reloading
the server.

3.2.5 Bootstrapping your devel instance

You might want to use import_demo to create demo translations and createadmin to make an admin user.

3.3 Weblate source code

Weblate is developed on GitHub. You are welcome to fork the code and open pull requests. Patches in any other form
are welcome too.
See also:
Check outWeblate internals to see how Weblate looks from inside.

3.3.1 Security by Design Principles

Any code for Weblate should be written with Security by Design Principles in mind.

362 Kapittel 3. Contributor docs

https://github.com/WeblateOrg/weblate
https://wiki.owasp.org/index.php/Security_by_Design_Principles


The Weblate Manual, Release 4.5.3

3.3.2 Coding standard

The code should follow PEP-8 coding guidelines and should be formatted using black code formatter.
To check the code quality, you can use flake8, the recommended plugins are listed in .pre-commit-config.
yaml and its configuration is placed in setup.cfg.
The easiest approach to enforce all this is to install pre-commit. Weblate repository contains configuration for it to
verify the committed files are sane. After installing it (it is already included in the requirements-lint.txt)
turn it on by running pre-commit install inWeblate checkout. This way all your changes will be automatically
checked.
You can also trigger check manually, to check all files run:

pre-commit run --all

3.4 Debugging Weblate

Bugs can behave as application crashes or as misbehavior. You are welcome to collect info on any such issue and
submit it to the issue tracker.

3.4.1 Debug mode

Turning on debug mode will make the exceptions show in the browser. This is useful to debug issues in the web
interface, but not suitable for production environment as it has performance consequences and might leak private
data.
See also:
Disable debug mode

3.4.2 Weblate logs

Weblate can produce detailed logs of what is going in the background. In the default configuration it uses syslog and
that makes the log appear either in /var/log/messages or /var/log/syslog (depending on your syslog
daemon configuration).
The Celery process (see Background tasks using Celery) usually produces own logs as well. The example system-wide
setups log to several files under /var/log/celery/.
Docker containers log to their output (as usual in the Docker world), so you can look at the logs using docker-
compose logs.
See also:
Sample configuration contains LOGGING configuration.

3.4.3 Not processing background tasks

Lot of things happen in background Celery workers. In case things like sending out e-mails or component removal
does not work, there might be some issue with it.
Things to check in that case:

• Check Celery process is running, see Background tasks using Celery

• Check Celery queue status either in Management interface or using celery_queues
• Look into Celery logs for errors (seeWeblate logs)

3.4. Debugging Weblate 363

https://pre-commit.com/
https://github.com/WeblateOrg/weblate/issues
https://docs.djangoproject.com/en/stable/ref/settings/#std:setting-LOGGING


The Weblate Manual, Release 4.5.3

3.4.4 Not receiving e-mails from Weblate

You can verify whether outgoing e-mail is working correctly by using the sendtestemail management com-
mand (see Invoking management commands for instructions on how to invoke it in different environments) or using
Management interface under the Tools tab.
These send e-mail directly, so this verifies that your SMTP configuration is correct (see Configuring outgoing e-mail).
Most of the e-mails from Weblate are however sent in the background and there might be some issues with Celery
involved as well, please see Not processing background tasks for debugging that.

3.4.5 Analyzing application crashes

In case the application crashes, it is useful to collect as much info about the crash as possible. The easiest way to
achieve this is by using third-party services which can collect such info automatically. You can find info on how to
set this up in Collecting error reports.

3.4.6 Silent failures

Lots of tasks are offloaded to Celery for background processing. Failures are not shown in the user interface, but
appear in the Celery logs. Configuring Collecting error reports helps you to notice such failures easier.

3.4.7 Performance issues

In case Weblate performs badly in some situation, please collect the relevant logs showing the issue, and anything that
might help figuring out where the code might be improved.
In case some requests take too long without any indication, you might want to install dogslow along with Collecting
error reports and get pinpointed and detailed tracebacks in the error collection tool.

3.5 Weblate internals

Note: This chapter will give you basic overview of Weblate internals.

Weblate derives most of its code structure from, and is based on Django.

3.5.1 Directory structure

Quick overview of directory structure of Weblate main repository:
docs Source code for this documentation, which can be built using Sphinx.
dev-docker Docker code to run development server, see Running Weblate locally in Docker.
weblate Source code of Weblate as a Django application, seeWeblate internals.
weblate/static Client files (CSS, Javascript and images), seeWeblate frontend.

364 Kapittel 3. Contributor docs

https://docs.djangoproject.com/en/stable/ref/django-admin/#django-admin-sendtestemail
https://pypi.org/project/dogslow/
https://www.djangoproject.com/
https://www.sphinx-doc.org/
https://www.djangoproject.com/


The Weblate Manual, Release 4.5.3

3.5.2 Modules

Weblate consists of several Django applications (some optional, see Optional Weblate modules):
accounts

User account, profiles and notifications.
addons

Addons to tweak Weblate behavior, see Addons.
api

API based on Django REST framework.
auth

Authentication and permissions.
billing

The optional Billing module.
checks

Translation string Quality checks module.
fonts

Font rendering checks module.
formats

File format abstraction layer based on translate-toolkit.
gitexport

The optional Git exporter module.
lang

Module defining language and plural models.
legal

The optional Legal module.
machinery

Integration of machine translation services.
memory

Built in translation memory, see Translation Memory.
screenshots

Screenshots management and OCR module.
trans

Main module handling translations.
utils

Various helper utilities.
vcs

Version control system abstraction.
wladmin

Django admin interface customization.

3.5. Weblate internals 365

https://www.django-rest-framework.org/


The Weblate Manual, Release 4.5.3

3.6 Developing addons

Addons are way to customize localization workflow in Weblate.
class weblate.addons.base.BaseAddon(storage=None)

classmethod can_install(component, user)
Check whether addon is compatible with given component.

configure(settings)
Save configuration.

daily(component)
Hook triggered daily.

classmethod get_add_form(user, component, **kwargs)
Return configuration form for adding new addon.

get_settings_form(user, **kwargs)
Return configuration form for this addon.

post_add(translation)
Hook triggered after new translation is added.

post_commit(component)
Hook triggered after changes are committed to the repository.

post_push(component)
Hook triggered after repository is pushed upstream.

post_update(component, previous_head: str, skip_push: bool)
Hook triggered after repository is updated from upstream.

Parameters
• previous_head (str) – HEAD of the repository prior to update, can be blank on
initial clone.

• skip_push (bool) – Whether the addon operation should skip pushing changes
upstream. Usually you can pass this to underlying methods as commit_and_push or com-
mit_pending.

pre_commit(translation, author)
Hook triggered before changes are committed to the repository.

pre_push(component)
Hook triggered before repository is pushed upstream.

pre_update(component)
Hook triggered before repository is updated from upstream.

save_state()
Save addon state information.

stay_on_create = False
Base class for Weblate addons.

store_post_load(translation, store)
Hook triggered after a file is parsed.
It receives an instance of a file format class as a argument.
This is useful to modify file format class parameters, for example adjust how the file will be saved.

unit_pre_create(unit)
Hook triggered before new unit is created.

Here is an example addon:

366 Kapittel 3. Contributor docs

https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool
https://docs.python.org/3.9/library/stdtypes.html#str
https://docs.python.org/3.9/library/functions.html#bool


The Weblate Manual, Release 4.5.3

#
# Copyright © 2012 - 2021 Michal Čihař <michal@cihar.com>
#
# This file is part of Weblate <https://weblate.org/>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#

from django.utils.translation import gettext_lazy as _

from weblate.addons.base import BaseAddon
from weblate.addons.events import EVENT_PRE_COMMIT

class ExampleAddon(BaseAddon):
# Filter for compatible components, every key is
# matched against property of component
compat = {"file_format": {"po", "po-mono"}}
# List of events addon should receive
events = (EVENT_PRE_COMMIT,)
# Addon unique identifier
name = "weblate.example.example"
# Verbose name shown in the user interface
verbose = _("Example addon")
# Detailed addon description
description = _("This addon does nothing it is just an example.")

# Callback to implement custom behavior
def pre_commit(self, translation, author):

return

3.7 Weblate frontend

The frontend is currently built using Bootstrap, jQuery and few third party libraries.

3.7.1 Supported browsers

Weblate supports the latest, stable releases of all major browsers and platforms.
Alternative browsers which use the latest version of WebKit, Blink, or Gecko, whether directly or via the platform’s
web view API, are not explicitly supported. However, Weblate should (in most cases) display and function correctly
in these browsers as well.
Older browsers might work, but some features might be limited.

3.7. Weblate frontend 367



The Weblate Manual, Release 4.5.3

3.7.2 Dependency management

The yarn package manager is used to update third party libraries. The configuration lives in scripts/yarn and
there is a wrapper script scripts/yarn-update to upgrade the libraries, build them and copy to correct loca-
tions in weblate/static/vendor, where all third partly frontend code is located.
Adding new third-party library typically consists of:

# Add a yarn package
yarn --cwd scripts/yarn add PACKAGE
# Edit the script to copy package to the static folder
edit scripts/yarn-update
# Run the update script
./scripts/yarn-update
# Add files to git
git add .

3.7.3 Coding style

Weblate relies on Prettier for the code formatting for both JavaScript and CSS files.
We also use ESLint to check the JavaScript code.

3.7.4 Localization

Should you need any user visible text in the frontend code, it should be localizable. In most cases all you need is to
wrap your text inside gettext function, but there are more complex features available:

document.write(gettext('this is to be translated'));

var object_count = 1 // or 0, or 2, or 3, ...
s = ngettext('literal for the singular case',

'literal for the plural case', object_count);

fmts = ngettext('There is %s object. Remaining: %s',
'There are %s objects. Remaining: %s', 11);

s = interpolate(fmts, [11, 20]);
// s is 'There are 11 objects. Remaining: 20'

See also:
Translation topic in the Django documentation

3.7.5 Icons

Weblate currently uses material design icons. In case you are looking for new symbol, check Material Design Icons
or Material Design Resources.
Additionally, there is scripts/optimize-svg to reduce size of the SVG as most of the icons are embedded
inside the HTML to allow styling of the paths.

368 Kapittel 3. Contributor docs

https://prettier.io/
https://eslint.org/
https://docs.djangoproject.com/en/stable/topics/i18n/translation/
https://materialdesignicons.com/
https://material.io/resources/icons/


The Weblate Manual, Release 4.5.3

3.8 Reporting issues in Weblate

Weblate issue tracker is hosted at GitHub.
Feel welcome to report any issues you have, or suggest improvement for Weblate there. There are various templates
prepared to comfortably guide you through the issue report.
If what you have found is a security issue in Weblate, please consult the Security issues section below.
If you are not sure about your bug report or feature request, you can tryWeblate discussions.

3.8.1 Security issues

In order to give the community time to respond and upgrade, you are strongly urged to report all security issues
privately. HackerOne is used to handle security issues, and can be reported directly at HackerOne. Once you submit
it there, community has limited but enough time to solve the incident.
Alternatively, report to security@weblate.org, which ends up on HackerOne as well.
If you don’t want to use HackerOne, for whatever reason, you can send the report by e-mail to michal@cihar.com.
You can choose to encrypt it using this PGP key 3CB 1DF1 EF12 CF2A C0EE 5A32 9C27 B313 42B7 511D. You
can also get the PGP key from Keybase.

Note: Weblate depends on third-party components for many things. In case you find a vulnerability affecting one of
those components in general, please report it directly to the respective project.
Some of these are:

• Django
• Django REST framework
• Python Social Auth

3.9 Weblate testsuite and continuous integration

Testsuites exist for most of the current code, increase coverage by adding testcases for any new functionality, and
verify that it works.

3.9.1 Continuous integration

Current test results can be found on GitHub Actions and coverage is reported on Codecov.
There are several jobs to verify different aspects:

• Unit tests
• Documentation build and external links
• Migration testing from all supported releases
• Code linting
• Setup verification (ensures that generated dist files do not miss anything and can be tested)

The configuration for the CI is in .github/workflows directory. It heavily uses helper scripts stored in ci
directory. The scripts can be also executed manually, but they require several environment variables, mostly defi-
ning Django settings file to use and database connection. The example definition of that is in scripts/test-
database:

3.8. Reporting issues in Weblate 369

https://github.com/WeblateOrg/weblate/issues
https://hackerone.com/weblate
mailto:security@weblate.org
mailto:michal@cihar.com
https://keybase.io/nijel
https://docs.djangoproject.com/en/stable/internals/security/
https://www.django-rest-framework.org/#security
https://github.com/python-social-auth
https://github.com/WeblateOrg/weblate/actions
https://codecov.io/github/WeblateOrg/weblate


The Weblate Manual, Release 4.5.3

# Simple way to configure test database from environment

# Database backend to use postgresql / mysql / mariadb
export CI_DATABASE=${1:-postgresql}

# Database server configuration
export CI_DB_USER=weblate
export CI_DB_PASSWORD=weblate
export CI_DB_HOST=127.0.0.1

# Django settings module to use
export DJANGO_SETTINGS_MODULE=weblate.settings_test

The simple execution can look like:

. scripts/test-database

./ci/run-migrate

./ci/run-test

./ci/run-docs

3.9.2 Local testing

To run a testsuite locally, use:

DJANGO_SETTINGS_MODULE=weblate.settings_test ./manage.py test

Hint: You will need a database (PostgreSQL) server to be used for tests. By default Django creates separate data-
base to run tests with test_ prefix, so in case your settings is configured to use weblate, the tests will use
test_weblate database. See Database setup for Weblate for setup instructions.

The weblate/settings_test.py is used in CI environment as well (see Continuous integration) and can be
tuned using environment variables:

# Simple way to configure test database from environment

# Database backend to use postgresql / mysql / mariadb
export CI_DATABASE=${1:-postgresql}

# Database server configuration
export CI_DB_USER=weblate
export CI_DB_PASSWORD=weblate
export CI_DB_HOST=127.0.0.1

# Django settings module to use
export DJANGO_SETTINGS_MODULE=weblate.settings_test

Prior to running tests you should collect static files as some tests rely on them being present:

DJANGO_SETTINGS_MODULE=weblate.settings_test ./manage.py collectstatic

You can also specify individual tests to run:

DJANGO_SETTINGS_MODULE=weblate.settings_test ./manage.py test weblate.gitexport

Hint: The tests can also be executed inside developer docker container, see Running Weblate locally in Docker.

370 Kapittel 3. Contributor docs



The Weblate Manual, Release 4.5.3

See also:
See Testing in Django for more info on running and writing tests for Django.

3.10 Data schemas

Weblate uses JSON Schema to define layout of external JSON files.

3.10.1 Weblate Translation Memory Schema

https://weblate.org/schemas/weblate-memory.schema.json
type array
items The Translation Memory Item

type object
properties

• category The String Category
1 is global, 2 is shared, 10000000+ are project specific,
20000000+ are user specific
type integer
examples 1
minimum 0
default 1

• origin The String Origin
Filename or component name
type string
examples test.tmx

project/component
default

• source The Source String
type string
examples Hello
minLength 1
default

• source_language The Source Language
ISO 639-1 / ISO 639-2 / IETF BCP 47
type string
examples en
pattern ^[^ ]+$
default

• target The Target String
type string
examples Ahoj
minLength 1
default

• target_language The Target Language
ISO 639-1 / ISO 639-2 / IETF BCP 47
type string
examples cs
pattern ^[^ ]+$
default

additionalProperties False
definitions

3.10. Data schemas 371

https://docs.djangoproject.com/en/stable/topics/testing/
https://json-schema.org/
https://weblate.org/schemas/weblate-memory.schema.json


The Weblate Manual, Release 4.5.3

See also:
Translation Memory, dump_memory, import_memory

3.10.2 Weblate user data export

https://weblate.org/schemas/weblate-userdata.schema.json
type object
properties

• basic Basic
type object
properties

• username Username
type string
examples admin
default

• full_name Full name
type string
examples Weblate Admin
default

• email E-mail
type string
examples noreply@example.com
default

• date_joined Date joined
type string
examples 2019-11-18T18:53:54.862Z
default

• profile Profile
type object
properties

• language Language
type string
examples cs
pattern ^.*$
default

• suggested Number of suggested strings
type integer
examples 1
default 0

• translated Number of translated strings
type integer
examples 24
default 0

• uploaded Number of uploaded screenshots
type integer
examples 1
default 0

• hi-
de_completed

Hide completed translations on the dashboard
type boolean
examples False
default True

• seconda-
ry_in_zen

Show secondary translations in the Zen mode
type boolean
examples True
default True

continues on next page

372 Kapittel 3. Contributor docs

https://weblate.org/schemas/weblate-userdata.schema.json
mailto:noreply@example.com


The Weblate Manual, Release 4.5.3

Table 2 – continued from previous page
• hi-
de_source_secondary

Hide source if a secondary translation exists
type boolean
examples False
default True

• editor_link Editor link
type string
examples
pattern ^.*$
default

• trans-
late_mode

Translation editor mode
type integer
examples 0
default 0

• zen_mode Zen editor mode
type integer
examples 0
default 0

• speci-
al_chars

Special characters
type string
examples
pattern ^.*$
default

• dash-
board_view

Default dashboard view
type integer
examples 1
default 0

• dash-
board_component_list

Default component list
default null
anyOf type null

type integer
• languages Translated languages

type array
default
items Language code

type string
examples cs
pattern ^.*$
default

• seconda-
ry_languages

Secondary languages
type array
default
items Language code

type string
examples sk
pattern ^.*$
default

• watched Watched projects
type array
default
items Project slug

type string
examples weblate
pattern ^.*$
default

• auditlog Audit log
type array

continues on next page

3.10. Data schemas 373



The Weblate Manual, Release 4.5.3

Table 2 – continued from previous page
default
items Items

type object
properties

• address IP address
type string
examples 127.0.0.1
pattern ^.*$
default

• user_agent User agent
type string
examples PC / Linux / Firefox

70.0
pattern ^.*$
default

• timestamp Timestamp
type string
examples 2019-11-

18T18:58:30.845Z
pattern ^.*$
default

• activity Activity
type string
examples login
pattern ^.*$
default

definitions

See also:
User profile, dumpuserdata

3.11 Releasing Weblate

3.11.1 Releasing schedule

Weblate has two month release cycle for releases (x.y). These are usually followed by a bunch of bugfix releases to
fix issues which slip into them (x.y.z).
The change in the major version indicates that the upgrade process can not skip this version - you always have to
upgrade to x.0 before upgrading to higher x.y releases.
See also:
Upgrading Weblate

374 Kapittel 3. Contributor docs



The Weblate Manual, Release 4.5.3

3.11.2 Release planning

The features for upcoming releases are collected using GitHub milestones, you can see our roadmap at <https://
github.com/WeblateOrg/weblate/milestones>.

3.11.3 Release process

Things to check prior to release:
1. Check newly translated languages by ./scripts/list-translated-languages.
2. Set final version by ./scripts/prepare-release.
3. Make sure screenshots are up to date make -C docs update-screenshots.
4. Merge any possibly pending translations wlc push; git remote update; git merge origin/

weblate

Perform the release:
5. Create a release ./scripts/create-release --tag (see below for requirements).

Post release manual steps:
6. Update Docker image.
7. Close GitHub milestone.
8. Once the Docker image is tested, add a tag and push it.
9. Update Helm chart to new version.
10. Include new version in .github/workflows/migrations.yml to cover it in migration testing.
11. Increase version in the website download links.
12. Increase version in the repository by ./scripts/set-version.

To create tags using the ./scripts/create-release script you will need following:
• GnuPG with private key used to sign the release
• Push access to Weblate git repositories (it pushes tags)
• Configured hub tool and access to create releases on the Weblate repo
• SSH access to Weblate download server (the Website downloads are copied there)

3.12 Security and privacy

Tip: At Weblate, security maintains an environment that values the privacy of our users.

Development of Weblate adheres to the Best Practices of the Linux Foundation’s Core Infrastructure Initiative.

3.12. Security and privacy 375

https://github.com/WeblateOrg/weblate/milestones
https://github.com/WeblateOrg/weblate/milestones
https://bestpractices.coreinfrastructure.org/projects/552


The Weblate Manual, Release 4.5.3

3.12.1 Tracking dependencies for vulnerabilities

Security issues in our dependencies are monitored using Dependabot. This covers the Python and JavaScript libraries,
and the latest stable release has its dependencies updated to avoid vulnerabilities.

Hint: There might be vulnerabilities in third-party libraries which do not affect Weblate, so those are not addressed
by releasing bugfix versions of Weblate.

3.12.2 Docker container security

The Docker containers are scanned using Anchore and Trivy.
This allows us to detect vulnerabilities early and release improvements quickly.
You can get the results of these scans at GitHub — they are stored as artifacts on our CI in the SARIF format (Static
Analysis Results Interchange Format).
See also:
Continuous integration

3.13 About Weblate

3.13.1 Project goals

Web-based continuous localization tool with tight Version control integration supporting a wide range of Supported
file formats, making it easy for translators to contribute.

3.13.2 Project name

«Weblate» is a portmanteau of the words «web» and «translate».

3.13.3 Project website

The landing page is https://weblate.org and a cloud hosted service at https://hosted.weblate.org. This documentation
can be found on https://docs.weblate.org.

3.13.4 Project logos

The project logos and other graphics is available in <https://github.com/WeblateOrg/graphics/> repository.

3.13.5 Leadership

This project is maintained by Michal Čihař <michal@cihar.com>.

376 Kapittel 3. Contributor docs

https://dependabot.com/
https://anchore.com/
https://github.com/aquasecurity/trivy
https://weblate.org
https://hosted.weblate.org
https://docs.weblate.org
https://github.com/WeblateOrg/graphics/
mailto:michal@cihar.com


The Weblate Manual, Release 4.5.3

3.13.6 Authors

Weblate was started by Michal Čihař <michal@cihar.com>. Since its inception in 2012, thousands of people have
contributed.

3.14 License

Copyright (C) 2012 - 2021 Michal Čihař <michal@cihar.com>
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along with this program. If not, see <https:
//www.gnu.org/licenses/>.

3.14. License 377

mailto:michal@cihar.com
mailto:michal@cihar.com
https://www.gnu.org/licenses/
https://www.gnu.org/licenses/


KAPITTEL4

Change History

4.1 Weblate 4.5.3

Released on April 1st 2021.
• Fixed metrics collection.
• Fixed possible crash when adding strings.
• Improved search query examples.
• Fixed possible loss of newly added strings on replace upload.

4.2 Weblate 4.5.2

Released on March 26th 2021.
• Configurable schedule for automatic translation.
• Added Lua format check.
• Ignore format strings in the Consecutive duplicated words check.
• Allow uploading screenshot from a translate page.
• Added forced file synchronization to the repository maintenance.
• Fixed automatic suggestions for languages with a longer code.
• Improved performance when adding new strings.
• Several bug fixes in quality checks.
• Several performance improvements.
• Added integration with Discover Weblate.
• Fixed checks behavior with read-only strings.

378



The Weblate Manual, Release 4.5.3

4.3 Weblate 4.5.1

Released on March 05th 2021.
• Fixed editing of glossary flags in some corner cases.
• Extend metrics usage to improve performance of several pages.
• Store correct source language in TMX files.
• Better handling for uploads of monolingual PO using API.
• Improved alerts behavior glossaries.
• Improved Markdown link checks.
• Indicate glossary and source language in breadcrumbs.
• Paginated component listing of huge projects.
• Improved performance of translation, component or project removal.
• Improved bulk edit performance.
• Fixed preserving «Needs editing» and «Approved» states for ODF files.
• Improved interface for customizing translation-file downloads

4.4 Weblate 4.5

Released on February 19th 2021.
• Added support for lua-format used in gettext PO.
• Added support for sharing a component between projects.
• Fixed multiple unnamed variables check behavior with multiple format flags.
• Dropped mailing list field on the project in favor of generic instructions for translators.
• Added pseudolocale generation addon.
• Added support for TermBase eXchange files.
• Added support for manually defining string variants using a flag.
• Improved performance of consistency checks.
• Improved performance of translation memory for long strings.
• Added support for searching in explanations.
• Strings can now be added and removed in bilingual formats as well.
• Extend list of supported languages in Amazon Translate machine translation.
• Automatically enable Java MessageFormat checks for Java Properties.
• Added a new upload method to add new strings to a translation.
• Added a simple interface to browse translation.
• Glossaries are now stored as regular components.
• Dropped specific API for glossaries as component API is used now.
• Added simplified interface to toggle some of the flags.
• Added support for non-translatable or forbidden terms in the glossary.
• Added support for defining terminology in a glossary.

4.3. Weblate 4.5.1 379



The Weblate Manual, Release 4.5.3

• Moved text direction toggle to get more space for the visual keyboard.
• Added option to automatically watch projects user-contributed to.
• Added check whether translation matches the glossary.
• Added support for customizing navigation text color.

4.5 Weblate 4.4.2

Released on January 14th 2021.
• Fixed corruption of one distributed MO file.

4.6 Weblate 4.4.1

Released on January 13th 2021.
• Fixed reverting plural changes.
• Fixed displaying help for project settings.
• Improved administration of users.
• Improved handling of context in monolingual PO files.
• Fixed cleanup addon behavior with HTML, ODF, IDML and Windows RC formats.
• Fixed parsing of location from CSV files.
• Use content compression for file downloads.
• Improved user experience on importing from ZIP file.
• Improved detection of file format for uploads.
• Avoid duplicate pull requests on Pagure.
• Improved performance when displaying ghost translations.
• Reimplemented translation editor to use native browser textarea.
• Fixed cleanup addon breaking adding new strings.
• Added API for addons.

4.7 Weblate 4.4

Released on December 15th 2020.
• Improved validation when creating a component.
• Weblate now requires Django 3.1.
• Added support for appearance customization in the management interface.
• Fixed read-only state handling in bulk edit.
• Improved CodeMirror integration.
• Added addon to remove blank strings from translation files.
• The CodeMirror editor is now used for translations.
• Syntax highlighting in translation editor for XML, HTML, Markdown and reStructuredText.

380 Kapittel 4. Change History



The Weblate Manual, Release 4.5.3

• Highlight placeables in translation editor.
• Improved support for non-standard language codes.
• Added alert when using ambiguous language codes.
• The user is now presented with a filtered list of languages when adding a new translation.
• Extended search capabilities for changes in history.
• Improved billing detail pages and libre hosting workflow.
• Extended translation statistics API.
• Improved «other translations» tab while translating.
• Added tasks API.
• Improved performance of file upload.
• Improved display of user defined special characters.
• Improved performance of auto-translation.
• Several minor improvements in the user interface.
• Improved naming of ZIP downloads.
• Added option for getting notifications on unwatched projects.

4.8 Weblate 4.3.2

Released on November 4th 2020.
• Fixed crash on certain component filemasks.
• Improved accuracy of the consecutive duplicated words check.
• Added support for Pagure pull requests.
• Improved error messages for failed registrations.
• Reverted rendering developer comments as Markdown.
• Simplified setup of Git repositories with different default branch than «master».
• Newly created internal repositories now use main as the default branch.
• Reduced false positives rate of unchanged translation while translating reStructuredText.
• Fixed CodeMirror display issues in some situations.
• Renamed Template group to «Sources» to clarify its meaning.
• Fixed GitLab pull requests on repositories with longer paths.

4.9 Weblate 4.3.1

Released on October 21st 2020.
• Improved auto-translation performance.
• Fixed session expiry for authenticated users.
• Add support for hiding version information.
• Improve hooks compatibility with Bitbucket Server.
• Improved performance of translation memory updates.

4.8. Weblate 4.3.2 381



The Weblate Manual, Release 4.5.3

• Reduced memory usage.
• Improved performance of Matrix view.
• Added confirmation before removing a user from a project.

4.10 Weblate 4.3

Released on October 15th 2020.
• Include user stats in the API.
• Fixed component ordering on paginated pages.
• Define source language for a glossary.
• Rewritten support for GitHub and GitLab pull requests.
• Fixed stats counts after removing suggestion.
• Extended public user profile.
• Fixed configuration of enforced checks.
• Improve documentation about built-in backups.
• Moved source language attribute from project to a component.
• Add Vue I18n formatting check.
• Generic placeholders check now supports regular expressions.
• Improved look of Matrix mode.
• Machinery is now called automatic suggestions.
• Added support for interacting with multiple GitLab or GitHub instances.
• Extended API to cover project updates, unit updates and removals and glossaries.
• Unit API now properly handles plural strings.
• Component creation can now handle ZIP file or document upload.
• Consolidated API response status codes.
• Support Markdown in contributor agreement.
• Improved source strings tracking.
• Improved JSON, YAML and CSV formats compatibility.
• Added support for removing strings.
• Improved performance of file downloads.
• Improved repository management view.
• Automatically enable java-format for Android.
• Added support for localized screenshots.
• Added support for Python 3.9.
• Fixed translating HTML files under certain conditions.

382 Kapittel 4. Change History



The Weblate Manual, Release 4.5.3

4.11 Weblate 4.2.2

Released on September 2nd 2020.
• Fixed matching of source strings for JSON formats.
• Fixed login redirect for some authentication configurations.
• Fixed LDAP authentication with group sync.
• Fixed crash in reporting automatic translation progress.
• Fixed Git commit squashing with trailers enabled.
• Fixed creating local VCS components using API.

4.12 Weblate 4.2.1

Released on August 21st 2020.
• Fixed saving plurals for some locales in Android resources.
• Fixed crash in the cleanup addon for some XLIFF files.
• Allow setting up localization CDN in Docker image.

4.13 Weblate 4.2

Released on August 18th 2020.
• Improved user pages and added listing of users.
• Dropped support for migrating from 3.x releases, migrate through 4.1 or 4.0.
• Added exports into several monolingual formats.
• Improved activity charts.
• Number of displayed nearby strings can be configured.
• Added support for locking components experiencing repository errors.
• Simplified main navigation (replaced buttons with icons).
• Improved language code handling in Google Translate integration.
• The Git squash addon can generate Co-authored-by: trailers.
• Improved query search parser.
• Improved user feedback from format strings checks.
• Improved performance of bulk state changes.
• Added compatibility redirects after project or component renaming.
• Added notifications for strings approval, component locking and license change.
• Added support for ModernMT.
• Allow to avoid overwriting approved translations on file upload.
• Dropped support for some compatibility URL redirects.
• Added check for ECMAScript template literals.
• Added option to watch a component.

4.11. Weblate 4.2.2 383



The Weblate Manual, Release 4.5.3

• Removed leading dot from JSON unit keys.
• Removed separate Celery queue for translation memory.
• Allow translating all components a language at once.
• Allow to configure Content-Security-Policy HTTP headers.
• Added support for aliasing languages at project level.
• New addon to help with HTML or JavaScript localization, see JavaScript localization CDN.
• The Weblate domain is now configured in the settings, see SITE_DOMAIN .
• Add support for searching by component and project.

4.14 Weblate 4.1.1

Released on June 19th 2020.
• Fixed changing autofix or addons configuration in Docker.
• Fixed possible crash in «About» page.
• Improved installation of byte-compiled locale files.
• Fixed adding words to glossary.
• Fixed keyboard shortcuts for machinery.
• Removed debugging output causing discarding log events in some setups.
• Fixed lock indication on project listing.
• Fixed listing GPG keys in some setups.
• Added option for which DeepL API version to use.
• Added support for acting as SAML Service Provider, see SAML authentication.

4.15 Weblate 4.1

Released on June 15th 2020.
• Added support for creating new translations with included country code.
• Added support for searching source strings with screenshot.
• Extended info available in the stats insights.
• Improved search editing on «Translate» pages.
• Improve handling of concurrent repository updates.
• Include source language in project creation form.
• Include changes count in credits.
• Fixed UI language selection in some cases.
• Allow to whitelist registration methods with registrations closed.
• Improved lookup of related terms in glossary.
• Improved translation memory matches.
• Group same machinery results.
• Add direct link to edit screenshot from translate page.

384 Kapittel 4. Change History



The Weblate Manual, Release 4.5.3

• Improved removal confirmation dialog.
• Include templates in ZIP download.
• Add support for Markdown and notification configuration in announcements.
• Extended details in check listings.
• Added support for new file formats: Laravel PHP strings, HTML files, OpenDocument Format, IDML Format,

Windows RC files, INI translations, Inno Setup INI translations, GWT properties, go-i18n JSON files, ARB File.
• Consistently use dismissed as state of dismissed checks.
• Add support for configuring default addons to enable.
• Fixed editor keyboard shortcut to dismiss checks.
• Improved machine translation of strings with placeholders.
• Show ghost translation for user languages to ease starting them.
• Improved language code parsing.
• Show translations in user language first in the list.
• Renamed shapings to more generic name variants.
• Added new quality checks: Multiple unnamed variables, Long untranslated, Consecutive duplicated words.
• Reintroduced support for wiping translation memory.
• Fixed option to ignore source checks.
• Added support for configuring different branch for pushing changes.
• API now reports rate limiting status in the HTTP headers.
• Added support for Google Translate V3 API (Advanced).
• Added ability to restrict access on component level.
• Added support for whitespace and other special chars in translation flags, see Customizing behavior using flags.
• Always show rendered text check if enabled.
• API now supports filtering of changes.
• Added support for sharing glossaries between projects.

4.16 Weblate 4.0.4

Released on May 07th 2020.
• Fixed testsuite execution on some Python 3.8 environments.
• Typo fixes in the documentation.
• Fixed creating components using API in some cases.
• Fixed JavaScript errors breaking mobile navigation.
• Fixed crash on displaying some checks.
• Fixed screenshots listing.
• Fixed monthly digest notifications.
• Fixed intermediate translation behavior with units non existing in translation.

4.16. Weblate 4.0.4 385



The Weblate Manual, Release 4.5.3

4.17 Weblate 4.0.3

Released on May 02nd 2020.
• Fixed possible crash in reports.
• User mentions in comments are now case insensitive.
• Fixed PostgreSQL migration for non superusers.
• Fixed changing the repository URL while creating component.
• Fixed crash when upstream repository is gone.

4.18 Weblate 4.0.2

Released on April 27th 2020.
• Improved performance of translation stats.
• Improved performance of changing labels.
• Improved bulk edit performance.
• Improved translation memory performance.
• Fixed possible crash on component deletion.
• Fixed displaying of translation changes in some corner cases.
• Improved warning about too long celery queue.
• Fixed possible false positives in the consistency check.
• Fixed deadlock when changing linked component repository.
• Included edit distance in changes listing and CSV and reports.
• Avoid false positives of punctuation spacing check for Canadian French.
• Fixed XLIFF export with placeholders.
• Fixed false positive with zero width check.
• Improved reporting of configuration errors.
• Fixed bilingual source upload.
• Automatically detect supported languages for DeepL machine translation.
• Fixed progress bar display in some corner cases.
• Fixed some checks triggering on non translated strings.

4.19 Weblate 4.0.1

Released on April 16th 2020.
• Fixed package installation from PyPI.

386 Kapittel 4. Change History



The Weblate Manual, Release 4.5.3

4.20 Weblate 4.0

Released on April 16th 2020.
• Weblate now requires Python 3.6 or newer.
• Added management overview of component alerts.
• Added component alert for broken repository browser URLs.
• Improved sign in and registration pages.
• Project access control and workflow configuration integrated to project settings.
• Added check and highlighter for i18next interpolation and nesting.
• Added check and highlighter for percent placeholders.
• Display suggestions failing checks.
• Record source string changes in history.
• Upgraded Microsoft Translator to version 3 API.
• Reimplemented translation memory backend.
• Added support for several is: lookups in Searching.
• Allow to make Unchanged translation avoid internal blacklist.
• Improved comments extraction from monolingual po files.
• Renamed whiteboard messages to announcements.
• Fixed occasional problems with registration mails.
• Improved LINGUAS update addon to handle more syntax variants.
• Fixed editing monolingual XLIFF source file.
• Added support for exact matching in Searching.
• Extended API to cover screenshots, users, groups, componentlists and extended creating projects.
• Add support for source upload on bilingual translations.
• Added support for intermediate language from developers.
• Added support for source strings review.
• Extended download options for platform wide translation memory.

4.21 Weblate 3.x series

4.21.1 Weblate 3.11.3

Released on March 11th 2020.
• Fixed searching for fields with certain priority.
• Fixed predefined query for recently added strings.
• Fixed searching returning duplicate matches.
• Fixed notifications rendering in Gmail.
• Fixed reverting changes from the history.
• Added links to events in digest notifications.
• Fixed email for account removal confirmation.

4.20. Weblate 4.0 387



The Weblate Manual, Release 4.5.3

• Added support for Slack authentication in Docker container.
• Avoid sending notifications for not subscribed languages.
• Include Celery queues in performance overview.
• Fixed documentation links for addons.
• Reduced false negatives for unchanged translation check.
• Raised bleach dependency to address CVE-2020-6802.
• Fixed listing project level changes in history.
• Fixed stats invalidation in some corner cases.
• Fixed searching for certain string states.
• Improved format string checks behavior on missing percent.
• Fixed authentication using some third party providers.

4.21.2 Weblate 3.11.2

Released on February 22nd 2020.
• Fixed rendering of suggestions.
• Fixed some strings wrongly reported as having no words.

4.21.3 Weblate 3.11.1

Released on February 20th 2020.
• Documented Celery setup changes.
• Improved filename validation on component creation.
• Fixed minimal versions of some dependencies.
• Fixed adding groups with certain Django versions.
• Fixed manual pushing to upstream repository.
• Improved glossary matching.

4.21.4 Weblate 3.11

Released on February 17th 2020.
• Allow using VCS push URL during component creation via API.
• Rendered width check now shows image with the render.
• Fixed links in notifications e-mails.
• Improved look of plaintext e-mails.
• Display ignored checks and allow to make them active again.
• Display nearby keys on monolingual translations.
• Added support for grouping string shapings.
• Recommend upgrade to new Weblate versions in the system checks.
• Provide more detailed analysis for duplicate language alert.
• Include more detailed license info on the project pages.

388 Kapittel 4. Change History



The Weblate Manual, Release 4.5.3

• Automatically unshallow local copies if needed.
• Fixed download of strings needing action.
• New alert to warn about using the same filemask twice.
• Improve XML placeables extraction.
• The SINGLE_PROJECT can now enforce redirection to chosen project.
• Added option to resolve comments.
• Added bulk editing of flags.
• Added support for labels.
• Added bulk edit addon.
• Added option for Enforcing checks.
• Increased default validity of confirmation links.
• Improved Matomo integration.
• Fixed Has been translated to correctly handle source string change.
• Extended automatic updates configuration by AUTO_UPDATE.
• LINGUAS addons now do full sync of translations in Weblate.

4.21.5 Weblate 3.10.3

Released on January 18th 2020.
• Support for translate-toolkit 2.5.0.

4.21.6 Weblate 3.10.2

Released on January 18th 2020.
• Add lock indication to projects.
• Fixed CSS bug causing flickering in some web browsers.
• Fixed searching on systems with non-English locales.
• Improved repository matching for GitHub and Bitbucket hooks.
• Fixed data migration on some Python 2.7 installations.
• Allow configuration of Git shallow cloning.
• Improved background notification processing.
• Fixed broken form submission when navigating back in web browser.
• New addon to configure YAML formatting.
• Fixed same plurals check to not fire on single plural form languages.
• Fixed regex search on some fields.

4.21. Weblate 3.x series 389



The Weblate Manual, Release 4.5.3

4.21.7 Weblate 3.10.1

Released on January 9th 2020.
• Extended API with translation creation.
• Fixed several corner cases in data migrations.
• Compatibility with Django 3.0.
• Improved data clean-up performance.
• Added support for customizable security.txt.
• Improved breadcrumbs in changelog.
• Improved translations listing on dashboard.
• Improved HTTP responses for webhooks.
• Added support for GitLab merge requests in Docker container.

4.21.8 Weblate 3.10

Released on December 20th 2019.
• Improved application user interface.
• Added doublespace check.
• Fixed creating new languages.
• Avoid sending auditlog notifications to deleted e-mails.
• Added support for read only strings.
• Added support for Markdown in comments.
• Allow placing translation instruction text in project info.
• Add copy to clipboard for secondary languages.
• Improved support for Mercurial.
• Improved Git repository fetching performance.
• Add search lookup for age of string.
• Show source language for all translations.
• Show context for nearby strings.
• Added support for notifications on repository operations.
• Improved translation listings.
• Extended search capabilities.
• Added support for automatic translation strings marked for editing.
• Avoid sending duplicate notifications for linked component alerts.
• Improve default merge request message.
• Better indicate string state in Zen mode.
• Added support for more languages in Yandex Translate.
• Improved look of notification e-mails.
• Provide choice for translation license.

390 Kapittel 4. Change History



The Weblate Manual, Release 4.5.3

4.21.9 Weblate 3.9.1

Released on October 28th 2019.
• Remove some unneeded files from backups.
• Fixed potential crash in reports.
• Fixed cross database migration failure.
• Added support for force pushing Git repositories.
• Reduced risk of registration token invalidation.
• Fixed account removal hitting rate limiter.
• Added search based on priority.
• Fixed possible crash on adding strings to JSON file.
• Safe HTML check and fixup now honor source string markup.
• Avoid sending notifications to invited and deleted users.
• Fix SSL connection to redis in Celery in Docker container.

4.21.10 Weblate 3.9

Released on October 15th 2019.
• Include Weblate metadata in downloaded files.
• Improved UI for failing checks.
• Indicate missing strings in format checks.
• Separate check for French punctuation spacing.
• Add support for fixing some of quality checks errors.
• Add separate permission to create new projects.
• Extend stats for char counts.
• Improve support for Java style language codes.
• Added new generic check for placeholders.
• Added support for WebExtension JSON placeholders.
• Added support for flat XML format.
• Extended API with project, component and translation removal and creation.
• Added support for Gitea and Gitee webhooks.
• Added new custom regex based check.
• Allow to configure contributing to shared translation memory.
• Added ZIP download for more translation files.
• Make XLIFF standard compliant parsing of maxwidth and font.
• Added new check and fixer for safe HTML markup for translating web applications.
• Add component alert on unsupported configuration.
• Added automatic translation addon to bootstrap translations.
• Extend automatic translation to add suggestions.
• Display addon parameters on overview.

4.21. Weblate 3.x series 391



The Weblate Manual, Release 4.5.3

• Sentry is now supported through modern Sentry SDK instead of Raven.
• Changed example settings to be better fit for production environment.
• Added automated backups using BorgBackup.
• Split cleanup addon for RESX to avoid unwanted file updates.
• Added advanced search capabilities.
• Allow users to download their own reports.
• Added localization guide to help configuring components.
• Added support for GitLab merge requests.
• Improved display of repository status.
• Perform automated translation in the background.

4.21.11 Weblate 3.8

Released on August 15th 2019.
• Added support for simplified creating of similar components.
• Added support for parsing translation flags from the XML based file formats.
• Log exceptions into Celery log.
• Improve performance of repository scoped addons.
• Improved look of notification e-mails.
• Fixed password reset behavior.
• Improved performance on most of translation pages.
• Fixed listing of languages not known to Weblate.
• Add support for cloning addons to discovered components.
• Add support for replacing file content with uploaded.
• Add support for translating non VCS based content.
• Added OpenGraph widget image to use on social networks.
• Added support for animated screenshots.
• Improved handling of monolingual XLIFF files.
• Avoid sending multiple notifications for single event.
• Add support for filtering changes.
• Extended predefined periods for reporting.
• Added webhook support for Azure Repos.
• New opt-in notifications on pending suggestions or untranslated strings.
• Add one click unsubscribe link to notification e-mails.
• Fixed false positives with Has been translated check.
• New management interface for admins.
• String priority can now be specified using flags.
• Added language management views.
• Add checks for Qt library and Ruby format strings.
• Added configuration to better fit single project installations.

392 Kapittel 4. Change History



The Weblate Manual, Release 4.5.3

• Notify about new string on source string change on monolingual translations.
• Added separate view for translation memory with search capability.

4.21.12 Weblate 3.7.1

Released on June 28th 2019.
• Documentation updates.
• Fixed some requirements constraints.
• Updated language database.
• Localization updates.
• Various user interface tweaks.
• Improved handling of unsupported but discovered translation files.
• More verbosely report missing file format requirements.

4.21.13 Weblate 3.7

Released on June 21st 2019.
• Added separate Celery queue for notifications.
• Use consistent look with application for API browsing.
• Include approved stats in the reports.
• Report progress when updating translation component.
• Allow to abort running background component update.
• Extend template language for filename manipulations.
• Use templates for editor link and repository browser URL.
• Indicate max length and current characters count when editing translation.
• Improved handling of abbreviations in unchanged translation check.
• Refreshed landing page for new contributors.
• Add support for configuring msgmerge addon.
• Delay opening SMTP connection when sending notifications.
• Improved error logging.
• Allow custom location in MO generating addon.
• Added addons to cleanup old suggestions or comments.
• Added option to enable horizontal mode in the Zen editor.
• Improved import performance with many linked components.
• Fixed examples installation in some cases.
• Improved rendering of alerts in changes.
• Added new horizontal stats widget.
• Improved format strings check on plurals.
• Added font management tool.
• New check for rendered text dimensions.

4.21. Weblate 3.x series 393



The Weblate Manual, Release 4.5.3

• Added support for subtitle formats.
• Include overall completion stats for languages.
• Added reporting at project and global scope.
• Improved user interface when showing translation status.
• New Weblate logo and color scheme.
• New look of bitmap badges.

4.21.14 Weblate 3.6.1

Released on April 26th 2019.
• Improved handling of monolingual XLIFF files.
• Fixed digest notifications in some corner cases.
• Fixed addon script error alert.
• Fixed generating MO file for monolingual PO files.
• Fixed display of uninstalled checks.
• Indicate administered projects on project listing.
• Allow update to recover from missing VCS repository.

4.21.15 Weblate 3.6

Released on April 20th 2019.
• Add support for downloading user data.
• Addons are now automatically triggered upon installation.
• Improved instructions for resolving merge conflicts.
• Cleanup addon is now compatible with app store metadata translations.
• Configurable language code syntax when adding new translations.
• Warn about using Python 2 with planned termination of support in April 2020.
• Extract special characters from the source string for visual keyboard.
• Extended contributor stats to reflect both source and target counts.
• Admins and consistency addons can now add translations even if disabled for users.
• Fixed description of toggle disabling Language-Team header manipulation.
• Notify users mentioned in comments.
• Removed file format autodetection from component setup.
• Fixed generating MO file for monolingual PO files.
• Added digest notifications.
• Added support for muting component notifications.
• Added notifications for new alerts, whiteboard messages or components.
• Notifications for administered projects can now be configured.
• Improved handling of three letter language codes.

394 Kapittel 4. Change History



The Weblate Manual, Release 4.5.3

4.21.16 Weblate 3.5.1

Released on March 10th 2019.
• Fixed Celery systemd unit example.
• Fixed notifications from HTTP repositories with login.
• Fixed race condition in editing source string for monolingual translations.
• Include output of failed addon execution in the logs.
• Improved validation of choices for adding new language.
• Allow to edit file format in component settings.
• Update installation instructions to prefer Python 3.
• Performance and consistency improvements for loading translations.
• Make Microsoft Terminology service compatible with current Zeep releases.
• Localization updates.

4.21.17 Weblate 3.5

Released on March 3rd 2019.
• Improved performance of built-in translation memory.
• Added interface to manage global translation memory.
• Improved alerting on bad component state.
• Added user interface to manage whiteboard messages.
• Addon commit message now can be configured.
• Reduce number of commits when updating upstream repository.
• Fixed possible metadata loss when moving component between projects.
• Improved navigation in the Zen mode.
• Added several new quality checks (Markdown related and URL).
• Added support for app store metadata files.
• Added support for toggling GitHub or Gerrit integration.
• Added check for Kashida letters.
• Added option to squash commits based on authors.
• Improved support for XLSX file format.
• Compatibility with Tesseract 4.0.
• Billing addon now removes projects for unpaid billings after 45 days.

4.21. Weblate 3.x series 395



The Weblate Manual, Release 4.5.3

4.21.18 Weblate 3.4

Released on January 22nd 2019.
• Added support for XLIFF placeholders.
• Celery can now utilize multiple task queues.
• Added support for renaming and moving projects and components.
• Include characters counts in reports.
• Added guided adding of translation components with automatic detection of translation files.
• Customizable merge commit messages for Git.
• Added visual indication of component alerts in navigation.
• Improved performance of loading translation files.
• New addon to squash commits prior to push.
• Improved displaying of translation changes.
• Changed default merge style to rebase and made that configurable.
• Better handle private use subtags in language code.
• Improved performance of fulltext index updates.
• Extended file upload API to support more parameters.

4.21.19 Weblate 3.3

Released on November 30th 2018.
• Added support for component and project removal.
• Improved performance for some monolingual translations.
• Added translation component alerts to highlight problems with a translation.
• Expose XLIFF string resname as context when available.
• Added support for XLIFF states.
• Added check for non writable files in DATA_DIR.
• Improved CSV export for changes.

4.21.20 Weblate 3.2.2

Released on October 20th 2018.
• Remove no longer needed Babel dependency.
• Updated language definitions.
• Improve documentation for addons, LDAP and Celery.
• Fixed enabling new dos-eol and auto-java-messageformat flags.
• Fixed running setup.py test from PyPI package.
• Improved plurals handling.
• Fixed translation upload API failure in some corner cases.
• Fixed updating Git configuration in case it was changed manually.

396 Kapittel 4. Change History



The Weblate Manual, Release 4.5.3

4.21.21 Weblate 3.2.1

Released on October 10th 2018.
• Document dependency on backports.csv on Python 2.7.
• Fix running tests under root.
• Improved error handling in gitexport module.
• Fixed progress reporting for newly added languages.
• Correctly report Celery worker errors to Sentry.
• Fixed creating new translations with Qt Linguist.
• Fixed occasional fulltext index update failures.
• Improved validation when creating new components.
• Added support for cleanup of old suggestions.

4.21.22 Weblate 3.2

Released on October 6th 2018.
• Add install_addon management command for automated addon installation.
• Allow more fine grained ratelimit settings.
• Added support for export and import of Excel files.
• Improve component cleanup in case of multiple component discovery addons.
• Rewritten Microsoft Terminology machine translation backend.
• Weblate now uses Celery to offload some processing.
• Improved search capabilities and added regular expression search.
• Added support for Youdao Zhiyun API machine translation.
• Added support for Baidu API machine translation.
• Integrated maintenance and cleanup tasks using Celery.
• Improved performance of loading translations by almost 25%.
• Removed support for merging headers on upload.
• Removed support for custom commit messages.
• Configurable editing mode (zen/full).
• Added support for error reporting to Sentry.
• Added support for automated daily update of repositories.
• Added support for creating projects and components by users.
• Built in translation memory now automatically stores translations done.
• Users and projects can import their existing translation memories.
• Better management of related strings for screenshots.
• Added support for checking Java MessageFormat.

See 3.2 milestone on GitHub for detailed list of addressed issues.

4.21. Weblate 3.x series 397

https://github.com/WeblateOrg/weblate/milestone/36?closed=1


The Weblate Manual, Release 4.5.3

4.21.23 Weblate 3.1.1

Released on July 27th 2018.
• Fix testsuite failure on some setups.

4.21.24 Weblate 3.1

Released on July 27th 2018.
• Upgrades from older version than 3.0.1 are not supported.
• Allow to override default commit messages from settings.
• Improve webhooks compatibility with self hosted environments.
• Added support for Amazon Translate.
• Compatibility with Django 2.1.
• Django system checks are now used to diagnose problems with installation.
• Removed support for soon shutdown libravatar service.
• New addon to mark unchanged translations as needing edit.
• Add support for jumping to specific location while translating.
• Downloaded translations can now be customized.
• Improved calculation of string similarity in translation memory matches.
• Added support by signing Git commits by GnuPG.

4.21.25 Weblate 3.0.1

Released on June 10th 2018.
• Fixed possible migration issue from 2.20.
• Localization updates.
• Removed obsolete hook examples.
• Improved caching documentation.
• Fixed displaying of admin documentation.
• Improved handling of long language names.

4.21.26 Weblate 3.0

Released on June 1st 2018.
• Rewritten access control.
• Several code cleanups that lead to moved and renamed modules.
• New addon for automatic component discovery.
• The import_project management command has now slightly different parameters.
• Added basic support for Windows RC files.
• New addon to store contributor names in PO file headers.
• The per component hook scripts are removed, use addons instead.
• Add support for collecting contributor agreements.

398 Kapittel 4. Change History



The Weblate Manual, Release 4.5.3

• Access control changes are now tracked in history.
• New addon to ensure all components in a project have same translations.
• Support for more variables in commit message templates.
• Add support for providing additional textual context.

4.22 Weblate 2.x series

4.22.1 Weblate 2.20

Released on April 4th 2018.
• Improved speed of cloning subversion repositories.
• Changed repository locking to use third party library.
• Added support for downloading only strings needing action.
• Added support for searching in several languages at once.
• New addon to configure gettext output wrapping.
• New addon to configure JSON formatting.
• Added support for authentication in API using RFC 6750 compatible Bearer authentication.
• Added support for automatic translation using machine translation services.
• Added support for HTML markup in whiteboard messages.
• Added support for mass changing state of strings.
• Translate-toolkit at least 2.3.0 is now required, older versions are no longer supported.
• Added built in translation memory.
• Added componentlists overview to dashboard and per component list overview pages.
• Added support for DeepL machine translation service.
• Machine translation results are now cached inside Weblate.
• Added support for reordering committed changes.

4.22.2 Weblate 2.19.1

Released on February 20th 2018.
• Fixed migration issue on upgrade from 2.18.
• Improved file upload API validation.

4.22.3 Weblate 2.19

Released on February 15th 2018.
• Fixed imports across some file formats.
• Display human friendly browser information in audit log.
• Added TMX exporter for files.
• Various performance improvements for loading translation files.
• Added option to disable access management in Weblate in favor of Django one.

4.22. Weblate 2.x series 399



The Weblate Manual, Release 4.5.3

• Improved glossary lookup speed for large strings.
• Compatibility with django_auth_ldap 1.3.0.
• Configuration errors are now stored and reported persistently.
• Honor ignore flags in whitespace autofixer.
• Improved compatibility with some Subversion setups.
• Improved built in machine translation service.
• Added support for SAP Translation Hub service.
• Added support for Microsoft Terminology service.
• Removed support for advertisement in notification e-mails.
• Improved translation progress reporting at language level.
• Improved support for different plural formulas.
• Added support for Subversion repositories not using stdlayout.
• Added addons to customize translation workflows.

4.22.4 Weblate 2.18

Released on December 15th 2017.
• Extended contributor stats.
• Improved configuration of special characters virtual keyboard.
• Added support for DTD file format.
• Changed keyboard shortcuts to less likely collide with browser/system ones.
• Improved support for approved flag in XLIFF files.
• Added support for not wrapping long strings in gettext PO files.
• Added button to copy permalink for current translation.
• Dropped support for Django 1.10 and added support for Django 2.0.
• Removed locking of translations while translating.
• Added support for adding new strings to monolingual translations.
• Added support for translation workflows with dedicated reviewers.

4.22.5 Weblate 2.17.1

Released on October 13th 2017.
• Fixed running testsuite in some specific situations.
• Locales updates.

400 Kapittel 4. Change History



The Weblate Manual, Release 4.5.3

4.22.6 Weblate 2.17

Released on October 13th 2017.
• Weblate by default does shallow Git clones now.
• Improved performance when updating large translation files.
• Added support for blocking certain e-mails from registration.
• Users can now delete their own comments.
• Added preview step to search and replace feature.
• Client side persistence of settings in search and upload forms.
• Extended search capabilities.
• More fine grained per project ACL configuration.
• Default value of BASE_DIR has been changed.
• Added two step account removal to prevent accidental removal.
• Project access control settings is now editable.
• Added optional spam protection for suggestions using Akismet.

4.22.7 Weblate 2.16

Released on August 11th 2017.
• Various performance improvements.
• Added support for nested JSON format.
• Added support for WebExtension JSON format.
• Fixed git exporter authentication.
• Improved CSV import in certain situations.
• Improved look of Other translations widget.
• The max-length checks is now enforcing length of text in form.
• Make the commit_pending age configurable per component.
• Various user interface cleanups.
• Fixed component/project/site wide search for translations.

4.22.8 Weblate 2.15

Released on June 30th 2017.
• Show more related translations in other translations.
• Add option to see translations of current string to other languages.
• Use 4 plural forms for Lithuanian by default.
• Fixed upload for monolingual files of different format.
• Improved error messages on failed authentication.
• Keep page state when removing word from glossary.
• Added direct link to edit secondary language translation.
• Added Perl format quality check.

4.22. Weblate 2.x series 401



The Weblate Manual, Release 4.5.3

• Added support for rejecting reused passwords.
• Extended toolbar for editing RTL languages.

4.22.9 Weblate 2.14.1

Released on May 24th 2017.
• Fixed possible error when paginating search results.
• Fixed migrations from older versions in some corner cases.
• Fixed possible CSRF on project watch and unwatch.
• The password reset no longer authenticates user.
• Fixed possible CAPTCHA bypass on forgotten password.

4.22.10 Weblate 2.14

Released on May 17th 2017.
• Add glossary entries using AJAX.
• The logout now uses POST to avoid CSRF.
• The API key token reset now uses POST to avoid CSRF.
• Weblate sets Content-Security-Policy by default.
• The local editor URL is validated to avoid self-XSS.
• The password is now validated against common flaws by default.
• Notify users about important activity with their account such as password change.
• The CSV exports now escape potential formulas.
• Various minor improvements in security.
• The authentication attempts are now rate limited.
• Suggestion content is stored in the history.
• Store important account activity in audit log.
• Ask for password confirmation when removing account or adding new associations.
• Show time when suggestion has been made.
• There is new quality check for trailing semicolon.
• Ensure that search links can be shared.
• Included source string information and screenshots in the API.
• Allow to overwrite translations through API upload.

402 Kapittel 4. Change History



The Weblate Manual, Release 4.5.3

4.22.11 Weblate 2.13.1

Released on Apr 12th 2017.
• Fixed listing of managed projects in profile.
• Fixed migration issue where some permissions were missing.
• Fixed listing of current file format in translation download.
• Return HTTP 404 when trying to access project where user lacks privileges.

4.22.12 Weblate 2.13

Released on Apr 12th 2017.
• Fixed quality checks on translation templates.
• Added quality check to trigger on losing translation.
• Add option to view pending suggestions from user.
• Add option to automatically build component lists.
• Default dashboard for unauthenticated users can be configured.
• Add option to browse 25 random strings for review.
• History now indicates string change.
• Better error reporting when adding new translation.
• Added per language search within project.
• Group ACLs can now be limited to certain permissions.
• The per project ALCs are now implemented using Group ACL.
• Added more fine grained privileges control.
• Various minor UI improvements.

4.22.13 Weblate 2.12

Released on Mar 3rd 2017.
• Improved admin interface for groups.
• Added support for Yandex Translate API.
• Improved speed of site wide search.
• Added project and component wide search.
• Added project and component wide search and replace.
• Improved rendering of inconsistent translations.
• Added support for opening source files in local editor.
• Added support for configuring visual keyboard with special characters.
• Improved screenshot management with OCR support for matching source strings.
• Default commit message now includes translation information and URL.
• Added support for Joomla translation format.
• Improved reliability of import across file formats.

4.22. Weblate 2.x series 403



The Weblate Manual, Release 4.5.3

4.22.14 Weblate 2.11

Released on Jan 31st 2017.
• Include language detailed information on language page.
• Mercurial backend improvements.
• Added option to specify translation component priority.
• More consistent usage of Group ACL even with less used permissions.
• Added WL_BRANCH variable to hook scripts.
• Improved developer documentation.
• Better compatibility with various Git versions in Git exporter addon.
• Included per project and component stats.
• Added language code mapping for better support of Microsoft Translate API.
• Moved fulltext cleanup to background job to make translation removal faster.
• Fixed displaying of plural source for languages with single plural form.
• Improved error handling in import_project.
• Various performance improvements.

4.22.15 Weblate 2.10.1

Released on Jan 20th 2017.
• Do not leak account existence on password reset form (CVE-2017-5537).

4.22.16 Weblate 2.10

Released on Dec 15th 2016.
• Added quality check to check whether plurals are translated differently.
• Fixed GitHub hooks for repositories with authentication.
• Added optional Git exporter module.
• Support for Microsoft Cognitive Services Translator API.
• Simplified project and component user interface.
• Added automatic fix to remove control characters.
• Added per language overview to project.
• Added support for CSV export.
• Added CSV download for stats.
• Added matrix view for quick overview of all translations.
• Added basic API for changes and strings.
• Added support for Apertium APy server for machine translations.

404 Kapittel 4. Change History



The Weblate Manual, Release 4.5.3

4.22.17 Weblate 2.9

Released on Nov 4th 2016.
• Extended parameters for createadmin management command.
• Extended import_json to be able to handle with existing components.
• Added support for YAML files.
• Project owners can now configure translation component and project details.
• Use «Watched» instead of «Subscribed» projects.
• Projects can be watched directly from project page.
• Added multi language status widget.
• Highlight secondary language if not showing source.
• Record suggestion deletion in history.
• Improved UX of languages selection in profile.
• Fixed showing whiteboard messages for component.
• Keep preferences tab selected after saving.
• Show source string comment more prominently.
• Automatically install Gettext PO merge driver for Git repositories.
• Added search and replace feature.
• Added support for uploading visual context (screenshots) for translations.

4.22.18 Weblate 2.8

Released on Aug 31st 2016.
• Documentation improvements.
• Translations.
• Updated bundled javascript libraries.
• Added list_translators management command.
• Django 1.8 is no longer supported.
• Fixed compatibility with Django 1.10.
• Added Subversion support.
• Separated XML validity check from XML mismatched tags.
• Fixed API to honor HIDE_REPO_CREDENTIALS settings.
• Show source change in Zen mode.
• Alt+PageUp/PageDown/Home/End now works in Zen mode as well.
• Add tooltip showing exact time of changes.
• Add option to select filters and search from translation page.
• Added UI for translation removal.
• Improved behavior when inserting placeables.
• Fixed auto locking issues in Zen mode.

4.22. Weblate 2.x series 405



The Weblate Manual, Release 4.5.3

4.22.19 Weblate 2.7

Released on Jul 10th 2016.
• Removed Google web translate machine translation.
• Improved commit message when adding translation.
• Fixed Google Translate API for Hebrew language.
• Compatibility with Mercurial 3.8.
• Added import_json management command.
• Correct ordering of listed translations.
• Show full suggestion text, not only a diff.
• Extend API (detailed repository status, statistics, …).
• Testsuite no longer requires network access to test repositories.

4.22.20 Weblate 2.6

Released on Apr 28th 2016.
• Fixed validation of components with language filter.
• Improved support for XLIFF files.
• Fixed machine translation for non English sources.
• Added REST API.
• Django 1.10 compatibility.
• Added categories to whiteboard messages.

4.22.21 Weblate 2.5

Released on Mar 10th 2016.
• Fixed automatic translation for project owners.
• Improved performance of commit and push operations.
• New management command to add suggestions from command line.
• Added support for merging comments on file upload.
• Added support for some GNU extensions to C printf format.
• Documentation improvements.
• Added support for generating translator credits.
• Added support for generating contributor stats.
• Site wide search can search only in one language.
• Improve quality checks for Armenian.
• Support for starting translation components without existing translations.
• Support for adding new translations in Qt TS.
• Improved support for translating PHP files.
• Performance improvements for quality checks.
• Fixed site wide search for failing checks.

406 Kapittel 4. Change History



The Weblate Manual, Release 4.5.3

• Added option to specify source language.
• Improved support for XLIFF files.
• Extended list of options for import_project.
• Improved targeting for whiteboard messages.
• Support for automatic translation across projects.
• Optimized fulltext search index.
• Added management command for auto translation.
• Added placeables highlighting.
• Added keyboard shortcuts for placeables, checks and machine translations.
• Improved translation locking.
• Added quality check for AngularJS interpolation.
• Added extensive group based ACLs.
• Clarified terminology on strings needing edit (formerly fuzzy).
• Clarified terminology on strings needing action and not translated strings.
• Support for Python 3.
• Dropped support for Django 1.7.
• Dropped dependency on msginit for creating new gettext PO files.
• Added configurable dashboard views.
• Improved notifications on parse errors.
• Added option to import components with duplicate name to import_project.
• Improved support for translating PHP files.
• Added XLIFF export for dictionary.
• Added XLIFF and gettext PO export for all translations.
• Documentation improvements.
• Added support for configurable automatic group assignments.
• Improved adding of new translations.

4.22.22 Weblate 2.4

Released on Sep 20th 2015.
• Improved support for PHP files.
• Ability to add ACL to anonymous user.
• Improved configurability of import_project command.
• Added CSV dump of history.
• Avoid copy/paste errors with whitespace characters.
• Added support for Bitbucket webhooks.
• Tighter control on fuzzy strings on translation upload.
• Several URLs have changed, you might have to update your bookmarks.
• Hook scripts are executed with VCS root as current directory.
• Hook scripts are executed with environment variables describing current component.

4.22. Weblate 2.x series 407



The Weblate Manual, Release 4.5.3

• Add management command to optimize fulltext index.
• Added support for error reporting to Rollbar.
• Projects now can have multiple owners.
• Project owners can manage themselves.
• Added support for javascript-format used in gettext PO.
• Support for adding new translations in XLIFF.
• Improved file format autodetection.
• Extended keyboard shortcuts.
• Improved dictionary matching for several languages.
• Improved layout of most of pages.
• Support for adding words to dictionary while translating.
• Added support for filtering languages to be managed by Weblate.
• Added support for translating and importing CSV files.
• Rewritten handling of static files.
• Direct login/registration links to third-party service if that’s the only one.
• Commit pending changes on account removal.
• Add management command to change site name.
• Add option to configure default committer.
• Add hook after adding new translation.
• Add option to specify multiple files to add to commit.

4.22.23 Weblate 2.3

Released on May 22nd 2015.
• Dropped support for Django 1.6 and South migrations.
• Support for adding new translations when using Java Property files.
• Allow to accept suggestion without editing.
• Improved support for Google OAuth 2.0.
• Added support for Microsoft .resx files.
• Tuned default robots.txt to disallow big crawling of translations.
• Simplified workflow for accepting suggestions.
• Added project owners who always receive important notifications.
• Allow to disable editing of monolingual template.
• More detailed repository status view.
• Direct link for editing template when changing translation.
• Allow to add more permissions to project owners.
• Allow to show secondary language in Zen mode.
• Support for hiding source string in favor of secondary language.

408 Kapittel 4. Change History



The Weblate Manual, Release 4.5.3

4.22.24 Weblate 2.2

Released on Feb 19th 2015.
• Performance improvements.
• Fulltext search on location and comments fields.
• New SVG/javascript based activity charts.
• Support for Django 1.8.
• Support for deleting comments.
• Added own SVG badge.
• Added support for Google Analytics.
• Improved handling of translation filenames.
• Added support for monolingual JSON translations.
• Record component locking in a history.
• Support for editing source (template) language for monolingual translations.
• Added basic support for Gerrit.

4.22.25 Weblate 2.1

Released on Dec 5th 2014.
• Added support for Mercurial repositories.
• Replaced Glyphicon font by Awesome.
• Added icons for social authentication services.
• Better consistency of button colors and icons.
• Documentation improvements.
• Various bugfixes.
• Automatic hiding of columns in translation listing for small screens.
• Changed configuration of filesystem paths.
• Improved SSH keys handling and storage.
• Improved repository locking.
• Customizable quality checks per source string.
• Allow to hide completed translations from dashboard.

4.22.26 Weblate 2.0

Released on Nov 6th 2014.
• New responsive UI using Bootstrap.
• Rewritten VCS backend.
• Documentation improvements.
• Added whiteboard for site wide messages.
• Configurable strings priority.
• Added support for JSON file format.

4.22. Weblate 2.x series 409



The Weblate Manual, Release 4.5.3

• Fixed generating mo files in certain cases.
• Added support for GitLab notifications.
• Added support for disabling translation suggestions.
• Django 1.7 support.
• ACL projects now have user management.
• Extended search possibilities.
• Give more hints to translators about plurals.
• Fixed Git repository locking.
• Compatibility with older Git versions.
• Improved ACL support.
• Added buttons for per language quotes and other special characters.
• Support for exporting stats as JSONP.

4.23 Weblate 1.x series

4.23.1 Weblate 1.9

Released on May 6th 2014.
• Django 1.6 compatibility.
• No longer maintained compatibility with Django 1.4.
• Management commands for locking/unlocking translations.
• Improved support for Qt TS files.
• Users can now delete their account.
• Avatars can be disabled.
• Merged first and last name attributes.
• Avatars are now fetched and cached server side.
• Added support for shields.io badge.

4.23.2 Weblate 1.8

Released on November 7th 2013.
• Please check manual for upgrade instructions.
• Nicer listing of project summary.
• Better visible options for sharing.
• More control over anonymous users privileges.
• Supports login using third party services, check manual for more details.
• Users can login by e-mail instead of username.
• Documentation improvements.
• Improved source strings review.
• Searching across all strings.

410 Kapittel 4. Change History



The Weblate Manual, Release 4.5.3

• Better tracking of source strings.
• Captcha protection for registration.

4.23.3 Weblate 1.7

Released on October 7th 2013.
• Please check manual for upgrade instructions.
• Support for checking Python brace format string.
• Per component customization of quality checks.
• Detailed per translation stats.
• Changed way of linking suggestions, checks and comments to strings.
• Users can now add text to commit message.
• Support for subscribing on new language requests.
• Support for adding new translations.
• Widgets and charts are now rendered using Pillow instead of Pango + Cairo.
• Add status badge widget.
• Dropped invalid text direction check.
• Changes in dictionary are now logged in history.
• Performance improvements for translating view.

4.23.4 Weblate 1.6

Released on July 25th 2013.
• Nicer error handling on registration.
• Browsing of changes.
• Fixed sorting of machine translation suggestions.
• Improved support for MyMemory machine translation.
• Added support for Amagama machine translation.
• Various optimizations on frequently used pages.
• Highlights searched phrase in search results.
• Support for automatic fixups while saving the message.
• Tracking of translation history and option to revert it.
• Added support for Google Translate API.
• Added support for managing SSH host keys.
• Various form validation improvements.
• Various quality checks improvements.
• Performance improvements for import.
• Added support for voting on suggestions.
• Cleanup of admin interface.

4.23. Weblate 1.x series 411



The Weblate Manual, Release 4.5.3

4.23.5 Weblate 1.5

Released on April 16th 2013.
• Please check manual for upgrade instructions.
• Added public user pages.
• Better naming of plural forms.
• Added support for TBX export of glossary.
• Added support for Bitbucket notifications.
• Activity charts are now available for each translation, language or user.
• Extended options of import_project admin command.
• Compatible with Django 1.5.
• Avatars are now shown using libravatar.
• Added possibility to pretty print JSON export.
• Various performance improvements.
• Indicate failing checks or fuzzy strings in progress bars for projects or languages as well.
• Added support for custom pre-commit hooks and committing additional files.
• Rewritten search for better performance and user experience.
• New interface for machine translations.
• Added support for monolingual po files.
• Extend amount of cached metadata to improve speed of various searches.
• Now shows word counts as well.

4.23.6 Weblate 1.4

Released on January 23rd 2013.
• Fixed deleting of checks/comments on string deletion.
• Added option to disable automatic propagation of translations.
• Added option to subscribe for merge failures.
• Correctly import on projects which needs custom ttkit loader.
• Added sitemaps to allow easier access by crawlers.
• Provide direct links to string in notification e-mails or feeds.
• Various improvements to admin interface.
• Provide hints for production setup in admin interface.
• Added per language widgets and engage page.
• Improved translation locking handling.
• Show code snippets for widgets in more variants.
• Indicate failing checks or fuzzy strings in progress bars.
• More options for formatting commit message.
• Fixed error handling with machine translation services.
• Improved automatic translation locking behaviour.

412 Kapittel 4. Change History



The Weblate Manual, Release 4.5.3

• Support for showing changes from previous source string.
• Added support for substring search.
• Various quality checks improvements.
• Support for per project ACL.
• Basic code coverage by unit tests.

4.23.7 Weblate 1.3

Released on November 16th 2012.
• Compatibility with PostgreSQL database backend.
• Removes languages removed in upstream git repository.
• Improved quality checks processing.
• Added new checks (BB code, XML markup and newlines).
• Support for optional rebasing instead of merge.
• Possibility to relocate Weblate (for example to run it under /weblate path).
• Support for manually choosing file type in case autodetection fails.
• Better support for Android resources.
• Support for generating SSH key from web interface.
• More visible data exports.
• New buttons to enter some special characters.
• Support for exporting dictionary.
• Support for locking down whole Weblate installation.
• Checks for source strings and support for source strings review.
• Support for user comments for both translations and source strings.
• Better changes log tracking.
• Changes can now be monitored using RSS.
• Improved support for RTL languages.

4.23.8 Weblate 1.2

Released on August 14th 2012.
• Weblate now uses South for database migration, please check upgrade instructions if you are upgrading.
• Fixed minor issues with linked git repos.
• New introduction page for engaging people with translating using Weblate.
• Added widgets which can be used for promoting translation projects.
• Added option to reset repository to origin (for privileged users).
• Project or component can now be locked for translations.
• Possibility to disable some translations.
• Configurable options for adding new translations.
• Configuration of git commits per project.

4.23. Weblate 1.x series 413



The Weblate Manual, Release 4.5.3

• Simple antispam protection.
• Better layout of main page.
• Support for automatically pushing changes on every commit.
• Support for e-mail notifications of translators.
• List only used languages in preferences.
• Improved handling of not known languages when importing project.
• Support for locking translation by translator.
• Optionally maintain Language-Team header in po file.
• Include some statistics in about page.
• Supports (and requires) django-registration 0.8.
• Caching counts of strings with failing checks.
• Checking of requirements during setup.
• Documentation improvements.

4.23.9 Weblate 1.1

Released on July 4th 2012.
• Improved several translations.
• Better validation while creating component.
• Added support for shared git repositories across components.
• Do not necessary commit on every attempt to pull remote repo.
• Added support for offloading indexing.

4.23.10 Weblate 1.0

Released on May 10th 2012.
• Improved validation while adding/saving component.
• Experimental support for Android component files (needs patched ttkit).
• Updates from hooks are run in background.
• Improved installation instructions.
• Improved navigation in dictionary.

4.24 Weblate 0.x series

4.24.1 Weblate 0.9

Released on April 18th 2012.
• Fixed import of unknown languages.
• Improved listing of nearby messages.
• Improved several checks.
• Documentation updates.

414 Kapittel 4. Change History



The Weblate Manual, Release 4.5.3

• Added definition for several more languages.
• Various code cleanups.
• Documentation improvements.
• Changed file layout.
• Update helper scripts to Django 1.4.
• Improved navigation while translating.
• Better handling of po file renames.
• Better validation while creating component.
• Integrated full setup into syncdb.
• Added list of recent changes to all translation pages.
• Check for not translated strings ignores format string only messages.

4.24.2 Weblate 0.8

Released on April 3rd 2012.
• Replaced own full text search with Whoosh.
• Various fixes and improvements to checks.
• New command updatechecks.
• Lot of translation updates.
• Added dictionary for storing most frequently used terms.
• Added /admin/report/ for overview of repositories status.
• Machine translation services no longer block page loading.
• Management interface now contains also useful actions to update data.
• Records log of changes made by users.
• Ability to postpone commit to Git to generate less commits from single user.
• Possibility to browse failing checks.
• Automatic translation using already translated strings.
• New about page showing used versions.
• Django 1.4 compatibility.
• Ability to push changes to remote repo from web interface.
• Added review of translations done by others.

4.24.3 Weblate 0.7

Released on February 16th 2012.
• Direct support for GitHub notifications.
• Added support for cleaning up orphaned checks and translations.
• Displays nearby strings while translating.
• Displays similar strings while translating.
• Improved searching for string.

4.24. Weblate 0.x series 415



The Weblate Manual, Release 4.5.3

4.24.4 Weblate 0.6

Released on February 14th 2012.
• Added various checks for translated messages.
• Tunable access control.
• Improved handling of translations with new lines.
• Added client side sorting of tables.
• Please check upgrading instructions in case you are upgrading.

4.24.5 Weblate 0.5

Released on February 12th 2012.
• Support for machine translation using following online services:

– Apertium
– Microsoft Translator
– MyMemory

• Several new translations.
• Improved merging of upstream changes.
• Better handle concurrent git pull and translation.
• Propagating works for fuzzy changes as well.
• Propagating works also for file upload.
• Fixed file downloads while using FastCGI (and possibly others).

4.24.6 Weblate 0.4

Released on February 8th 2012.
• Added usage guide to documentation.
• Fixed API hooks not to require CSRF protection.

4.24.7 Weblate 0.3

Released on February 8th 2012.
• Better display of source for plural translations.
• New documentation in Sphinx format.
• Displays secondary languages while translating.
• Improved error page to give list of existing projects.
• New per language stats.

416 Kapittel 4. Change History



The Weblate Manual, Release 4.5.3

4.24.8 Weblate 0.2

Released on February 7th 2012.
• Improved validation of several forms.
• Warn users on profile upgrade.
• Remember URL for login.
• Naming of text areas while entering plural forms.
• Automatic expanding of translation area.

4.24.9 Weblate 0.1

Released on February 6th 2012.
• Initial release.

4.24. Weblate 0.x series 417



Python Module Index

w
wlc, 131
wlc.config, 131
wlc.main, 132

418



HTTP Routing Table

/
ANY /, 83

/api
GET /api/, 85

/api/addons
GET /api/addons/, 120
GET /api/addons/(int:id)/, 120
PUT /api/addons/(int:id)/, 120
DELETE /api/addons/(int:id)/, 120
PATCH /api/addons/(int:id)/, 120

/api/changes
GET /api/changes/, 117
GET /api/changes/(int:id)/, 117

/api/component-lists
GET /api/component-lists/, 121
GET /api/component-lists/(str:slug)/,

121
POST /api/component-

lists/(str:slug)/components/,
121

PUT /api/component-lists/(str:slug)/,
121

DELETE /api/component-
lists/(str:slug)/, 121

DELETE /api/component-
lists/(str:slug)/components/(str:component_slug),
122

PATCH /api/component-
lists/(str:slug)/, 121

/api/components
GET /api/components/, 100
GET /api/components/(string:project)/(string:component)/,

100
GET /api/components/(string:project)/(string:component)/changes/,

104
GET /api/components/(string:project)/(string:component)/links/,

109

GET /api/components/(string:project)/(string:component)/lock/,
105

GET /api/components/(string:project)/(string:component)/monolingual_base/,
107

GET /api/components/(string:project)/(string:component)/new_template/,
107

GET /api/components/(string:project)/(string:component)/repository/,
106

GET /api/components/(string:project)/(string:component)/screenshots/,
104

GET /api/components/(string:project)/(string:component)/statistics/,
108

GET /api/components/(string:project)/(string:component)/translations/,
107

POST /api/components/(string:project)/(string:component)/addons/,
120

POST /api/components/(string:project)/(string:component)/links/,
109

POST /api/components/(string:project)/(string:component)/lock/,
105

POST /api/components/(string:project)/(string:component)/repository/,
106

POST /api/components/(string:project)/(string:component)/translations/,
107

PUT /api/components/(string:project)/(string:component)/,
104

DELETE /api/components/(string:project)/(string:component)/,
104

DELETE /api/components/(string:project)/(string:component)/links/(string:project_slug)/,
109

PATCH /api/components/(string:project)/(string:component)/,
102

/api/groups
GET /api/groups/, 89
GET /api/groups/(int:id)/, 89
POST /api/groups/, 89
POST /api/groups/(int:id)/componentlists/,

91
POST /api/groups/(int:id)/components/,

91
POST /api/groups/(int:id)/languages/,

91

419



The Weblate Manual, Release 4.5.3

POST /api/groups/(int:id)/projects/,
91

POST /api/groups/(int:id)/roles/, 90
PUT /api/groups/(int:id)/, 90
DELETE /api/groups/(int:id)/, 90
DELETE /api/groups/(int:id)/componentlists/(int:component_list_id),

91
DELETE /api/groups/(int:id)/components/(int:component_id),

91
DELETE /api/groups/(int:id)/languages/(string:language_code),

91
DELETE /api/groups/(int:id)/projects/(int:project_id),

91
PATCH /api/groups/(int:id)/, 90

/api/languages
GET /api/languages/, 93
GET /api/languages/(string:language)/,

93
GET /api/languages/(string:language)/statistics/,

94
POST /api/languages/, 93
PUT /api/languages/(string:language)/,

94
DELETE /api/languages/(string:language)/,

94
PATCH /api/languages/(string:language)/,

94

/api/projects
GET /api/projects/, 95
GET /api/projects/(string:project)/,

95
GET /api/projects/(string:project)/changes/,

96
GET /api/projects/(string:project)/components/,

97
GET /api/projects/(string:project)/languages/,

100
GET /api/projects/(string:project)/repository/,

96
GET /api/projects/(string:project)/statistics/,

100
POST /api/projects/, 95
POST /api/projects/(string:project)/components/,

97
POST /api/projects/(string:project)/repository/,

97
PUT /api/projects/(string:project)/,

96
DELETE /api/projects/(string:project)/,

96
PATCH /api/projects/(string:project)/,

96

/api/roles
GET /api/roles/, 92
GET /api/roles/(int:id)/, 92

POST /api/roles/, 92
PUT /api/roles/(int:id)/, 92
DELETE /api/roles/(int:id)/, 93
PATCH /api/roles/(int:id)/, 92

/api/screenshots
GET /api/screenshots/, 117
GET /api/screenshots/(int:id)/, 117
GET /api/screenshots/(int:id)/file/,

118
POST /api/screenshots/, 118
POST /api/screenshots/(int:id)/file/,

118
POST /api/screenshots/(int:id)/units/,

118
PUT /api/screenshots/(int:id)/, 119
DELETE /api/screenshots/(int:id)/, 119
DELETE /api/screenshots/(int:id)/units/(int:unit_id),

118
PATCH /api/screenshots/(int:id)/, 119

/api/tasks
GET /api/tasks/, 122
GET /api/tasks/(str:uuid)/, 122

/api/translations
GET /api/translations/, 109
GET /api/translations/(string:project)/(string:component)/(string:language)/,

109
GET /api/translations/(string:project)/(string:component)/(string:language)/changes/,

112
GET /api/translations/(string:project)/(string:component)/(string:language)/file/,

113
GET /api/translations/(string:project)/(string:component)/(string:language)/repository/,

114
GET /api/translations/(string:project)/(string:component)/(string:language)/statistics/,

114
GET /api/translations/(string:project)/(string:component)/(string:language)/units/,

112
POST /api/translations/(string:project)/(string:component)/(string:language)/autotranslate/,

112
POST /api/translations/(string:project)/(string:component)/(string:language)/file/,

113
POST /api/translations/(string:project)/(string:component)/(string:language)/repository/,

114
POST /api/translations/(string:project)/(string:component)/(string:language)/units/,

112
DELETE /api/translations/(string:project)/(string:component)/(string:language)/,

111

/api/units
GET /api/units/, 115
GET /api/units/(int:id)/, 115
PUT /api/units/(int:id)/, 116
DELETE /api/units/(int:id)/, 116
PATCH /api/units/(int:id)/, 116

420 HTTP Routing Table



The Weblate Manual, Release 4.5.3

/api/users
GET /api/users/, 86
GET /api/users/(str:username)/, 86
GET /api/users/(str:username)/notifications/,

88
GET /api/users/(str:username)/notifications/(int:subscription_id)/,

88
GET /api/users/(str:username)/statistics/,

88
POST /api/users/, 86
POST /api/users/(str:username)/groups/,

87
POST /api/users/(str:username)/notifications/,

88
PUT /api/users/(str:username)/, 87
PUT /api/users/(str:username)/notifications/(int:subscription_id)/,

88
DELETE /api/users/(str:username)/, 87
DELETE /api/users/(str:username)/notifications/(int:subscription_id)/,

89
PATCH /api/users/(str:username)/, 87
PATCH /api/users/(str:username)/notifications/(int:subscription_id)/,

88

/exports
GET /exports/rss/, 126
GET /exports/rss/(string:project)/, 125
GET /exports/rss/(string:project)/(string:component)/,

125
GET /exports/rss/(string:project)/(string:component)/(string:language)/,

125
GET /exports/rss/language/(string:language)/,

125
GET /exports/stats/(string:project)/(string:component)/,

124

/hooks
GET /hooks/update/(string:project)/,

122
GET /hooks/update/(string:project)/(string:component)/,

122
POST /hooks/azure/, 123
POST /hooks/bitbucket/, 123
POST /hooks/gitea/, 124
POST /hooks/gitee/, 124
POST /hooks/github/, 122
POST /hooks/gitlab/, 123
POST /hooks/pagure/, 123

HTTP Routing Table 421



Index

Symbols
.XML resource file

file format, 70
--add

auto_translate command line option,
325

--addon ADDON
install_addon command line option,

331
--age HOURS

commit_pending command line option,
326

--author USER@EXAMPLE.COM
add_suggestions command line op-

tion, 325
--base-file-template TEMPLATE

import_project command line option,
329

--check
importusers command line option, 331

--config PATH
wlc command line option, 127

--config-section SECTION
wlc command line option, 127

--configuration CONFIG
install_addon command line option,

331
--convert

wlc command line option, 128
--email USER@EXAMPLE.COM

createadmin command line option, 327
--file-format FORMAT

import_project command line option,
329

--force
loadpo command line option, 332

--force-commit
pushgit command line option, 333

--format {csv,json,text,html}
wlc command line option, 127

--ignore
import_json command line option, 328

--inconsistent

auto_translate command line option,
325

--input
wlc command line option, 129

--key KEY
wlc command line option, 127

--lang LANGUAGE
loadpo command line option, 332

--language-code
list_translators command line op-

tion, 332
--language-map LANGMAP

import_memory command line option,
328

--language-regex REGEX
import_project command line option,

329
--license NAME

import_project command line option,
329

--license-url URL
import_project command line option,

329
--main-component

import_project command line option,
329

--main-component COMPONENT
import_json command line option, 328

--mt MT
auto_translate command line option,

325
--name

createadmin command line option, 327
--name-template TEMPLATE

import_project command line option,
329

--new-base-template TEMPLATE
import_project command line option,

329
--no-password

createadmin command line option, 327
--no-privs-update

setupgroups command line option, 333
--no-projects-update

422



The Weblate Manual, Release 4.5.3

setupgroups command line option, 333
--no-update

setuplang command line option, 334
--output

wlc command line option, 128
--overwrite

auto_translate command line option,
325

wlc command line option, 128
--password PASSWORD

createadmin command line option, 327
--project PROJECT

import_json command line option, 328
--source PROJECT/COMPONENT

auto_translate command line option,
325

--threshold THRESHOLD
auto_translate command line option,

325
--update

createadmin command line option, 327
import_json command line option, 328
install_addon command line option,

331
--url URL

wlc command line option, 127
--user USERNAME

auto_translate command line option,
325

--username USERNAME
createadmin command line option, 327

--vcs NAME
import_project command line option,

329

A
add_suggestions

weblate admin command, 325
add_suggestions command line option

--author USER@EXAMPLE.COM, 325
ADMINS

setting, 173
AKISMET_API_KEY

setting, 281
ALLOWED_HOSTS

setting, 173
Android

file format, 65
ANONYMOUS_USER_NAME

setting, 281
API, 83, 126, 130
Apple strings

file format, 66
ARB

file format, 69
AUDITLOG_EXPIRY

setting, 282
AUTH_LOCK_ATTEMPTS

setting, 282
AUTH_TOKEN_VALID

setting, 283
auto_translate

weblate admin command, 325
auto_translate command line option

--add, 325
--inconsistent, 325
--mt MT, 325
--overwrite, 325
--source PROJECT/COMPONENT, 325
--threshold THRESHOLD, 325
--user USERNAME, 325

AUTO_UPDATE
setting, 282

AUTOFIX_LIST
setting, 283

AVATAR_URL_PREFIX
setting, 282

B
BACKGROUND_TASKS

setting, 284
BASE_DIR

setting, 284
BaseAddon (class in weblate.addons.base), 366
BASIC_LANGUAGES

setting, 284
bilingual

translation, 57

C
can_install() (weblate.addons.base.BaseAddon

class method), 366
celery_queues

weblate admin command, 326
changes

wlc command line option, 128
CHECK_LIST

setting, 285
checkgit

weblate admin command, 326
cleanup

wlc command line option, 128
cleanuptrans

weblate admin command, 326
Comma separated values

file format, 70
Command (class in wlc.main), 132
COMMENT_CLEANUP_DAYS

setting, 285
commit

wlc command line option, 128
commit_pending

weblate admin command, 326
commit_pending command line option

--age HOURS, 326
COMMIT_PENDING_HOURS

Index 423



The Weblate Manual, Release 4.5.3

setting, 286
commitgit

weblate admin command, 326
configure() (weblate.addons.base.BaseAddon met-

hod), 366
createadmin

weblate admin command, 327
createadmin command line option

--email USER@EXAMPLE.COM, 327
--name, 327
--no-password, 327
--password PASSWORD, 327
--update, 327
--username USERNAME, 327

CSP_CONNECT_SRC
setting, 284

CSP_FONT_SRC
setting, 284

CSP_IMG_SRC
setting, 284

CSP_SCRIPT_SRC
setting, 284

CSP_STYLE_SRC
setting, 284

CSV
file format, 70

D
daily() (weblate.addons.base.BaseAddon method),

366
DATA_DIR

setting, 286
DATABASE_BACKUP

setting, 286
DATABASES

setting, 173
DEBUG

setting, 173
DEFAULT_ACCESS_CONTROL

setting, 287
DEFAULT_ADD_MESSAGE

setting, 287
DEFAULT_ADDON_MESSAGE

setting, 287
DEFAULT_ADDONS

setting, 288
DEFAULT_AUTO_WATCH

setting, 287
DEFAULT_COMMIT_MESSAGE

setting, 287
DEFAULT_COMMITER_EMAIL

setting, 288
DEFAULT_COMMITER_NAME

setting, 288
DEFAULT_DELETE_MESSAGE

setting, 287
DEFAULT_FROM_EMAIL

setting, 173

DEFAULT_LANGUAGE
setting, 288

DEFAULT_MERGE_MESSAGE
setting, 287

DEFAULT_MERGE_STYLE
setting, 289

DEFAULT_PULL_MESSAGE
setting, 289

DEFAULT_RESTRICTED_COMPONENT
setting, 287

DEFAULT_SHARED_TM
setting, 289

DEFAULT_TRANSLATION_PROPAGATION
setting, 289

download
wlc command line option, 128

DTD
file format, 72

dump_memory
weblate admin command, 327

dumpuserdata
weblate admin command, 327

E
ENABLE_AVATARS

setting, 289
ENABLE_HOOKS

setting, 289
ENABLE_HTTPS

setting, 290
ENABLE_SHARING

setting, 290
environment variable

CELERY_BACKUP_OPTIONS, 150
CELERY_BEAT_OPTIONS, 150
CELERY_MAIN_OPTIONS, 150
CELERY_MEMORY_OPTIONS, 150
CELERY_NOTIFY_OPTIONS, 150
CELERY_TRANSLATE_OPTIONS, 150
POSTGRES_ALTER_ROLE, 146
POSTGRES_DATABASE, 146
POSTGRES_HOST, 146
POSTGRES_PASSWORD, 146
POSTGRES_PORT, 146
POSTGRES_SSL_MODE, 146
POSTGRES_USER, 146
REDIS_DB, 147
REDIS_HOST, 147
REDIS_PASSWORD, 147
REDIS_PORT, 147
REDIS_TLS, 147
REDIS_VERIFY_SSL, 147
ROLLBAR_ENVIRONMENT, 148
ROLLBAR_KEY, 148
SENTRY_DSN, 148
SENTRY_ENVIRONMENT, 148
SOCIAL_AUTH_SLACK_SECRET, 145
UWSGI_WORKERS, 150

424 Index



The Weblate Manual, Release 4.5.3

WEBLATE_ADD_ADDONS, 149
WEBLATE_ADD_APPS, 149
WEBLATE_ADD_AUTOFIX, 149
WEBLATE_ADD_CHECK, 149
WEBLATE_ADD_LOGIN_REQUIRED_URLS_EXCEPTIONS,

140
WEBLATE_ADMIN_EMAIL, 137, 138, 142
WEBLATE_ADMIN_NAME, 137, 138
WEBLATE_ADMIN_PASSWORD, 134, 137, 138
WEBLATE_AKISMET_API_KEY, 141, 341
WEBLATE_ALLOWED_HOSTS, 138, 173, 177,

178, 305
WEBLATE_AUTH_LDAP_BIND_DN, 143
WEBLATE_AUTH_LDAP_BIND_PASSWORD,

143
WEBLATE_AUTH_LDAP_CONNECTION_OPTION_REFERRALS,

143
WEBLATE_AUTH_LDAP_SERVER_URI, 143
WEBLATE_AUTH_LDAP_USER_ATTR_MAP,

143
WEBLATE_AUTH_LDAP_USER_DN_TEMPLATE,

143
WEBLATE_AUTH_LDAP_USER_SEARCH, 143
WEBLATE_AUTH_LDAP_USER_SEARCH_FILTER,

143
WEBLATE_AUTH_LDAP_USER_SEARCH_UNION,

143
WEBLATE_AUTH_LDAP_USER_SEARCH_UNION_DELIMITER,

143
WEBLATE_BASIC_LANGUAGES, 141
WEBLATE_CSP_CONNECT_SRC, 141
WEBLATE_CSP_FONT_SRC, 141
WEBLATE_CSP_IMG_SRC, 141
WEBLATE_CSP_SCRIPT_SRC, 141
WEBLATE_CSP_STYLE_SRC, 141
WEBLATE_DATABASE_BACKUP, 146
WEBLATE_DEBUG, 137
WEBLATE_DEFAULT_ACCESS_CONTROL, 140
WEBLATE_DEFAULT_AUTO_WATCH, 141
WEBLATE_DEFAULT_COMMITER_EMAIL, 140
WEBLATE_DEFAULT_COMMITER_NAME, 140
WEBLATE_DEFAULT_FROM_EMAIL, 138
WEBLATE_DEFAULT_RESTRICTED_COMPONENT,

140
WEBLATE_DEFAULT_SHARED_TM, 141
WEBLATE_DEFAULT_TRANSLATION_PROPAGATION,

140
WEBLATE_EMAIL_BACKEND, 148
WEBLATE_EMAIL_HOST, 147
WEBLATE_EMAIL_HOST_PASSWORD, 148
WEBLATE_EMAIL_HOST_USER, 147
WEBLATE_EMAIL_PORT, 147, 148
WEBLATE_EMAIL_USE_SSL, 147, 148
WEBLATE_EMAIL_USE_TLS, 147, 148
WEBLATE_ENABLE_HTTPS, 138
WEBLATE_GET_HELP_URL, 148
WEBLATE_GITHUB_TOKEN, 140
WEBLATE_GITHUB_USERNAME, 140

WEBLATE_GITLAB_TOKEN, 140
WEBLATE_GITLAB_USERNAME, 140
WEBLATE_GOOGLE_ANALYTICS_ID, 140
WEBLATE_GPG_IDENTITY, 141
WEBLATE_HIDE_VERSION, 141
WEBLATE_IP_PROXY_HEADER, 139
WEBLATE_LEGAL_URL, 148
WEBLATE_LICENSE_FILTER, 141
WEBLATE_LICENSE_REQUIRED, 141
WEBLATE_LOCALIZE_CDN_PATH, 149
WEBLATE_LOCALIZE_CDN_URL, 149
WEBLATE_LOGIN_REQUIRED_URLS_EXCEPTIONS,

139
WEBLATE_LOGLEVEL, 137
WEBLATE_MT_APERTIUM_APY, 141
WEBLATE_MT_AWS_ACCESS_KEY_ID, 141
WEBLATE_MT_AWS_REGION, 141
WEBLATE_MT_AWS_SECRET_ACCESS_KEY,

141
WEBLATE_MT_DEEPL_API_VERSION, 142
WEBLATE_MT_DEEPL_KEY, 142
WEBLATE_MT_GLOSBE_ENABLED, 142
WEBLATE_MT_GOOGLE_KEY, 142
WEBLATE_MT_MICROSOFT_BASE_URL, 142
WEBLATE_MT_MICROSOFT_COGNITIVE_KEY,

142
WEBLATE_MT_MICROSOFT_ENDPOINT_URL,

142
WEBLATE_MT_MICROSOFT_REGION, 142
WEBLATE_MT_MICROSOFT_TERMINOLOGY_ENABLED,

142
WEBLATE_MT_MODERNMT_KEY, 142
WEBLATE_MT_MYMEMORY_ENABLED, 142
WEBLATE_MT_SAP_BASE_URL, 142
WEBLATE_MT_SAP_PASSWORD, 142
WEBLATE_MT_SAP_SANDBOX_APIKEY, 142
WEBLATE_MT_SAP_USE_MT, 142
WEBLATE_MT_SAP_USERNAME, 142
WEBLATE_NO_EMAIL_AUTH, 146
WEBLATE_PAGURE_TOKEN, 140
WEBLATE_PAGURE_USERNAME, 140
WEBLATE_REGISTRATION_ALLOW_BACKENDS,

138
WEBLATE_REGISTRATION_OPEN, 138
WEBLATE_REMOVE_ADDONS, 149
WEBLATE_REMOVE_APPS, 149
WEBLATE_REMOVE_AUTOFIX, 149
WEBLATE_REMOVE_CHECK, 149
WEBLATE_REMOVE_LOGIN_REQUIRED_URLS_EXCEPTIONS,

140
WEBLATE_REQUIRE_LOGIN, 139, 304
WEBLATE_SAML_IDP_ENTITY_ID, 146
WEBLATE_SAML_IDP_URL, 146
WEBLATE_SAML_IDP_X509CERT, 146
WEBLATE_SECURE_PROXY_SSL_HEADER,

139
WEBLATE_SERVER_EMAIL, 138

Index 425



The Weblate Manual, Release 4.5.3

WEBLATE_SILENCED_SYSTEM_CHECKS,
141, 199

WEBLATE_SIMPLIFY_LANGUAGES, 140
WEBLATE_SITE_DOMAIN, 137, 175, 193, 305
WEBLATE_SITE_TITLE, 137
WEBLATE_SOCIAL_AUTH_AZUREAD_OAUTH2_KEY,

145
WEBLATE_SOCIAL_AUTH_AZUREAD_OAUTH2_SECRET,

145
WEBLATE_SOCIAL_AUTH_AZUREAD_TENANT_OAUTH2_KEY,

145
WEBLATE_SOCIAL_AUTH_AZUREAD_TENANT_OAUTH2_SECRET,

145
WEBLATE_SOCIAL_AUTH_AZUREAD_TENANT_OAUTH2_TENANT_ID,

145
WEBLATE_SOCIAL_AUTH_BITBUCKET_KEY,

144
WEBLATE_SOCIAL_AUTH_BITBUCKET_SECRET,

144
WEBLATE_SOCIAL_AUTH_FACEBOOK_KEY,

144
WEBLATE_SOCIAL_AUTH_FACEBOOK_SECRET,

144
WEBLATE_SOCIAL_AUTH_FEDORA, 145
WEBLATE_SOCIAL_AUTH_GITHUB_KEY, 144
WEBLATE_SOCIAL_AUTH_GITHUB_SECRET,

144
WEBLATE_SOCIAL_AUTH_GITLAB_API_URL,

144
WEBLATE_SOCIAL_AUTH_GITLAB_KEY, 144
WEBLATE_SOCIAL_AUTH_GITLAB_SECRET,

144
WEBLATE_SOCIAL_AUTH_GOOGLE_OAUTH2_KEY,

144
WEBLATE_SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET,

144
WEBLATE_SOCIAL_AUTH_GOOGLE_OAUTH2_WHITELISTED_DOMAINS,

144
WEBLATE_SOCIAL_AUTH_GOOGLE_OAUTH2_WHITELISTED_EMAILS,

144
WEBLATE_SOCIAL_AUTH_KEYCLOAK_ACCESS_TOKEN_URL,

145
WEBLATE_SOCIAL_AUTH_KEYCLOAK_ALGORITHM,

145
WEBLATE_SOCIAL_AUTH_KEYCLOAK_AUTHORIZATION_URL,

145
WEBLATE_SOCIAL_AUTH_KEYCLOAK_KEY,

145
WEBLATE_SOCIAL_AUTH_KEYCLOAK_PUBLIC_KEY,

145
WEBLATE_SOCIAL_AUTH_KEYCLOAK_SECRET,

145
WEBLATE_SOCIAL_AUTH_OPENSUSE, 145
WEBLATE_SOCIAL_AUTH_SLACK_KEY, 145
WEBLATE_SOCIAL_AUTH_UBUNTU, 145
WEBLATE_STATUS_URL, 148
WEBLATE_TIME_ZONE, 138
WEBLATE_URL_PREFIX, 141

WEBLATE_WEBSITE_REQUIRED, 141
WL_BRANCH, 278
WL_COMPONENT_NAME, 279
WL_COMPONENT_SLUG, 278
WL_COMPONENT_URL, 279
WL_ENGAGE_URL, 279
WL_FILE_FORMAT, 278
WL_FILEMASK, 278
WL_LANGUAGE, 278
WL_NEW_BASE, 278
WL_PATH, 278
WL_PREVIOUS_HEAD, 278
WL_PROJECT_NAME, 279
WL_PROJECT_SLUG, 279
WL_REPO, 278
WL_TEMPLATE, 278
WL_VCS, 278

F
file format

.XML resource file, 70
Android, 65
Apple strings, 66
ARB, 69
Comma separated values, 70
CSV, 70
DTD, 72
gettext, 59
go-i18n, 68
GWT properties, 63
i18next, 68
INI translations, 63, 64
Java properties, 62
Joomla translations, 64
JSON, 67
PHP strings, 66
PO, 59
Qt, 64
RC, 73
RESX, 70
Ruby YAML, 71
Ruby YAML Ain't Markup Language, 71
string resources, 65
TS, 64
XLIFF, 61
XML, 72
YAML, 71
YAML Ain't Markup Language, 71

G
get() (wlc.Weblate method), 131
get_add_form() (weblate.addons.base.BaseAddon

class method), 366
GET_HELP_URL

setting, 290
get_settings_form() (webla-

te.addons.base.BaseAddon method), 366
gettext

426 Index



The Weblate Manual, Release 4.5.3

file format, 59
GITHUB_CREDENTIALS

setting, 291
GITHUB_TOKEN

setting, 291
GITHUB_USERNAME

setting, 291
GITLAB_CREDENTIALS

setting, 290
GITLAB_TOKEN

setting, 291
GITLAB_USERNAME

setting, 290
go-i18n

file format, 68
GOOGLE_ANALYTICS_ID

setting, 291
GWT properties

file format, 63

H
HIDE_REPO_CREDENTIALS

setting, 292
HIDE_VERSION

setting, 292

I
i18next

file format, 68
import_demo

weblate admin command, 327
import_json

weblate admin command, 328
import_json command line option

--ignore, 328
--main-component COMPONENT, 328
--project PROJECT, 328
--update, 328

import_memory
weblate admin command, 328

import_memory command line option
--language-map LANGMAP, 328

import_project
weblate admin command, 329

import_project command line option
--base-file-template TEMPLATE, 329
--file-format FORMAT, 329
--language-regex REGEX, 329
--license NAME, 329
--license-url URL, 329
--main-component, 329
--name-template TEMPLATE, 329
--new-base-template TEMPLATE, 329
--vcs NAME, 329

importuserdata
weblate admin command, 331

importusers
weblate admin command, 331

importusers command line option
--check, 331

INI translations
file format, 63, 64

install_addon
weblate admin command, 331

install_addon command line option
--addon ADDON, 331
--configuration CONFIG, 331
--update, 331

IP_BEHIND_REVERSE_PROXY
setting, 292

IP_PROXY_HEADER
setting, 292

IP_PROXY_OFFSET
setting, 293

iPad
translation, 66

iPhone
translation, 66

J
Java properties

file format, 62
Joomla translations

file format, 64
JSON

file format, 67

L
LEGAL_URL

setting, 293
LICENSE_EXTRA

setting, 293
LICENSE_FILTER

setting, 294
LICENSE_REQUIRED

setting, 294
LIMIT_TRANSLATION_LENGTH_BY_SOURCE_LENGTH

setting, 294
list_languages

weblate admin command, 331
list_translators

weblate admin command, 332
list_translators command line option

--language-code, 332
list_versions

weblate admin command, 332
list-components

wlc command line option, 127
list-languages

wlc command line option, 127
list-projects

wlc command line option, 127
list-translations

wlc command line option, 127
load() (wlc.config.WeblateConfig method), 131
loadpo

Index 427



The Weblate Manual, Release 4.5.3

weblate admin command, 332
loadpo command line option

--force, 332
--lang LANGUAGE, 332

LOCALIZE_CDN_PATH
setting, 294

LOCALIZE_CDN_URL
setting, 294

lock
wlc command line option, 128

lock_translation
weblate admin command, 332

lock-status
wlc command line option, 128

LOGIN_REQUIRED_URLS
setting, 295

LOGIN_REQUIRED_URLS_EXCEPTIONS
setting, 295

ls
wlc command line option, 128

M
MACHINE_TRANSLATION_SERVICES

setting, 296
main() (in module wlc.main), 132
MATOMO_SITE_ID

setting, 295
MATOMO_URL

setting, 296
module

wlc, 131
wlc.config, 131
wlc.main, 132

monolingual
translation, 57

move_language
weblate admin command, 333

MT_APERTIUM_APY
setting, 296

MT_AWS_ACCESS_KEY_ID
setting, 297

MT_AWS_REGION
setting, 297

MT_AWS_SECRET_ACCESS_KEY
setting, 297

MT_BAIDU_ID
setting, 297

MT_BAIDU_SECRET
setting, 297

MT_DEEPL_API_VERSION
setting, 297

MT_DEEPL_KEY
setting, 298

MT_GOOGLE_CREDENTIALS
setting, 298

MT_GOOGLE_KEY
setting, 298

MT_GOOGLE_LOCATION

setting, 298
MT_GOOGLE_PROJECT

setting, 298
MT_MICROSOFT_BASE_URL

setting, 298
MT_MICROSOFT_COGNITIVE_KEY

setting, 298
MT_MICROSOFT_ENDPOINT_URL

setting, 299
MT_MICROSOFT_REGION

setting, 299
MT_MODERNMT_KEY

setting, 299
MT_MODERNMT_URL

setting, 299
MT_MYMEMORY_EMAIL

setting, 299
MT_MYMEMORY_KEY

setting, 299
MT_MYMEMORY_USER

setting, 299
MT_NETEASE_KEY

setting, 300
MT_NETEASE_SECRET

setting, 300
MT_SAP_BASE_URL

setting, 300
MT_SAP_PASSWORD

setting, 301
MT_SAP_SANDBOX_APIKEY

setting, 301
MT_SAP_USE_MT

setting, 301
MT_SAP_USERNAME

setting, 301
MT_SERVICES

setting, 296
MT_TMSERVER

setting, 300
MT_YANDEX_KEY

setting, 300
MT_YOUDAO_ID

setting, 300
MT_YOUDAO_SECRET

setting, 300

N
NEARBY_MESSAGES

setting, 301

P
PAGURE_CREDENTIALS

setting, 301
PAGURE_TOKEN

setting, 302
PAGURE_USERNAME

setting, 302
PHP strings

428 Index



The Weblate Manual, Release 4.5.3

file format, 66
PIWIK_SITE_ID

setting, 295
PIWIK_URL

setting, 296
PO

file format, 59
post() (wlc.Weblate method), 131
post_add() (weblate.addons.base.BaseAddon met-

hod), 366
post_commit() (weblate.addons.base.BaseAddon

method), 366
post_push() (weblate.addons.base.BaseAddon met-

hod), 366
post_update() (weblate.addons.base.BaseAddon

method), 366
pre_commit() (weblate.addons.base.BaseAddon

method), 366
pre_push() (weblate.addons.base.BaseAddon met-

hod), 366
pre_update() (weblate.addons.base.BaseAddon

method), 366
pull

wlc command line option, 128
push

wlc command line option, 128
pushgit

weblate admin command, 333
pushgit command line option

--force-commit, 333
Python, 130

Q
Qt

file format, 64

R
RATELIMIT_ATTEMPTS

setting, 302
RATELIMIT_LOCKOUT

setting, 302
RATELIMIT_WINDOW

setting, 302
RC

file format, 73
register_command() (in module wlc.main), 132
REGISTRATION_ALLOW_BACKENDS

setting, 303
REGISTRATION_CAPTCHA

setting, 303
REGISTRATION_EMAIL_MATCH

setting, 303
REGISTRATION_OPEN

setting, 303
repo

wlc command line option, 128
REPOSITORY_ALERT_THRESHOLD

setting, 304

REQUIRE_LOGIN
setting, 304

reset
wlc command line option, 128

REST, 83
RESX

file format, 70
RFC

RFC 4646, 57
Ruby YAML

file format, 71
Ruby YAML Ain't Markup Language

file format, 71

S
save_state() (weblate.addons.base.BaseAddon

method), 366
SECRET_KEY

setting, 173
SENTRY_DSN

setting, 304
SERVER_EMAIL

setting, 174
SESSION_COOKIE_AGE_AUTHENTICATED

setting, 304
SESSION_ENGINE

setting, 173
setting

ADMINS, 173
AKISMET_API_KEY, 281
ALLOWED_HOSTS, 173
ANONYMOUS_USER_NAME, 281
AUDITLOG_EXPIRY, 282
AUTH_LOCK_ATTEMPTS, 282
AUTH_TOKEN_VALID, 283
AUTO_UPDATE, 282
AUTOFIX_LIST, 283
AVATAR_URL_PREFIX, 282
BACKGROUND_TASKS, 284
BASE_DIR, 284
BASIC_LANGUAGES, 284
CHECK_LIST, 285
COMMENT_CLEANUP_DAYS, 285
COMMIT_PENDING_HOURS, 286
CSP_CONNECT_SRC, 284
CSP_FONT_SRC, 284
CSP_IMG_SRC, 284
CSP_SCRIPT_SRC, 284
CSP_STYLE_SRC, 284
DATA_DIR, 286
DATABASE_BACKUP, 286
DATABASES, 173
DEBUG, 173
DEFAULT_ACCESS_CONTROL, 287
DEFAULT_ADD_MESSAGE, 287
DEFAULT_ADDON_MESSAGE, 287
DEFAULT_ADDONS, 288
DEFAULT_AUTO_WATCH, 287

Index 429



The Weblate Manual, Release 4.5.3

DEFAULT_COMMIT_MESSAGE, 287
DEFAULT_COMMITER_EMAIL, 288
DEFAULT_COMMITER_NAME, 288
DEFAULT_DELETE_MESSAGE, 287
DEFAULT_FROM_EMAIL, 173
DEFAULT_LANGUAGE, 288
DEFAULT_MERGE_MESSAGE, 287
DEFAULT_MERGE_STYLE, 289
DEFAULT_PULL_MESSAGE, 289
DEFAULT_RESTRICTED_COMPONENT, 287
DEFAULT_SHARED_TM, 289
DEFAULT_TRANSLATION_PROPAGATION,

289
ENABLE_AVATARS, 289
ENABLE_HOOKS, 289
ENABLE_HTTPS, 290
ENABLE_SHARING, 290
GET_HELP_URL, 290
GITHUB_CREDENTIALS, 291
GITHUB_TOKEN, 291
GITHUB_USERNAME, 291
GITLAB_CREDENTIALS, 290
GITLAB_TOKEN, 291
GITLAB_USERNAME, 290
GOOGLE_ANALYTICS_ID, 291
HIDE_REPO_CREDENTIALS, 292
HIDE_VERSION, 292
IP_BEHIND_REVERSE_PROXY, 292
IP_PROXY_HEADER, 292
IP_PROXY_OFFSET, 293
LEGAL_URL, 293
LICENSE_EXTRA, 293
LICENSE_FILTER, 294
LICENSE_REQUIRED, 294
LIMIT_TRANSLATION_LENGTH_BY_SOURCE_LENGTH,

294
LOCALIZE_CDN_PATH, 294
LOCALIZE_CDN_URL, 294
LOGIN_REQUIRED_URLS, 295
LOGIN_REQUIRED_URLS_EXCEPTIONS, 295
MACHINE_TRANSLATION_SERVICES, 296
MATOMO_SITE_ID, 295
MATOMO_URL, 296
MT_APERTIUM_APY, 296
MT_AWS_ACCESS_KEY_ID, 297
MT_AWS_REGION, 297
MT_AWS_SECRET_ACCESS_KEY, 297
MT_BAIDU_ID, 297
MT_BAIDU_SECRET, 297
MT_DEEPL_API_VERSION, 297
MT_DEEPL_KEY, 298
MT_GOOGLE_CREDENTIALS, 298
MT_GOOGLE_KEY, 298
MT_GOOGLE_LOCATION, 298
MT_GOOGLE_PROJECT, 298
MT_MICROSOFT_BASE_URL, 298
MT_MICROSOFT_COGNITIVE_KEY, 298
MT_MICROSOFT_ENDPOINT_URL, 299

MT_MICROSOFT_REGION, 299
MT_MODERNMT_KEY, 299
MT_MODERNMT_URL, 299
MT_MYMEMORY_EMAIL, 299
MT_MYMEMORY_KEY, 299
MT_MYMEMORY_USER, 299
MT_NETEASE_KEY, 300
MT_NETEASE_SECRET, 300
MT_SAP_BASE_URL, 300
MT_SAP_PASSWORD, 301
MT_SAP_SANDBOX_APIKEY, 301
MT_SAP_USE_MT, 301
MT_SAP_USERNAME, 301
MT_SERVICES, 296
MT_TMSERVER, 300
MT_YANDEX_KEY, 300
MT_YOUDAO_ID, 300
MT_YOUDAO_SECRET, 300
NEARBY_MESSAGES, 301
PAGURE_CREDENTIALS, 301
PAGURE_TOKEN, 302
PAGURE_USERNAME, 302
PIWIK_SITE_ID, 295
PIWIK_URL, 296
RATELIMIT_ATTEMPTS, 302
RATELIMIT_LOCKOUT, 302
RATELIMIT_WINDOW, 302
REGISTRATION_ALLOW_BACKENDS, 303
REGISTRATION_CAPTCHA, 303
REGISTRATION_EMAIL_MATCH, 303
REGISTRATION_OPEN, 303
REPOSITORY_ALERT_THRESHOLD, 304
REQUIRE_LOGIN, 304
SECRET_KEY, 173
SENTRY_DSN, 304
SERVER_EMAIL, 174
SESSION_COOKIE_AGE_AUTHENTICATED,

304
SESSION_ENGINE, 173
SIMPLIFY_LANGUAGES, 304
SINGLE_PROJECT, 305
SITE_DOMAIN, 305
SITE_TITLE, 305
SPECIAL_CHARS, 305
STATUS_URL, 306
SUGGESTION_CLEANUP_DAYS, 306
UPDATE_LANGUAGES, 306
URL_PREFIX, 306
VCS_BACKENDS, 306
VCS_CLONE_DEPTH, 307
WEBLATE_ADDONS, 307
WEBLATE_EXPORTERS, 308
WEBLATE_FORMATS, 308
WEBLATE_GPG_IDENTITY, 308
WEBSITE_REQUIRED, 308

setupgroups
weblate admin command, 333

setupgroups command line option

430 Index



The Weblate Manual, Release 4.5.3

--no-privs-update, 333
--no-projects-update, 333

setuplang
weblate admin command, 334

setuplang command line option
--no-update, 334

show
wlc command line option, 127

SIMPLIFY_LANGUAGES
setting, 304

SINGLE_PROJECT
setting, 305

SITE_DOMAIN
setting, 305

SITE_TITLE
setting, 305

SPECIAL_CHARS
setting, 305

statistics
wlc command line option, 128

STATUS_URL
setting, 306

stay_on_create (weblate.addons.base.BaseAddon
attribute), 366

store_post_load() (webla-
te.addons.base.BaseAddon method), 366

string resources
file format, 65

SUGGESTION_CLEANUP_DAYS
setting, 306

T
translation

bilingual, 57
iPad, 66
iPhone, 66
monolingual, 57

TS
file format, 64

U
unit_pre_create() (webla-

te.addons.base.BaseAddon method), 366
unlock

wlc command line option, 128
unlock_translation

weblate admin command, 333
UPDATE_LANGUAGES

setting, 306
updatechecks

weblate admin command, 334
updategit

weblate admin command, 334
upload

wlc command line option, 128
URL_PREFIX

setting, 306

V
VCS_BACKENDS

setting, 306
VCS_CLONE_DEPTH

setting, 307
version

wlc command line option, 127

W
Weblate (class in wlc), 131
weblate admin command

add_suggestions, 325
auto_translate, 325
celery_queues, 326
checkgit, 326
cleanuptrans, 326
commit_pending, 326
commitgit, 326
createadmin, 327
dump_memory, 327
dumpuserdata, 327
import_demo, 327
import_json, 328
import_memory, 328
import_project, 329
importuserdata, 331
importusers, 331
install_addon, 331
list_languages, 331
list_translators, 332
list_versions, 332
loadpo, 332
lock_translation, 332
move_language, 333
pushgit, 333
setupgroups, 333
setuplang, 334
unlock_translation, 333
updatechecks, 334
updategit, 334

WEBLATE_ADDONS
setting, 307

WEBLATE_ADMIN_EMAIL, 137, 138, 142
WEBLATE_ADMIN_NAME, 137, 138
WEBLATE_ADMIN_PASSWORD, 134, 137, 138
WEBLATE_AKISMET_API_KEY, 341
WEBLATE_ALLOWED_HOSTS, 173, 177, 178, 305
WEBLATE_EMAIL_PORT, 147, 148
WEBLATE_EMAIL_USE_SSL, 147, 148
WEBLATE_EMAIL_USE_TLS, 147, 148
WEBLATE_EXPORTERS

setting, 308
WEBLATE_FORMATS

setting, 308
WEBLATE_GPG_IDENTITY

setting, 308
WEBLATE_LOCALIZE_CDN_PATH, 149
WEBLATE_REQUIRE_LOGIN, 304

Index 431



The Weblate Manual, Release 4.5.3

WEBLATE_SECURE_PROXY_SSL_HEADER, 139
WEBLATE_SILENCED_SYSTEM_CHECKS, 199
WEBLATE_SITE_DOMAIN, 175, 193, 305
WeblateConfig (class in wlc.config), 131
WeblateException, 131
WEBSITE_REQUIRED

setting, 308
wlc, 126

module, 131
wlc command line option

--config PATH, 127
--config-section SECTION, 127
--convert, 128
--format {csv,json,text,html}, 127
--input, 129
--key KEY, 127
--output, 128
--overwrite, 128
--url URL, 127
changes, 128
cleanup, 128
commit, 128
download, 128
list-components, 127
list-languages, 127
list-projects, 127
list-translations, 127
lock, 128
lock-status, 128
ls, 128
pull, 128
push, 128
repo, 128
reset, 128
show, 127
statistics, 128
unlock, 128
upload, 128
version, 127

wlc.config
module, 131

wlc.main
module, 132

X
XLIFF

file format, 61
XML

file format, 72

Y
YAML

file format, 71
YAML Ain't Markup Language

file format, 71

432 Index


	User docs
	Weblate basics
	Registration and user profile
	Translating using Weblate
	Downloading and uploading translations
	Glossary
	Checks and fixups
	Searching
	Translation workflows
	Frequently Asked Questions
	Supported file formats
	Version control integration
	Weblate’s REST API
	Weblate Client
	Weblate’s Python API

	Administrator docs
	Configuration instructions
	Weblate deployments
	Upgrading Weblate
	Backing up and moving Weblate
	Authentication
	Access control
	Translation projects
	Language definitions
	Continuous localization
	Licensing translations
	Translation process
	Checks and fixups
	Machine translation
	Addons
	Translation Memory
	Configuration
	Sample configuration
	Management commands
	Announcements
	Component Lists
	Optional Weblate modules
	Customizing Weblate
	Management interface
	Getting support for Weblate
	Legal documents

	Contributor docs
	Contributing to Weblate
	Starting contributing code to Weblate
	Weblate source code
	Debugging Weblate
	Weblate internals
	Developing addons
	Weblate frontend
	Reporting issues in Weblate
	Weblate testsuite and continuous integration
	Data schemas
	Releasing Weblate
	Security and privacy
	About Weblate
	License

	Change History
	Weblate 4.5.3
	Weblate 4.5.2
	Weblate 4.5.1
	Weblate 4.5
	Weblate 4.4.2
	Weblate 4.4.1
	Weblate 4.4
	Weblate 4.3.2
	Weblate 4.3.1
	Weblate 4.3
	Weblate 4.2.2
	Weblate 4.2.1
	Weblate 4.2
	Weblate 4.1.1
	Weblate 4.1
	Weblate 4.0.4
	Weblate 4.0.3
	Weblate 4.0.2
	Weblate 4.0.1
	Weblate 4.0
	Weblate 3.x series
	Weblate 2.x series
	Weblate 1.x series
	Weblate 0.x series

	Python Module Index
	HTTP Routing Table
	Index

